Loading...
1/*
2 * DMA Pool allocator
3 *
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
7 *
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
11 *
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
16 *
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
23 */
24
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/dmapool.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <linux/poison.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/spinlock.h>
36#include <linux/string.h>
37#include <linux/types.h>
38#include <linux/wait.h>
39
40#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
41#define DMAPOOL_DEBUG 1
42#endif
43
44struct dma_pool { /* the pool */
45 struct list_head page_list;
46 spinlock_t lock;
47 size_t size;
48 struct device *dev;
49 size_t allocation;
50 size_t boundary;
51 char name[32];
52 wait_queue_head_t waitq;
53 struct list_head pools;
54};
55
56struct dma_page { /* cacheable header for 'allocation' bytes */
57 struct list_head page_list;
58 void *vaddr;
59 dma_addr_t dma;
60 unsigned int in_use;
61 unsigned int offset;
62};
63
64#define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
65
66static DEFINE_MUTEX(pools_lock);
67
68static ssize_t
69show_pools(struct device *dev, struct device_attribute *attr, char *buf)
70{
71 unsigned temp;
72 unsigned size;
73 char *next;
74 struct dma_page *page;
75 struct dma_pool *pool;
76
77 next = buf;
78 size = PAGE_SIZE;
79
80 temp = scnprintf(next, size, "poolinfo - 0.1\n");
81 size -= temp;
82 next += temp;
83
84 mutex_lock(&pools_lock);
85 list_for_each_entry(pool, &dev->dma_pools, pools) {
86 unsigned pages = 0;
87 unsigned blocks = 0;
88
89 spin_lock_irq(&pool->lock);
90 list_for_each_entry(page, &pool->page_list, page_list) {
91 pages++;
92 blocks += page->in_use;
93 }
94 spin_unlock_irq(&pool->lock);
95
96 /* per-pool info, no real statistics yet */
97 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
98 pool->name, blocks,
99 pages * (pool->allocation / pool->size),
100 pool->size, pages);
101 size -= temp;
102 next += temp;
103 }
104 mutex_unlock(&pools_lock);
105
106 return PAGE_SIZE - size;
107}
108
109static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
110
111/**
112 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
113 * @name: name of pool, for diagnostics
114 * @dev: device that will be doing the DMA
115 * @size: size of the blocks in this pool.
116 * @align: alignment requirement for blocks; must be a power of two
117 * @boundary: returned blocks won't cross this power of two boundary
118 * Context: !in_interrupt()
119 *
120 * Returns a dma allocation pool with the requested characteristics, or
121 * null if one can't be created. Given one of these pools, dma_pool_alloc()
122 * may be used to allocate memory. Such memory will all have "consistent"
123 * DMA mappings, accessible by the device and its driver without using
124 * cache flushing primitives. The actual size of blocks allocated may be
125 * larger than requested because of alignment.
126 *
127 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
128 * cross that size boundary. This is useful for devices which have
129 * addressing restrictions on individual DMA transfers, such as not crossing
130 * boundaries of 4KBytes.
131 */
132struct dma_pool *dma_pool_create(const char *name, struct device *dev,
133 size_t size, size_t align, size_t boundary)
134{
135 struct dma_pool *retval;
136 size_t allocation;
137
138 if (align == 0) {
139 align = 1;
140 } else if (align & (align - 1)) {
141 return NULL;
142 }
143
144 if (size == 0) {
145 return NULL;
146 } else if (size < 4) {
147 size = 4;
148 }
149
150 if ((size % align) != 0)
151 size = ALIGN(size, align);
152
153 allocation = max_t(size_t, size, PAGE_SIZE);
154
155 if (!boundary) {
156 boundary = allocation;
157 } else if ((boundary < size) || (boundary & (boundary - 1))) {
158 return NULL;
159 }
160
161 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
162 if (!retval)
163 return retval;
164
165 strlcpy(retval->name, name, sizeof(retval->name));
166
167 retval->dev = dev;
168
169 INIT_LIST_HEAD(&retval->page_list);
170 spin_lock_init(&retval->lock);
171 retval->size = size;
172 retval->boundary = boundary;
173 retval->allocation = allocation;
174 init_waitqueue_head(&retval->waitq);
175
176 if (dev) {
177 int ret;
178
179 mutex_lock(&pools_lock);
180 if (list_empty(&dev->dma_pools))
181 ret = device_create_file(dev, &dev_attr_pools);
182 else
183 ret = 0;
184 /* note: not currently insisting "name" be unique */
185 if (!ret)
186 list_add(&retval->pools, &dev->dma_pools);
187 else {
188 kfree(retval);
189 retval = NULL;
190 }
191 mutex_unlock(&pools_lock);
192 } else
193 INIT_LIST_HEAD(&retval->pools);
194
195 return retval;
196}
197EXPORT_SYMBOL(dma_pool_create);
198
199static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
200{
201 unsigned int offset = 0;
202 unsigned int next_boundary = pool->boundary;
203
204 do {
205 unsigned int next = offset + pool->size;
206 if (unlikely((next + pool->size) >= next_boundary)) {
207 next = next_boundary;
208 next_boundary += pool->boundary;
209 }
210 *(int *)(page->vaddr + offset) = next;
211 offset = next;
212 } while (offset < pool->allocation);
213}
214
215static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
216{
217 struct dma_page *page;
218
219 page = kmalloc(sizeof(*page), mem_flags);
220 if (!page)
221 return NULL;
222 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
223 &page->dma, mem_flags);
224 if (page->vaddr) {
225#ifdef DMAPOOL_DEBUG
226 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
227#endif
228 pool_initialise_page(pool, page);
229 list_add(&page->page_list, &pool->page_list);
230 page->in_use = 0;
231 page->offset = 0;
232 } else {
233 kfree(page);
234 page = NULL;
235 }
236 return page;
237}
238
239static inline int is_page_busy(struct dma_page *page)
240{
241 return page->in_use != 0;
242}
243
244static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
245{
246 dma_addr_t dma = page->dma;
247
248#ifdef DMAPOOL_DEBUG
249 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
250#endif
251 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
252 list_del(&page->page_list);
253 kfree(page);
254}
255
256/**
257 * dma_pool_destroy - destroys a pool of dma memory blocks.
258 * @pool: dma pool that will be destroyed
259 * Context: !in_interrupt()
260 *
261 * Caller guarantees that no more memory from the pool is in use,
262 * and that nothing will try to use the pool after this call.
263 */
264void dma_pool_destroy(struct dma_pool *pool)
265{
266 mutex_lock(&pools_lock);
267 list_del(&pool->pools);
268 if (pool->dev && list_empty(&pool->dev->dma_pools))
269 device_remove_file(pool->dev, &dev_attr_pools);
270 mutex_unlock(&pools_lock);
271
272 while (!list_empty(&pool->page_list)) {
273 struct dma_page *page;
274 page = list_entry(pool->page_list.next,
275 struct dma_page, page_list);
276 if (is_page_busy(page)) {
277 if (pool->dev)
278 dev_err(pool->dev,
279 "dma_pool_destroy %s, %p busy\n",
280 pool->name, page->vaddr);
281 else
282 printk(KERN_ERR
283 "dma_pool_destroy %s, %p busy\n",
284 pool->name, page->vaddr);
285 /* leak the still-in-use consistent memory */
286 list_del(&page->page_list);
287 kfree(page);
288 } else
289 pool_free_page(pool, page);
290 }
291
292 kfree(pool);
293}
294EXPORT_SYMBOL(dma_pool_destroy);
295
296/**
297 * dma_pool_alloc - get a block of consistent memory
298 * @pool: dma pool that will produce the block
299 * @mem_flags: GFP_* bitmask
300 * @handle: pointer to dma address of block
301 *
302 * This returns the kernel virtual address of a currently unused block,
303 * and reports its dma address through the handle.
304 * If such a memory block can't be allocated, %NULL is returned.
305 */
306void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
307 dma_addr_t *handle)
308{
309 unsigned long flags;
310 struct dma_page *page;
311 size_t offset;
312 void *retval;
313
314 might_sleep_if(mem_flags & __GFP_WAIT);
315
316 spin_lock_irqsave(&pool->lock, flags);
317 restart:
318 list_for_each_entry(page, &pool->page_list, page_list) {
319 if (page->offset < pool->allocation)
320 goto ready;
321 }
322 page = pool_alloc_page(pool, GFP_ATOMIC);
323 if (!page) {
324 if (mem_flags & __GFP_WAIT) {
325 DECLARE_WAITQUEUE(wait, current);
326
327 __set_current_state(TASK_UNINTERRUPTIBLE);
328 __add_wait_queue(&pool->waitq, &wait);
329 spin_unlock_irqrestore(&pool->lock, flags);
330
331 schedule_timeout(POOL_TIMEOUT_JIFFIES);
332
333 spin_lock_irqsave(&pool->lock, flags);
334 __remove_wait_queue(&pool->waitq, &wait);
335 goto restart;
336 }
337 retval = NULL;
338 goto done;
339 }
340
341 ready:
342 page->in_use++;
343 offset = page->offset;
344 page->offset = *(int *)(page->vaddr + offset);
345 retval = offset + page->vaddr;
346 *handle = offset + page->dma;
347#ifdef DMAPOOL_DEBUG
348 memset(retval, POOL_POISON_ALLOCATED, pool->size);
349#endif
350 done:
351 spin_unlock_irqrestore(&pool->lock, flags);
352 return retval;
353}
354EXPORT_SYMBOL(dma_pool_alloc);
355
356static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
357{
358 struct dma_page *page;
359
360 list_for_each_entry(page, &pool->page_list, page_list) {
361 if (dma < page->dma)
362 continue;
363 if (dma < (page->dma + pool->allocation))
364 return page;
365 }
366 return NULL;
367}
368
369/**
370 * dma_pool_free - put block back into dma pool
371 * @pool: the dma pool holding the block
372 * @vaddr: virtual address of block
373 * @dma: dma address of block
374 *
375 * Caller promises neither device nor driver will again touch this block
376 * unless it is first re-allocated.
377 */
378void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
379{
380 struct dma_page *page;
381 unsigned long flags;
382 unsigned int offset;
383
384 spin_lock_irqsave(&pool->lock, flags);
385 page = pool_find_page(pool, dma);
386 if (!page) {
387 spin_unlock_irqrestore(&pool->lock, flags);
388 if (pool->dev)
389 dev_err(pool->dev,
390 "dma_pool_free %s, %p/%lx (bad dma)\n",
391 pool->name, vaddr, (unsigned long)dma);
392 else
393 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
394 pool->name, vaddr, (unsigned long)dma);
395 return;
396 }
397
398 offset = vaddr - page->vaddr;
399#ifdef DMAPOOL_DEBUG
400 if ((dma - page->dma) != offset) {
401 spin_unlock_irqrestore(&pool->lock, flags);
402 if (pool->dev)
403 dev_err(pool->dev,
404 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
405 pool->name, vaddr, (unsigned long long)dma);
406 else
407 printk(KERN_ERR
408 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
409 pool->name, vaddr, (unsigned long long)dma);
410 return;
411 }
412 {
413 unsigned int chain = page->offset;
414 while (chain < pool->allocation) {
415 if (chain != offset) {
416 chain = *(int *)(page->vaddr + chain);
417 continue;
418 }
419 spin_unlock_irqrestore(&pool->lock, flags);
420 if (pool->dev)
421 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
422 "already free\n", pool->name,
423 (unsigned long long)dma);
424 else
425 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
426 "already free\n", pool->name,
427 (unsigned long long)dma);
428 return;
429 }
430 }
431 memset(vaddr, POOL_POISON_FREED, pool->size);
432#endif
433
434 page->in_use--;
435 *(int *)vaddr = page->offset;
436 page->offset = offset;
437 if (waitqueue_active(&pool->waitq))
438 wake_up_locked(&pool->waitq);
439 /*
440 * Resist a temptation to do
441 * if (!is_page_busy(page)) pool_free_page(pool, page);
442 * Better have a few empty pages hang around.
443 */
444 spin_unlock_irqrestore(&pool->lock, flags);
445}
446EXPORT_SYMBOL(dma_pool_free);
447
448/*
449 * Managed DMA pool
450 */
451static void dmam_pool_release(struct device *dev, void *res)
452{
453 struct dma_pool *pool = *(struct dma_pool **)res;
454
455 dma_pool_destroy(pool);
456}
457
458static int dmam_pool_match(struct device *dev, void *res, void *match_data)
459{
460 return *(struct dma_pool **)res == match_data;
461}
462
463/**
464 * dmam_pool_create - Managed dma_pool_create()
465 * @name: name of pool, for diagnostics
466 * @dev: device that will be doing the DMA
467 * @size: size of the blocks in this pool.
468 * @align: alignment requirement for blocks; must be a power of two
469 * @allocation: returned blocks won't cross this boundary (or zero)
470 *
471 * Managed dma_pool_create(). DMA pool created with this function is
472 * automatically destroyed on driver detach.
473 */
474struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
475 size_t size, size_t align, size_t allocation)
476{
477 struct dma_pool **ptr, *pool;
478
479 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
480 if (!ptr)
481 return NULL;
482
483 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
484 if (pool)
485 devres_add(dev, ptr);
486 else
487 devres_free(ptr);
488
489 return pool;
490}
491EXPORT_SYMBOL(dmam_pool_create);
492
493/**
494 * dmam_pool_destroy - Managed dma_pool_destroy()
495 * @pool: dma pool that will be destroyed
496 *
497 * Managed dma_pool_destroy().
498 */
499void dmam_pool_destroy(struct dma_pool *pool)
500{
501 struct device *dev = pool->dev;
502
503 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
504 dma_pool_destroy(pool);
505}
506EXPORT_SYMBOL(dmam_pool_destroy);
1/*
2 * DMA Pool allocator
3 *
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
7 *
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
11 *
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
16 *
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
23 */
24
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/dmapool.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/export.h>
31#include <linux/mutex.h>
32#include <linux/poison.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/stat.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/types.h>
39#include <linux/wait.h>
40
41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42#define DMAPOOL_DEBUG 1
43#endif
44
45struct dma_pool { /* the pool */
46 struct list_head page_list;
47 spinlock_t lock;
48 size_t size;
49 struct device *dev;
50 size_t allocation;
51 size_t boundary;
52 char name[32];
53 wait_queue_head_t waitq;
54 struct list_head pools;
55};
56
57struct dma_page { /* cacheable header for 'allocation' bytes */
58 struct list_head page_list;
59 void *vaddr;
60 dma_addr_t dma;
61 unsigned int in_use;
62 unsigned int offset;
63};
64
65#define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
66
67static DEFINE_MUTEX(pools_lock);
68
69static ssize_t
70show_pools(struct device *dev, struct device_attribute *attr, char *buf)
71{
72 unsigned temp;
73 unsigned size;
74 char *next;
75 struct dma_page *page;
76 struct dma_pool *pool;
77
78 next = buf;
79 size = PAGE_SIZE;
80
81 temp = scnprintf(next, size, "poolinfo - 0.1\n");
82 size -= temp;
83 next += temp;
84
85 mutex_lock(&pools_lock);
86 list_for_each_entry(pool, &dev->dma_pools, pools) {
87 unsigned pages = 0;
88 unsigned blocks = 0;
89
90 spin_lock_irq(&pool->lock);
91 list_for_each_entry(page, &pool->page_list, page_list) {
92 pages++;
93 blocks += page->in_use;
94 }
95 spin_unlock_irq(&pool->lock);
96
97 /* per-pool info, no real statistics yet */
98 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
99 pool->name, blocks,
100 pages * (pool->allocation / pool->size),
101 pool->size, pages);
102 size -= temp;
103 next += temp;
104 }
105 mutex_unlock(&pools_lock);
106
107 return PAGE_SIZE - size;
108}
109
110static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
111
112/**
113 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
114 * @name: name of pool, for diagnostics
115 * @dev: device that will be doing the DMA
116 * @size: size of the blocks in this pool.
117 * @align: alignment requirement for blocks; must be a power of two
118 * @boundary: returned blocks won't cross this power of two boundary
119 * Context: !in_interrupt()
120 *
121 * Returns a dma allocation pool with the requested characteristics, or
122 * null if one can't be created. Given one of these pools, dma_pool_alloc()
123 * may be used to allocate memory. Such memory will all have "consistent"
124 * DMA mappings, accessible by the device and its driver without using
125 * cache flushing primitives. The actual size of blocks allocated may be
126 * larger than requested because of alignment.
127 *
128 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
129 * cross that size boundary. This is useful for devices which have
130 * addressing restrictions on individual DMA transfers, such as not crossing
131 * boundaries of 4KBytes.
132 */
133struct dma_pool *dma_pool_create(const char *name, struct device *dev,
134 size_t size, size_t align, size_t boundary)
135{
136 struct dma_pool *retval;
137 size_t allocation;
138
139 if (align == 0) {
140 align = 1;
141 } else if (align & (align - 1)) {
142 return NULL;
143 }
144
145 if (size == 0) {
146 return NULL;
147 } else if (size < 4) {
148 size = 4;
149 }
150
151 if ((size % align) != 0)
152 size = ALIGN(size, align);
153
154 allocation = max_t(size_t, size, PAGE_SIZE);
155
156 if (!boundary) {
157 boundary = allocation;
158 } else if ((boundary < size) || (boundary & (boundary - 1))) {
159 return NULL;
160 }
161
162 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
163 if (!retval)
164 return retval;
165
166 strlcpy(retval->name, name, sizeof(retval->name));
167
168 retval->dev = dev;
169
170 INIT_LIST_HEAD(&retval->page_list);
171 spin_lock_init(&retval->lock);
172 retval->size = size;
173 retval->boundary = boundary;
174 retval->allocation = allocation;
175 init_waitqueue_head(&retval->waitq);
176
177 if (dev) {
178 int ret;
179
180 mutex_lock(&pools_lock);
181 if (list_empty(&dev->dma_pools))
182 ret = device_create_file(dev, &dev_attr_pools);
183 else
184 ret = 0;
185 /* note: not currently insisting "name" be unique */
186 if (!ret)
187 list_add(&retval->pools, &dev->dma_pools);
188 else {
189 kfree(retval);
190 retval = NULL;
191 }
192 mutex_unlock(&pools_lock);
193 } else
194 INIT_LIST_HEAD(&retval->pools);
195
196 return retval;
197}
198EXPORT_SYMBOL(dma_pool_create);
199
200static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
201{
202 unsigned int offset = 0;
203 unsigned int next_boundary = pool->boundary;
204
205 do {
206 unsigned int next = offset + pool->size;
207 if (unlikely((next + pool->size) >= next_boundary)) {
208 next = next_boundary;
209 next_boundary += pool->boundary;
210 }
211 *(int *)(page->vaddr + offset) = next;
212 offset = next;
213 } while (offset < pool->allocation);
214}
215
216static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
217{
218 struct dma_page *page;
219
220 page = kmalloc(sizeof(*page), mem_flags);
221 if (!page)
222 return NULL;
223 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
224 &page->dma, mem_flags);
225 if (page->vaddr) {
226#ifdef DMAPOOL_DEBUG
227 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
228#endif
229 pool_initialise_page(pool, page);
230 list_add(&page->page_list, &pool->page_list);
231 page->in_use = 0;
232 page->offset = 0;
233 } else {
234 kfree(page);
235 page = NULL;
236 }
237 return page;
238}
239
240static inline int is_page_busy(struct dma_page *page)
241{
242 return page->in_use != 0;
243}
244
245static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
246{
247 dma_addr_t dma = page->dma;
248
249#ifdef DMAPOOL_DEBUG
250 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
251#endif
252 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
253 list_del(&page->page_list);
254 kfree(page);
255}
256
257/**
258 * dma_pool_destroy - destroys a pool of dma memory blocks.
259 * @pool: dma pool that will be destroyed
260 * Context: !in_interrupt()
261 *
262 * Caller guarantees that no more memory from the pool is in use,
263 * and that nothing will try to use the pool after this call.
264 */
265void dma_pool_destroy(struct dma_pool *pool)
266{
267 mutex_lock(&pools_lock);
268 list_del(&pool->pools);
269 if (pool->dev && list_empty(&pool->dev->dma_pools))
270 device_remove_file(pool->dev, &dev_attr_pools);
271 mutex_unlock(&pools_lock);
272
273 while (!list_empty(&pool->page_list)) {
274 struct dma_page *page;
275 page = list_entry(pool->page_list.next,
276 struct dma_page, page_list);
277 if (is_page_busy(page)) {
278 if (pool->dev)
279 dev_err(pool->dev,
280 "dma_pool_destroy %s, %p busy\n",
281 pool->name, page->vaddr);
282 else
283 printk(KERN_ERR
284 "dma_pool_destroy %s, %p busy\n",
285 pool->name, page->vaddr);
286 /* leak the still-in-use consistent memory */
287 list_del(&page->page_list);
288 kfree(page);
289 } else
290 pool_free_page(pool, page);
291 }
292
293 kfree(pool);
294}
295EXPORT_SYMBOL(dma_pool_destroy);
296
297/**
298 * dma_pool_alloc - get a block of consistent memory
299 * @pool: dma pool that will produce the block
300 * @mem_flags: GFP_* bitmask
301 * @handle: pointer to dma address of block
302 *
303 * This returns the kernel virtual address of a currently unused block,
304 * and reports its dma address through the handle.
305 * If such a memory block can't be allocated, %NULL is returned.
306 */
307void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
308 dma_addr_t *handle)
309{
310 unsigned long flags;
311 struct dma_page *page;
312 size_t offset;
313 void *retval;
314
315 might_sleep_if(mem_flags & __GFP_WAIT);
316
317 spin_lock_irqsave(&pool->lock, flags);
318 restart:
319 list_for_each_entry(page, &pool->page_list, page_list) {
320 if (page->offset < pool->allocation)
321 goto ready;
322 }
323 page = pool_alloc_page(pool, GFP_ATOMIC);
324 if (!page) {
325 if (mem_flags & __GFP_WAIT) {
326 DECLARE_WAITQUEUE(wait, current);
327
328 __set_current_state(TASK_UNINTERRUPTIBLE);
329 __add_wait_queue(&pool->waitq, &wait);
330 spin_unlock_irqrestore(&pool->lock, flags);
331
332 schedule_timeout(POOL_TIMEOUT_JIFFIES);
333
334 spin_lock_irqsave(&pool->lock, flags);
335 __remove_wait_queue(&pool->waitq, &wait);
336 goto restart;
337 }
338 retval = NULL;
339 goto done;
340 }
341
342 ready:
343 page->in_use++;
344 offset = page->offset;
345 page->offset = *(int *)(page->vaddr + offset);
346 retval = offset + page->vaddr;
347 *handle = offset + page->dma;
348#ifdef DMAPOOL_DEBUG
349 memset(retval, POOL_POISON_ALLOCATED, pool->size);
350#endif
351 done:
352 spin_unlock_irqrestore(&pool->lock, flags);
353 return retval;
354}
355EXPORT_SYMBOL(dma_pool_alloc);
356
357static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
358{
359 struct dma_page *page;
360
361 list_for_each_entry(page, &pool->page_list, page_list) {
362 if (dma < page->dma)
363 continue;
364 if (dma < (page->dma + pool->allocation))
365 return page;
366 }
367 return NULL;
368}
369
370/**
371 * dma_pool_free - put block back into dma pool
372 * @pool: the dma pool holding the block
373 * @vaddr: virtual address of block
374 * @dma: dma address of block
375 *
376 * Caller promises neither device nor driver will again touch this block
377 * unless it is first re-allocated.
378 */
379void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
380{
381 struct dma_page *page;
382 unsigned long flags;
383 unsigned int offset;
384
385 spin_lock_irqsave(&pool->lock, flags);
386 page = pool_find_page(pool, dma);
387 if (!page) {
388 spin_unlock_irqrestore(&pool->lock, flags);
389 if (pool->dev)
390 dev_err(pool->dev,
391 "dma_pool_free %s, %p/%lx (bad dma)\n",
392 pool->name, vaddr, (unsigned long)dma);
393 else
394 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
395 pool->name, vaddr, (unsigned long)dma);
396 return;
397 }
398
399 offset = vaddr - page->vaddr;
400#ifdef DMAPOOL_DEBUG
401 if ((dma - page->dma) != offset) {
402 spin_unlock_irqrestore(&pool->lock, flags);
403 if (pool->dev)
404 dev_err(pool->dev,
405 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
406 pool->name, vaddr, (unsigned long long)dma);
407 else
408 printk(KERN_ERR
409 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
410 pool->name, vaddr, (unsigned long long)dma);
411 return;
412 }
413 {
414 unsigned int chain = page->offset;
415 while (chain < pool->allocation) {
416 if (chain != offset) {
417 chain = *(int *)(page->vaddr + chain);
418 continue;
419 }
420 spin_unlock_irqrestore(&pool->lock, flags);
421 if (pool->dev)
422 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
423 "already free\n", pool->name,
424 (unsigned long long)dma);
425 else
426 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
427 "already free\n", pool->name,
428 (unsigned long long)dma);
429 return;
430 }
431 }
432 memset(vaddr, POOL_POISON_FREED, pool->size);
433#endif
434
435 page->in_use--;
436 *(int *)vaddr = page->offset;
437 page->offset = offset;
438 if (waitqueue_active(&pool->waitq))
439 wake_up_locked(&pool->waitq);
440 /*
441 * Resist a temptation to do
442 * if (!is_page_busy(page)) pool_free_page(pool, page);
443 * Better have a few empty pages hang around.
444 */
445 spin_unlock_irqrestore(&pool->lock, flags);
446}
447EXPORT_SYMBOL(dma_pool_free);
448
449/*
450 * Managed DMA pool
451 */
452static void dmam_pool_release(struct device *dev, void *res)
453{
454 struct dma_pool *pool = *(struct dma_pool **)res;
455
456 dma_pool_destroy(pool);
457}
458
459static int dmam_pool_match(struct device *dev, void *res, void *match_data)
460{
461 return *(struct dma_pool **)res == match_data;
462}
463
464/**
465 * dmam_pool_create - Managed dma_pool_create()
466 * @name: name of pool, for diagnostics
467 * @dev: device that will be doing the DMA
468 * @size: size of the blocks in this pool.
469 * @align: alignment requirement for blocks; must be a power of two
470 * @allocation: returned blocks won't cross this boundary (or zero)
471 *
472 * Managed dma_pool_create(). DMA pool created with this function is
473 * automatically destroyed on driver detach.
474 */
475struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
476 size_t size, size_t align, size_t allocation)
477{
478 struct dma_pool **ptr, *pool;
479
480 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
481 if (!ptr)
482 return NULL;
483
484 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
485 if (pool)
486 devres_add(dev, ptr);
487 else
488 devres_free(ptr);
489
490 return pool;
491}
492EXPORT_SYMBOL(dmam_pool_create);
493
494/**
495 * dmam_pool_destroy - Managed dma_pool_destroy()
496 * @pool: dma pool that will be destroyed
497 *
498 * Managed dma_pool_destroy().
499 */
500void dmam_pool_destroy(struct dma_pool *pool)
501{
502 struct device *dev = pool->dev;
503
504 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
505 dma_pool_destroy(pool);
506}
507EXPORT_SYMBOL(dmam_pool_destroy);