Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/module.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
 
  62
  63#include <asm/futex.h>
  64
  65#include "rtmutex_common.h"
  66
  67int __read_mostly futex_cmpxchg_enabled;
  68
  69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  70
  71/*
  72 * Futex flags used to encode options to functions and preserve them across
  73 * restarts.
  74 */
  75#define FLAGS_SHARED		0x01
  76#define FLAGS_CLOCKRT		0x02
  77#define FLAGS_HAS_TIMEOUT	0x04
  78
  79/*
  80 * Priority Inheritance state:
  81 */
  82struct futex_pi_state {
  83	/*
  84	 * list of 'owned' pi_state instances - these have to be
  85	 * cleaned up in do_exit() if the task exits prematurely:
  86	 */
  87	struct list_head list;
  88
  89	/*
  90	 * The PI object:
  91	 */
  92	struct rt_mutex pi_mutex;
  93
  94	struct task_struct *owner;
  95	atomic_t refcount;
  96
  97	union futex_key key;
  98};
  99
 100/**
 101 * struct futex_q - The hashed futex queue entry, one per waiting task
 102 * @list:		priority-sorted list of tasks waiting on this futex
 103 * @task:		the task waiting on the futex
 104 * @lock_ptr:		the hash bucket lock
 105 * @key:		the key the futex is hashed on
 106 * @pi_state:		optional priority inheritance state
 107 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 108 * @requeue_pi_key:	the requeue_pi target futex key
 109 * @bitset:		bitset for the optional bitmasked wakeup
 110 *
 111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 112 * we can wake only the relevant ones (hashed queues may be shared).
 113 *
 114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 116 * The order of wakeup is always to make the first condition true, then
 117 * the second.
 118 *
 119 * PI futexes are typically woken before they are removed from the hash list via
 120 * the rt_mutex code. See unqueue_me_pi().
 121 */
 122struct futex_q {
 123	struct plist_node list;
 124
 125	struct task_struct *task;
 126	spinlock_t *lock_ptr;
 127	union futex_key key;
 128	struct futex_pi_state *pi_state;
 129	struct rt_mutex_waiter *rt_waiter;
 130	union futex_key *requeue_pi_key;
 131	u32 bitset;
 132};
 133
 134static const struct futex_q futex_q_init = {
 135	/* list gets initialized in queue_me()*/
 136	.key = FUTEX_KEY_INIT,
 137	.bitset = FUTEX_BITSET_MATCH_ANY
 138};
 139
 140/*
 141 * Hash buckets are shared by all the futex_keys that hash to the same
 142 * location.  Each key may have multiple futex_q structures, one for each task
 143 * waiting on a futex.
 144 */
 145struct futex_hash_bucket {
 146	spinlock_t lock;
 147	struct plist_head chain;
 148};
 149
 150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 151
 152/*
 153 * We hash on the keys returned from get_futex_key (see below).
 154 */
 155static struct futex_hash_bucket *hash_futex(union futex_key *key)
 156{
 157	u32 hash = jhash2((u32*)&key->both.word,
 158			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 159			  key->both.offset);
 160	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 161}
 162
 163/*
 164 * Return 1 if two futex_keys are equal, 0 otherwise.
 165 */
 166static inline int match_futex(union futex_key *key1, union futex_key *key2)
 167{
 168	return (key1 && key2
 169		&& key1->both.word == key2->both.word
 170		&& key1->both.ptr == key2->both.ptr
 171		&& key1->both.offset == key2->both.offset);
 172}
 173
 174/*
 175 * Take a reference to the resource addressed by a key.
 176 * Can be called while holding spinlocks.
 177 *
 178 */
 179static void get_futex_key_refs(union futex_key *key)
 180{
 181	if (!key->both.ptr)
 182		return;
 183
 184	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 185	case FUT_OFF_INODE:
 186		ihold(key->shared.inode);
 187		break;
 188	case FUT_OFF_MMSHARED:
 189		atomic_inc(&key->private.mm->mm_count);
 190		break;
 191	}
 192}
 193
 194/*
 195 * Drop a reference to the resource addressed by a key.
 196 * The hash bucket spinlock must not be held.
 197 */
 198static void drop_futex_key_refs(union futex_key *key)
 199{
 200	if (!key->both.ptr) {
 201		/* If we're here then we tried to put a key we failed to get */
 202		WARN_ON_ONCE(1);
 203		return;
 204	}
 205
 206	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 207	case FUT_OFF_INODE:
 208		iput(key->shared.inode);
 209		break;
 210	case FUT_OFF_MMSHARED:
 211		mmdrop(key->private.mm);
 212		break;
 213	}
 214}
 215
 216/**
 217 * get_futex_key() - Get parameters which are the keys for a futex
 218 * @uaddr:	virtual address of the futex
 219 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 220 * @key:	address where result is stored.
 221 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 222 *              VERIFY_WRITE)
 223 *
 224 * Returns a negative error code or 0
 225 * The key words are stored in *key on success.
 226 *
 227 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
 228 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 229 * We can usually work out the index without swapping in the page.
 230 *
 231 * lock_page() might sleep, the caller should not hold a spinlock.
 232 */
 233static int
 234get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 235{
 236	unsigned long address = (unsigned long)uaddr;
 237	struct mm_struct *mm = current->mm;
 238	struct page *page, *page_head;
 239	int err, ro = 0;
 240
 241	/*
 242	 * The futex address must be "naturally" aligned.
 243	 */
 244	key->both.offset = address % PAGE_SIZE;
 245	if (unlikely((address % sizeof(u32)) != 0))
 246		return -EINVAL;
 247	address -= key->both.offset;
 248
 249	/*
 250	 * PROCESS_PRIVATE futexes are fast.
 251	 * As the mm cannot disappear under us and the 'key' only needs
 252	 * virtual address, we dont even have to find the underlying vma.
 253	 * Note : We do have to check 'uaddr' is a valid user address,
 254	 *        but access_ok() should be faster than find_vma()
 255	 */
 256	if (!fshared) {
 257		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
 258			return -EFAULT;
 259		key->private.mm = mm;
 260		key->private.address = address;
 261		get_futex_key_refs(key);
 262		return 0;
 263	}
 264
 265again:
 266	err = get_user_pages_fast(address, 1, 1, &page);
 267	/*
 268	 * If write access is not required (eg. FUTEX_WAIT), try
 269	 * and get read-only access.
 270	 */
 271	if (err == -EFAULT && rw == VERIFY_READ) {
 272		err = get_user_pages_fast(address, 1, 0, &page);
 273		ro = 1;
 274	}
 275	if (err < 0)
 276		return err;
 277	else
 278		err = 0;
 279
 280#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 281	page_head = page;
 282	if (unlikely(PageTail(page))) {
 283		put_page(page);
 284		/* serialize against __split_huge_page_splitting() */
 285		local_irq_disable();
 286		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
 287			page_head = compound_head(page);
 288			/*
 289			 * page_head is valid pointer but we must pin
 290			 * it before taking the PG_lock and/or
 291			 * PG_compound_lock. The moment we re-enable
 292			 * irqs __split_huge_page_splitting() can
 293			 * return and the head page can be freed from
 294			 * under us. We can't take the PG_lock and/or
 295			 * PG_compound_lock on a page that could be
 296			 * freed from under us.
 297			 */
 298			if (page != page_head) {
 299				get_page(page_head);
 300				put_page(page);
 301			}
 302			local_irq_enable();
 303		} else {
 304			local_irq_enable();
 305			goto again;
 306		}
 307	}
 308#else
 309	page_head = compound_head(page);
 310	if (page != page_head) {
 311		get_page(page_head);
 312		put_page(page);
 313	}
 314#endif
 315
 316	lock_page(page_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317	if (!page_head->mapping) {
 
 318		unlock_page(page_head);
 319		put_page(page_head);
 320		/*
 321		* ZERO_PAGE pages don't have a mapping. Avoid a busy loop
 322		* trying to find one. RW mapping would have COW'd (and thus
 323		* have a mapping) so this page is RO and won't ever change.
 324		*/
 325		if ((page_head == ZERO_PAGE(address)))
 326			return -EFAULT;
 327		goto again;
 328	}
 329
 330	/*
 331	 * Private mappings are handled in a simple way.
 332	 *
 333	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 334	 * it's a read-only handle, it's expected that futexes attach to
 335	 * the object not the particular process.
 336	 */
 337	if (PageAnon(page_head)) {
 338		/*
 339		 * A RO anonymous page will never change and thus doesn't make
 340		 * sense for futex operations.
 341		 */
 342		if (ro) {
 343			err = -EFAULT;
 344			goto out;
 345		}
 346
 347		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 348		key->private.mm = mm;
 349		key->private.address = address;
 350	} else {
 351		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 352		key->shared.inode = page_head->mapping->host;
 353		key->shared.pgoff = page_head->index;
 354	}
 355
 356	get_futex_key_refs(key);
 357
 358out:
 359	unlock_page(page_head);
 360	put_page(page_head);
 361	return err;
 362}
 363
 364static inline void put_futex_key(union futex_key *key)
 365{
 366	drop_futex_key_refs(key);
 367}
 368
 369/**
 370 * fault_in_user_writeable() - Fault in user address and verify RW access
 371 * @uaddr:	pointer to faulting user space address
 372 *
 373 * Slow path to fixup the fault we just took in the atomic write
 374 * access to @uaddr.
 375 *
 376 * We have no generic implementation of a non-destructive write to the
 377 * user address. We know that we faulted in the atomic pagefault
 378 * disabled section so we can as well avoid the #PF overhead by
 379 * calling get_user_pages() right away.
 380 */
 381static int fault_in_user_writeable(u32 __user *uaddr)
 382{
 383	struct mm_struct *mm = current->mm;
 384	int ret;
 385
 386	down_read(&mm->mmap_sem);
 387	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 388			       FAULT_FLAG_WRITE);
 389	up_read(&mm->mmap_sem);
 390
 391	return ret < 0 ? ret : 0;
 392}
 393
 394/**
 395 * futex_top_waiter() - Return the highest priority waiter on a futex
 396 * @hb:		the hash bucket the futex_q's reside in
 397 * @key:	the futex key (to distinguish it from other futex futex_q's)
 398 *
 399 * Must be called with the hb lock held.
 400 */
 401static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 402					union futex_key *key)
 403{
 404	struct futex_q *this;
 405
 406	plist_for_each_entry(this, &hb->chain, list) {
 407		if (match_futex(&this->key, key))
 408			return this;
 409	}
 410	return NULL;
 411}
 412
 413static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 414				      u32 uval, u32 newval)
 415{
 416	int ret;
 417
 418	pagefault_disable();
 419	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 420	pagefault_enable();
 421
 422	return ret;
 423}
 424
 425static int get_futex_value_locked(u32 *dest, u32 __user *from)
 426{
 427	int ret;
 428
 429	pagefault_disable();
 430	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 431	pagefault_enable();
 432
 433	return ret ? -EFAULT : 0;
 434}
 435
 436
 437/*
 438 * PI code:
 439 */
 440static int refill_pi_state_cache(void)
 441{
 442	struct futex_pi_state *pi_state;
 443
 444	if (likely(current->pi_state_cache))
 445		return 0;
 446
 447	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 448
 449	if (!pi_state)
 450		return -ENOMEM;
 451
 452	INIT_LIST_HEAD(&pi_state->list);
 453	/* pi_mutex gets initialized later */
 454	pi_state->owner = NULL;
 455	atomic_set(&pi_state->refcount, 1);
 456	pi_state->key = FUTEX_KEY_INIT;
 457
 458	current->pi_state_cache = pi_state;
 459
 460	return 0;
 461}
 462
 463static struct futex_pi_state * alloc_pi_state(void)
 464{
 465	struct futex_pi_state *pi_state = current->pi_state_cache;
 466
 467	WARN_ON(!pi_state);
 468	current->pi_state_cache = NULL;
 469
 470	return pi_state;
 471}
 472
 473static void free_pi_state(struct futex_pi_state *pi_state)
 474{
 475	if (!atomic_dec_and_test(&pi_state->refcount))
 476		return;
 477
 478	/*
 479	 * If pi_state->owner is NULL, the owner is most probably dying
 480	 * and has cleaned up the pi_state already
 481	 */
 482	if (pi_state->owner) {
 483		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 484		list_del_init(&pi_state->list);
 485		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 486
 487		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 488	}
 489
 490	if (current->pi_state_cache)
 491		kfree(pi_state);
 492	else {
 493		/*
 494		 * pi_state->list is already empty.
 495		 * clear pi_state->owner.
 496		 * refcount is at 0 - put it back to 1.
 497		 */
 498		pi_state->owner = NULL;
 499		atomic_set(&pi_state->refcount, 1);
 500		current->pi_state_cache = pi_state;
 501	}
 502}
 503
 504/*
 505 * Look up the task based on what TID userspace gave us.
 506 * We dont trust it.
 507 */
 508static struct task_struct * futex_find_get_task(pid_t pid)
 509{
 510	struct task_struct *p;
 511
 512	rcu_read_lock();
 513	p = find_task_by_vpid(pid);
 514	if (p)
 515		get_task_struct(p);
 516
 517	rcu_read_unlock();
 518
 519	return p;
 520}
 521
 522/*
 523 * This task is holding PI mutexes at exit time => bad.
 524 * Kernel cleans up PI-state, but userspace is likely hosed.
 525 * (Robust-futex cleanup is separate and might save the day for userspace.)
 526 */
 527void exit_pi_state_list(struct task_struct *curr)
 528{
 529	struct list_head *next, *head = &curr->pi_state_list;
 530	struct futex_pi_state *pi_state;
 531	struct futex_hash_bucket *hb;
 532	union futex_key key = FUTEX_KEY_INIT;
 533
 534	if (!futex_cmpxchg_enabled)
 535		return;
 536	/*
 537	 * We are a ZOMBIE and nobody can enqueue itself on
 538	 * pi_state_list anymore, but we have to be careful
 539	 * versus waiters unqueueing themselves:
 540	 */
 541	raw_spin_lock_irq(&curr->pi_lock);
 542	while (!list_empty(head)) {
 543
 544		next = head->next;
 545		pi_state = list_entry(next, struct futex_pi_state, list);
 546		key = pi_state->key;
 547		hb = hash_futex(&key);
 548		raw_spin_unlock_irq(&curr->pi_lock);
 549
 550		spin_lock(&hb->lock);
 551
 552		raw_spin_lock_irq(&curr->pi_lock);
 553		/*
 554		 * We dropped the pi-lock, so re-check whether this
 555		 * task still owns the PI-state:
 556		 */
 557		if (head->next != next) {
 558			spin_unlock(&hb->lock);
 559			continue;
 560		}
 561
 562		WARN_ON(pi_state->owner != curr);
 563		WARN_ON(list_empty(&pi_state->list));
 564		list_del_init(&pi_state->list);
 565		pi_state->owner = NULL;
 566		raw_spin_unlock_irq(&curr->pi_lock);
 567
 568		rt_mutex_unlock(&pi_state->pi_mutex);
 569
 570		spin_unlock(&hb->lock);
 571
 572		raw_spin_lock_irq(&curr->pi_lock);
 573	}
 574	raw_spin_unlock_irq(&curr->pi_lock);
 575}
 576
 577static int
 578lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 579		union futex_key *key, struct futex_pi_state **ps)
 580{
 581	struct futex_pi_state *pi_state = NULL;
 582	struct futex_q *this, *next;
 583	struct plist_head *head;
 584	struct task_struct *p;
 585	pid_t pid = uval & FUTEX_TID_MASK;
 586
 587	head = &hb->chain;
 588
 589	plist_for_each_entry_safe(this, next, head, list) {
 590		if (match_futex(&this->key, key)) {
 591			/*
 592			 * Another waiter already exists - bump up
 593			 * the refcount and return its pi_state:
 594			 */
 595			pi_state = this->pi_state;
 596			/*
 597			 * Userspace might have messed up non-PI and PI futexes
 598			 */
 599			if (unlikely(!pi_state))
 600				return -EINVAL;
 601
 602			WARN_ON(!atomic_read(&pi_state->refcount));
 603
 604			/*
 605			 * When pi_state->owner is NULL then the owner died
 606			 * and another waiter is on the fly. pi_state->owner
 607			 * is fixed up by the task which acquires
 608			 * pi_state->rt_mutex.
 609			 *
 610			 * We do not check for pid == 0 which can happen when
 611			 * the owner died and robust_list_exit() cleared the
 612			 * TID.
 613			 */
 614			if (pid && pi_state->owner) {
 615				/*
 616				 * Bail out if user space manipulated the
 617				 * futex value.
 618				 */
 619				if (pid != task_pid_vnr(pi_state->owner))
 620					return -EINVAL;
 621			}
 622
 623			atomic_inc(&pi_state->refcount);
 624			*ps = pi_state;
 625
 626			return 0;
 627		}
 628	}
 629
 630	/*
 631	 * We are the first waiter - try to look up the real owner and attach
 632	 * the new pi_state to it, but bail out when TID = 0
 633	 */
 634	if (!pid)
 635		return -ESRCH;
 636	p = futex_find_get_task(pid);
 637	if (!p)
 638		return -ESRCH;
 639
 640	/*
 641	 * We need to look at the task state flags to figure out,
 642	 * whether the task is exiting. To protect against the do_exit
 643	 * change of the task flags, we do this protected by
 644	 * p->pi_lock:
 645	 */
 646	raw_spin_lock_irq(&p->pi_lock);
 647	if (unlikely(p->flags & PF_EXITING)) {
 648		/*
 649		 * The task is on the way out. When PF_EXITPIDONE is
 650		 * set, we know that the task has finished the
 651		 * cleanup:
 652		 */
 653		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 654
 655		raw_spin_unlock_irq(&p->pi_lock);
 656		put_task_struct(p);
 657		return ret;
 658	}
 659
 660	pi_state = alloc_pi_state();
 661
 662	/*
 663	 * Initialize the pi_mutex in locked state and make 'p'
 664	 * the owner of it:
 665	 */
 666	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 667
 668	/* Store the key for possible exit cleanups: */
 669	pi_state->key = *key;
 670
 671	WARN_ON(!list_empty(&pi_state->list));
 672	list_add(&pi_state->list, &p->pi_state_list);
 673	pi_state->owner = p;
 674	raw_spin_unlock_irq(&p->pi_lock);
 675
 676	put_task_struct(p);
 677
 678	*ps = pi_state;
 679
 680	return 0;
 681}
 682
 683/**
 684 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 685 * @uaddr:		the pi futex user address
 686 * @hb:			the pi futex hash bucket
 687 * @key:		the futex key associated with uaddr and hb
 688 * @ps:			the pi_state pointer where we store the result of the
 689 *			lookup
 690 * @task:		the task to perform the atomic lock work for.  This will
 691 *			be "current" except in the case of requeue pi.
 692 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 693 *
 694 * Returns:
 695 *  0 - ready to wait
 696 *  1 - acquired the lock
 697 * <0 - error
 698 *
 699 * The hb->lock and futex_key refs shall be held by the caller.
 700 */
 701static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 702				union futex_key *key,
 703				struct futex_pi_state **ps,
 704				struct task_struct *task, int set_waiters)
 705{
 706	int lock_taken, ret, ownerdied = 0;
 707	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 708
 709retry:
 710	ret = lock_taken = 0;
 711
 712	/*
 713	 * To avoid races, we attempt to take the lock here again
 714	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 715	 * the locks. It will most likely not succeed.
 716	 */
 717	newval = vpid;
 718	if (set_waiters)
 719		newval |= FUTEX_WAITERS;
 720
 721	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 722		return -EFAULT;
 723
 724	/*
 725	 * Detect deadlocks.
 726	 */
 727	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 728		return -EDEADLK;
 729
 730	/*
 731	 * Surprise - we got the lock. Just return to userspace:
 732	 */
 733	if (unlikely(!curval))
 734		return 1;
 735
 736	uval = curval;
 737
 738	/*
 739	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 740	 * to wake at the next unlock.
 741	 */
 742	newval = curval | FUTEX_WAITERS;
 743
 744	/*
 745	 * There are two cases, where a futex might have no owner (the
 746	 * owner TID is 0): OWNER_DIED. We take over the futex in this
 747	 * case. We also do an unconditional take over, when the owner
 748	 * of the futex died.
 749	 *
 750	 * This is safe as we are protected by the hash bucket lock !
 751	 */
 752	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
 753		/* Keep the OWNER_DIED bit */
 754		newval = (curval & ~FUTEX_TID_MASK) | vpid;
 755		ownerdied = 0;
 756		lock_taken = 1;
 757	}
 758
 759	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
 760		return -EFAULT;
 761	if (unlikely(curval != uval))
 762		goto retry;
 763
 764	/*
 765	 * We took the lock due to owner died take over.
 766	 */
 767	if (unlikely(lock_taken))
 768		return 1;
 769
 770	/*
 771	 * We dont have the lock. Look up the PI state (or create it if
 772	 * we are the first waiter):
 773	 */
 774	ret = lookup_pi_state(uval, hb, key, ps);
 775
 776	if (unlikely(ret)) {
 777		switch (ret) {
 778		case -ESRCH:
 779			/*
 780			 * No owner found for this futex. Check if the
 781			 * OWNER_DIED bit is set to figure out whether
 782			 * this is a robust futex or not.
 783			 */
 784			if (get_futex_value_locked(&curval, uaddr))
 785				return -EFAULT;
 786
 787			/*
 788			 * We simply start over in case of a robust
 789			 * futex. The code above will take the futex
 790			 * and return happy.
 791			 */
 792			if (curval & FUTEX_OWNER_DIED) {
 793				ownerdied = 1;
 794				goto retry;
 795			}
 796		default:
 797			break;
 798		}
 799	}
 800
 801	return ret;
 802}
 803
 804/**
 805 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 806 * @q:	The futex_q to unqueue
 807 *
 808 * The q->lock_ptr must not be NULL and must be held by the caller.
 809 */
 810static void __unqueue_futex(struct futex_q *q)
 811{
 812	struct futex_hash_bucket *hb;
 813
 814	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
 815	    || WARN_ON(plist_node_empty(&q->list)))
 816		return;
 817
 818	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 819	plist_del(&q->list, &hb->chain);
 820}
 821
 822/*
 823 * The hash bucket lock must be held when this is called.
 824 * Afterwards, the futex_q must not be accessed.
 825 */
 826static void wake_futex(struct futex_q *q)
 827{
 828	struct task_struct *p = q->task;
 829
 830	/*
 831	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
 832	 * a non-futex wake up happens on another CPU then the task
 833	 * might exit and p would dereference a non-existing task
 834	 * struct. Prevent this by holding a reference on p across the
 835	 * wake up.
 836	 */
 837	get_task_struct(p);
 838
 839	__unqueue_futex(q);
 840	/*
 841	 * The waiting task can free the futex_q as soon as
 842	 * q->lock_ptr = NULL is written, without taking any locks. A
 843	 * memory barrier is required here to prevent the following
 844	 * store to lock_ptr from getting ahead of the plist_del.
 845	 */
 846	smp_wmb();
 847	q->lock_ptr = NULL;
 848
 849	wake_up_state(p, TASK_NORMAL);
 850	put_task_struct(p);
 851}
 852
 853static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 854{
 855	struct task_struct *new_owner;
 856	struct futex_pi_state *pi_state = this->pi_state;
 857	u32 curval, newval;
 858
 859	if (!pi_state)
 860		return -EINVAL;
 861
 862	/*
 863	 * If current does not own the pi_state then the futex is
 864	 * inconsistent and user space fiddled with the futex value.
 865	 */
 866	if (pi_state->owner != current)
 867		return -EINVAL;
 868
 869	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
 870	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 871
 872	/*
 873	 * It is possible that the next waiter (the one that brought
 874	 * this owner to the kernel) timed out and is no longer
 875	 * waiting on the lock.
 876	 */
 877	if (!new_owner)
 878		new_owner = this->task;
 879
 880	/*
 881	 * We pass it to the next owner. (The WAITERS bit is always
 882	 * kept enabled while there is PI state around. We must also
 883	 * preserve the owner died bit.)
 884	 */
 885	if (!(uval & FUTEX_OWNER_DIED)) {
 886		int ret = 0;
 887
 888		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 889
 890		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 891			ret = -EFAULT;
 892		else if (curval != uval)
 893			ret = -EINVAL;
 894		if (ret) {
 895			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 896			return ret;
 897		}
 898	}
 899
 900	raw_spin_lock_irq(&pi_state->owner->pi_lock);
 901	WARN_ON(list_empty(&pi_state->list));
 902	list_del_init(&pi_state->list);
 903	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 904
 905	raw_spin_lock_irq(&new_owner->pi_lock);
 906	WARN_ON(!list_empty(&pi_state->list));
 907	list_add(&pi_state->list, &new_owner->pi_state_list);
 908	pi_state->owner = new_owner;
 909	raw_spin_unlock_irq(&new_owner->pi_lock);
 910
 911	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 912	rt_mutex_unlock(&pi_state->pi_mutex);
 913
 914	return 0;
 915}
 916
 917static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 918{
 919	u32 oldval;
 920
 921	/*
 922	 * There is no waiter, so we unlock the futex. The owner died
 923	 * bit has not to be preserved here. We are the owner:
 924	 */
 925	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
 926		return -EFAULT;
 927	if (oldval != uval)
 928		return -EAGAIN;
 929
 930	return 0;
 931}
 932
 933/*
 934 * Express the locking dependencies for lockdep:
 935 */
 936static inline void
 937double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 938{
 939	if (hb1 <= hb2) {
 940		spin_lock(&hb1->lock);
 941		if (hb1 < hb2)
 942			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 943	} else { /* hb1 > hb2 */
 944		spin_lock(&hb2->lock);
 945		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 946	}
 947}
 948
 949static inline void
 950double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 951{
 952	spin_unlock(&hb1->lock);
 953	if (hb1 != hb2)
 954		spin_unlock(&hb2->lock);
 955}
 956
 957/*
 958 * Wake up waiters matching bitset queued on this futex (uaddr).
 959 */
 960static int
 961futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 962{
 963	struct futex_hash_bucket *hb;
 964	struct futex_q *this, *next;
 965	struct plist_head *head;
 966	union futex_key key = FUTEX_KEY_INIT;
 967	int ret;
 968
 969	if (!bitset)
 970		return -EINVAL;
 971
 972	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
 973	if (unlikely(ret != 0))
 974		goto out;
 975
 976	hb = hash_futex(&key);
 977	spin_lock(&hb->lock);
 978	head = &hb->chain;
 979
 980	plist_for_each_entry_safe(this, next, head, list) {
 981		if (match_futex (&this->key, &key)) {
 982			if (this->pi_state || this->rt_waiter) {
 983				ret = -EINVAL;
 984				break;
 985			}
 986
 987			/* Check if one of the bits is set in both bitsets */
 988			if (!(this->bitset & bitset))
 989				continue;
 990
 991			wake_futex(this);
 992			if (++ret >= nr_wake)
 993				break;
 994		}
 995	}
 996
 997	spin_unlock(&hb->lock);
 998	put_futex_key(&key);
 999out:
1000	return ret;
1001}
1002
1003/*
1004 * Wake up all waiters hashed on the physical page that is mapped
1005 * to this virtual address:
1006 */
1007static int
1008futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1009	      int nr_wake, int nr_wake2, int op)
1010{
1011	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1012	struct futex_hash_bucket *hb1, *hb2;
1013	struct plist_head *head;
1014	struct futex_q *this, *next;
1015	int ret, op_ret;
1016
1017retry:
1018	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1019	if (unlikely(ret != 0))
1020		goto out;
1021	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1022	if (unlikely(ret != 0))
1023		goto out_put_key1;
1024
1025	hb1 = hash_futex(&key1);
1026	hb2 = hash_futex(&key2);
1027
1028retry_private:
1029	double_lock_hb(hb1, hb2);
1030	op_ret = futex_atomic_op_inuser(op, uaddr2);
1031	if (unlikely(op_ret < 0)) {
1032
1033		double_unlock_hb(hb1, hb2);
1034
1035#ifndef CONFIG_MMU
1036		/*
1037		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1038		 * but we might get them from range checking
1039		 */
1040		ret = op_ret;
1041		goto out_put_keys;
1042#endif
1043
1044		if (unlikely(op_ret != -EFAULT)) {
1045			ret = op_ret;
1046			goto out_put_keys;
1047		}
1048
1049		ret = fault_in_user_writeable(uaddr2);
1050		if (ret)
1051			goto out_put_keys;
1052
1053		if (!(flags & FLAGS_SHARED))
1054			goto retry_private;
1055
1056		put_futex_key(&key2);
1057		put_futex_key(&key1);
1058		goto retry;
1059	}
1060
1061	head = &hb1->chain;
1062
1063	plist_for_each_entry_safe(this, next, head, list) {
1064		if (match_futex (&this->key, &key1)) {
1065			wake_futex(this);
1066			if (++ret >= nr_wake)
1067				break;
1068		}
1069	}
1070
1071	if (op_ret > 0) {
1072		head = &hb2->chain;
1073
1074		op_ret = 0;
1075		plist_for_each_entry_safe(this, next, head, list) {
1076			if (match_futex (&this->key, &key2)) {
1077				wake_futex(this);
1078				if (++op_ret >= nr_wake2)
1079					break;
1080			}
1081		}
1082		ret += op_ret;
1083	}
1084
1085	double_unlock_hb(hb1, hb2);
1086out_put_keys:
1087	put_futex_key(&key2);
1088out_put_key1:
1089	put_futex_key(&key1);
1090out:
1091	return ret;
1092}
1093
1094/**
1095 * requeue_futex() - Requeue a futex_q from one hb to another
1096 * @q:		the futex_q to requeue
1097 * @hb1:	the source hash_bucket
1098 * @hb2:	the target hash_bucket
1099 * @key2:	the new key for the requeued futex_q
1100 */
1101static inline
1102void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1103		   struct futex_hash_bucket *hb2, union futex_key *key2)
1104{
1105
1106	/*
1107	 * If key1 and key2 hash to the same bucket, no need to
1108	 * requeue.
1109	 */
1110	if (likely(&hb1->chain != &hb2->chain)) {
1111		plist_del(&q->list, &hb1->chain);
1112		plist_add(&q->list, &hb2->chain);
1113		q->lock_ptr = &hb2->lock;
1114	}
1115	get_futex_key_refs(key2);
1116	q->key = *key2;
1117}
1118
1119/**
1120 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1121 * @q:		the futex_q
1122 * @key:	the key of the requeue target futex
1123 * @hb:		the hash_bucket of the requeue target futex
1124 *
1125 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1126 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1127 * to the requeue target futex so the waiter can detect the wakeup on the right
1128 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1129 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1130 * to protect access to the pi_state to fixup the owner later.  Must be called
1131 * with both q->lock_ptr and hb->lock held.
1132 */
1133static inline
1134void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1135			   struct futex_hash_bucket *hb)
1136{
1137	get_futex_key_refs(key);
1138	q->key = *key;
1139
1140	__unqueue_futex(q);
1141
1142	WARN_ON(!q->rt_waiter);
1143	q->rt_waiter = NULL;
1144
1145	q->lock_ptr = &hb->lock;
1146
1147	wake_up_state(q->task, TASK_NORMAL);
1148}
1149
1150/**
1151 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1152 * @pifutex:		the user address of the to futex
1153 * @hb1:		the from futex hash bucket, must be locked by the caller
1154 * @hb2:		the to futex hash bucket, must be locked by the caller
1155 * @key1:		the from futex key
1156 * @key2:		the to futex key
1157 * @ps:			address to store the pi_state pointer
1158 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1159 *
1160 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1161 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1162 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1163 * hb1 and hb2 must be held by the caller.
1164 *
1165 * Returns:
1166 *  0 - failed to acquire the lock atomicly
1167 *  1 - acquired the lock
1168 * <0 - error
1169 */
1170static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1171				 struct futex_hash_bucket *hb1,
1172				 struct futex_hash_bucket *hb2,
1173				 union futex_key *key1, union futex_key *key2,
1174				 struct futex_pi_state **ps, int set_waiters)
1175{
1176	struct futex_q *top_waiter = NULL;
1177	u32 curval;
1178	int ret;
1179
1180	if (get_futex_value_locked(&curval, pifutex))
1181		return -EFAULT;
1182
1183	/*
1184	 * Find the top_waiter and determine if there are additional waiters.
1185	 * If the caller intends to requeue more than 1 waiter to pifutex,
1186	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1187	 * as we have means to handle the possible fault.  If not, don't set
1188	 * the bit unecessarily as it will force the subsequent unlock to enter
1189	 * the kernel.
1190	 */
1191	top_waiter = futex_top_waiter(hb1, key1);
1192
1193	/* There are no waiters, nothing for us to do. */
1194	if (!top_waiter)
1195		return 0;
1196
1197	/* Ensure we requeue to the expected futex. */
1198	if (!match_futex(top_waiter->requeue_pi_key, key2))
1199		return -EINVAL;
1200
1201	/*
1202	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1203	 * the contended case or if set_waiters is 1.  The pi_state is returned
1204	 * in ps in contended cases.
1205	 */
1206	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1207				   set_waiters);
1208	if (ret == 1)
1209		requeue_pi_wake_futex(top_waiter, key2, hb2);
1210
1211	return ret;
1212}
1213
1214/**
1215 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1216 * @uaddr1:	source futex user address
1217 * @flags:	futex flags (FLAGS_SHARED, etc.)
1218 * @uaddr2:	target futex user address
1219 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1220 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1221 * @cmpval:	@uaddr1 expected value (or %NULL)
1222 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1223 *		pi futex (pi to pi requeue is not supported)
1224 *
1225 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1226 * uaddr2 atomically on behalf of the top waiter.
1227 *
1228 * Returns:
1229 * >=0 - on success, the number of tasks requeued or woken
1230 *  <0 - on error
1231 */
1232static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1233			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1234			 u32 *cmpval, int requeue_pi)
1235{
1236	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1237	int drop_count = 0, task_count = 0, ret;
1238	struct futex_pi_state *pi_state = NULL;
1239	struct futex_hash_bucket *hb1, *hb2;
1240	struct plist_head *head1;
1241	struct futex_q *this, *next;
1242	u32 curval2;
1243
1244	if (requeue_pi) {
1245		/*
1246		 * requeue_pi requires a pi_state, try to allocate it now
1247		 * without any locks in case it fails.
1248		 */
1249		if (refill_pi_state_cache())
1250			return -ENOMEM;
1251		/*
1252		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1253		 * + nr_requeue, since it acquires the rt_mutex prior to
1254		 * returning to userspace, so as to not leave the rt_mutex with
1255		 * waiters and no owner.  However, second and third wake-ups
1256		 * cannot be predicted as they involve race conditions with the
1257		 * first wake and a fault while looking up the pi_state.  Both
1258		 * pthread_cond_signal() and pthread_cond_broadcast() should
1259		 * use nr_wake=1.
1260		 */
1261		if (nr_wake != 1)
1262			return -EINVAL;
1263	}
1264
1265retry:
1266	if (pi_state != NULL) {
1267		/*
1268		 * We will have to lookup the pi_state again, so free this one
1269		 * to keep the accounting correct.
1270		 */
1271		free_pi_state(pi_state);
1272		pi_state = NULL;
1273	}
1274
1275	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1276	if (unlikely(ret != 0))
1277		goto out;
1278	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1279			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1280	if (unlikely(ret != 0))
1281		goto out_put_key1;
1282
1283	hb1 = hash_futex(&key1);
1284	hb2 = hash_futex(&key2);
1285
1286retry_private:
1287	double_lock_hb(hb1, hb2);
1288
1289	if (likely(cmpval != NULL)) {
1290		u32 curval;
1291
1292		ret = get_futex_value_locked(&curval, uaddr1);
1293
1294		if (unlikely(ret)) {
1295			double_unlock_hb(hb1, hb2);
1296
1297			ret = get_user(curval, uaddr1);
1298			if (ret)
1299				goto out_put_keys;
1300
1301			if (!(flags & FLAGS_SHARED))
1302				goto retry_private;
1303
1304			put_futex_key(&key2);
1305			put_futex_key(&key1);
1306			goto retry;
1307		}
1308		if (curval != *cmpval) {
1309			ret = -EAGAIN;
1310			goto out_unlock;
1311		}
1312	}
1313
1314	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1315		/*
1316		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1317		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1318		 * bit.  We force this here where we are able to easily handle
1319		 * faults rather in the requeue loop below.
1320		 */
1321		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1322						 &key2, &pi_state, nr_requeue);
1323
1324		/*
1325		 * At this point the top_waiter has either taken uaddr2 or is
1326		 * waiting on it.  If the former, then the pi_state will not
1327		 * exist yet, look it up one more time to ensure we have a
1328		 * reference to it.
1329		 */
1330		if (ret == 1) {
1331			WARN_ON(pi_state);
1332			drop_count++;
1333			task_count++;
1334			ret = get_futex_value_locked(&curval2, uaddr2);
1335			if (!ret)
1336				ret = lookup_pi_state(curval2, hb2, &key2,
1337						      &pi_state);
1338		}
1339
1340		switch (ret) {
1341		case 0:
1342			break;
1343		case -EFAULT:
1344			double_unlock_hb(hb1, hb2);
1345			put_futex_key(&key2);
1346			put_futex_key(&key1);
1347			ret = fault_in_user_writeable(uaddr2);
1348			if (!ret)
1349				goto retry;
1350			goto out;
1351		case -EAGAIN:
1352			/* The owner was exiting, try again. */
1353			double_unlock_hb(hb1, hb2);
1354			put_futex_key(&key2);
1355			put_futex_key(&key1);
1356			cond_resched();
1357			goto retry;
1358		default:
1359			goto out_unlock;
1360		}
1361	}
1362
1363	head1 = &hb1->chain;
1364	plist_for_each_entry_safe(this, next, head1, list) {
1365		if (task_count - nr_wake >= nr_requeue)
1366			break;
1367
1368		if (!match_futex(&this->key, &key1))
1369			continue;
1370
1371		/*
1372		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1373		 * be paired with each other and no other futex ops.
1374		 */
1375		if ((requeue_pi && !this->rt_waiter) ||
1376		    (!requeue_pi && this->rt_waiter)) {
1377			ret = -EINVAL;
1378			break;
1379		}
1380
1381		/*
1382		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1383		 * lock, we already woke the top_waiter.  If not, it will be
1384		 * woken by futex_unlock_pi().
1385		 */
1386		if (++task_count <= nr_wake && !requeue_pi) {
1387			wake_futex(this);
1388			continue;
1389		}
1390
1391		/* Ensure we requeue to the expected futex for requeue_pi. */
1392		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1393			ret = -EINVAL;
1394			break;
1395		}
1396
1397		/*
1398		 * Requeue nr_requeue waiters and possibly one more in the case
1399		 * of requeue_pi if we couldn't acquire the lock atomically.
1400		 */
1401		if (requeue_pi) {
1402			/* Prepare the waiter to take the rt_mutex. */
1403			atomic_inc(&pi_state->refcount);
1404			this->pi_state = pi_state;
1405			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1406							this->rt_waiter,
1407							this->task, 1);
1408			if (ret == 1) {
1409				/* We got the lock. */
1410				requeue_pi_wake_futex(this, &key2, hb2);
1411				drop_count++;
1412				continue;
1413			} else if (ret) {
1414				/* -EDEADLK */
1415				this->pi_state = NULL;
1416				free_pi_state(pi_state);
1417				goto out_unlock;
1418			}
1419		}
1420		requeue_futex(this, hb1, hb2, &key2);
1421		drop_count++;
1422	}
1423
1424out_unlock:
1425	double_unlock_hb(hb1, hb2);
1426
1427	/*
1428	 * drop_futex_key_refs() must be called outside the spinlocks. During
1429	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1430	 * one at key2 and updated their key pointer.  We no longer need to
1431	 * hold the references to key1.
1432	 */
1433	while (--drop_count >= 0)
1434		drop_futex_key_refs(&key1);
1435
1436out_put_keys:
1437	put_futex_key(&key2);
1438out_put_key1:
1439	put_futex_key(&key1);
1440out:
1441	if (pi_state != NULL)
1442		free_pi_state(pi_state);
1443	return ret ? ret : task_count;
1444}
1445
1446/* The key must be already stored in q->key. */
1447static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1448	__acquires(&hb->lock)
1449{
1450	struct futex_hash_bucket *hb;
1451
1452	hb = hash_futex(&q->key);
1453	q->lock_ptr = &hb->lock;
1454
1455	spin_lock(&hb->lock);
1456	return hb;
1457}
1458
1459static inline void
1460queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1461	__releases(&hb->lock)
1462{
1463	spin_unlock(&hb->lock);
1464}
1465
1466/**
1467 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1468 * @q:	The futex_q to enqueue
1469 * @hb:	The destination hash bucket
1470 *
1471 * The hb->lock must be held by the caller, and is released here. A call to
1472 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1473 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1474 * or nothing if the unqueue is done as part of the wake process and the unqueue
1475 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1476 * an example).
1477 */
1478static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1479	__releases(&hb->lock)
1480{
1481	int prio;
1482
1483	/*
1484	 * The priority used to register this element is
1485	 * - either the real thread-priority for the real-time threads
1486	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1487	 * - or MAX_RT_PRIO for non-RT threads.
1488	 * Thus, all RT-threads are woken first in priority order, and
1489	 * the others are woken last, in FIFO order.
1490	 */
1491	prio = min(current->normal_prio, MAX_RT_PRIO);
1492
1493	plist_node_init(&q->list, prio);
1494	plist_add(&q->list, &hb->chain);
1495	q->task = current;
1496	spin_unlock(&hb->lock);
1497}
1498
1499/**
1500 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1501 * @q:	The futex_q to unqueue
1502 *
1503 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1504 * be paired with exactly one earlier call to queue_me().
1505 *
1506 * Returns:
1507 *   1 - if the futex_q was still queued (and we removed unqueued it)
1508 *   0 - if the futex_q was already removed by the waking thread
1509 */
1510static int unqueue_me(struct futex_q *q)
1511{
1512	spinlock_t *lock_ptr;
1513	int ret = 0;
1514
1515	/* In the common case we don't take the spinlock, which is nice. */
1516retry:
1517	lock_ptr = q->lock_ptr;
1518	barrier();
1519	if (lock_ptr != NULL) {
1520		spin_lock(lock_ptr);
1521		/*
1522		 * q->lock_ptr can change between reading it and
1523		 * spin_lock(), causing us to take the wrong lock.  This
1524		 * corrects the race condition.
1525		 *
1526		 * Reasoning goes like this: if we have the wrong lock,
1527		 * q->lock_ptr must have changed (maybe several times)
1528		 * between reading it and the spin_lock().  It can
1529		 * change again after the spin_lock() but only if it was
1530		 * already changed before the spin_lock().  It cannot,
1531		 * however, change back to the original value.  Therefore
1532		 * we can detect whether we acquired the correct lock.
1533		 */
1534		if (unlikely(lock_ptr != q->lock_ptr)) {
1535			spin_unlock(lock_ptr);
1536			goto retry;
1537		}
1538		__unqueue_futex(q);
1539
1540		BUG_ON(q->pi_state);
1541
1542		spin_unlock(lock_ptr);
1543		ret = 1;
1544	}
1545
1546	drop_futex_key_refs(&q->key);
1547	return ret;
1548}
1549
1550/*
1551 * PI futexes can not be requeued and must remove themself from the
1552 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1553 * and dropped here.
1554 */
1555static void unqueue_me_pi(struct futex_q *q)
1556	__releases(q->lock_ptr)
1557{
1558	__unqueue_futex(q);
1559
1560	BUG_ON(!q->pi_state);
1561	free_pi_state(q->pi_state);
1562	q->pi_state = NULL;
1563
1564	spin_unlock(q->lock_ptr);
1565}
1566
1567/*
1568 * Fixup the pi_state owner with the new owner.
1569 *
1570 * Must be called with hash bucket lock held and mm->sem held for non
1571 * private futexes.
1572 */
1573static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1574				struct task_struct *newowner)
1575{
1576	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1577	struct futex_pi_state *pi_state = q->pi_state;
1578	struct task_struct *oldowner = pi_state->owner;
1579	u32 uval, curval, newval;
1580	int ret;
1581
1582	/* Owner died? */
1583	if (!pi_state->owner)
1584		newtid |= FUTEX_OWNER_DIED;
1585
1586	/*
1587	 * We are here either because we stole the rtmutex from the
1588	 * previous highest priority waiter or we are the highest priority
1589	 * waiter but failed to get the rtmutex the first time.
1590	 * We have to replace the newowner TID in the user space variable.
1591	 * This must be atomic as we have to preserve the owner died bit here.
1592	 *
1593	 * Note: We write the user space value _before_ changing the pi_state
1594	 * because we can fault here. Imagine swapped out pages or a fork
1595	 * that marked all the anonymous memory readonly for cow.
1596	 *
1597	 * Modifying pi_state _before_ the user space value would
1598	 * leave the pi_state in an inconsistent state when we fault
1599	 * here, because we need to drop the hash bucket lock to
1600	 * handle the fault. This might be observed in the PID check
1601	 * in lookup_pi_state.
1602	 */
1603retry:
1604	if (get_futex_value_locked(&uval, uaddr))
1605		goto handle_fault;
1606
1607	while (1) {
1608		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1609
1610		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1611			goto handle_fault;
1612		if (curval == uval)
1613			break;
1614		uval = curval;
1615	}
1616
1617	/*
1618	 * We fixed up user space. Now we need to fix the pi_state
1619	 * itself.
1620	 */
1621	if (pi_state->owner != NULL) {
1622		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1623		WARN_ON(list_empty(&pi_state->list));
1624		list_del_init(&pi_state->list);
1625		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1626	}
1627
1628	pi_state->owner = newowner;
1629
1630	raw_spin_lock_irq(&newowner->pi_lock);
1631	WARN_ON(!list_empty(&pi_state->list));
1632	list_add(&pi_state->list, &newowner->pi_state_list);
1633	raw_spin_unlock_irq(&newowner->pi_lock);
1634	return 0;
1635
1636	/*
1637	 * To handle the page fault we need to drop the hash bucket
1638	 * lock here. That gives the other task (either the highest priority
1639	 * waiter itself or the task which stole the rtmutex) the
1640	 * chance to try the fixup of the pi_state. So once we are
1641	 * back from handling the fault we need to check the pi_state
1642	 * after reacquiring the hash bucket lock and before trying to
1643	 * do another fixup. When the fixup has been done already we
1644	 * simply return.
1645	 */
1646handle_fault:
1647	spin_unlock(q->lock_ptr);
1648
1649	ret = fault_in_user_writeable(uaddr);
1650
1651	spin_lock(q->lock_ptr);
1652
1653	/*
1654	 * Check if someone else fixed it for us:
1655	 */
1656	if (pi_state->owner != oldowner)
1657		return 0;
1658
1659	if (ret)
1660		return ret;
1661
1662	goto retry;
1663}
1664
1665static long futex_wait_restart(struct restart_block *restart);
1666
1667/**
1668 * fixup_owner() - Post lock pi_state and corner case management
1669 * @uaddr:	user address of the futex
1670 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1671 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1672 *
1673 * After attempting to lock an rt_mutex, this function is called to cleanup
1674 * the pi_state owner as well as handle race conditions that may allow us to
1675 * acquire the lock. Must be called with the hb lock held.
1676 *
1677 * Returns:
1678 *  1 - success, lock taken
1679 *  0 - success, lock not taken
1680 * <0 - on error (-EFAULT)
1681 */
1682static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1683{
1684	struct task_struct *owner;
1685	int ret = 0;
1686
1687	if (locked) {
1688		/*
1689		 * Got the lock. We might not be the anticipated owner if we
1690		 * did a lock-steal - fix up the PI-state in that case:
1691		 */
1692		if (q->pi_state->owner != current)
1693			ret = fixup_pi_state_owner(uaddr, q, current);
1694		goto out;
1695	}
1696
1697	/*
1698	 * Catch the rare case, where the lock was released when we were on the
1699	 * way back before we locked the hash bucket.
1700	 */
1701	if (q->pi_state->owner == current) {
1702		/*
1703		 * Try to get the rt_mutex now. This might fail as some other
1704		 * task acquired the rt_mutex after we removed ourself from the
1705		 * rt_mutex waiters list.
1706		 */
1707		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1708			locked = 1;
1709			goto out;
1710		}
1711
1712		/*
1713		 * pi_state is incorrect, some other task did a lock steal and
1714		 * we returned due to timeout or signal without taking the
1715		 * rt_mutex. Too late.
1716		 */
1717		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1718		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1719		if (!owner)
1720			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1721		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1722		ret = fixup_pi_state_owner(uaddr, q, owner);
1723		goto out;
1724	}
1725
1726	/*
1727	 * Paranoia check. If we did not take the lock, then we should not be
1728	 * the owner of the rt_mutex.
1729	 */
1730	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1731		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1732				"pi-state %p\n", ret,
1733				q->pi_state->pi_mutex.owner,
1734				q->pi_state->owner);
1735
1736out:
1737	return ret ? ret : locked;
1738}
1739
1740/**
1741 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1742 * @hb:		the futex hash bucket, must be locked by the caller
1743 * @q:		the futex_q to queue up on
1744 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1745 */
1746static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1747				struct hrtimer_sleeper *timeout)
1748{
1749	/*
1750	 * The task state is guaranteed to be set before another task can
1751	 * wake it. set_current_state() is implemented using set_mb() and
1752	 * queue_me() calls spin_unlock() upon completion, both serializing
1753	 * access to the hash list and forcing another memory barrier.
1754	 */
1755	set_current_state(TASK_INTERRUPTIBLE);
1756	queue_me(q, hb);
1757
1758	/* Arm the timer */
1759	if (timeout) {
1760		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1761		if (!hrtimer_active(&timeout->timer))
1762			timeout->task = NULL;
1763	}
1764
1765	/*
1766	 * If we have been removed from the hash list, then another task
1767	 * has tried to wake us, and we can skip the call to schedule().
1768	 */
1769	if (likely(!plist_node_empty(&q->list))) {
1770		/*
1771		 * If the timer has already expired, current will already be
1772		 * flagged for rescheduling. Only call schedule if there
1773		 * is no timeout, or if it has yet to expire.
1774		 */
1775		if (!timeout || timeout->task)
1776			schedule();
1777	}
1778	__set_current_state(TASK_RUNNING);
1779}
1780
1781/**
1782 * futex_wait_setup() - Prepare to wait on a futex
1783 * @uaddr:	the futex userspace address
1784 * @val:	the expected value
1785 * @flags:	futex flags (FLAGS_SHARED, etc.)
1786 * @q:		the associated futex_q
1787 * @hb:		storage for hash_bucket pointer to be returned to caller
1788 *
1789 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1790 * compare it with the expected value.  Handle atomic faults internally.
1791 * Return with the hb lock held and a q.key reference on success, and unlocked
1792 * with no q.key reference on failure.
1793 *
1794 * Returns:
1795 *  0 - uaddr contains val and hb has been locked
1796 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1797 */
1798static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1799			   struct futex_q *q, struct futex_hash_bucket **hb)
1800{
1801	u32 uval;
1802	int ret;
1803
1804	/*
1805	 * Access the page AFTER the hash-bucket is locked.
1806	 * Order is important:
1807	 *
1808	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1809	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1810	 *
1811	 * The basic logical guarantee of a futex is that it blocks ONLY
1812	 * if cond(var) is known to be true at the time of blocking, for
1813	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1814	 * would open a race condition where we could block indefinitely with
1815	 * cond(var) false, which would violate the guarantee.
1816	 *
1817	 * On the other hand, we insert q and release the hash-bucket only
1818	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1819	 * absorb a wakeup if *uaddr does not match the desired values
1820	 * while the syscall executes.
1821	 */
1822retry:
1823	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1824	if (unlikely(ret != 0))
1825		return ret;
1826
1827retry_private:
1828	*hb = queue_lock(q);
1829
1830	ret = get_futex_value_locked(&uval, uaddr);
1831
1832	if (ret) {
1833		queue_unlock(q, *hb);
1834
1835		ret = get_user(uval, uaddr);
1836		if (ret)
1837			goto out;
1838
1839		if (!(flags & FLAGS_SHARED))
1840			goto retry_private;
1841
1842		put_futex_key(&q->key);
1843		goto retry;
1844	}
1845
1846	if (uval != val) {
1847		queue_unlock(q, *hb);
1848		ret = -EWOULDBLOCK;
1849	}
1850
1851out:
1852	if (ret)
1853		put_futex_key(&q->key);
1854	return ret;
1855}
1856
1857static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1858		      ktime_t *abs_time, u32 bitset)
1859{
1860	struct hrtimer_sleeper timeout, *to = NULL;
1861	struct restart_block *restart;
1862	struct futex_hash_bucket *hb;
1863	struct futex_q q = futex_q_init;
1864	int ret;
1865
1866	if (!bitset)
1867		return -EINVAL;
1868	q.bitset = bitset;
1869
1870	if (abs_time) {
1871		to = &timeout;
1872
1873		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1874				      CLOCK_REALTIME : CLOCK_MONOTONIC,
1875				      HRTIMER_MODE_ABS);
1876		hrtimer_init_sleeper(to, current);
1877		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1878					     current->timer_slack_ns);
1879	}
1880
1881retry:
1882	/*
1883	 * Prepare to wait on uaddr. On success, holds hb lock and increments
1884	 * q.key refs.
1885	 */
1886	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1887	if (ret)
1888		goto out;
1889
1890	/* queue_me and wait for wakeup, timeout, or a signal. */
1891	futex_wait_queue_me(hb, &q, to);
1892
1893	/* If we were woken (and unqueued), we succeeded, whatever. */
1894	ret = 0;
1895	/* unqueue_me() drops q.key ref */
1896	if (!unqueue_me(&q))
1897		goto out;
1898	ret = -ETIMEDOUT;
1899	if (to && !to->task)
1900		goto out;
1901
1902	/*
1903	 * We expect signal_pending(current), but we might be the
1904	 * victim of a spurious wakeup as well.
1905	 */
1906	if (!signal_pending(current))
1907		goto retry;
1908
1909	ret = -ERESTARTSYS;
1910	if (!abs_time)
1911		goto out;
1912
1913	restart = &current_thread_info()->restart_block;
1914	restart->fn = futex_wait_restart;
1915	restart->futex.uaddr = uaddr;
1916	restart->futex.val = val;
1917	restart->futex.time = abs_time->tv64;
1918	restart->futex.bitset = bitset;
1919	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1920
1921	ret = -ERESTART_RESTARTBLOCK;
1922
1923out:
1924	if (to) {
1925		hrtimer_cancel(&to->timer);
1926		destroy_hrtimer_on_stack(&to->timer);
1927	}
1928	return ret;
1929}
1930
1931
1932static long futex_wait_restart(struct restart_block *restart)
1933{
1934	u32 __user *uaddr = restart->futex.uaddr;
1935	ktime_t t, *tp = NULL;
1936
1937	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1938		t.tv64 = restart->futex.time;
1939		tp = &t;
1940	}
1941	restart->fn = do_no_restart_syscall;
1942
1943	return (long)futex_wait(uaddr, restart->futex.flags,
1944				restart->futex.val, tp, restart->futex.bitset);
1945}
1946
1947
1948/*
1949 * Userspace tried a 0 -> TID atomic transition of the futex value
1950 * and failed. The kernel side here does the whole locking operation:
1951 * if there are waiters then it will block, it does PI, etc. (Due to
1952 * races the kernel might see a 0 value of the futex too.)
1953 */
1954static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1955			 ktime_t *time, int trylock)
1956{
1957	struct hrtimer_sleeper timeout, *to = NULL;
1958	struct futex_hash_bucket *hb;
1959	struct futex_q q = futex_q_init;
1960	int res, ret;
1961
1962	if (refill_pi_state_cache())
1963		return -ENOMEM;
1964
1965	if (time) {
1966		to = &timeout;
1967		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1968				      HRTIMER_MODE_ABS);
1969		hrtimer_init_sleeper(to, current);
1970		hrtimer_set_expires(&to->timer, *time);
1971	}
1972
1973retry:
1974	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1975	if (unlikely(ret != 0))
1976		goto out;
1977
1978retry_private:
1979	hb = queue_lock(&q);
1980
1981	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1982	if (unlikely(ret)) {
1983		switch (ret) {
1984		case 1:
1985			/* We got the lock. */
1986			ret = 0;
1987			goto out_unlock_put_key;
1988		case -EFAULT:
1989			goto uaddr_faulted;
1990		case -EAGAIN:
1991			/*
1992			 * Task is exiting and we just wait for the
1993			 * exit to complete.
1994			 */
1995			queue_unlock(&q, hb);
1996			put_futex_key(&q.key);
1997			cond_resched();
1998			goto retry;
1999		default:
2000			goto out_unlock_put_key;
2001		}
2002	}
2003
2004	/*
2005	 * Only actually queue now that the atomic ops are done:
2006	 */
2007	queue_me(&q, hb);
2008
2009	WARN_ON(!q.pi_state);
2010	/*
2011	 * Block on the PI mutex:
2012	 */
2013	if (!trylock)
2014		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2015	else {
2016		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2017		/* Fixup the trylock return value: */
2018		ret = ret ? 0 : -EWOULDBLOCK;
2019	}
2020
2021	spin_lock(q.lock_ptr);
2022	/*
2023	 * Fixup the pi_state owner and possibly acquire the lock if we
2024	 * haven't already.
2025	 */
2026	res = fixup_owner(uaddr, &q, !ret);
2027	/*
2028	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2029	 * the lock, clear our -ETIMEDOUT or -EINTR.
2030	 */
2031	if (res)
2032		ret = (res < 0) ? res : 0;
2033
2034	/*
2035	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2036	 * it and return the fault to userspace.
2037	 */
2038	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2039		rt_mutex_unlock(&q.pi_state->pi_mutex);
2040
2041	/* Unqueue and drop the lock */
2042	unqueue_me_pi(&q);
2043
2044	goto out_put_key;
2045
2046out_unlock_put_key:
2047	queue_unlock(&q, hb);
2048
2049out_put_key:
2050	put_futex_key(&q.key);
2051out:
2052	if (to)
2053		destroy_hrtimer_on_stack(&to->timer);
2054	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2055
2056uaddr_faulted:
2057	queue_unlock(&q, hb);
2058
2059	ret = fault_in_user_writeable(uaddr);
2060	if (ret)
2061		goto out_put_key;
2062
2063	if (!(flags & FLAGS_SHARED))
2064		goto retry_private;
2065
2066	put_futex_key(&q.key);
2067	goto retry;
2068}
2069
2070/*
2071 * Userspace attempted a TID -> 0 atomic transition, and failed.
2072 * This is the in-kernel slowpath: we look up the PI state (if any),
2073 * and do the rt-mutex unlock.
2074 */
2075static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2076{
2077	struct futex_hash_bucket *hb;
2078	struct futex_q *this, *next;
2079	struct plist_head *head;
2080	union futex_key key = FUTEX_KEY_INIT;
2081	u32 uval, vpid = task_pid_vnr(current);
2082	int ret;
2083
2084retry:
2085	if (get_user(uval, uaddr))
2086		return -EFAULT;
2087	/*
2088	 * We release only a lock we actually own:
2089	 */
2090	if ((uval & FUTEX_TID_MASK) != vpid)
2091		return -EPERM;
2092
2093	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2094	if (unlikely(ret != 0))
2095		goto out;
2096
2097	hb = hash_futex(&key);
2098	spin_lock(&hb->lock);
2099
2100	/*
2101	 * To avoid races, try to do the TID -> 0 atomic transition
2102	 * again. If it succeeds then we can return without waking
2103	 * anyone else up:
2104	 */
2105	if (!(uval & FUTEX_OWNER_DIED) &&
2106	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2107		goto pi_faulted;
2108	/*
2109	 * Rare case: we managed to release the lock atomically,
2110	 * no need to wake anyone else up:
2111	 */
2112	if (unlikely(uval == vpid))
2113		goto out_unlock;
2114
2115	/*
2116	 * Ok, other tasks may need to be woken up - check waiters
2117	 * and do the wakeup if necessary:
2118	 */
2119	head = &hb->chain;
2120
2121	plist_for_each_entry_safe(this, next, head, list) {
2122		if (!match_futex (&this->key, &key))
2123			continue;
2124		ret = wake_futex_pi(uaddr, uval, this);
2125		/*
2126		 * The atomic access to the futex value
2127		 * generated a pagefault, so retry the
2128		 * user-access and the wakeup:
2129		 */
2130		if (ret == -EFAULT)
2131			goto pi_faulted;
2132		goto out_unlock;
2133	}
2134	/*
2135	 * No waiters - kernel unlocks the futex:
2136	 */
2137	if (!(uval & FUTEX_OWNER_DIED)) {
2138		ret = unlock_futex_pi(uaddr, uval);
2139		if (ret == -EFAULT)
2140			goto pi_faulted;
2141	}
2142
2143out_unlock:
2144	spin_unlock(&hb->lock);
2145	put_futex_key(&key);
2146
2147out:
2148	return ret;
2149
2150pi_faulted:
2151	spin_unlock(&hb->lock);
2152	put_futex_key(&key);
2153
2154	ret = fault_in_user_writeable(uaddr);
2155	if (!ret)
2156		goto retry;
2157
2158	return ret;
2159}
2160
2161/**
2162 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2163 * @hb:		the hash_bucket futex_q was original enqueued on
2164 * @q:		the futex_q woken while waiting to be requeued
2165 * @key2:	the futex_key of the requeue target futex
2166 * @timeout:	the timeout associated with the wait (NULL if none)
2167 *
2168 * Detect if the task was woken on the initial futex as opposed to the requeue
2169 * target futex.  If so, determine if it was a timeout or a signal that caused
2170 * the wakeup and return the appropriate error code to the caller.  Must be
2171 * called with the hb lock held.
2172 *
2173 * Returns
2174 *  0 - no early wakeup detected
2175 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2176 */
2177static inline
2178int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2179				   struct futex_q *q, union futex_key *key2,
2180				   struct hrtimer_sleeper *timeout)
2181{
2182	int ret = 0;
2183
2184	/*
2185	 * With the hb lock held, we avoid races while we process the wakeup.
2186	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2187	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2188	 * It can't be requeued from uaddr2 to something else since we don't
2189	 * support a PI aware source futex for requeue.
2190	 */
2191	if (!match_futex(&q->key, key2)) {
2192		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2193		/*
2194		 * We were woken prior to requeue by a timeout or a signal.
2195		 * Unqueue the futex_q and determine which it was.
2196		 */
2197		plist_del(&q->list, &hb->chain);
2198
2199		/* Handle spurious wakeups gracefully */
2200		ret = -EWOULDBLOCK;
2201		if (timeout && !timeout->task)
2202			ret = -ETIMEDOUT;
2203		else if (signal_pending(current))
2204			ret = -ERESTARTNOINTR;
2205	}
2206	return ret;
2207}
2208
2209/**
2210 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2211 * @uaddr:	the futex we initially wait on (non-pi)
2212 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2213 * 		the same type, no requeueing from private to shared, etc.
2214 * @val:	the expected value of uaddr
2215 * @abs_time:	absolute timeout
2216 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2217 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2218 * @uaddr2:	the pi futex we will take prior to returning to user-space
2219 *
2220 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2221 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2222 * complete the acquisition of the rt_mutex prior to returning to userspace.
2223 * This ensures the rt_mutex maintains an owner when it has waiters; without
2224 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2225 * need to.
2226 *
2227 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2228 * via the following:
2229 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2230 * 2) wakeup on uaddr2 after a requeue
2231 * 3) signal
2232 * 4) timeout
2233 *
2234 * If 3, cleanup and return -ERESTARTNOINTR.
2235 *
2236 * If 2, we may then block on trying to take the rt_mutex and return via:
2237 * 5) successful lock
2238 * 6) signal
2239 * 7) timeout
2240 * 8) other lock acquisition failure
2241 *
2242 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2243 *
2244 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2245 *
2246 * Returns:
2247 *  0 - On success
2248 * <0 - On error
2249 */
2250static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2251				 u32 val, ktime_t *abs_time, u32 bitset,
2252				 u32 __user *uaddr2)
2253{
2254	struct hrtimer_sleeper timeout, *to = NULL;
2255	struct rt_mutex_waiter rt_waiter;
2256	struct rt_mutex *pi_mutex = NULL;
2257	struct futex_hash_bucket *hb;
2258	union futex_key key2 = FUTEX_KEY_INIT;
2259	struct futex_q q = futex_q_init;
2260	int res, ret;
2261
 
 
 
2262	if (!bitset)
2263		return -EINVAL;
2264
2265	if (abs_time) {
2266		to = &timeout;
2267		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2268				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2269				      HRTIMER_MODE_ABS);
2270		hrtimer_init_sleeper(to, current);
2271		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2272					     current->timer_slack_ns);
2273	}
2274
2275	/*
2276	 * The waiter is allocated on our stack, manipulated by the requeue
2277	 * code while we sleep on uaddr.
2278	 */
2279	debug_rt_mutex_init_waiter(&rt_waiter);
2280	rt_waiter.task = NULL;
2281
2282	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2283	if (unlikely(ret != 0))
2284		goto out;
2285
2286	q.bitset = bitset;
2287	q.rt_waiter = &rt_waiter;
2288	q.requeue_pi_key = &key2;
2289
2290	/*
2291	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2292	 * count.
2293	 */
2294	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2295	if (ret)
2296		goto out_key2;
2297
2298	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2299	futex_wait_queue_me(hb, &q, to);
2300
2301	spin_lock(&hb->lock);
2302	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2303	spin_unlock(&hb->lock);
2304	if (ret)
2305		goto out_put_keys;
2306
2307	/*
2308	 * In order for us to be here, we know our q.key == key2, and since
2309	 * we took the hb->lock above, we also know that futex_requeue() has
2310	 * completed and we no longer have to concern ourselves with a wakeup
2311	 * race with the atomic proxy lock acquisition by the requeue code. The
2312	 * futex_requeue dropped our key1 reference and incremented our key2
2313	 * reference count.
2314	 */
2315
2316	/* Check if the requeue code acquired the second futex for us. */
2317	if (!q.rt_waiter) {
2318		/*
2319		 * Got the lock. We might not be the anticipated owner if we
2320		 * did a lock-steal - fix up the PI-state in that case.
2321		 */
2322		if (q.pi_state && (q.pi_state->owner != current)) {
2323			spin_lock(q.lock_ptr);
2324			ret = fixup_pi_state_owner(uaddr2, &q, current);
2325			spin_unlock(q.lock_ptr);
2326		}
2327	} else {
2328		/*
2329		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2330		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2331		 * the pi_state.
2332		 */
2333		WARN_ON(!&q.pi_state);
2334		pi_mutex = &q.pi_state->pi_mutex;
2335		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2336		debug_rt_mutex_free_waiter(&rt_waiter);
2337
2338		spin_lock(q.lock_ptr);
2339		/*
2340		 * Fixup the pi_state owner and possibly acquire the lock if we
2341		 * haven't already.
2342		 */
2343		res = fixup_owner(uaddr2, &q, !ret);
2344		/*
2345		 * If fixup_owner() returned an error, proprogate that.  If it
2346		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2347		 */
2348		if (res)
2349			ret = (res < 0) ? res : 0;
2350
2351		/* Unqueue and drop the lock. */
2352		unqueue_me_pi(&q);
2353	}
2354
2355	/*
2356	 * If fixup_pi_state_owner() faulted and was unable to handle the
2357	 * fault, unlock the rt_mutex and return the fault to userspace.
2358	 */
2359	if (ret == -EFAULT) {
2360		if (rt_mutex_owner(pi_mutex) == current)
2361			rt_mutex_unlock(pi_mutex);
2362	} else if (ret == -EINTR) {
2363		/*
2364		 * We've already been requeued, but cannot restart by calling
2365		 * futex_lock_pi() directly. We could restart this syscall, but
2366		 * it would detect that the user space "val" changed and return
2367		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2368		 * -EWOULDBLOCK directly.
2369		 */
2370		ret = -EWOULDBLOCK;
2371	}
2372
2373out_put_keys:
2374	put_futex_key(&q.key);
2375out_key2:
2376	put_futex_key(&key2);
2377
2378out:
2379	if (to) {
2380		hrtimer_cancel(&to->timer);
2381		destroy_hrtimer_on_stack(&to->timer);
2382	}
2383	return ret;
2384}
2385
2386/*
2387 * Support for robust futexes: the kernel cleans up held futexes at
2388 * thread exit time.
2389 *
2390 * Implementation: user-space maintains a per-thread list of locks it
2391 * is holding. Upon do_exit(), the kernel carefully walks this list,
2392 * and marks all locks that are owned by this thread with the
2393 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2394 * always manipulated with the lock held, so the list is private and
2395 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2396 * field, to allow the kernel to clean up if the thread dies after
2397 * acquiring the lock, but just before it could have added itself to
2398 * the list. There can only be one such pending lock.
2399 */
2400
2401/**
2402 * sys_set_robust_list() - Set the robust-futex list head of a task
2403 * @head:	pointer to the list-head
2404 * @len:	length of the list-head, as userspace expects
2405 */
2406SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2407		size_t, len)
2408{
2409	if (!futex_cmpxchg_enabled)
2410		return -ENOSYS;
2411	/*
2412	 * The kernel knows only one size for now:
2413	 */
2414	if (unlikely(len != sizeof(*head)))
2415		return -EINVAL;
2416
2417	current->robust_list = head;
2418
2419	return 0;
2420}
2421
2422/**
2423 * sys_get_robust_list() - Get the robust-futex list head of a task
2424 * @pid:	pid of the process [zero for current task]
2425 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2426 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2427 */
2428SYSCALL_DEFINE3(get_robust_list, int, pid,
2429		struct robust_list_head __user * __user *, head_ptr,
2430		size_t __user *, len_ptr)
2431{
2432	struct robust_list_head __user *head;
2433	unsigned long ret;
2434	const struct cred *cred = current_cred(), *pcred;
2435
2436	if (!futex_cmpxchg_enabled)
2437		return -ENOSYS;
2438
 
 
 
 
 
2439	if (!pid)
2440		head = current->robust_list;
2441	else {
2442		struct task_struct *p;
2443
2444		ret = -ESRCH;
2445		rcu_read_lock();
2446		p = find_task_by_vpid(pid);
2447		if (!p)
2448			goto err_unlock;
2449		ret = -EPERM;
2450		pcred = __task_cred(p);
2451		/* If victim is in different user_ns, then uids are not
2452		   comparable, so we must have CAP_SYS_PTRACE */
2453		if (cred->user->user_ns != pcred->user->user_ns) {
2454			if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2455				goto err_unlock;
2456			goto ok;
2457		}
2458		/* If victim is in same user_ns, then uids are comparable */
2459		if (cred->euid != pcred->euid &&
2460		    cred->euid != pcred->uid &&
2461		    !ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2462			goto err_unlock;
2463ok:
2464		head = p->robust_list;
2465		rcu_read_unlock();
2466	}
2467
 
 
 
 
 
 
 
2468	if (put_user(sizeof(*head), len_ptr))
2469		return -EFAULT;
2470	return put_user(head, head_ptr);
2471
2472err_unlock:
2473	rcu_read_unlock();
2474
2475	return ret;
2476}
2477
2478/*
2479 * Process a futex-list entry, check whether it's owned by the
2480 * dying task, and do notification if so:
2481 */
2482int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2483{
2484	u32 uval, nval, mval;
2485
2486retry:
2487	if (get_user(uval, uaddr))
2488		return -1;
2489
2490	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2491		/*
2492		 * Ok, this dying thread is truly holding a futex
2493		 * of interest. Set the OWNER_DIED bit atomically
2494		 * via cmpxchg, and if the value had FUTEX_WAITERS
2495		 * set, wake up a waiter (if any). (We have to do a
2496		 * futex_wake() even if OWNER_DIED is already set -
2497		 * to handle the rare but possible case of recursive
2498		 * thread-death.) The rest of the cleanup is done in
2499		 * userspace.
2500		 */
2501		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2502		/*
2503		 * We are not holding a lock here, but we want to have
2504		 * the pagefault_disable/enable() protection because
2505		 * we want to handle the fault gracefully. If the
2506		 * access fails we try to fault in the futex with R/W
2507		 * verification via get_user_pages. get_user() above
2508		 * does not guarantee R/W access. If that fails we
2509		 * give up and leave the futex locked.
2510		 */
2511		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2512			if (fault_in_user_writeable(uaddr))
2513				return -1;
2514			goto retry;
2515		}
2516		if (nval != uval)
2517			goto retry;
2518
2519		/*
2520		 * Wake robust non-PI futexes here. The wakeup of
2521		 * PI futexes happens in exit_pi_state():
2522		 */
2523		if (!pi && (uval & FUTEX_WAITERS))
2524			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2525	}
2526	return 0;
2527}
2528
2529/*
2530 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2531 */
2532static inline int fetch_robust_entry(struct robust_list __user **entry,
2533				     struct robust_list __user * __user *head,
2534				     unsigned int *pi)
2535{
2536	unsigned long uentry;
2537
2538	if (get_user(uentry, (unsigned long __user *)head))
2539		return -EFAULT;
2540
2541	*entry = (void __user *)(uentry & ~1UL);
2542	*pi = uentry & 1;
2543
2544	return 0;
2545}
2546
2547/*
2548 * Walk curr->robust_list (very carefully, it's a userspace list!)
2549 * and mark any locks found there dead, and notify any waiters.
2550 *
2551 * We silently return on any sign of list-walking problem.
2552 */
2553void exit_robust_list(struct task_struct *curr)
2554{
2555	struct robust_list_head __user *head = curr->robust_list;
2556	struct robust_list __user *entry, *next_entry, *pending;
2557	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2558	unsigned int uninitialized_var(next_pi);
2559	unsigned long futex_offset;
2560	int rc;
2561
2562	if (!futex_cmpxchg_enabled)
2563		return;
2564
2565	/*
2566	 * Fetch the list head (which was registered earlier, via
2567	 * sys_set_robust_list()):
2568	 */
2569	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2570		return;
2571	/*
2572	 * Fetch the relative futex offset:
2573	 */
2574	if (get_user(futex_offset, &head->futex_offset))
2575		return;
2576	/*
2577	 * Fetch any possibly pending lock-add first, and handle it
2578	 * if it exists:
2579	 */
2580	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2581		return;
2582
2583	next_entry = NULL;	/* avoid warning with gcc */
2584	while (entry != &head->list) {
2585		/*
2586		 * Fetch the next entry in the list before calling
2587		 * handle_futex_death:
2588		 */
2589		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2590		/*
2591		 * A pending lock might already be on the list, so
2592		 * don't process it twice:
2593		 */
2594		if (entry != pending)
2595			if (handle_futex_death((void __user *)entry + futex_offset,
2596						curr, pi))
2597				return;
2598		if (rc)
2599			return;
2600		entry = next_entry;
2601		pi = next_pi;
2602		/*
2603		 * Avoid excessively long or circular lists:
2604		 */
2605		if (!--limit)
2606			break;
2607
2608		cond_resched();
2609	}
2610
2611	if (pending)
2612		handle_futex_death((void __user *)pending + futex_offset,
2613				   curr, pip);
2614}
2615
2616long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2617		u32 __user *uaddr2, u32 val2, u32 val3)
2618{
2619	int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2620	unsigned int flags = 0;
2621
2622	if (!(op & FUTEX_PRIVATE_FLAG))
2623		flags |= FLAGS_SHARED;
2624
2625	if (op & FUTEX_CLOCK_REALTIME) {
2626		flags |= FLAGS_CLOCKRT;
2627		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2628			return -ENOSYS;
2629	}
2630
2631	switch (cmd) {
 
 
 
 
 
 
 
 
 
 
2632	case FUTEX_WAIT:
2633		val3 = FUTEX_BITSET_MATCH_ANY;
2634	case FUTEX_WAIT_BITSET:
2635		ret = futex_wait(uaddr, flags, val, timeout, val3);
2636		break;
2637	case FUTEX_WAKE:
2638		val3 = FUTEX_BITSET_MATCH_ANY;
2639	case FUTEX_WAKE_BITSET:
2640		ret = futex_wake(uaddr, flags, val, val3);
2641		break;
2642	case FUTEX_REQUEUE:
2643		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2644		break;
2645	case FUTEX_CMP_REQUEUE:
2646		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2647		break;
2648	case FUTEX_WAKE_OP:
2649		ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2650		break;
2651	case FUTEX_LOCK_PI:
2652		if (futex_cmpxchg_enabled)
2653			ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2654		break;
2655	case FUTEX_UNLOCK_PI:
2656		if (futex_cmpxchg_enabled)
2657			ret = futex_unlock_pi(uaddr, flags);
2658		break;
2659	case FUTEX_TRYLOCK_PI:
2660		if (futex_cmpxchg_enabled)
2661			ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2662		break;
2663	case FUTEX_WAIT_REQUEUE_PI:
2664		val3 = FUTEX_BITSET_MATCH_ANY;
2665		ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2666					    uaddr2);
2667		break;
2668	case FUTEX_CMP_REQUEUE_PI:
2669		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2670		break;
2671	default:
2672		ret = -ENOSYS;
2673	}
2674	return ret;
2675}
2676
2677
2678SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2679		struct timespec __user *, utime, u32 __user *, uaddr2,
2680		u32, val3)
2681{
2682	struct timespec ts;
2683	ktime_t t, *tp = NULL;
2684	u32 val2 = 0;
2685	int cmd = op & FUTEX_CMD_MASK;
2686
2687	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2688		      cmd == FUTEX_WAIT_BITSET ||
2689		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2690		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2691			return -EFAULT;
2692		if (!timespec_valid(&ts))
2693			return -EINVAL;
2694
2695		t = timespec_to_ktime(ts);
2696		if (cmd == FUTEX_WAIT)
2697			t = ktime_add_safe(ktime_get(), t);
2698		tp = &t;
2699	}
2700	/*
2701	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2702	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2703	 */
2704	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2705	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2706		val2 = (u32) (unsigned long) utime;
2707
2708	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2709}
2710
2711static int __init futex_init(void)
2712{
2713	u32 curval;
2714	int i;
2715
2716	/*
2717	 * This will fail and we want it. Some arch implementations do
2718	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2719	 * functionality. We want to know that before we call in any
2720	 * of the complex code paths. Also we want to prevent
2721	 * registration of robust lists in that case. NULL is
2722	 * guaranteed to fault and we get -EFAULT on functional
2723	 * implementation, the non-functional ones will return
2724	 * -ENOSYS.
2725	 */
2726	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2727		futex_cmpxchg_enabled = 1;
2728
2729	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2730		plist_head_init(&futex_queues[i].chain);
2731		spin_lock_init(&futex_queues[i].lock);
2732	}
2733
2734	return 0;
2735}
2736__initcall(futex_init);
v3.5.6
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63
  64#include <asm/futex.h>
  65
  66#include "rtmutex_common.h"
  67
  68int __read_mostly futex_cmpxchg_enabled;
  69
  70#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  71
  72/*
  73 * Futex flags used to encode options to functions and preserve them across
  74 * restarts.
  75 */
  76#define FLAGS_SHARED		0x01
  77#define FLAGS_CLOCKRT		0x02
  78#define FLAGS_HAS_TIMEOUT	0x04
  79
  80/*
  81 * Priority Inheritance state:
  82 */
  83struct futex_pi_state {
  84	/*
  85	 * list of 'owned' pi_state instances - these have to be
  86	 * cleaned up in do_exit() if the task exits prematurely:
  87	 */
  88	struct list_head list;
  89
  90	/*
  91	 * The PI object:
  92	 */
  93	struct rt_mutex pi_mutex;
  94
  95	struct task_struct *owner;
  96	atomic_t refcount;
  97
  98	union futex_key key;
  99};
 100
 101/**
 102 * struct futex_q - The hashed futex queue entry, one per waiting task
 103 * @list:		priority-sorted list of tasks waiting on this futex
 104 * @task:		the task waiting on the futex
 105 * @lock_ptr:		the hash bucket lock
 106 * @key:		the key the futex is hashed on
 107 * @pi_state:		optional priority inheritance state
 108 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 109 * @requeue_pi_key:	the requeue_pi target futex key
 110 * @bitset:		bitset for the optional bitmasked wakeup
 111 *
 112 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 113 * we can wake only the relevant ones (hashed queues may be shared).
 114 *
 115 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 116 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 117 * The order of wakeup is always to make the first condition true, then
 118 * the second.
 119 *
 120 * PI futexes are typically woken before they are removed from the hash list via
 121 * the rt_mutex code. See unqueue_me_pi().
 122 */
 123struct futex_q {
 124	struct plist_node list;
 125
 126	struct task_struct *task;
 127	spinlock_t *lock_ptr;
 128	union futex_key key;
 129	struct futex_pi_state *pi_state;
 130	struct rt_mutex_waiter *rt_waiter;
 131	union futex_key *requeue_pi_key;
 132	u32 bitset;
 133};
 134
 135static const struct futex_q futex_q_init = {
 136	/* list gets initialized in queue_me()*/
 137	.key = FUTEX_KEY_INIT,
 138	.bitset = FUTEX_BITSET_MATCH_ANY
 139};
 140
 141/*
 142 * Hash buckets are shared by all the futex_keys that hash to the same
 143 * location.  Each key may have multiple futex_q structures, one for each task
 144 * waiting on a futex.
 145 */
 146struct futex_hash_bucket {
 147	spinlock_t lock;
 148	struct plist_head chain;
 149};
 150
 151static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 152
 153/*
 154 * We hash on the keys returned from get_futex_key (see below).
 155 */
 156static struct futex_hash_bucket *hash_futex(union futex_key *key)
 157{
 158	u32 hash = jhash2((u32*)&key->both.word,
 159			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 160			  key->both.offset);
 161	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 162}
 163
 164/*
 165 * Return 1 if two futex_keys are equal, 0 otherwise.
 166 */
 167static inline int match_futex(union futex_key *key1, union futex_key *key2)
 168{
 169	return (key1 && key2
 170		&& key1->both.word == key2->both.word
 171		&& key1->both.ptr == key2->both.ptr
 172		&& key1->both.offset == key2->both.offset);
 173}
 174
 175/*
 176 * Take a reference to the resource addressed by a key.
 177 * Can be called while holding spinlocks.
 178 *
 179 */
 180static void get_futex_key_refs(union futex_key *key)
 181{
 182	if (!key->both.ptr)
 183		return;
 184
 185	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 186	case FUT_OFF_INODE:
 187		ihold(key->shared.inode);
 188		break;
 189	case FUT_OFF_MMSHARED:
 190		atomic_inc(&key->private.mm->mm_count);
 191		break;
 192	}
 193}
 194
 195/*
 196 * Drop a reference to the resource addressed by a key.
 197 * The hash bucket spinlock must not be held.
 198 */
 199static void drop_futex_key_refs(union futex_key *key)
 200{
 201	if (!key->both.ptr) {
 202		/* If we're here then we tried to put a key we failed to get */
 203		WARN_ON_ONCE(1);
 204		return;
 205	}
 206
 207	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 208	case FUT_OFF_INODE:
 209		iput(key->shared.inode);
 210		break;
 211	case FUT_OFF_MMSHARED:
 212		mmdrop(key->private.mm);
 213		break;
 214	}
 215}
 216
 217/**
 218 * get_futex_key() - Get parameters which are the keys for a futex
 219 * @uaddr:	virtual address of the futex
 220 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 221 * @key:	address where result is stored.
 222 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 223 *              VERIFY_WRITE)
 224 *
 225 * Returns a negative error code or 0
 226 * The key words are stored in *key on success.
 227 *
 228 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
 229 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 230 * We can usually work out the index without swapping in the page.
 231 *
 232 * lock_page() might sleep, the caller should not hold a spinlock.
 233 */
 234static int
 235get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 236{
 237	unsigned long address = (unsigned long)uaddr;
 238	struct mm_struct *mm = current->mm;
 239	struct page *page, *page_head;
 240	int err, ro = 0;
 241
 242	/*
 243	 * The futex address must be "naturally" aligned.
 244	 */
 245	key->both.offset = address % PAGE_SIZE;
 246	if (unlikely((address % sizeof(u32)) != 0))
 247		return -EINVAL;
 248	address -= key->both.offset;
 249
 250	/*
 251	 * PROCESS_PRIVATE futexes are fast.
 252	 * As the mm cannot disappear under us and the 'key' only needs
 253	 * virtual address, we dont even have to find the underlying vma.
 254	 * Note : We do have to check 'uaddr' is a valid user address,
 255	 *        but access_ok() should be faster than find_vma()
 256	 */
 257	if (!fshared) {
 258		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
 259			return -EFAULT;
 260		key->private.mm = mm;
 261		key->private.address = address;
 262		get_futex_key_refs(key);
 263		return 0;
 264	}
 265
 266again:
 267	err = get_user_pages_fast(address, 1, 1, &page);
 268	/*
 269	 * If write access is not required (eg. FUTEX_WAIT), try
 270	 * and get read-only access.
 271	 */
 272	if (err == -EFAULT && rw == VERIFY_READ) {
 273		err = get_user_pages_fast(address, 1, 0, &page);
 274		ro = 1;
 275	}
 276	if (err < 0)
 277		return err;
 278	else
 279		err = 0;
 280
 281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 282	page_head = page;
 283	if (unlikely(PageTail(page))) {
 284		put_page(page);
 285		/* serialize against __split_huge_page_splitting() */
 286		local_irq_disable();
 287		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
 288			page_head = compound_head(page);
 289			/*
 290			 * page_head is valid pointer but we must pin
 291			 * it before taking the PG_lock and/or
 292			 * PG_compound_lock. The moment we re-enable
 293			 * irqs __split_huge_page_splitting() can
 294			 * return and the head page can be freed from
 295			 * under us. We can't take the PG_lock and/or
 296			 * PG_compound_lock on a page that could be
 297			 * freed from under us.
 298			 */
 299			if (page != page_head) {
 300				get_page(page_head);
 301				put_page(page);
 302			}
 303			local_irq_enable();
 304		} else {
 305			local_irq_enable();
 306			goto again;
 307		}
 308	}
 309#else
 310	page_head = compound_head(page);
 311	if (page != page_head) {
 312		get_page(page_head);
 313		put_page(page);
 314	}
 315#endif
 316
 317	lock_page(page_head);
 318
 319	/*
 320	 * If page_head->mapping is NULL, then it cannot be a PageAnon
 321	 * page; but it might be the ZERO_PAGE or in the gate area or
 322	 * in a special mapping (all cases which we are happy to fail);
 323	 * or it may have been a good file page when get_user_pages_fast
 324	 * found it, but truncated or holepunched or subjected to
 325	 * invalidate_complete_page2 before we got the page lock (also
 326	 * cases which we are happy to fail).  And we hold a reference,
 327	 * so refcount care in invalidate_complete_page's remove_mapping
 328	 * prevents drop_caches from setting mapping to NULL beneath us.
 329	 *
 330	 * The case we do have to guard against is when memory pressure made
 331	 * shmem_writepage move it from filecache to swapcache beneath us:
 332	 * an unlikely race, but we do need to retry for page_head->mapping.
 333	 */
 334	if (!page_head->mapping) {
 335		int shmem_swizzled = PageSwapCache(page_head);
 336		unlock_page(page_head);
 337		put_page(page_head);
 338		if (shmem_swizzled)
 339			goto again;
 340		return -EFAULT;
 
 
 
 
 
 341	}
 342
 343	/*
 344	 * Private mappings are handled in a simple way.
 345	 *
 346	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 347	 * it's a read-only handle, it's expected that futexes attach to
 348	 * the object not the particular process.
 349	 */
 350	if (PageAnon(page_head)) {
 351		/*
 352		 * A RO anonymous page will never change and thus doesn't make
 353		 * sense for futex operations.
 354		 */
 355		if (ro) {
 356			err = -EFAULT;
 357			goto out;
 358		}
 359
 360		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 361		key->private.mm = mm;
 362		key->private.address = address;
 363	} else {
 364		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 365		key->shared.inode = page_head->mapping->host;
 366		key->shared.pgoff = page_head->index;
 367	}
 368
 369	get_futex_key_refs(key);
 370
 371out:
 372	unlock_page(page_head);
 373	put_page(page_head);
 374	return err;
 375}
 376
 377static inline void put_futex_key(union futex_key *key)
 378{
 379	drop_futex_key_refs(key);
 380}
 381
 382/**
 383 * fault_in_user_writeable() - Fault in user address and verify RW access
 384 * @uaddr:	pointer to faulting user space address
 385 *
 386 * Slow path to fixup the fault we just took in the atomic write
 387 * access to @uaddr.
 388 *
 389 * We have no generic implementation of a non-destructive write to the
 390 * user address. We know that we faulted in the atomic pagefault
 391 * disabled section so we can as well avoid the #PF overhead by
 392 * calling get_user_pages() right away.
 393 */
 394static int fault_in_user_writeable(u32 __user *uaddr)
 395{
 396	struct mm_struct *mm = current->mm;
 397	int ret;
 398
 399	down_read(&mm->mmap_sem);
 400	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 401			       FAULT_FLAG_WRITE);
 402	up_read(&mm->mmap_sem);
 403
 404	return ret < 0 ? ret : 0;
 405}
 406
 407/**
 408 * futex_top_waiter() - Return the highest priority waiter on a futex
 409 * @hb:		the hash bucket the futex_q's reside in
 410 * @key:	the futex key (to distinguish it from other futex futex_q's)
 411 *
 412 * Must be called with the hb lock held.
 413 */
 414static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 415					union futex_key *key)
 416{
 417	struct futex_q *this;
 418
 419	plist_for_each_entry(this, &hb->chain, list) {
 420		if (match_futex(&this->key, key))
 421			return this;
 422	}
 423	return NULL;
 424}
 425
 426static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 427				      u32 uval, u32 newval)
 428{
 429	int ret;
 430
 431	pagefault_disable();
 432	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 433	pagefault_enable();
 434
 435	return ret;
 436}
 437
 438static int get_futex_value_locked(u32 *dest, u32 __user *from)
 439{
 440	int ret;
 441
 442	pagefault_disable();
 443	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 444	pagefault_enable();
 445
 446	return ret ? -EFAULT : 0;
 447}
 448
 449
 450/*
 451 * PI code:
 452 */
 453static int refill_pi_state_cache(void)
 454{
 455	struct futex_pi_state *pi_state;
 456
 457	if (likely(current->pi_state_cache))
 458		return 0;
 459
 460	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 461
 462	if (!pi_state)
 463		return -ENOMEM;
 464
 465	INIT_LIST_HEAD(&pi_state->list);
 466	/* pi_mutex gets initialized later */
 467	pi_state->owner = NULL;
 468	atomic_set(&pi_state->refcount, 1);
 469	pi_state->key = FUTEX_KEY_INIT;
 470
 471	current->pi_state_cache = pi_state;
 472
 473	return 0;
 474}
 475
 476static struct futex_pi_state * alloc_pi_state(void)
 477{
 478	struct futex_pi_state *pi_state = current->pi_state_cache;
 479
 480	WARN_ON(!pi_state);
 481	current->pi_state_cache = NULL;
 482
 483	return pi_state;
 484}
 485
 486static void free_pi_state(struct futex_pi_state *pi_state)
 487{
 488	if (!atomic_dec_and_test(&pi_state->refcount))
 489		return;
 490
 491	/*
 492	 * If pi_state->owner is NULL, the owner is most probably dying
 493	 * and has cleaned up the pi_state already
 494	 */
 495	if (pi_state->owner) {
 496		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 497		list_del_init(&pi_state->list);
 498		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 499
 500		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 501	}
 502
 503	if (current->pi_state_cache)
 504		kfree(pi_state);
 505	else {
 506		/*
 507		 * pi_state->list is already empty.
 508		 * clear pi_state->owner.
 509		 * refcount is at 0 - put it back to 1.
 510		 */
 511		pi_state->owner = NULL;
 512		atomic_set(&pi_state->refcount, 1);
 513		current->pi_state_cache = pi_state;
 514	}
 515}
 516
 517/*
 518 * Look up the task based on what TID userspace gave us.
 519 * We dont trust it.
 520 */
 521static struct task_struct * futex_find_get_task(pid_t pid)
 522{
 523	struct task_struct *p;
 524
 525	rcu_read_lock();
 526	p = find_task_by_vpid(pid);
 527	if (p)
 528		get_task_struct(p);
 529
 530	rcu_read_unlock();
 531
 532	return p;
 533}
 534
 535/*
 536 * This task is holding PI mutexes at exit time => bad.
 537 * Kernel cleans up PI-state, but userspace is likely hosed.
 538 * (Robust-futex cleanup is separate and might save the day for userspace.)
 539 */
 540void exit_pi_state_list(struct task_struct *curr)
 541{
 542	struct list_head *next, *head = &curr->pi_state_list;
 543	struct futex_pi_state *pi_state;
 544	struct futex_hash_bucket *hb;
 545	union futex_key key = FUTEX_KEY_INIT;
 546
 547	if (!futex_cmpxchg_enabled)
 548		return;
 549	/*
 550	 * We are a ZOMBIE and nobody can enqueue itself on
 551	 * pi_state_list anymore, but we have to be careful
 552	 * versus waiters unqueueing themselves:
 553	 */
 554	raw_spin_lock_irq(&curr->pi_lock);
 555	while (!list_empty(head)) {
 556
 557		next = head->next;
 558		pi_state = list_entry(next, struct futex_pi_state, list);
 559		key = pi_state->key;
 560		hb = hash_futex(&key);
 561		raw_spin_unlock_irq(&curr->pi_lock);
 562
 563		spin_lock(&hb->lock);
 564
 565		raw_spin_lock_irq(&curr->pi_lock);
 566		/*
 567		 * We dropped the pi-lock, so re-check whether this
 568		 * task still owns the PI-state:
 569		 */
 570		if (head->next != next) {
 571			spin_unlock(&hb->lock);
 572			continue;
 573		}
 574
 575		WARN_ON(pi_state->owner != curr);
 576		WARN_ON(list_empty(&pi_state->list));
 577		list_del_init(&pi_state->list);
 578		pi_state->owner = NULL;
 579		raw_spin_unlock_irq(&curr->pi_lock);
 580
 581		rt_mutex_unlock(&pi_state->pi_mutex);
 582
 583		spin_unlock(&hb->lock);
 584
 585		raw_spin_lock_irq(&curr->pi_lock);
 586	}
 587	raw_spin_unlock_irq(&curr->pi_lock);
 588}
 589
 590static int
 591lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 592		union futex_key *key, struct futex_pi_state **ps)
 593{
 594	struct futex_pi_state *pi_state = NULL;
 595	struct futex_q *this, *next;
 596	struct plist_head *head;
 597	struct task_struct *p;
 598	pid_t pid = uval & FUTEX_TID_MASK;
 599
 600	head = &hb->chain;
 601
 602	plist_for_each_entry_safe(this, next, head, list) {
 603		if (match_futex(&this->key, key)) {
 604			/*
 605			 * Another waiter already exists - bump up
 606			 * the refcount and return its pi_state:
 607			 */
 608			pi_state = this->pi_state;
 609			/*
 610			 * Userspace might have messed up non-PI and PI futexes
 611			 */
 612			if (unlikely(!pi_state))
 613				return -EINVAL;
 614
 615			WARN_ON(!atomic_read(&pi_state->refcount));
 616
 617			/*
 618			 * When pi_state->owner is NULL then the owner died
 619			 * and another waiter is on the fly. pi_state->owner
 620			 * is fixed up by the task which acquires
 621			 * pi_state->rt_mutex.
 622			 *
 623			 * We do not check for pid == 0 which can happen when
 624			 * the owner died and robust_list_exit() cleared the
 625			 * TID.
 626			 */
 627			if (pid && pi_state->owner) {
 628				/*
 629				 * Bail out if user space manipulated the
 630				 * futex value.
 631				 */
 632				if (pid != task_pid_vnr(pi_state->owner))
 633					return -EINVAL;
 634			}
 635
 636			atomic_inc(&pi_state->refcount);
 637			*ps = pi_state;
 638
 639			return 0;
 640		}
 641	}
 642
 643	/*
 644	 * We are the first waiter - try to look up the real owner and attach
 645	 * the new pi_state to it, but bail out when TID = 0
 646	 */
 647	if (!pid)
 648		return -ESRCH;
 649	p = futex_find_get_task(pid);
 650	if (!p)
 651		return -ESRCH;
 652
 653	/*
 654	 * We need to look at the task state flags to figure out,
 655	 * whether the task is exiting. To protect against the do_exit
 656	 * change of the task flags, we do this protected by
 657	 * p->pi_lock:
 658	 */
 659	raw_spin_lock_irq(&p->pi_lock);
 660	if (unlikely(p->flags & PF_EXITING)) {
 661		/*
 662		 * The task is on the way out. When PF_EXITPIDONE is
 663		 * set, we know that the task has finished the
 664		 * cleanup:
 665		 */
 666		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 667
 668		raw_spin_unlock_irq(&p->pi_lock);
 669		put_task_struct(p);
 670		return ret;
 671	}
 672
 673	pi_state = alloc_pi_state();
 674
 675	/*
 676	 * Initialize the pi_mutex in locked state and make 'p'
 677	 * the owner of it:
 678	 */
 679	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 680
 681	/* Store the key for possible exit cleanups: */
 682	pi_state->key = *key;
 683
 684	WARN_ON(!list_empty(&pi_state->list));
 685	list_add(&pi_state->list, &p->pi_state_list);
 686	pi_state->owner = p;
 687	raw_spin_unlock_irq(&p->pi_lock);
 688
 689	put_task_struct(p);
 690
 691	*ps = pi_state;
 692
 693	return 0;
 694}
 695
 696/**
 697 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 698 * @uaddr:		the pi futex user address
 699 * @hb:			the pi futex hash bucket
 700 * @key:		the futex key associated with uaddr and hb
 701 * @ps:			the pi_state pointer where we store the result of the
 702 *			lookup
 703 * @task:		the task to perform the atomic lock work for.  This will
 704 *			be "current" except in the case of requeue pi.
 705 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 706 *
 707 * Returns:
 708 *  0 - ready to wait
 709 *  1 - acquired the lock
 710 * <0 - error
 711 *
 712 * The hb->lock and futex_key refs shall be held by the caller.
 713 */
 714static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 715				union futex_key *key,
 716				struct futex_pi_state **ps,
 717				struct task_struct *task, int set_waiters)
 718{
 719	int lock_taken, ret, ownerdied = 0;
 720	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 721
 722retry:
 723	ret = lock_taken = 0;
 724
 725	/*
 726	 * To avoid races, we attempt to take the lock here again
 727	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 728	 * the locks. It will most likely not succeed.
 729	 */
 730	newval = vpid;
 731	if (set_waiters)
 732		newval |= FUTEX_WAITERS;
 733
 734	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 735		return -EFAULT;
 736
 737	/*
 738	 * Detect deadlocks.
 739	 */
 740	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 741		return -EDEADLK;
 742
 743	/*
 744	 * Surprise - we got the lock. Just return to userspace:
 745	 */
 746	if (unlikely(!curval))
 747		return 1;
 748
 749	uval = curval;
 750
 751	/*
 752	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 753	 * to wake at the next unlock.
 754	 */
 755	newval = curval | FUTEX_WAITERS;
 756
 757	/*
 758	 * There are two cases, where a futex might have no owner (the
 759	 * owner TID is 0): OWNER_DIED. We take over the futex in this
 760	 * case. We also do an unconditional take over, when the owner
 761	 * of the futex died.
 762	 *
 763	 * This is safe as we are protected by the hash bucket lock !
 764	 */
 765	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
 766		/* Keep the OWNER_DIED bit */
 767		newval = (curval & ~FUTEX_TID_MASK) | vpid;
 768		ownerdied = 0;
 769		lock_taken = 1;
 770	}
 771
 772	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
 773		return -EFAULT;
 774	if (unlikely(curval != uval))
 775		goto retry;
 776
 777	/*
 778	 * We took the lock due to owner died take over.
 779	 */
 780	if (unlikely(lock_taken))
 781		return 1;
 782
 783	/*
 784	 * We dont have the lock. Look up the PI state (or create it if
 785	 * we are the first waiter):
 786	 */
 787	ret = lookup_pi_state(uval, hb, key, ps);
 788
 789	if (unlikely(ret)) {
 790		switch (ret) {
 791		case -ESRCH:
 792			/*
 793			 * No owner found for this futex. Check if the
 794			 * OWNER_DIED bit is set to figure out whether
 795			 * this is a robust futex or not.
 796			 */
 797			if (get_futex_value_locked(&curval, uaddr))
 798				return -EFAULT;
 799
 800			/*
 801			 * We simply start over in case of a robust
 802			 * futex. The code above will take the futex
 803			 * and return happy.
 804			 */
 805			if (curval & FUTEX_OWNER_DIED) {
 806				ownerdied = 1;
 807				goto retry;
 808			}
 809		default:
 810			break;
 811		}
 812	}
 813
 814	return ret;
 815}
 816
 817/**
 818 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 819 * @q:	The futex_q to unqueue
 820 *
 821 * The q->lock_ptr must not be NULL and must be held by the caller.
 822 */
 823static void __unqueue_futex(struct futex_q *q)
 824{
 825	struct futex_hash_bucket *hb;
 826
 827	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
 828	    || WARN_ON(plist_node_empty(&q->list)))
 829		return;
 830
 831	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 832	plist_del(&q->list, &hb->chain);
 833}
 834
 835/*
 836 * The hash bucket lock must be held when this is called.
 837 * Afterwards, the futex_q must not be accessed.
 838 */
 839static void wake_futex(struct futex_q *q)
 840{
 841	struct task_struct *p = q->task;
 842
 843	/*
 844	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
 845	 * a non-futex wake up happens on another CPU then the task
 846	 * might exit and p would dereference a non-existing task
 847	 * struct. Prevent this by holding a reference on p across the
 848	 * wake up.
 849	 */
 850	get_task_struct(p);
 851
 852	__unqueue_futex(q);
 853	/*
 854	 * The waiting task can free the futex_q as soon as
 855	 * q->lock_ptr = NULL is written, without taking any locks. A
 856	 * memory barrier is required here to prevent the following
 857	 * store to lock_ptr from getting ahead of the plist_del.
 858	 */
 859	smp_wmb();
 860	q->lock_ptr = NULL;
 861
 862	wake_up_state(p, TASK_NORMAL);
 863	put_task_struct(p);
 864}
 865
 866static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 867{
 868	struct task_struct *new_owner;
 869	struct futex_pi_state *pi_state = this->pi_state;
 870	u32 uninitialized_var(curval), newval;
 871
 872	if (!pi_state)
 873		return -EINVAL;
 874
 875	/*
 876	 * If current does not own the pi_state then the futex is
 877	 * inconsistent and user space fiddled with the futex value.
 878	 */
 879	if (pi_state->owner != current)
 880		return -EINVAL;
 881
 882	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
 883	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 884
 885	/*
 886	 * It is possible that the next waiter (the one that brought
 887	 * this owner to the kernel) timed out and is no longer
 888	 * waiting on the lock.
 889	 */
 890	if (!new_owner)
 891		new_owner = this->task;
 892
 893	/*
 894	 * We pass it to the next owner. (The WAITERS bit is always
 895	 * kept enabled while there is PI state around. We must also
 896	 * preserve the owner died bit.)
 897	 */
 898	if (!(uval & FUTEX_OWNER_DIED)) {
 899		int ret = 0;
 900
 901		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 902
 903		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 904			ret = -EFAULT;
 905		else if (curval != uval)
 906			ret = -EINVAL;
 907		if (ret) {
 908			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 909			return ret;
 910		}
 911	}
 912
 913	raw_spin_lock_irq(&pi_state->owner->pi_lock);
 914	WARN_ON(list_empty(&pi_state->list));
 915	list_del_init(&pi_state->list);
 916	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 917
 918	raw_spin_lock_irq(&new_owner->pi_lock);
 919	WARN_ON(!list_empty(&pi_state->list));
 920	list_add(&pi_state->list, &new_owner->pi_state_list);
 921	pi_state->owner = new_owner;
 922	raw_spin_unlock_irq(&new_owner->pi_lock);
 923
 924	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 925	rt_mutex_unlock(&pi_state->pi_mutex);
 926
 927	return 0;
 928}
 929
 930static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 931{
 932	u32 uninitialized_var(oldval);
 933
 934	/*
 935	 * There is no waiter, so we unlock the futex. The owner died
 936	 * bit has not to be preserved here. We are the owner:
 937	 */
 938	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
 939		return -EFAULT;
 940	if (oldval != uval)
 941		return -EAGAIN;
 942
 943	return 0;
 944}
 945
 946/*
 947 * Express the locking dependencies for lockdep:
 948 */
 949static inline void
 950double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 951{
 952	if (hb1 <= hb2) {
 953		spin_lock(&hb1->lock);
 954		if (hb1 < hb2)
 955			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 956	} else { /* hb1 > hb2 */
 957		spin_lock(&hb2->lock);
 958		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 959	}
 960}
 961
 962static inline void
 963double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 964{
 965	spin_unlock(&hb1->lock);
 966	if (hb1 != hb2)
 967		spin_unlock(&hb2->lock);
 968}
 969
 970/*
 971 * Wake up waiters matching bitset queued on this futex (uaddr).
 972 */
 973static int
 974futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 975{
 976	struct futex_hash_bucket *hb;
 977	struct futex_q *this, *next;
 978	struct plist_head *head;
 979	union futex_key key = FUTEX_KEY_INIT;
 980	int ret;
 981
 982	if (!bitset)
 983		return -EINVAL;
 984
 985	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
 986	if (unlikely(ret != 0))
 987		goto out;
 988
 989	hb = hash_futex(&key);
 990	spin_lock(&hb->lock);
 991	head = &hb->chain;
 992
 993	plist_for_each_entry_safe(this, next, head, list) {
 994		if (match_futex (&this->key, &key)) {
 995			if (this->pi_state || this->rt_waiter) {
 996				ret = -EINVAL;
 997				break;
 998			}
 999
1000			/* Check if one of the bits is set in both bitsets */
1001			if (!(this->bitset & bitset))
1002				continue;
1003
1004			wake_futex(this);
1005			if (++ret >= nr_wake)
1006				break;
1007		}
1008	}
1009
1010	spin_unlock(&hb->lock);
1011	put_futex_key(&key);
1012out:
1013	return ret;
1014}
1015
1016/*
1017 * Wake up all waiters hashed on the physical page that is mapped
1018 * to this virtual address:
1019 */
1020static int
1021futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1022	      int nr_wake, int nr_wake2, int op)
1023{
1024	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1025	struct futex_hash_bucket *hb1, *hb2;
1026	struct plist_head *head;
1027	struct futex_q *this, *next;
1028	int ret, op_ret;
1029
1030retry:
1031	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1032	if (unlikely(ret != 0))
1033		goto out;
1034	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1035	if (unlikely(ret != 0))
1036		goto out_put_key1;
1037
1038	hb1 = hash_futex(&key1);
1039	hb2 = hash_futex(&key2);
1040
1041retry_private:
1042	double_lock_hb(hb1, hb2);
1043	op_ret = futex_atomic_op_inuser(op, uaddr2);
1044	if (unlikely(op_ret < 0)) {
1045
1046		double_unlock_hb(hb1, hb2);
1047
1048#ifndef CONFIG_MMU
1049		/*
1050		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1051		 * but we might get them from range checking
1052		 */
1053		ret = op_ret;
1054		goto out_put_keys;
1055#endif
1056
1057		if (unlikely(op_ret != -EFAULT)) {
1058			ret = op_ret;
1059			goto out_put_keys;
1060		}
1061
1062		ret = fault_in_user_writeable(uaddr2);
1063		if (ret)
1064			goto out_put_keys;
1065
1066		if (!(flags & FLAGS_SHARED))
1067			goto retry_private;
1068
1069		put_futex_key(&key2);
1070		put_futex_key(&key1);
1071		goto retry;
1072	}
1073
1074	head = &hb1->chain;
1075
1076	plist_for_each_entry_safe(this, next, head, list) {
1077		if (match_futex (&this->key, &key1)) {
1078			wake_futex(this);
1079			if (++ret >= nr_wake)
1080				break;
1081		}
1082	}
1083
1084	if (op_ret > 0) {
1085		head = &hb2->chain;
1086
1087		op_ret = 0;
1088		plist_for_each_entry_safe(this, next, head, list) {
1089			if (match_futex (&this->key, &key2)) {
1090				wake_futex(this);
1091				if (++op_ret >= nr_wake2)
1092					break;
1093			}
1094		}
1095		ret += op_ret;
1096	}
1097
1098	double_unlock_hb(hb1, hb2);
1099out_put_keys:
1100	put_futex_key(&key2);
1101out_put_key1:
1102	put_futex_key(&key1);
1103out:
1104	return ret;
1105}
1106
1107/**
1108 * requeue_futex() - Requeue a futex_q from one hb to another
1109 * @q:		the futex_q to requeue
1110 * @hb1:	the source hash_bucket
1111 * @hb2:	the target hash_bucket
1112 * @key2:	the new key for the requeued futex_q
1113 */
1114static inline
1115void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1116		   struct futex_hash_bucket *hb2, union futex_key *key2)
1117{
1118
1119	/*
1120	 * If key1 and key2 hash to the same bucket, no need to
1121	 * requeue.
1122	 */
1123	if (likely(&hb1->chain != &hb2->chain)) {
1124		plist_del(&q->list, &hb1->chain);
1125		plist_add(&q->list, &hb2->chain);
1126		q->lock_ptr = &hb2->lock;
1127	}
1128	get_futex_key_refs(key2);
1129	q->key = *key2;
1130}
1131
1132/**
1133 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1134 * @q:		the futex_q
1135 * @key:	the key of the requeue target futex
1136 * @hb:		the hash_bucket of the requeue target futex
1137 *
1138 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1139 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1140 * to the requeue target futex so the waiter can detect the wakeup on the right
1141 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1142 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1143 * to protect access to the pi_state to fixup the owner later.  Must be called
1144 * with both q->lock_ptr and hb->lock held.
1145 */
1146static inline
1147void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1148			   struct futex_hash_bucket *hb)
1149{
1150	get_futex_key_refs(key);
1151	q->key = *key;
1152
1153	__unqueue_futex(q);
1154
1155	WARN_ON(!q->rt_waiter);
1156	q->rt_waiter = NULL;
1157
1158	q->lock_ptr = &hb->lock;
1159
1160	wake_up_state(q->task, TASK_NORMAL);
1161}
1162
1163/**
1164 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1165 * @pifutex:		the user address of the to futex
1166 * @hb1:		the from futex hash bucket, must be locked by the caller
1167 * @hb2:		the to futex hash bucket, must be locked by the caller
1168 * @key1:		the from futex key
1169 * @key2:		the to futex key
1170 * @ps:			address to store the pi_state pointer
1171 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1172 *
1173 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1174 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1175 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1176 * hb1 and hb2 must be held by the caller.
1177 *
1178 * Returns:
1179 *  0 - failed to acquire the lock atomicly
1180 *  1 - acquired the lock
1181 * <0 - error
1182 */
1183static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1184				 struct futex_hash_bucket *hb1,
1185				 struct futex_hash_bucket *hb2,
1186				 union futex_key *key1, union futex_key *key2,
1187				 struct futex_pi_state **ps, int set_waiters)
1188{
1189	struct futex_q *top_waiter = NULL;
1190	u32 curval;
1191	int ret;
1192
1193	if (get_futex_value_locked(&curval, pifutex))
1194		return -EFAULT;
1195
1196	/*
1197	 * Find the top_waiter and determine if there are additional waiters.
1198	 * If the caller intends to requeue more than 1 waiter to pifutex,
1199	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1200	 * as we have means to handle the possible fault.  If not, don't set
1201	 * the bit unecessarily as it will force the subsequent unlock to enter
1202	 * the kernel.
1203	 */
1204	top_waiter = futex_top_waiter(hb1, key1);
1205
1206	/* There are no waiters, nothing for us to do. */
1207	if (!top_waiter)
1208		return 0;
1209
1210	/* Ensure we requeue to the expected futex. */
1211	if (!match_futex(top_waiter->requeue_pi_key, key2))
1212		return -EINVAL;
1213
1214	/*
1215	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1216	 * the contended case or if set_waiters is 1.  The pi_state is returned
1217	 * in ps in contended cases.
1218	 */
1219	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1220				   set_waiters);
1221	if (ret == 1)
1222		requeue_pi_wake_futex(top_waiter, key2, hb2);
1223
1224	return ret;
1225}
1226
1227/**
1228 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1229 * @uaddr1:	source futex user address
1230 * @flags:	futex flags (FLAGS_SHARED, etc.)
1231 * @uaddr2:	target futex user address
1232 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1233 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1234 * @cmpval:	@uaddr1 expected value (or %NULL)
1235 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1236 *		pi futex (pi to pi requeue is not supported)
1237 *
1238 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1239 * uaddr2 atomically on behalf of the top waiter.
1240 *
1241 * Returns:
1242 * >=0 - on success, the number of tasks requeued or woken
1243 *  <0 - on error
1244 */
1245static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1246			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1247			 u32 *cmpval, int requeue_pi)
1248{
1249	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1250	int drop_count = 0, task_count = 0, ret;
1251	struct futex_pi_state *pi_state = NULL;
1252	struct futex_hash_bucket *hb1, *hb2;
1253	struct plist_head *head1;
1254	struct futex_q *this, *next;
1255	u32 curval2;
1256
1257	if (requeue_pi) {
1258		/*
1259		 * requeue_pi requires a pi_state, try to allocate it now
1260		 * without any locks in case it fails.
1261		 */
1262		if (refill_pi_state_cache())
1263			return -ENOMEM;
1264		/*
1265		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1266		 * + nr_requeue, since it acquires the rt_mutex prior to
1267		 * returning to userspace, so as to not leave the rt_mutex with
1268		 * waiters and no owner.  However, second and third wake-ups
1269		 * cannot be predicted as they involve race conditions with the
1270		 * first wake and a fault while looking up the pi_state.  Both
1271		 * pthread_cond_signal() and pthread_cond_broadcast() should
1272		 * use nr_wake=1.
1273		 */
1274		if (nr_wake != 1)
1275			return -EINVAL;
1276	}
1277
1278retry:
1279	if (pi_state != NULL) {
1280		/*
1281		 * We will have to lookup the pi_state again, so free this one
1282		 * to keep the accounting correct.
1283		 */
1284		free_pi_state(pi_state);
1285		pi_state = NULL;
1286	}
1287
1288	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1289	if (unlikely(ret != 0))
1290		goto out;
1291	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1292			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1293	if (unlikely(ret != 0))
1294		goto out_put_key1;
1295
1296	hb1 = hash_futex(&key1);
1297	hb2 = hash_futex(&key2);
1298
1299retry_private:
1300	double_lock_hb(hb1, hb2);
1301
1302	if (likely(cmpval != NULL)) {
1303		u32 curval;
1304
1305		ret = get_futex_value_locked(&curval, uaddr1);
1306
1307		if (unlikely(ret)) {
1308			double_unlock_hb(hb1, hb2);
1309
1310			ret = get_user(curval, uaddr1);
1311			if (ret)
1312				goto out_put_keys;
1313
1314			if (!(flags & FLAGS_SHARED))
1315				goto retry_private;
1316
1317			put_futex_key(&key2);
1318			put_futex_key(&key1);
1319			goto retry;
1320		}
1321		if (curval != *cmpval) {
1322			ret = -EAGAIN;
1323			goto out_unlock;
1324		}
1325	}
1326
1327	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1328		/*
1329		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1330		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1331		 * bit.  We force this here where we are able to easily handle
1332		 * faults rather in the requeue loop below.
1333		 */
1334		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1335						 &key2, &pi_state, nr_requeue);
1336
1337		/*
1338		 * At this point the top_waiter has either taken uaddr2 or is
1339		 * waiting on it.  If the former, then the pi_state will not
1340		 * exist yet, look it up one more time to ensure we have a
1341		 * reference to it.
1342		 */
1343		if (ret == 1) {
1344			WARN_ON(pi_state);
1345			drop_count++;
1346			task_count++;
1347			ret = get_futex_value_locked(&curval2, uaddr2);
1348			if (!ret)
1349				ret = lookup_pi_state(curval2, hb2, &key2,
1350						      &pi_state);
1351		}
1352
1353		switch (ret) {
1354		case 0:
1355			break;
1356		case -EFAULT:
1357			double_unlock_hb(hb1, hb2);
1358			put_futex_key(&key2);
1359			put_futex_key(&key1);
1360			ret = fault_in_user_writeable(uaddr2);
1361			if (!ret)
1362				goto retry;
1363			goto out;
1364		case -EAGAIN:
1365			/* The owner was exiting, try again. */
1366			double_unlock_hb(hb1, hb2);
1367			put_futex_key(&key2);
1368			put_futex_key(&key1);
1369			cond_resched();
1370			goto retry;
1371		default:
1372			goto out_unlock;
1373		}
1374	}
1375
1376	head1 = &hb1->chain;
1377	plist_for_each_entry_safe(this, next, head1, list) {
1378		if (task_count - nr_wake >= nr_requeue)
1379			break;
1380
1381		if (!match_futex(&this->key, &key1))
1382			continue;
1383
1384		/*
1385		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1386		 * be paired with each other and no other futex ops.
1387		 */
1388		if ((requeue_pi && !this->rt_waiter) ||
1389		    (!requeue_pi && this->rt_waiter)) {
1390			ret = -EINVAL;
1391			break;
1392		}
1393
1394		/*
1395		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1396		 * lock, we already woke the top_waiter.  If not, it will be
1397		 * woken by futex_unlock_pi().
1398		 */
1399		if (++task_count <= nr_wake && !requeue_pi) {
1400			wake_futex(this);
1401			continue;
1402		}
1403
1404		/* Ensure we requeue to the expected futex for requeue_pi. */
1405		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1406			ret = -EINVAL;
1407			break;
1408		}
1409
1410		/*
1411		 * Requeue nr_requeue waiters and possibly one more in the case
1412		 * of requeue_pi if we couldn't acquire the lock atomically.
1413		 */
1414		if (requeue_pi) {
1415			/* Prepare the waiter to take the rt_mutex. */
1416			atomic_inc(&pi_state->refcount);
1417			this->pi_state = pi_state;
1418			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1419							this->rt_waiter,
1420							this->task, 1);
1421			if (ret == 1) {
1422				/* We got the lock. */
1423				requeue_pi_wake_futex(this, &key2, hb2);
1424				drop_count++;
1425				continue;
1426			} else if (ret) {
1427				/* -EDEADLK */
1428				this->pi_state = NULL;
1429				free_pi_state(pi_state);
1430				goto out_unlock;
1431			}
1432		}
1433		requeue_futex(this, hb1, hb2, &key2);
1434		drop_count++;
1435	}
1436
1437out_unlock:
1438	double_unlock_hb(hb1, hb2);
1439
1440	/*
1441	 * drop_futex_key_refs() must be called outside the spinlocks. During
1442	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1443	 * one at key2 and updated their key pointer.  We no longer need to
1444	 * hold the references to key1.
1445	 */
1446	while (--drop_count >= 0)
1447		drop_futex_key_refs(&key1);
1448
1449out_put_keys:
1450	put_futex_key(&key2);
1451out_put_key1:
1452	put_futex_key(&key1);
1453out:
1454	if (pi_state != NULL)
1455		free_pi_state(pi_state);
1456	return ret ? ret : task_count;
1457}
1458
1459/* The key must be already stored in q->key. */
1460static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1461	__acquires(&hb->lock)
1462{
1463	struct futex_hash_bucket *hb;
1464
1465	hb = hash_futex(&q->key);
1466	q->lock_ptr = &hb->lock;
1467
1468	spin_lock(&hb->lock);
1469	return hb;
1470}
1471
1472static inline void
1473queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1474	__releases(&hb->lock)
1475{
1476	spin_unlock(&hb->lock);
1477}
1478
1479/**
1480 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1481 * @q:	The futex_q to enqueue
1482 * @hb:	The destination hash bucket
1483 *
1484 * The hb->lock must be held by the caller, and is released here. A call to
1485 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1486 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1487 * or nothing if the unqueue is done as part of the wake process and the unqueue
1488 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1489 * an example).
1490 */
1491static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1492	__releases(&hb->lock)
1493{
1494	int prio;
1495
1496	/*
1497	 * The priority used to register this element is
1498	 * - either the real thread-priority for the real-time threads
1499	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1500	 * - or MAX_RT_PRIO for non-RT threads.
1501	 * Thus, all RT-threads are woken first in priority order, and
1502	 * the others are woken last, in FIFO order.
1503	 */
1504	prio = min(current->normal_prio, MAX_RT_PRIO);
1505
1506	plist_node_init(&q->list, prio);
1507	plist_add(&q->list, &hb->chain);
1508	q->task = current;
1509	spin_unlock(&hb->lock);
1510}
1511
1512/**
1513 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1514 * @q:	The futex_q to unqueue
1515 *
1516 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1517 * be paired with exactly one earlier call to queue_me().
1518 *
1519 * Returns:
1520 *   1 - if the futex_q was still queued (and we removed unqueued it)
1521 *   0 - if the futex_q was already removed by the waking thread
1522 */
1523static int unqueue_me(struct futex_q *q)
1524{
1525	spinlock_t *lock_ptr;
1526	int ret = 0;
1527
1528	/* In the common case we don't take the spinlock, which is nice. */
1529retry:
1530	lock_ptr = q->lock_ptr;
1531	barrier();
1532	if (lock_ptr != NULL) {
1533		spin_lock(lock_ptr);
1534		/*
1535		 * q->lock_ptr can change between reading it and
1536		 * spin_lock(), causing us to take the wrong lock.  This
1537		 * corrects the race condition.
1538		 *
1539		 * Reasoning goes like this: if we have the wrong lock,
1540		 * q->lock_ptr must have changed (maybe several times)
1541		 * between reading it and the spin_lock().  It can
1542		 * change again after the spin_lock() but only if it was
1543		 * already changed before the spin_lock().  It cannot,
1544		 * however, change back to the original value.  Therefore
1545		 * we can detect whether we acquired the correct lock.
1546		 */
1547		if (unlikely(lock_ptr != q->lock_ptr)) {
1548			spin_unlock(lock_ptr);
1549			goto retry;
1550		}
1551		__unqueue_futex(q);
1552
1553		BUG_ON(q->pi_state);
1554
1555		spin_unlock(lock_ptr);
1556		ret = 1;
1557	}
1558
1559	drop_futex_key_refs(&q->key);
1560	return ret;
1561}
1562
1563/*
1564 * PI futexes can not be requeued and must remove themself from the
1565 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1566 * and dropped here.
1567 */
1568static void unqueue_me_pi(struct futex_q *q)
1569	__releases(q->lock_ptr)
1570{
1571	__unqueue_futex(q);
1572
1573	BUG_ON(!q->pi_state);
1574	free_pi_state(q->pi_state);
1575	q->pi_state = NULL;
1576
1577	spin_unlock(q->lock_ptr);
1578}
1579
1580/*
1581 * Fixup the pi_state owner with the new owner.
1582 *
1583 * Must be called with hash bucket lock held and mm->sem held for non
1584 * private futexes.
1585 */
1586static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1587				struct task_struct *newowner)
1588{
1589	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1590	struct futex_pi_state *pi_state = q->pi_state;
1591	struct task_struct *oldowner = pi_state->owner;
1592	u32 uval, uninitialized_var(curval), newval;
1593	int ret;
1594
1595	/* Owner died? */
1596	if (!pi_state->owner)
1597		newtid |= FUTEX_OWNER_DIED;
1598
1599	/*
1600	 * We are here either because we stole the rtmutex from the
1601	 * previous highest priority waiter or we are the highest priority
1602	 * waiter but failed to get the rtmutex the first time.
1603	 * We have to replace the newowner TID in the user space variable.
1604	 * This must be atomic as we have to preserve the owner died bit here.
1605	 *
1606	 * Note: We write the user space value _before_ changing the pi_state
1607	 * because we can fault here. Imagine swapped out pages or a fork
1608	 * that marked all the anonymous memory readonly for cow.
1609	 *
1610	 * Modifying pi_state _before_ the user space value would
1611	 * leave the pi_state in an inconsistent state when we fault
1612	 * here, because we need to drop the hash bucket lock to
1613	 * handle the fault. This might be observed in the PID check
1614	 * in lookup_pi_state.
1615	 */
1616retry:
1617	if (get_futex_value_locked(&uval, uaddr))
1618		goto handle_fault;
1619
1620	while (1) {
1621		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1622
1623		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1624			goto handle_fault;
1625		if (curval == uval)
1626			break;
1627		uval = curval;
1628	}
1629
1630	/*
1631	 * We fixed up user space. Now we need to fix the pi_state
1632	 * itself.
1633	 */
1634	if (pi_state->owner != NULL) {
1635		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1636		WARN_ON(list_empty(&pi_state->list));
1637		list_del_init(&pi_state->list);
1638		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1639	}
1640
1641	pi_state->owner = newowner;
1642
1643	raw_spin_lock_irq(&newowner->pi_lock);
1644	WARN_ON(!list_empty(&pi_state->list));
1645	list_add(&pi_state->list, &newowner->pi_state_list);
1646	raw_spin_unlock_irq(&newowner->pi_lock);
1647	return 0;
1648
1649	/*
1650	 * To handle the page fault we need to drop the hash bucket
1651	 * lock here. That gives the other task (either the highest priority
1652	 * waiter itself or the task which stole the rtmutex) the
1653	 * chance to try the fixup of the pi_state. So once we are
1654	 * back from handling the fault we need to check the pi_state
1655	 * after reacquiring the hash bucket lock and before trying to
1656	 * do another fixup. When the fixup has been done already we
1657	 * simply return.
1658	 */
1659handle_fault:
1660	spin_unlock(q->lock_ptr);
1661
1662	ret = fault_in_user_writeable(uaddr);
1663
1664	spin_lock(q->lock_ptr);
1665
1666	/*
1667	 * Check if someone else fixed it for us:
1668	 */
1669	if (pi_state->owner != oldowner)
1670		return 0;
1671
1672	if (ret)
1673		return ret;
1674
1675	goto retry;
1676}
1677
1678static long futex_wait_restart(struct restart_block *restart);
1679
1680/**
1681 * fixup_owner() - Post lock pi_state and corner case management
1682 * @uaddr:	user address of the futex
1683 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1684 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1685 *
1686 * After attempting to lock an rt_mutex, this function is called to cleanup
1687 * the pi_state owner as well as handle race conditions that may allow us to
1688 * acquire the lock. Must be called with the hb lock held.
1689 *
1690 * Returns:
1691 *  1 - success, lock taken
1692 *  0 - success, lock not taken
1693 * <0 - on error (-EFAULT)
1694 */
1695static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1696{
1697	struct task_struct *owner;
1698	int ret = 0;
1699
1700	if (locked) {
1701		/*
1702		 * Got the lock. We might not be the anticipated owner if we
1703		 * did a lock-steal - fix up the PI-state in that case:
1704		 */
1705		if (q->pi_state->owner != current)
1706			ret = fixup_pi_state_owner(uaddr, q, current);
1707		goto out;
1708	}
1709
1710	/*
1711	 * Catch the rare case, where the lock was released when we were on the
1712	 * way back before we locked the hash bucket.
1713	 */
1714	if (q->pi_state->owner == current) {
1715		/*
1716		 * Try to get the rt_mutex now. This might fail as some other
1717		 * task acquired the rt_mutex after we removed ourself from the
1718		 * rt_mutex waiters list.
1719		 */
1720		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1721			locked = 1;
1722			goto out;
1723		}
1724
1725		/*
1726		 * pi_state is incorrect, some other task did a lock steal and
1727		 * we returned due to timeout or signal without taking the
1728		 * rt_mutex. Too late.
1729		 */
1730		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1731		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1732		if (!owner)
1733			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1734		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1735		ret = fixup_pi_state_owner(uaddr, q, owner);
1736		goto out;
1737	}
1738
1739	/*
1740	 * Paranoia check. If we did not take the lock, then we should not be
1741	 * the owner of the rt_mutex.
1742	 */
1743	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1744		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1745				"pi-state %p\n", ret,
1746				q->pi_state->pi_mutex.owner,
1747				q->pi_state->owner);
1748
1749out:
1750	return ret ? ret : locked;
1751}
1752
1753/**
1754 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1755 * @hb:		the futex hash bucket, must be locked by the caller
1756 * @q:		the futex_q to queue up on
1757 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1758 */
1759static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1760				struct hrtimer_sleeper *timeout)
1761{
1762	/*
1763	 * The task state is guaranteed to be set before another task can
1764	 * wake it. set_current_state() is implemented using set_mb() and
1765	 * queue_me() calls spin_unlock() upon completion, both serializing
1766	 * access to the hash list and forcing another memory barrier.
1767	 */
1768	set_current_state(TASK_INTERRUPTIBLE);
1769	queue_me(q, hb);
1770
1771	/* Arm the timer */
1772	if (timeout) {
1773		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1774		if (!hrtimer_active(&timeout->timer))
1775			timeout->task = NULL;
1776	}
1777
1778	/*
1779	 * If we have been removed from the hash list, then another task
1780	 * has tried to wake us, and we can skip the call to schedule().
1781	 */
1782	if (likely(!plist_node_empty(&q->list))) {
1783		/*
1784		 * If the timer has already expired, current will already be
1785		 * flagged for rescheduling. Only call schedule if there
1786		 * is no timeout, or if it has yet to expire.
1787		 */
1788		if (!timeout || timeout->task)
1789			schedule();
1790	}
1791	__set_current_state(TASK_RUNNING);
1792}
1793
1794/**
1795 * futex_wait_setup() - Prepare to wait on a futex
1796 * @uaddr:	the futex userspace address
1797 * @val:	the expected value
1798 * @flags:	futex flags (FLAGS_SHARED, etc.)
1799 * @q:		the associated futex_q
1800 * @hb:		storage for hash_bucket pointer to be returned to caller
1801 *
1802 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1803 * compare it with the expected value.  Handle atomic faults internally.
1804 * Return with the hb lock held and a q.key reference on success, and unlocked
1805 * with no q.key reference on failure.
1806 *
1807 * Returns:
1808 *  0 - uaddr contains val and hb has been locked
1809 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1810 */
1811static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1812			   struct futex_q *q, struct futex_hash_bucket **hb)
1813{
1814	u32 uval;
1815	int ret;
1816
1817	/*
1818	 * Access the page AFTER the hash-bucket is locked.
1819	 * Order is important:
1820	 *
1821	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1822	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1823	 *
1824	 * The basic logical guarantee of a futex is that it blocks ONLY
1825	 * if cond(var) is known to be true at the time of blocking, for
1826	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1827	 * would open a race condition where we could block indefinitely with
1828	 * cond(var) false, which would violate the guarantee.
1829	 *
1830	 * On the other hand, we insert q and release the hash-bucket only
1831	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1832	 * absorb a wakeup if *uaddr does not match the desired values
1833	 * while the syscall executes.
1834	 */
1835retry:
1836	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1837	if (unlikely(ret != 0))
1838		return ret;
1839
1840retry_private:
1841	*hb = queue_lock(q);
1842
1843	ret = get_futex_value_locked(&uval, uaddr);
1844
1845	if (ret) {
1846		queue_unlock(q, *hb);
1847
1848		ret = get_user(uval, uaddr);
1849		if (ret)
1850			goto out;
1851
1852		if (!(flags & FLAGS_SHARED))
1853			goto retry_private;
1854
1855		put_futex_key(&q->key);
1856		goto retry;
1857	}
1858
1859	if (uval != val) {
1860		queue_unlock(q, *hb);
1861		ret = -EWOULDBLOCK;
1862	}
1863
1864out:
1865	if (ret)
1866		put_futex_key(&q->key);
1867	return ret;
1868}
1869
1870static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1871		      ktime_t *abs_time, u32 bitset)
1872{
1873	struct hrtimer_sleeper timeout, *to = NULL;
1874	struct restart_block *restart;
1875	struct futex_hash_bucket *hb;
1876	struct futex_q q = futex_q_init;
1877	int ret;
1878
1879	if (!bitset)
1880		return -EINVAL;
1881	q.bitset = bitset;
1882
1883	if (abs_time) {
1884		to = &timeout;
1885
1886		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1887				      CLOCK_REALTIME : CLOCK_MONOTONIC,
1888				      HRTIMER_MODE_ABS);
1889		hrtimer_init_sleeper(to, current);
1890		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1891					     current->timer_slack_ns);
1892	}
1893
1894retry:
1895	/*
1896	 * Prepare to wait on uaddr. On success, holds hb lock and increments
1897	 * q.key refs.
1898	 */
1899	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1900	if (ret)
1901		goto out;
1902
1903	/* queue_me and wait for wakeup, timeout, or a signal. */
1904	futex_wait_queue_me(hb, &q, to);
1905
1906	/* If we were woken (and unqueued), we succeeded, whatever. */
1907	ret = 0;
1908	/* unqueue_me() drops q.key ref */
1909	if (!unqueue_me(&q))
1910		goto out;
1911	ret = -ETIMEDOUT;
1912	if (to && !to->task)
1913		goto out;
1914
1915	/*
1916	 * We expect signal_pending(current), but we might be the
1917	 * victim of a spurious wakeup as well.
1918	 */
1919	if (!signal_pending(current))
1920		goto retry;
1921
1922	ret = -ERESTARTSYS;
1923	if (!abs_time)
1924		goto out;
1925
1926	restart = &current_thread_info()->restart_block;
1927	restart->fn = futex_wait_restart;
1928	restart->futex.uaddr = uaddr;
1929	restart->futex.val = val;
1930	restart->futex.time = abs_time->tv64;
1931	restart->futex.bitset = bitset;
1932	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1933
1934	ret = -ERESTART_RESTARTBLOCK;
1935
1936out:
1937	if (to) {
1938		hrtimer_cancel(&to->timer);
1939		destroy_hrtimer_on_stack(&to->timer);
1940	}
1941	return ret;
1942}
1943
1944
1945static long futex_wait_restart(struct restart_block *restart)
1946{
1947	u32 __user *uaddr = restart->futex.uaddr;
1948	ktime_t t, *tp = NULL;
1949
1950	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1951		t.tv64 = restart->futex.time;
1952		tp = &t;
1953	}
1954	restart->fn = do_no_restart_syscall;
1955
1956	return (long)futex_wait(uaddr, restart->futex.flags,
1957				restart->futex.val, tp, restart->futex.bitset);
1958}
1959
1960
1961/*
1962 * Userspace tried a 0 -> TID atomic transition of the futex value
1963 * and failed. The kernel side here does the whole locking operation:
1964 * if there are waiters then it will block, it does PI, etc. (Due to
1965 * races the kernel might see a 0 value of the futex too.)
1966 */
1967static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1968			 ktime_t *time, int trylock)
1969{
1970	struct hrtimer_sleeper timeout, *to = NULL;
1971	struct futex_hash_bucket *hb;
1972	struct futex_q q = futex_q_init;
1973	int res, ret;
1974
1975	if (refill_pi_state_cache())
1976		return -ENOMEM;
1977
1978	if (time) {
1979		to = &timeout;
1980		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1981				      HRTIMER_MODE_ABS);
1982		hrtimer_init_sleeper(to, current);
1983		hrtimer_set_expires(&to->timer, *time);
1984	}
1985
1986retry:
1987	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1988	if (unlikely(ret != 0))
1989		goto out;
1990
1991retry_private:
1992	hb = queue_lock(&q);
1993
1994	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1995	if (unlikely(ret)) {
1996		switch (ret) {
1997		case 1:
1998			/* We got the lock. */
1999			ret = 0;
2000			goto out_unlock_put_key;
2001		case -EFAULT:
2002			goto uaddr_faulted;
2003		case -EAGAIN:
2004			/*
2005			 * Task is exiting and we just wait for the
2006			 * exit to complete.
2007			 */
2008			queue_unlock(&q, hb);
2009			put_futex_key(&q.key);
2010			cond_resched();
2011			goto retry;
2012		default:
2013			goto out_unlock_put_key;
2014		}
2015	}
2016
2017	/*
2018	 * Only actually queue now that the atomic ops are done:
2019	 */
2020	queue_me(&q, hb);
2021
2022	WARN_ON(!q.pi_state);
2023	/*
2024	 * Block on the PI mutex:
2025	 */
2026	if (!trylock)
2027		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2028	else {
2029		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2030		/* Fixup the trylock return value: */
2031		ret = ret ? 0 : -EWOULDBLOCK;
2032	}
2033
2034	spin_lock(q.lock_ptr);
2035	/*
2036	 * Fixup the pi_state owner and possibly acquire the lock if we
2037	 * haven't already.
2038	 */
2039	res = fixup_owner(uaddr, &q, !ret);
2040	/*
2041	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2042	 * the lock, clear our -ETIMEDOUT or -EINTR.
2043	 */
2044	if (res)
2045		ret = (res < 0) ? res : 0;
2046
2047	/*
2048	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2049	 * it and return the fault to userspace.
2050	 */
2051	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2052		rt_mutex_unlock(&q.pi_state->pi_mutex);
2053
2054	/* Unqueue and drop the lock */
2055	unqueue_me_pi(&q);
2056
2057	goto out_put_key;
2058
2059out_unlock_put_key:
2060	queue_unlock(&q, hb);
2061
2062out_put_key:
2063	put_futex_key(&q.key);
2064out:
2065	if (to)
2066		destroy_hrtimer_on_stack(&to->timer);
2067	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2068
2069uaddr_faulted:
2070	queue_unlock(&q, hb);
2071
2072	ret = fault_in_user_writeable(uaddr);
2073	if (ret)
2074		goto out_put_key;
2075
2076	if (!(flags & FLAGS_SHARED))
2077		goto retry_private;
2078
2079	put_futex_key(&q.key);
2080	goto retry;
2081}
2082
2083/*
2084 * Userspace attempted a TID -> 0 atomic transition, and failed.
2085 * This is the in-kernel slowpath: we look up the PI state (if any),
2086 * and do the rt-mutex unlock.
2087 */
2088static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2089{
2090	struct futex_hash_bucket *hb;
2091	struct futex_q *this, *next;
2092	struct plist_head *head;
2093	union futex_key key = FUTEX_KEY_INIT;
2094	u32 uval, vpid = task_pid_vnr(current);
2095	int ret;
2096
2097retry:
2098	if (get_user(uval, uaddr))
2099		return -EFAULT;
2100	/*
2101	 * We release only a lock we actually own:
2102	 */
2103	if ((uval & FUTEX_TID_MASK) != vpid)
2104		return -EPERM;
2105
2106	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2107	if (unlikely(ret != 0))
2108		goto out;
2109
2110	hb = hash_futex(&key);
2111	spin_lock(&hb->lock);
2112
2113	/*
2114	 * To avoid races, try to do the TID -> 0 atomic transition
2115	 * again. If it succeeds then we can return without waking
2116	 * anyone else up:
2117	 */
2118	if (!(uval & FUTEX_OWNER_DIED) &&
2119	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2120		goto pi_faulted;
2121	/*
2122	 * Rare case: we managed to release the lock atomically,
2123	 * no need to wake anyone else up:
2124	 */
2125	if (unlikely(uval == vpid))
2126		goto out_unlock;
2127
2128	/*
2129	 * Ok, other tasks may need to be woken up - check waiters
2130	 * and do the wakeup if necessary:
2131	 */
2132	head = &hb->chain;
2133
2134	plist_for_each_entry_safe(this, next, head, list) {
2135		if (!match_futex (&this->key, &key))
2136			continue;
2137		ret = wake_futex_pi(uaddr, uval, this);
2138		/*
2139		 * The atomic access to the futex value
2140		 * generated a pagefault, so retry the
2141		 * user-access and the wakeup:
2142		 */
2143		if (ret == -EFAULT)
2144			goto pi_faulted;
2145		goto out_unlock;
2146	}
2147	/*
2148	 * No waiters - kernel unlocks the futex:
2149	 */
2150	if (!(uval & FUTEX_OWNER_DIED)) {
2151		ret = unlock_futex_pi(uaddr, uval);
2152		if (ret == -EFAULT)
2153			goto pi_faulted;
2154	}
2155
2156out_unlock:
2157	spin_unlock(&hb->lock);
2158	put_futex_key(&key);
2159
2160out:
2161	return ret;
2162
2163pi_faulted:
2164	spin_unlock(&hb->lock);
2165	put_futex_key(&key);
2166
2167	ret = fault_in_user_writeable(uaddr);
2168	if (!ret)
2169		goto retry;
2170
2171	return ret;
2172}
2173
2174/**
2175 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2176 * @hb:		the hash_bucket futex_q was original enqueued on
2177 * @q:		the futex_q woken while waiting to be requeued
2178 * @key2:	the futex_key of the requeue target futex
2179 * @timeout:	the timeout associated with the wait (NULL if none)
2180 *
2181 * Detect if the task was woken on the initial futex as opposed to the requeue
2182 * target futex.  If so, determine if it was a timeout or a signal that caused
2183 * the wakeup and return the appropriate error code to the caller.  Must be
2184 * called with the hb lock held.
2185 *
2186 * Returns
2187 *  0 - no early wakeup detected
2188 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2189 */
2190static inline
2191int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2192				   struct futex_q *q, union futex_key *key2,
2193				   struct hrtimer_sleeper *timeout)
2194{
2195	int ret = 0;
2196
2197	/*
2198	 * With the hb lock held, we avoid races while we process the wakeup.
2199	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2200	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2201	 * It can't be requeued from uaddr2 to something else since we don't
2202	 * support a PI aware source futex for requeue.
2203	 */
2204	if (!match_futex(&q->key, key2)) {
2205		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2206		/*
2207		 * We were woken prior to requeue by a timeout or a signal.
2208		 * Unqueue the futex_q and determine which it was.
2209		 */
2210		plist_del(&q->list, &hb->chain);
2211
2212		/* Handle spurious wakeups gracefully */
2213		ret = -EWOULDBLOCK;
2214		if (timeout && !timeout->task)
2215			ret = -ETIMEDOUT;
2216		else if (signal_pending(current))
2217			ret = -ERESTARTNOINTR;
2218	}
2219	return ret;
2220}
2221
2222/**
2223 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2224 * @uaddr:	the futex we initially wait on (non-pi)
2225 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2226 * 		the same type, no requeueing from private to shared, etc.
2227 * @val:	the expected value of uaddr
2228 * @abs_time:	absolute timeout
2229 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2230 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2231 * @uaddr2:	the pi futex we will take prior to returning to user-space
2232 *
2233 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2234 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2235 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2236 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2237 * without one, the pi logic would not know which task to boost/deboost, if
2238 * there was a need to.
2239 *
2240 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2241 * via the following:
2242 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2243 * 2) wakeup on uaddr2 after a requeue
2244 * 3) signal
2245 * 4) timeout
2246 *
2247 * If 3, cleanup and return -ERESTARTNOINTR.
2248 *
2249 * If 2, we may then block on trying to take the rt_mutex and return via:
2250 * 5) successful lock
2251 * 6) signal
2252 * 7) timeout
2253 * 8) other lock acquisition failure
2254 *
2255 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2256 *
2257 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2258 *
2259 * Returns:
2260 *  0 - On success
2261 * <0 - On error
2262 */
2263static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2264				 u32 val, ktime_t *abs_time, u32 bitset,
2265				 u32 __user *uaddr2)
2266{
2267	struct hrtimer_sleeper timeout, *to = NULL;
2268	struct rt_mutex_waiter rt_waiter;
2269	struct rt_mutex *pi_mutex = NULL;
2270	struct futex_hash_bucket *hb;
2271	union futex_key key2 = FUTEX_KEY_INIT;
2272	struct futex_q q = futex_q_init;
2273	int res, ret;
2274
2275	if (uaddr == uaddr2)
2276		return -EINVAL;
2277
2278	if (!bitset)
2279		return -EINVAL;
2280
2281	if (abs_time) {
2282		to = &timeout;
2283		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2284				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2285				      HRTIMER_MODE_ABS);
2286		hrtimer_init_sleeper(to, current);
2287		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2288					     current->timer_slack_ns);
2289	}
2290
2291	/*
2292	 * The waiter is allocated on our stack, manipulated by the requeue
2293	 * code while we sleep on uaddr.
2294	 */
2295	debug_rt_mutex_init_waiter(&rt_waiter);
2296	rt_waiter.task = NULL;
2297
2298	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2299	if (unlikely(ret != 0))
2300		goto out;
2301
2302	q.bitset = bitset;
2303	q.rt_waiter = &rt_waiter;
2304	q.requeue_pi_key = &key2;
2305
2306	/*
2307	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2308	 * count.
2309	 */
2310	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2311	if (ret)
2312		goto out_key2;
2313
2314	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2315	futex_wait_queue_me(hb, &q, to);
2316
2317	spin_lock(&hb->lock);
2318	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2319	spin_unlock(&hb->lock);
2320	if (ret)
2321		goto out_put_keys;
2322
2323	/*
2324	 * In order for us to be here, we know our q.key == key2, and since
2325	 * we took the hb->lock above, we also know that futex_requeue() has
2326	 * completed and we no longer have to concern ourselves with a wakeup
2327	 * race with the atomic proxy lock acquisition by the requeue code. The
2328	 * futex_requeue dropped our key1 reference and incremented our key2
2329	 * reference count.
2330	 */
2331
2332	/* Check if the requeue code acquired the second futex for us. */
2333	if (!q.rt_waiter) {
2334		/*
2335		 * Got the lock. We might not be the anticipated owner if we
2336		 * did a lock-steal - fix up the PI-state in that case.
2337		 */
2338		if (q.pi_state && (q.pi_state->owner != current)) {
2339			spin_lock(q.lock_ptr);
2340			ret = fixup_pi_state_owner(uaddr2, &q, current);
2341			spin_unlock(q.lock_ptr);
2342		}
2343	} else {
2344		/*
2345		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2346		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2347		 * the pi_state.
2348		 */
2349		WARN_ON(!q.pi_state);
2350		pi_mutex = &q.pi_state->pi_mutex;
2351		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2352		debug_rt_mutex_free_waiter(&rt_waiter);
2353
2354		spin_lock(q.lock_ptr);
2355		/*
2356		 * Fixup the pi_state owner and possibly acquire the lock if we
2357		 * haven't already.
2358		 */
2359		res = fixup_owner(uaddr2, &q, !ret);
2360		/*
2361		 * If fixup_owner() returned an error, proprogate that.  If it
2362		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2363		 */
2364		if (res)
2365			ret = (res < 0) ? res : 0;
2366
2367		/* Unqueue and drop the lock. */
2368		unqueue_me_pi(&q);
2369	}
2370
2371	/*
2372	 * If fixup_pi_state_owner() faulted and was unable to handle the
2373	 * fault, unlock the rt_mutex and return the fault to userspace.
2374	 */
2375	if (ret == -EFAULT) {
2376		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2377			rt_mutex_unlock(pi_mutex);
2378	} else if (ret == -EINTR) {
2379		/*
2380		 * We've already been requeued, but cannot restart by calling
2381		 * futex_lock_pi() directly. We could restart this syscall, but
2382		 * it would detect that the user space "val" changed and return
2383		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2384		 * -EWOULDBLOCK directly.
2385		 */
2386		ret = -EWOULDBLOCK;
2387	}
2388
2389out_put_keys:
2390	put_futex_key(&q.key);
2391out_key2:
2392	put_futex_key(&key2);
2393
2394out:
2395	if (to) {
2396		hrtimer_cancel(&to->timer);
2397		destroy_hrtimer_on_stack(&to->timer);
2398	}
2399	return ret;
2400}
2401
2402/*
2403 * Support for robust futexes: the kernel cleans up held futexes at
2404 * thread exit time.
2405 *
2406 * Implementation: user-space maintains a per-thread list of locks it
2407 * is holding. Upon do_exit(), the kernel carefully walks this list,
2408 * and marks all locks that are owned by this thread with the
2409 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2410 * always manipulated with the lock held, so the list is private and
2411 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2412 * field, to allow the kernel to clean up if the thread dies after
2413 * acquiring the lock, but just before it could have added itself to
2414 * the list. There can only be one such pending lock.
2415 */
2416
2417/**
2418 * sys_set_robust_list() - Set the robust-futex list head of a task
2419 * @head:	pointer to the list-head
2420 * @len:	length of the list-head, as userspace expects
2421 */
2422SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2423		size_t, len)
2424{
2425	if (!futex_cmpxchg_enabled)
2426		return -ENOSYS;
2427	/*
2428	 * The kernel knows only one size for now:
2429	 */
2430	if (unlikely(len != sizeof(*head)))
2431		return -EINVAL;
2432
2433	current->robust_list = head;
2434
2435	return 0;
2436}
2437
2438/**
2439 * sys_get_robust_list() - Get the robust-futex list head of a task
2440 * @pid:	pid of the process [zero for current task]
2441 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2442 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2443 */
2444SYSCALL_DEFINE3(get_robust_list, int, pid,
2445		struct robust_list_head __user * __user *, head_ptr,
2446		size_t __user *, len_ptr)
2447{
2448	struct robust_list_head __user *head;
2449	unsigned long ret;
2450	struct task_struct *p;
2451
2452	if (!futex_cmpxchg_enabled)
2453		return -ENOSYS;
2454
2455	WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
2456
2457	rcu_read_lock();
2458
2459	ret = -ESRCH;
2460	if (!pid)
2461		p = current;
2462	else {
 
 
 
 
2463		p = find_task_by_vpid(pid);
2464		if (!p)
2465			goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466	}
2467
2468	ret = -EPERM;
2469	if (!ptrace_may_access(p, PTRACE_MODE_READ))
2470		goto err_unlock;
2471
2472	head = p->robust_list;
2473	rcu_read_unlock();
2474
2475	if (put_user(sizeof(*head), len_ptr))
2476		return -EFAULT;
2477	return put_user(head, head_ptr);
2478
2479err_unlock:
2480	rcu_read_unlock();
2481
2482	return ret;
2483}
2484
2485/*
2486 * Process a futex-list entry, check whether it's owned by the
2487 * dying task, and do notification if so:
2488 */
2489int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2490{
2491	u32 uval, uninitialized_var(nval), mval;
2492
2493retry:
2494	if (get_user(uval, uaddr))
2495		return -1;
2496
2497	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2498		/*
2499		 * Ok, this dying thread is truly holding a futex
2500		 * of interest. Set the OWNER_DIED bit atomically
2501		 * via cmpxchg, and if the value had FUTEX_WAITERS
2502		 * set, wake up a waiter (if any). (We have to do a
2503		 * futex_wake() even if OWNER_DIED is already set -
2504		 * to handle the rare but possible case of recursive
2505		 * thread-death.) The rest of the cleanup is done in
2506		 * userspace.
2507		 */
2508		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2509		/*
2510		 * We are not holding a lock here, but we want to have
2511		 * the pagefault_disable/enable() protection because
2512		 * we want to handle the fault gracefully. If the
2513		 * access fails we try to fault in the futex with R/W
2514		 * verification via get_user_pages. get_user() above
2515		 * does not guarantee R/W access. If that fails we
2516		 * give up and leave the futex locked.
2517		 */
2518		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2519			if (fault_in_user_writeable(uaddr))
2520				return -1;
2521			goto retry;
2522		}
2523		if (nval != uval)
2524			goto retry;
2525
2526		/*
2527		 * Wake robust non-PI futexes here. The wakeup of
2528		 * PI futexes happens in exit_pi_state():
2529		 */
2530		if (!pi && (uval & FUTEX_WAITERS))
2531			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2532	}
2533	return 0;
2534}
2535
2536/*
2537 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2538 */
2539static inline int fetch_robust_entry(struct robust_list __user **entry,
2540				     struct robust_list __user * __user *head,
2541				     unsigned int *pi)
2542{
2543	unsigned long uentry;
2544
2545	if (get_user(uentry, (unsigned long __user *)head))
2546		return -EFAULT;
2547
2548	*entry = (void __user *)(uentry & ~1UL);
2549	*pi = uentry & 1;
2550
2551	return 0;
2552}
2553
2554/*
2555 * Walk curr->robust_list (very carefully, it's a userspace list!)
2556 * and mark any locks found there dead, and notify any waiters.
2557 *
2558 * We silently return on any sign of list-walking problem.
2559 */
2560void exit_robust_list(struct task_struct *curr)
2561{
2562	struct robust_list_head __user *head = curr->robust_list;
2563	struct robust_list __user *entry, *next_entry, *pending;
2564	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2565	unsigned int uninitialized_var(next_pi);
2566	unsigned long futex_offset;
2567	int rc;
2568
2569	if (!futex_cmpxchg_enabled)
2570		return;
2571
2572	/*
2573	 * Fetch the list head (which was registered earlier, via
2574	 * sys_set_robust_list()):
2575	 */
2576	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2577		return;
2578	/*
2579	 * Fetch the relative futex offset:
2580	 */
2581	if (get_user(futex_offset, &head->futex_offset))
2582		return;
2583	/*
2584	 * Fetch any possibly pending lock-add first, and handle it
2585	 * if it exists:
2586	 */
2587	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2588		return;
2589
2590	next_entry = NULL;	/* avoid warning with gcc */
2591	while (entry != &head->list) {
2592		/*
2593		 * Fetch the next entry in the list before calling
2594		 * handle_futex_death:
2595		 */
2596		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2597		/*
2598		 * A pending lock might already be on the list, so
2599		 * don't process it twice:
2600		 */
2601		if (entry != pending)
2602			if (handle_futex_death((void __user *)entry + futex_offset,
2603						curr, pi))
2604				return;
2605		if (rc)
2606			return;
2607		entry = next_entry;
2608		pi = next_pi;
2609		/*
2610		 * Avoid excessively long or circular lists:
2611		 */
2612		if (!--limit)
2613			break;
2614
2615		cond_resched();
2616	}
2617
2618	if (pending)
2619		handle_futex_death((void __user *)pending + futex_offset,
2620				   curr, pip);
2621}
2622
2623long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2624		u32 __user *uaddr2, u32 val2, u32 val3)
2625{
2626	int cmd = op & FUTEX_CMD_MASK;
2627	unsigned int flags = 0;
2628
2629	if (!(op & FUTEX_PRIVATE_FLAG))
2630		flags |= FLAGS_SHARED;
2631
2632	if (op & FUTEX_CLOCK_REALTIME) {
2633		flags |= FLAGS_CLOCKRT;
2634		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2635			return -ENOSYS;
2636	}
2637
2638	switch (cmd) {
2639	case FUTEX_LOCK_PI:
2640	case FUTEX_UNLOCK_PI:
2641	case FUTEX_TRYLOCK_PI:
2642	case FUTEX_WAIT_REQUEUE_PI:
2643	case FUTEX_CMP_REQUEUE_PI:
2644		if (!futex_cmpxchg_enabled)
2645			return -ENOSYS;
2646	}
2647
2648	switch (cmd) {
2649	case FUTEX_WAIT:
2650		val3 = FUTEX_BITSET_MATCH_ANY;
2651	case FUTEX_WAIT_BITSET:
2652		return futex_wait(uaddr, flags, val, timeout, val3);
 
2653	case FUTEX_WAKE:
2654		val3 = FUTEX_BITSET_MATCH_ANY;
2655	case FUTEX_WAKE_BITSET:
2656		return futex_wake(uaddr, flags, val, val3);
 
2657	case FUTEX_REQUEUE:
2658		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
 
2659	case FUTEX_CMP_REQUEUE:
2660		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
 
2661	case FUTEX_WAKE_OP:
2662		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
 
2663	case FUTEX_LOCK_PI:
2664		return futex_lock_pi(uaddr, flags, val, timeout, 0);
 
 
2665	case FUTEX_UNLOCK_PI:
2666		return futex_unlock_pi(uaddr, flags);
 
 
2667	case FUTEX_TRYLOCK_PI:
2668		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
 
 
2669	case FUTEX_WAIT_REQUEUE_PI:
2670		val3 = FUTEX_BITSET_MATCH_ANY;
2671		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2672					     uaddr2);
 
2673	case FUTEX_CMP_REQUEUE_PI:
2674		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
 
 
 
2675	}
2676	return -ENOSYS;
2677}
2678
2679
2680SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2681		struct timespec __user *, utime, u32 __user *, uaddr2,
2682		u32, val3)
2683{
2684	struct timespec ts;
2685	ktime_t t, *tp = NULL;
2686	u32 val2 = 0;
2687	int cmd = op & FUTEX_CMD_MASK;
2688
2689	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2690		      cmd == FUTEX_WAIT_BITSET ||
2691		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2692		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2693			return -EFAULT;
2694		if (!timespec_valid(&ts))
2695			return -EINVAL;
2696
2697		t = timespec_to_ktime(ts);
2698		if (cmd == FUTEX_WAIT)
2699			t = ktime_add_safe(ktime_get(), t);
2700		tp = &t;
2701	}
2702	/*
2703	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2704	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2705	 */
2706	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2707	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2708		val2 = (u32) (unsigned long) utime;
2709
2710	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2711}
2712
2713static int __init futex_init(void)
2714{
2715	u32 curval;
2716	int i;
2717
2718	/*
2719	 * This will fail and we want it. Some arch implementations do
2720	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2721	 * functionality. We want to know that before we call in any
2722	 * of the complex code paths. Also we want to prevent
2723	 * registration of robust lists in that case. NULL is
2724	 * guaranteed to fault and we get -EFAULT on functional
2725	 * implementation, the non-functional ones will return
2726	 * -ENOSYS.
2727	 */
2728	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2729		futex_cmpxchg_enabled = 1;
2730
2731	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2732		plist_head_init(&futex_queues[i].chain);
2733		spin_lock_init(&futex_queues[i].lock);
2734	}
2735
2736	return 0;
2737}
2738__initcall(futex_init);