Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * DMA Pool allocator
  3 *
  4 * Copyright 2001 David Brownell
  5 * Copyright 2007 Intel Corporation
  6 *   Author: Matthew Wilcox <willy@linux.intel.com>
  7 *
  8 * This software may be redistributed and/or modified under the terms of
  9 * the GNU General Public License ("GPL") version 2 as published by the
 10 * Free Software Foundation.
 11 *
 12 * This allocator returns small blocks of a given size which are DMA-able by
 13 * the given device.  It uses the dma_alloc_coherent page allocator to get
 14 * new pages, then splits them up into blocks of the required size.
 15 * Many older drivers still have their own code to do this.
 16 *
 17 * The current design of this allocator is fairly simple.  The pool is
 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 19 * allocated pages.  Each page in the page_list is split into blocks of at
 20 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 21 * list of free blocks within the page.  Used blocks aren't tracked, but we
 22 * keep a count of how many are currently allocated from each page.
 23 */
 24
 25#include <linux/device.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmapool.h>
 28#include <linux/kernel.h>
 29#include <linux/list.h>
 30#include <linux/module.h>
 31#include <linux/mutex.h>
 32#include <linux/poison.h>
 33#include <linux/sched.h>
 34#include <linux/slab.h>
 
 35#include <linux/spinlock.h>
 36#include <linux/string.h>
 37#include <linux/types.h>
 38#include <linux/wait.h>
 39
 40#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 41#define DMAPOOL_DEBUG 1
 42#endif
 43
 44struct dma_pool {		/* the pool */
 45	struct list_head page_list;
 46	spinlock_t lock;
 47	size_t size;
 48	struct device *dev;
 49	size_t allocation;
 50	size_t boundary;
 51	char name[32];
 52	wait_queue_head_t waitq;
 53	struct list_head pools;
 54};
 55
 56struct dma_page {		/* cacheable header for 'allocation' bytes */
 57	struct list_head page_list;
 58	void *vaddr;
 59	dma_addr_t dma;
 60	unsigned int in_use;
 61	unsigned int offset;
 62};
 63
 64#define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
 65
 66static DEFINE_MUTEX(pools_lock);
 67
 68static ssize_t
 69show_pools(struct device *dev, struct device_attribute *attr, char *buf)
 70{
 71	unsigned temp;
 72	unsigned size;
 73	char *next;
 74	struct dma_page *page;
 75	struct dma_pool *pool;
 76
 77	next = buf;
 78	size = PAGE_SIZE;
 79
 80	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 81	size -= temp;
 82	next += temp;
 83
 84	mutex_lock(&pools_lock);
 85	list_for_each_entry(pool, &dev->dma_pools, pools) {
 86		unsigned pages = 0;
 87		unsigned blocks = 0;
 88
 89		spin_lock_irq(&pool->lock);
 90		list_for_each_entry(page, &pool->page_list, page_list) {
 91			pages++;
 92			blocks += page->in_use;
 93		}
 94		spin_unlock_irq(&pool->lock);
 95
 96		/* per-pool info, no real statistics yet */
 97		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
 98				 pool->name, blocks,
 99				 pages * (pool->allocation / pool->size),
100				 pool->size, pages);
101		size -= temp;
102		next += temp;
103	}
104	mutex_unlock(&pools_lock);
105
106	return PAGE_SIZE - size;
107}
108
109static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
110
111/**
112 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
113 * @name: name of pool, for diagnostics
114 * @dev: device that will be doing the DMA
115 * @size: size of the blocks in this pool.
116 * @align: alignment requirement for blocks; must be a power of two
117 * @boundary: returned blocks won't cross this power of two boundary
118 * Context: !in_interrupt()
119 *
120 * Returns a dma allocation pool with the requested characteristics, or
121 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
122 * may be used to allocate memory.  Such memory will all have "consistent"
123 * DMA mappings, accessible by the device and its driver without using
124 * cache flushing primitives.  The actual size of blocks allocated may be
125 * larger than requested because of alignment.
126 *
127 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
128 * cross that size boundary.  This is useful for devices which have
129 * addressing restrictions on individual DMA transfers, such as not crossing
130 * boundaries of 4KBytes.
131 */
132struct dma_pool *dma_pool_create(const char *name, struct device *dev,
133				 size_t size, size_t align, size_t boundary)
134{
135	struct dma_pool *retval;
136	size_t allocation;
137
138	if (align == 0) {
139		align = 1;
140	} else if (align & (align - 1)) {
141		return NULL;
142	}
143
144	if (size == 0) {
145		return NULL;
146	} else if (size < 4) {
147		size = 4;
148	}
149
150	if ((size % align) != 0)
151		size = ALIGN(size, align);
152
153	allocation = max_t(size_t, size, PAGE_SIZE);
154
155	if (!boundary) {
156		boundary = allocation;
157	} else if ((boundary < size) || (boundary & (boundary - 1))) {
158		return NULL;
159	}
160
161	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
162	if (!retval)
163		return retval;
164
165	strlcpy(retval->name, name, sizeof(retval->name));
166
167	retval->dev = dev;
168
169	INIT_LIST_HEAD(&retval->page_list);
170	spin_lock_init(&retval->lock);
171	retval->size = size;
172	retval->boundary = boundary;
173	retval->allocation = allocation;
174	init_waitqueue_head(&retval->waitq);
175
176	if (dev) {
177		int ret;
178
179		mutex_lock(&pools_lock);
180		if (list_empty(&dev->dma_pools))
181			ret = device_create_file(dev, &dev_attr_pools);
182		else
183			ret = 0;
184		/* note:  not currently insisting "name" be unique */
185		if (!ret)
186			list_add(&retval->pools, &dev->dma_pools);
187		else {
188			kfree(retval);
189			retval = NULL;
190		}
191		mutex_unlock(&pools_lock);
192	} else
193		INIT_LIST_HEAD(&retval->pools);
194
195	return retval;
196}
197EXPORT_SYMBOL(dma_pool_create);
198
199static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
200{
201	unsigned int offset = 0;
202	unsigned int next_boundary = pool->boundary;
203
204	do {
205		unsigned int next = offset + pool->size;
206		if (unlikely((next + pool->size) >= next_boundary)) {
207			next = next_boundary;
208			next_boundary += pool->boundary;
209		}
210		*(int *)(page->vaddr + offset) = next;
211		offset = next;
212	} while (offset < pool->allocation);
213}
214
215static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
216{
217	struct dma_page *page;
218
219	page = kmalloc(sizeof(*page), mem_flags);
220	if (!page)
221		return NULL;
222	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
223					 &page->dma, mem_flags);
224	if (page->vaddr) {
225#ifdef	DMAPOOL_DEBUG
226		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
227#endif
228		pool_initialise_page(pool, page);
229		list_add(&page->page_list, &pool->page_list);
230		page->in_use = 0;
231		page->offset = 0;
232	} else {
233		kfree(page);
234		page = NULL;
235	}
236	return page;
237}
238
239static inline int is_page_busy(struct dma_page *page)
240{
241	return page->in_use != 0;
242}
243
244static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
245{
246	dma_addr_t dma = page->dma;
247
248#ifdef	DMAPOOL_DEBUG
249	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
250#endif
251	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
252	list_del(&page->page_list);
253	kfree(page);
254}
255
256/**
257 * dma_pool_destroy - destroys a pool of dma memory blocks.
258 * @pool: dma pool that will be destroyed
259 * Context: !in_interrupt()
260 *
261 * Caller guarantees that no more memory from the pool is in use,
262 * and that nothing will try to use the pool after this call.
263 */
264void dma_pool_destroy(struct dma_pool *pool)
265{
266	mutex_lock(&pools_lock);
267	list_del(&pool->pools);
268	if (pool->dev && list_empty(&pool->dev->dma_pools))
269		device_remove_file(pool->dev, &dev_attr_pools);
270	mutex_unlock(&pools_lock);
271
272	while (!list_empty(&pool->page_list)) {
273		struct dma_page *page;
274		page = list_entry(pool->page_list.next,
275				  struct dma_page, page_list);
276		if (is_page_busy(page)) {
277			if (pool->dev)
278				dev_err(pool->dev,
279					"dma_pool_destroy %s, %p busy\n",
280					pool->name, page->vaddr);
281			else
282				printk(KERN_ERR
283				       "dma_pool_destroy %s, %p busy\n",
284				       pool->name, page->vaddr);
285			/* leak the still-in-use consistent memory */
286			list_del(&page->page_list);
287			kfree(page);
288		} else
289			pool_free_page(pool, page);
290	}
291
292	kfree(pool);
293}
294EXPORT_SYMBOL(dma_pool_destroy);
295
296/**
297 * dma_pool_alloc - get a block of consistent memory
298 * @pool: dma pool that will produce the block
299 * @mem_flags: GFP_* bitmask
300 * @handle: pointer to dma address of block
301 *
302 * This returns the kernel virtual address of a currently unused block,
303 * and reports its dma address through the handle.
304 * If such a memory block can't be allocated, %NULL is returned.
305 */
306void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
307		     dma_addr_t *handle)
308{
309	unsigned long flags;
310	struct dma_page *page;
311	size_t offset;
312	void *retval;
313
314	might_sleep_if(mem_flags & __GFP_WAIT);
315
316	spin_lock_irqsave(&pool->lock, flags);
317 restart:
318	list_for_each_entry(page, &pool->page_list, page_list) {
319		if (page->offset < pool->allocation)
320			goto ready;
321	}
322	page = pool_alloc_page(pool, GFP_ATOMIC);
323	if (!page) {
324		if (mem_flags & __GFP_WAIT) {
325			DECLARE_WAITQUEUE(wait, current);
326
327			__set_current_state(TASK_UNINTERRUPTIBLE);
328			__add_wait_queue(&pool->waitq, &wait);
329			spin_unlock_irqrestore(&pool->lock, flags);
330
331			schedule_timeout(POOL_TIMEOUT_JIFFIES);
 
 
332
333			spin_lock_irqsave(&pool->lock, flags);
334			__remove_wait_queue(&pool->waitq, &wait);
335			goto restart;
336		}
337		retval = NULL;
338		goto done;
339	}
340
 
341 ready:
342	page->in_use++;
343	offset = page->offset;
344	page->offset = *(int *)(page->vaddr + offset);
345	retval = offset + page->vaddr;
346	*handle = offset + page->dma;
347#ifdef	DMAPOOL_DEBUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348	memset(retval, POOL_POISON_ALLOCATED, pool->size);
349#endif
350 done:
351	spin_unlock_irqrestore(&pool->lock, flags);
352	return retval;
353}
354EXPORT_SYMBOL(dma_pool_alloc);
355
356static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
357{
358	struct dma_page *page;
359
360	list_for_each_entry(page, &pool->page_list, page_list) {
361		if (dma < page->dma)
362			continue;
363		if (dma < (page->dma + pool->allocation))
364			return page;
365	}
366	return NULL;
367}
368
369/**
370 * dma_pool_free - put block back into dma pool
371 * @pool: the dma pool holding the block
372 * @vaddr: virtual address of block
373 * @dma: dma address of block
374 *
375 * Caller promises neither device nor driver will again touch this block
376 * unless it is first re-allocated.
377 */
378void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
379{
380	struct dma_page *page;
381	unsigned long flags;
382	unsigned int offset;
383
384	spin_lock_irqsave(&pool->lock, flags);
385	page = pool_find_page(pool, dma);
386	if (!page) {
387		spin_unlock_irqrestore(&pool->lock, flags);
388		if (pool->dev)
389			dev_err(pool->dev,
390				"dma_pool_free %s, %p/%lx (bad dma)\n",
391				pool->name, vaddr, (unsigned long)dma);
392		else
393			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
394			       pool->name, vaddr, (unsigned long)dma);
395		return;
396	}
397
398	offset = vaddr - page->vaddr;
399#ifdef	DMAPOOL_DEBUG
400	if ((dma - page->dma) != offset) {
401		spin_unlock_irqrestore(&pool->lock, flags);
402		if (pool->dev)
403			dev_err(pool->dev,
404				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
405				pool->name, vaddr, (unsigned long long)dma);
406		else
407			printk(KERN_ERR
408			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
409			       pool->name, vaddr, (unsigned long long)dma);
410		return;
411	}
412	{
413		unsigned int chain = page->offset;
414		while (chain < pool->allocation) {
415			if (chain != offset) {
416				chain = *(int *)(page->vaddr + chain);
417				continue;
418			}
419			spin_unlock_irqrestore(&pool->lock, flags);
420			if (pool->dev)
421				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
422					"already free\n", pool->name,
423					(unsigned long long)dma);
424			else
425				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
426					"already free\n", pool->name,
427					(unsigned long long)dma);
428			return;
429		}
430	}
431	memset(vaddr, POOL_POISON_FREED, pool->size);
432#endif
433
434	page->in_use--;
435	*(int *)vaddr = page->offset;
436	page->offset = offset;
437	if (waitqueue_active(&pool->waitq))
438		wake_up_locked(&pool->waitq);
439	/*
440	 * Resist a temptation to do
441	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
442	 * Better have a few empty pages hang around.
443	 */
444	spin_unlock_irqrestore(&pool->lock, flags);
445}
446EXPORT_SYMBOL(dma_pool_free);
447
448/*
449 * Managed DMA pool
450 */
451static void dmam_pool_release(struct device *dev, void *res)
452{
453	struct dma_pool *pool = *(struct dma_pool **)res;
454
455	dma_pool_destroy(pool);
456}
457
458static int dmam_pool_match(struct device *dev, void *res, void *match_data)
459{
460	return *(struct dma_pool **)res == match_data;
461}
462
463/**
464 * dmam_pool_create - Managed dma_pool_create()
465 * @name: name of pool, for diagnostics
466 * @dev: device that will be doing the DMA
467 * @size: size of the blocks in this pool.
468 * @align: alignment requirement for blocks; must be a power of two
469 * @allocation: returned blocks won't cross this boundary (or zero)
470 *
471 * Managed dma_pool_create().  DMA pool created with this function is
472 * automatically destroyed on driver detach.
473 */
474struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
475				  size_t size, size_t align, size_t allocation)
476{
477	struct dma_pool **ptr, *pool;
478
479	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
480	if (!ptr)
481		return NULL;
482
483	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
484	if (pool)
485		devres_add(dev, ptr);
486	else
487		devres_free(ptr);
488
489	return pool;
490}
491EXPORT_SYMBOL(dmam_pool_create);
492
493/**
494 * dmam_pool_destroy - Managed dma_pool_destroy()
495 * @pool: dma pool that will be destroyed
496 *
497 * Managed dma_pool_destroy().
498 */
499void dmam_pool_destroy(struct dma_pool *pool)
500{
501	struct device *dev = pool->dev;
502
503	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
504	dma_pool_destroy(pool);
505}
506EXPORT_SYMBOL(dmam_pool_destroy);
v3.15
  1/*
  2 * DMA Pool allocator
  3 *
  4 * Copyright 2001 David Brownell
  5 * Copyright 2007 Intel Corporation
  6 *   Author: Matthew Wilcox <willy@linux.intel.com>
  7 *
  8 * This software may be redistributed and/or modified under the terms of
  9 * the GNU General Public License ("GPL") version 2 as published by the
 10 * Free Software Foundation.
 11 *
 12 * This allocator returns small blocks of a given size which are DMA-able by
 13 * the given device.  It uses the dma_alloc_coherent page allocator to get
 14 * new pages, then splits them up into blocks of the required size.
 15 * Many older drivers still have their own code to do this.
 16 *
 17 * The current design of this allocator is fairly simple.  The pool is
 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 19 * allocated pages.  Each page in the page_list is split into blocks of at
 20 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 21 * list of free blocks within the page.  Used blocks aren't tracked, but we
 22 * keep a count of how many are currently allocated from each page.
 23 */
 24
 25#include <linux/device.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmapool.h>
 28#include <linux/kernel.h>
 29#include <linux/list.h>
 30#include <linux/export.h>
 31#include <linux/mutex.h>
 32#include <linux/poison.h>
 33#include <linux/sched.h>
 34#include <linux/slab.h>
 35#include <linux/stat.h>
 36#include <linux/spinlock.h>
 37#include <linux/string.h>
 38#include <linux/types.h>
 39#include <linux/wait.h>
 40
 41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 42#define DMAPOOL_DEBUG 1
 43#endif
 44
 45struct dma_pool {		/* the pool */
 46	struct list_head page_list;
 47	spinlock_t lock;
 48	size_t size;
 49	struct device *dev;
 50	size_t allocation;
 51	size_t boundary;
 52	char name[32];
 
 53	struct list_head pools;
 54};
 55
 56struct dma_page {		/* cacheable header for 'allocation' bytes */
 57	struct list_head page_list;
 58	void *vaddr;
 59	dma_addr_t dma;
 60	unsigned int in_use;
 61	unsigned int offset;
 62};
 63
 
 
 64static DEFINE_MUTEX(pools_lock);
 65
 66static ssize_t
 67show_pools(struct device *dev, struct device_attribute *attr, char *buf)
 68{
 69	unsigned temp;
 70	unsigned size;
 71	char *next;
 72	struct dma_page *page;
 73	struct dma_pool *pool;
 74
 75	next = buf;
 76	size = PAGE_SIZE;
 77
 78	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 79	size -= temp;
 80	next += temp;
 81
 82	mutex_lock(&pools_lock);
 83	list_for_each_entry(pool, &dev->dma_pools, pools) {
 84		unsigned pages = 0;
 85		unsigned blocks = 0;
 86
 87		spin_lock_irq(&pool->lock);
 88		list_for_each_entry(page, &pool->page_list, page_list) {
 89			pages++;
 90			blocks += page->in_use;
 91		}
 92		spin_unlock_irq(&pool->lock);
 93
 94		/* per-pool info, no real statistics yet */
 95		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
 96				 pool->name, blocks,
 97				 pages * (pool->allocation / pool->size),
 98				 pool->size, pages);
 99		size -= temp;
100		next += temp;
101	}
102	mutex_unlock(&pools_lock);
103
104	return PAGE_SIZE - size;
105}
106
107static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
108
109/**
110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111 * @name: name of pool, for diagnostics
112 * @dev: device that will be doing the DMA
113 * @size: size of the blocks in this pool.
114 * @align: alignment requirement for blocks; must be a power of two
115 * @boundary: returned blocks won't cross this power of two boundary
116 * Context: !in_interrupt()
117 *
118 * Returns a dma allocation pool with the requested characteristics, or
119 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
120 * may be used to allocate memory.  Such memory will all have "consistent"
121 * DMA mappings, accessible by the device and its driver without using
122 * cache flushing primitives.  The actual size of blocks allocated may be
123 * larger than requested because of alignment.
124 *
125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126 * cross that size boundary.  This is useful for devices which have
127 * addressing restrictions on individual DMA transfers, such as not crossing
128 * boundaries of 4KBytes.
129 */
130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131				 size_t size, size_t align, size_t boundary)
132{
133	struct dma_pool *retval;
134	size_t allocation;
135
136	if (align == 0) {
137		align = 1;
138	} else if (align & (align - 1)) {
139		return NULL;
140	}
141
142	if (size == 0) {
143		return NULL;
144	} else if (size < 4) {
145		size = 4;
146	}
147
148	if ((size % align) != 0)
149		size = ALIGN(size, align);
150
151	allocation = max_t(size_t, size, PAGE_SIZE);
152
153	if (!boundary) {
154		boundary = allocation;
155	} else if ((boundary < size) || (boundary & (boundary - 1))) {
156		return NULL;
157	}
158
159	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
160	if (!retval)
161		return retval;
162
163	strlcpy(retval->name, name, sizeof(retval->name));
164
165	retval->dev = dev;
166
167	INIT_LIST_HEAD(&retval->page_list);
168	spin_lock_init(&retval->lock);
169	retval->size = size;
170	retval->boundary = boundary;
171	retval->allocation = allocation;
 
172
173	if (dev) {
174		int ret;
175
176		mutex_lock(&pools_lock);
177		if (list_empty(&dev->dma_pools))
178			ret = device_create_file(dev, &dev_attr_pools);
179		else
180			ret = 0;
181		/* note:  not currently insisting "name" be unique */
182		if (!ret)
183			list_add(&retval->pools, &dev->dma_pools);
184		else {
185			kfree(retval);
186			retval = NULL;
187		}
188		mutex_unlock(&pools_lock);
189	} else
190		INIT_LIST_HEAD(&retval->pools);
191
192	return retval;
193}
194EXPORT_SYMBOL(dma_pool_create);
195
196static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
197{
198	unsigned int offset = 0;
199	unsigned int next_boundary = pool->boundary;
200
201	do {
202		unsigned int next = offset + pool->size;
203		if (unlikely((next + pool->size) >= next_boundary)) {
204			next = next_boundary;
205			next_boundary += pool->boundary;
206		}
207		*(int *)(page->vaddr + offset) = next;
208		offset = next;
209	} while (offset < pool->allocation);
210}
211
212static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
213{
214	struct dma_page *page;
215
216	page = kmalloc(sizeof(*page), mem_flags);
217	if (!page)
218		return NULL;
219	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
220					 &page->dma, mem_flags);
221	if (page->vaddr) {
222#ifdef	DMAPOOL_DEBUG
223		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
224#endif
225		pool_initialise_page(pool, page);
 
226		page->in_use = 0;
227		page->offset = 0;
228	} else {
229		kfree(page);
230		page = NULL;
231	}
232	return page;
233}
234
235static inline int is_page_busy(struct dma_page *page)
236{
237	return page->in_use != 0;
238}
239
240static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
241{
242	dma_addr_t dma = page->dma;
243
244#ifdef	DMAPOOL_DEBUG
245	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
246#endif
247	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
248	list_del(&page->page_list);
249	kfree(page);
250}
251
252/**
253 * dma_pool_destroy - destroys a pool of dma memory blocks.
254 * @pool: dma pool that will be destroyed
255 * Context: !in_interrupt()
256 *
257 * Caller guarantees that no more memory from the pool is in use,
258 * and that nothing will try to use the pool after this call.
259 */
260void dma_pool_destroy(struct dma_pool *pool)
261{
262	mutex_lock(&pools_lock);
263	list_del(&pool->pools);
264	if (pool->dev && list_empty(&pool->dev->dma_pools))
265		device_remove_file(pool->dev, &dev_attr_pools);
266	mutex_unlock(&pools_lock);
267
268	while (!list_empty(&pool->page_list)) {
269		struct dma_page *page;
270		page = list_entry(pool->page_list.next,
271				  struct dma_page, page_list);
272		if (is_page_busy(page)) {
273			if (pool->dev)
274				dev_err(pool->dev,
275					"dma_pool_destroy %s, %p busy\n",
276					pool->name, page->vaddr);
277			else
278				printk(KERN_ERR
279				       "dma_pool_destroy %s, %p busy\n",
280				       pool->name, page->vaddr);
281			/* leak the still-in-use consistent memory */
282			list_del(&page->page_list);
283			kfree(page);
284		} else
285			pool_free_page(pool, page);
286	}
287
288	kfree(pool);
289}
290EXPORT_SYMBOL(dma_pool_destroy);
291
292/**
293 * dma_pool_alloc - get a block of consistent memory
294 * @pool: dma pool that will produce the block
295 * @mem_flags: GFP_* bitmask
296 * @handle: pointer to dma address of block
297 *
298 * This returns the kernel virtual address of a currently unused block,
299 * and reports its dma address through the handle.
300 * If such a memory block can't be allocated, %NULL is returned.
301 */
302void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
303		     dma_addr_t *handle)
304{
305	unsigned long flags;
306	struct dma_page *page;
307	size_t offset;
308	void *retval;
309
310	might_sleep_if(mem_flags & __GFP_WAIT);
311
312	spin_lock_irqsave(&pool->lock, flags);
 
313	list_for_each_entry(page, &pool->page_list, page_list) {
314		if (page->offset < pool->allocation)
315			goto ready;
316	}
 
 
 
 
317
318	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
319	spin_unlock_irqrestore(&pool->lock, flags);
 
320
321	page = pool_alloc_page(pool, mem_flags);
322	if (!page)
323		return NULL;
324
325	spin_lock_irqsave(&pool->lock, flags);
 
 
 
 
 
 
326
327	list_add(&page->page_list, &pool->page_list);
328 ready:
329	page->in_use++;
330	offset = page->offset;
331	page->offset = *(int *)(page->vaddr + offset);
332	retval = offset + page->vaddr;
333	*handle = offset + page->dma;
334#ifdef	DMAPOOL_DEBUG
335	{
336		int i;
337		u8 *data = retval;
338		/* page->offset is stored in first 4 bytes */
339		for (i = sizeof(page->offset); i < pool->size; i++) {
340			if (data[i] == POOL_POISON_FREED)
341				continue;
342			if (pool->dev)
343				dev_err(pool->dev,
344					"dma_pool_alloc %s, %p (corruped)\n",
345					pool->name, retval);
346			else
347				pr_err("dma_pool_alloc %s, %p (corruped)\n",
348					pool->name, retval);
349
350			/*
351			 * Dump the first 4 bytes even if they are not
352			 * POOL_POISON_FREED
353			 */
354			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
355					data, pool->size, 1);
356			break;
357		}
358	}
359	memset(retval, POOL_POISON_ALLOCATED, pool->size);
360#endif
 
361	spin_unlock_irqrestore(&pool->lock, flags);
362	return retval;
363}
364EXPORT_SYMBOL(dma_pool_alloc);
365
366static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
367{
368	struct dma_page *page;
369
370	list_for_each_entry(page, &pool->page_list, page_list) {
371		if (dma < page->dma)
372			continue;
373		if (dma < (page->dma + pool->allocation))
374			return page;
375	}
376	return NULL;
377}
378
379/**
380 * dma_pool_free - put block back into dma pool
381 * @pool: the dma pool holding the block
382 * @vaddr: virtual address of block
383 * @dma: dma address of block
384 *
385 * Caller promises neither device nor driver will again touch this block
386 * unless it is first re-allocated.
387 */
388void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
389{
390	struct dma_page *page;
391	unsigned long flags;
392	unsigned int offset;
393
394	spin_lock_irqsave(&pool->lock, flags);
395	page = pool_find_page(pool, dma);
396	if (!page) {
397		spin_unlock_irqrestore(&pool->lock, flags);
398		if (pool->dev)
399			dev_err(pool->dev,
400				"dma_pool_free %s, %p/%lx (bad dma)\n",
401				pool->name, vaddr, (unsigned long)dma);
402		else
403			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
404			       pool->name, vaddr, (unsigned long)dma);
405		return;
406	}
407
408	offset = vaddr - page->vaddr;
409#ifdef	DMAPOOL_DEBUG
410	if ((dma - page->dma) != offset) {
411		spin_unlock_irqrestore(&pool->lock, flags);
412		if (pool->dev)
413			dev_err(pool->dev,
414				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
415				pool->name, vaddr, (unsigned long long)dma);
416		else
417			printk(KERN_ERR
418			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
419			       pool->name, vaddr, (unsigned long long)dma);
420		return;
421	}
422	{
423		unsigned int chain = page->offset;
424		while (chain < pool->allocation) {
425			if (chain != offset) {
426				chain = *(int *)(page->vaddr + chain);
427				continue;
428			}
429			spin_unlock_irqrestore(&pool->lock, flags);
430			if (pool->dev)
431				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
432					"already free\n", pool->name,
433					(unsigned long long)dma);
434			else
435				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
436					"already free\n", pool->name,
437					(unsigned long long)dma);
438			return;
439		}
440	}
441	memset(vaddr, POOL_POISON_FREED, pool->size);
442#endif
443
444	page->in_use--;
445	*(int *)vaddr = page->offset;
446	page->offset = offset;
 
 
447	/*
448	 * Resist a temptation to do
449	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
450	 * Better have a few empty pages hang around.
451	 */
452	spin_unlock_irqrestore(&pool->lock, flags);
453}
454EXPORT_SYMBOL(dma_pool_free);
455
456/*
457 * Managed DMA pool
458 */
459static void dmam_pool_release(struct device *dev, void *res)
460{
461	struct dma_pool *pool = *(struct dma_pool **)res;
462
463	dma_pool_destroy(pool);
464}
465
466static int dmam_pool_match(struct device *dev, void *res, void *match_data)
467{
468	return *(struct dma_pool **)res == match_data;
469}
470
471/**
472 * dmam_pool_create - Managed dma_pool_create()
473 * @name: name of pool, for diagnostics
474 * @dev: device that will be doing the DMA
475 * @size: size of the blocks in this pool.
476 * @align: alignment requirement for blocks; must be a power of two
477 * @allocation: returned blocks won't cross this boundary (or zero)
478 *
479 * Managed dma_pool_create().  DMA pool created with this function is
480 * automatically destroyed on driver detach.
481 */
482struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
483				  size_t size, size_t align, size_t allocation)
484{
485	struct dma_pool **ptr, *pool;
486
487	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
488	if (!ptr)
489		return NULL;
490
491	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
492	if (pool)
493		devres_add(dev, ptr);
494	else
495		devres_free(ptr);
496
497	return pool;
498}
499EXPORT_SYMBOL(dmam_pool_create);
500
501/**
502 * dmam_pool_destroy - Managed dma_pool_destroy()
503 * @pool: dma pool that will be destroyed
504 *
505 * Managed dma_pool_destroy().
506 */
507void dmam_pool_destroy(struct dma_pool *pool)
508{
509	struct device *dev = pool->dev;
510
511	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
512	dma_pool_destroy(pool);
513}
514EXPORT_SYMBOL(dmam_pool_destroy);