Loading...
1/*
2 * Device operations for the pnfs nfs4 file layout driver.
3 *
4 * Copyright (c) 2002
5 * The Regents of the University of Michigan
6 * All Rights Reserved
7 *
8 * Dean Hildebrand <dhildebz@umich.edu>
9 * Garth Goodson <Garth.Goodson@netapp.com>
10 *
11 * Permission is granted to use, copy, create derivative works, and
12 * redistribute this software and such derivative works for any purpose,
13 * so long as the name of the University of Michigan is not used in
14 * any advertising or publicity pertaining to the use or distribution
15 * of this software without specific, written prior authorization. If
16 * the above copyright notice or any other identification of the
17 * University of Michigan is included in any copy of any portion of
18 * this software, then the disclaimer below must also be included.
19 *
20 * This software is provided as is, without representation or warranty
21 * of any kind either express or implied, including without limitation
22 * the implied warranties of merchantability, fitness for a particular
23 * purpose, or noninfringement. The Regents of the University of
24 * Michigan shall not be liable for any damages, including special,
25 * indirect, incidental, or consequential damages, with respect to any
26 * claim arising out of or in connection with the use of the software,
27 * even if it has been or is hereafter advised of the possibility of
28 * such damages.
29 */
30
31#include <linux/nfs_fs.h>
32#include <linux/vmalloc.h>
33
34#include "internal.h"
35#include "nfs4filelayout.h"
36
37#define NFSDBG_FACILITY NFSDBG_PNFS_LD
38
39/*
40 * Data server cache
41 *
42 * Data servers can be mapped to different device ids.
43 * nfs4_pnfs_ds reference counting
44 * - set to 1 on allocation
45 * - incremented when a device id maps a data server already in the cache.
46 * - decremented when deviceid is removed from the cache.
47 */
48DEFINE_SPINLOCK(nfs4_ds_cache_lock);
49static LIST_HEAD(nfs4_data_server_cache);
50
51/* Debug routines */
52void
53print_ds(struct nfs4_pnfs_ds *ds)
54{
55 if (ds == NULL) {
56 printk("%s NULL device\n", __func__);
57 return;
58 }
59 printk(" ds %s\n"
60 " ref count %d\n"
61 " client %p\n"
62 " cl_exchange_flags %x\n",
63 ds->ds_remotestr,
64 atomic_read(&ds->ds_count), ds->ds_clp,
65 ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
66}
67
68static bool
69same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2)
70{
71 struct sockaddr_in *a, *b;
72 struct sockaddr_in6 *a6, *b6;
73
74 if (addr1->sa_family != addr2->sa_family)
75 return false;
76
77 switch (addr1->sa_family) {
78 case AF_INET:
79 a = (struct sockaddr_in *)addr1;
80 b = (struct sockaddr_in *)addr2;
81
82 if (a->sin_addr.s_addr == b->sin_addr.s_addr &&
83 a->sin_port == b->sin_port)
84 return true;
85 break;
86
87 case AF_INET6:
88 a6 = (struct sockaddr_in6 *)addr1;
89 b6 = (struct sockaddr_in6 *)addr2;
90
91 /* LINKLOCAL addresses must have matching scope_id */
92 if (ipv6_addr_scope(&a6->sin6_addr) ==
93 IPV6_ADDR_SCOPE_LINKLOCAL &&
94 a6->sin6_scope_id != b6->sin6_scope_id)
95 return false;
96
97 if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) &&
98 a6->sin6_port == b6->sin6_port)
99 return true;
100 break;
101
102 default:
103 dprintk("%s: unhandled address family: %u\n",
104 __func__, addr1->sa_family);
105 return false;
106 }
107
108 return false;
109}
110
111/*
112 * Lookup DS by addresses. The first matching address returns true.
113 * nfs4_ds_cache_lock is held
114 */
115static struct nfs4_pnfs_ds *
116_data_server_lookup_locked(struct list_head *dsaddrs)
117{
118 struct nfs4_pnfs_ds *ds;
119 struct nfs4_pnfs_ds_addr *da1, *da2;
120
121 list_for_each_entry(da1, dsaddrs, da_node) {
122 list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) {
123 list_for_each_entry(da2, &ds->ds_addrs, da_node) {
124 if (same_sockaddr(
125 (struct sockaddr *)&da1->da_addr,
126 (struct sockaddr *)&da2->da_addr))
127 return ds;
128 }
129 }
130 }
131 return NULL;
132}
133
134/*
135 * Compare two lists of addresses.
136 */
137static bool
138_data_server_match_all_addrs_locked(struct list_head *dsaddrs1,
139 struct list_head *dsaddrs2)
140{
141 struct nfs4_pnfs_ds_addr *da1, *da2;
142 size_t count1 = 0,
143 count2 = 0;
144
145 list_for_each_entry(da1, dsaddrs1, da_node)
146 count1++;
147
148 list_for_each_entry(da2, dsaddrs2, da_node) {
149 bool found = false;
150 count2++;
151 list_for_each_entry(da1, dsaddrs1, da_node) {
152 if (same_sockaddr((struct sockaddr *)&da1->da_addr,
153 (struct sockaddr *)&da2->da_addr)) {
154 found = true;
155 break;
156 }
157 }
158 if (!found)
159 return false;
160 }
161
162 return (count1 == count2);
163}
164
165/*
166 * Create an rpc connection to the nfs4_pnfs_ds data server
167 * Currently only supports IPv4 and IPv6 addresses
168 */
169static int
170nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
171{
172 struct nfs_client *clp = ERR_PTR(-EIO);
173 struct nfs4_pnfs_ds_addr *da;
174 int status = 0;
175
176 dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr,
177 mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
178
179 BUG_ON(list_empty(&ds->ds_addrs));
180
181 list_for_each_entry(da, &ds->ds_addrs, da_node) {
182 dprintk("%s: DS %s: trying address %s\n",
183 __func__, ds->ds_remotestr, da->da_remotestr);
184
185 clp = nfs4_set_ds_client(mds_srv->nfs_client,
186 (struct sockaddr *)&da->da_addr,
187 da->da_addrlen, IPPROTO_TCP);
188 if (!IS_ERR(clp))
189 break;
190 }
191
192 if (IS_ERR(clp)) {
193 status = PTR_ERR(clp);
194 goto out;
195 }
196
197 if ((clp->cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS) != 0) {
198 if (!is_ds_client(clp)) {
199 status = -ENODEV;
200 goto out_put;
201 }
202 ds->ds_clp = clp;
203 dprintk("%s [existing] server=%s\n", __func__,
204 ds->ds_remotestr);
205 goto out;
206 }
207
208 /*
209 * Do not set NFS_CS_CHECK_LEASE_TIME instead set the DS lease to
210 * be equal to the MDS lease. Renewal is scheduled in create_session.
211 */
212 spin_lock(&mds_srv->nfs_client->cl_lock);
213 clp->cl_lease_time = mds_srv->nfs_client->cl_lease_time;
214 spin_unlock(&mds_srv->nfs_client->cl_lock);
215 clp->cl_last_renewal = jiffies;
216
217 /* New nfs_client */
218 status = nfs4_init_ds_session(clp);
219 if (status)
220 goto out_put;
221
222 ds->ds_clp = clp;
223 dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr);
224out:
225 return status;
226out_put:
227 nfs_put_client(clp);
228 goto out;
229}
230
231static void
232destroy_ds(struct nfs4_pnfs_ds *ds)
233{
234 struct nfs4_pnfs_ds_addr *da;
235
236 dprintk("--> %s\n", __func__);
237 ifdebug(FACILITY)
238 print_ds(ds);
239
240 if (ds->ds_clp)
241 nfs_put_client(ds->ds_clp);
242
243 while (!list_empty(&ds->ds_addrs)) {
244 da = list_first_entry(&ds->ds_addrs,
245 struct nfs4_pnfs_ds_addr,
246 da_node);
247 list_del_init(&da->da_node);
248 kfree(da->da_remotestr);
249 kfree(da);
250 }
251
252 kfree(ds->ds_remotestr);
253 kfree(ds);
254}
255
256void
257nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
258{
259 struct nfs4_pnfs_ds *ds;
260 int i;
261
262 nfs4_print_deviceid(&dsaddr->id_node.deviceid);
263
264 for (i = 0; i < dsaddr->ds_num; i++) {
265 ds = dsaddr->ds_list[i];
266 if (ds != NULL) {
267 if (atomic_dec_and_lock(&ds->ds_count,
268 &nfs4_ds_cache_lock)) {
269 list_del_init(&ds->ds_node);
270 spin_unlock(&nfs4_ds_cache_lock);
271 destroy_ds(ds);
272 }
273 }
274 }
275 kfree(dsaddr->stripe_indices);
276 kfree(dsaddr);
277}
278
279/*
280 * Create a string with a human readable address and port to avoid
281 * complicated setup around many dprinks.
282 */
283static char *
284nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags)
285{
286 struct nfs4_pnfs_ds_addr *da;
287 char *remotestr;
288 size_t len;
289 char *p;
290
291 len = 3; /* '{', '}' and eol */
292 list_for_each_entry(da, dsaddrs, da_node) {
293 len += strlen(da->da_remotestr) + 1; /* string plus comma */
294 }
295
296 remotestr = kzalloc(len, gfp_flags);
297 if (!remotestr)
298 return NULL;
299
300 p = remotestr;
301 *(p++) = '{';
302 len--;
303 list_for_each_entry(da, dsaddrs, da_node) {
304 size_t ll = strlen(da->da_remotestr);
305
306 if (ll > len)
307 goto out_err;
308
309 memcpy(p, da->da_remotestr, ll);
310 p += ll;
311 len -= ll;
312
313 if (len < 1)
314 goto out_err;
315 (*p++) = ',';
316 len--;
317 }
318 if (len < 2)
319 goto out_err;
320 *(p++) = '}';
321 *p = '\0';
322 return remotestr;
323out_err:
324 kfree(remotestr);
325 return NULL;
326}
327
328static struct nfs4_pnfs_ds *
329nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags)
330{
331 struct nfs4_pnfs_ds *tmp_ds, *ds = NULL;
332 char *remotestr;
333
334 if (list_empty(dsaddrs)) {
335 dprintk("%s: no addresses defined\n", __func__);
336 goto out;
337 }
338
339 ds = kzalloc(sizeof(*ds), gfp_flags);
340 if (!ds)
341 goto out;
342
343 /* this is only used for debugging, so it's ok if its NULL */
344 remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags);
345
346 spin_lock(&nfs4_ds_cache_lock);
347 tmp_ds = _data_server_lookup_locked(dsaddrs);
348 if (tmp_ds == NULL) {
349 INIT_LIST_HEAD(&ds->ds_addrs);
350 list_splice_init(dsaddrs, &ds->ds_addrs);
351 ds->ds_remotestr = remotestr;
352 atomic_set(&ds->ds_count, 1);
353 INIT_LIST_HEAD(&ds->ds_node);
354 ds->ds_clp = NULL;
355 list_add(&ds->ds_node, &nfs4_data_server_cache);
356 dprintk("%s add new data server %s\n", __func__,
357 ds->ds_remotestr);
358 } else {
359 if (!_data_server_match_all_addrs_locked(&tmp_ds->ds_addrs,
360 dsaddrs)) {
361 dprintk("%s: multipath address mismatch: %s != %s",
362 __func__, tmp_ds->ds_remotestr, remotestr);
363 }
364 kfree(remotestr);
365 kfree(ds);
366 atomic_inc(&tmp_ds->ds_count);
367 dprintk("%s data server %s found, inc'ed ds_count to %d\n",
368 __func__, tmp_ds->ds_remotestr,
369 atomic_read(&tmp_ds->ds_count));
370 ds = tmp_ds;
371 }
372 spin_unlock(&nfs4_ds_cache_lock);
373out:
374 return ds;
375}
376
377/*
378 * Currently only supports ipv4, ipv6 and one multi-path address.
379 */
380static struct nfs4_pnfs_ds_addr *
381decode_ds_addr(struct xdr_stream *streamp, gfp_t gfp_flags)
382{
383 struct nfs4_pnfs_ds_addr *da = NULL;
384 char *buf, *portstr;
385 u32 port;
386 int nlen, rlen;
387 int tmp[2];
388 __be32 *p;
389 char *netid, *match_netid;
390 size_t len, match_netid_len;
391 char *startsep = "";
392 char *endsep = "";
393
394
395 /* r_netid */
396 p = xdr_inline_decode(streamp, 4);
397 if (unlikely(!p))
398 goto out_err;
399 nlen = be32_to_cpup(p++);
400
401 p = xdr_inline_decode(streamp, nlen);
402 if (unlikely(!p))
403 goto out_err;
404
405 netid = kmalloc(nlen+1, gfp_flags);
406 if (unlikely(!netid))
407 goto out_err;
408
409 netid[nlen] = '\0';
410 memcpy(netid, p, nlen);
411
412 /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */
413 p = xdr_inline_decode(streamp, 4);
414 if (unlikely(!p))
415 goto out_free_netid;
416 rlen = be32_to_cpup(p);
417
418 p = xdr_inline_decode(streamp, rlen);
419 if (unlikely(!p))
420 goto out_free_netid;
421
422 /* port is ".ABC.DEF", 8 chars max */
423 if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) {
424 dprintk("%s: Invalid address, length %d\n", __func__,
425 rlen);
426 goto out_free_netid;
427 }
428 buf = kmalloc(rlen + 1, gfp_flags);
429 if (!buf) {
430 dprintk("%s: Not enough memory\n", __func__);
431 goto out_free_netid;
432 }
433 buf[rlen] = '\0';
434 memcpy(buf, p, rlen);
435
436 /* replace port '.' with '-' */
437 portstr = strrchr(buf, '.');
438 if (!portstr) {
439 dprintk("%s: Failed finding expected dot in port\n",
440 __func__);
441 goto out_free_buf;
442 }
443 *portstr = '-';
444
445 /* find '.' between address and port */
446 portstr = strrchr(buf, '.');
447 if (!portstr) {
448 dprintk("%s: Failed finding expected dot between address and "
449 "port\n", __func__);
450 goto out_free_buf;
451 }
452 *portstr = '\0';
453
454 da = kzalloc(sizeof(*da), gfp_flags);
455 if (unlikely(!da))
456 goto out_free_buf;
457
458 INIT_LIST_HEAD(&da->da_node);
459
460 if (!rpc_pton(buf, portstr-buf, (struct sockaddr *)&da->da_addr,
461 sizeof(da->da_addr))) {
462 dprintk("%s: error parsing address %s\n", __func__, buf);
463 goto out_free_da;
464 }
465
466 portstr++;
467 sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]);
468 port = htons((tmp[0] << 8) | (tmp[1]));
469
470 switch (da->da_addr.ss_family) {
471 case AF_INET:
472 ((struct sockaddr_in *)&da->da_addr)->sin_port = port;
473 da->da_addrlen = sizeof(struct sockaddr_in);
474 match_netid = "tcp";
475 match_netid_len = 3;
476 break;
477
478 case AF_INET6:
479 ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port;
480 da->da_addrlen = sizeof(struct sockaddr_in6);
481 match_netid = "tcp6";
482 match_netid_len = 4;
483 startsep = "[";
484 endsep = "]";
485 break;
486
487 default:
488 dprintk("%s: unsupported address family: %u\n",
489 __func__, da->da_addr.ss_family);
490 goto out_free_da;
491 }
492
493 if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) {
494 dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n",
495 __func__, netid, match_netid);
496 goto out_free_da;
497 }
498
499 /* save human readable address */
500 len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7;
501 da->da_remotestr = kzalloc(len, gfp_flags);
502
503 /* NULL is ok, only used for dprintk */
504 if (da->da_remotestr)
505 snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep,
506 buf, endsep, ntohs(port));
507
508 dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr);
509 kfree(buf);
510 kfree(netid);
511 return da;
512
513out_free_da:
514 kfree(da);
515out_free_buf:
516 dprintk("%s: Error parsing DS addr: %s\n", __func__, buf);
517 kfree(buf);
518out_free_netid:
519 kfree(netid);
520out_err:
521 return NULL;
522}
523
524/* Decode opaque device data and return the result */
525static struct nfs4_file_layout_dsaddr*
526decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags)
527{
528 int i;
529 u32 cnt, num;
530 u8 *indexp;
531 __be32 *p;
532 u8 *stripe_indices;
533 u8 max_stripe_index;
534 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
535 struct xdr_stream stream;
536 struct xdr_buf buf;
537 struct page *scratch;
538 struct list_head dsaddrs;
539 struct nfs4_pnfs_ds_addr *da;
540
541 /* set up xdr stream */
542 scratch = alloc_page(gfp_flags);
543 if (!scratch)
544 goto out_err;
545
546 xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen);
547 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
548
549 /* Get the stripe count (number of stripe index) */
550 p = xdr_inline_decode(&stream, 4);
551 if (unlikely(!p))
552 goto out_err_free_scratch;
553
554 cnt = be32_to_cpup(p);
555 dprintk("%s stripe count %d\n", __func__, cnt);
556 if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
557 printk(KERN_WARNING "%s: stripe count %d greater than "
558 "supported maximum %d\n", __func__,
559 cnt, NFS4_PNFS_MAX_STRIPE_CNT);
560 goto out_err_free_scratch;
561 }
562
563 /* read stripe indices */
564 stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags);
565 if (!stripe_indices)
566 goto out_err_free_scratch;
567
568 p = xdr_inline_decode(&stream, cnt << 2);
569 if (unlikely(!p))
570 goto out_err_free_stripe_indices;
571
572 indexp = &stripe_indices[0];
573 max_stripe_index = 0;
574 for (i = 0; i < cnt; i++) {
575 *indexp = be32_to_cpup(p++);
576 max_stripe_index = max(max_stripe_index, *indexp);
577 indexp++;
578 }
579
580 /* Check the multipath list count */
581 p = xdr_inline_decode(&stream, 4);
582 if (unlikely(!p))
583 goto out_err_free_stripe_indices;
584
585 num = be32_to_cpup(p);
586 dprintk("%s ds_num %u\n", __func__, num);
587 if (num > NFS4_PNFS_MAX_MULTI_CNT) {
588 printk(KERN_WARNING "%s: multipath count %d greater than "
589 "supported maximum %d\n", __func__,
590 num, NFS4_PNFS_MAX_MULTI_CNT);
591 goto out_err_free_stripe_indices;
592 }
593
594 /* validate stripe indices are all < num */
595 if (max_stripe_index >= num) {
596 printk(KERN_WARNING "%s: stripe index %u >= num ds %u\n",
597 __func__, max_stripe_index, num);
598 goto out_err_free_stripe_indices;
599 }
600
601 dsaddr = kzalloc(sizeof(*dsaddr) +
602 (sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
603 gfp_flags);
604 if (!dsaddr)
605 goto out_err_free_stripe_indices;
606
607 dsaddr->stripe_count = cnt;
608 dsaddr->stripe_indices = stripe_indices;
609 stripe_indices = NULL;
610 dsaddr->ds_num = num;
611 nfs4_init_deviceid_node(&dsaddr->id_node,
612 NFS_SERVER(ino)->pnfs_curr_ld,
613 NFS_SERVER(ino)->nfs_client,
614 &pdev->dev_id);
615
616 INIT_LIST_HEAD(&dsaddrs);
617
618 for (i = 0; i < dsaddr->ds_num; i++) {
619 int j;
620 u32 mp_count;
621
622 p = xdr_inline_decode(&stream, 4);
623 if (unlikely(!p))
624 goto out_err_free_deviceid;
625
626 mp_count = be32_to_cpup(p); /* multipath count */
627 for (j = 0; j < mp_count; j++) {
628 da = decode_ds_addr(&stream, gfp_flags);
629 if (da)
630 list_add_tail(&da->da_node, &dsaddrs);
631 }
632 if (list_empty(&dsaddrs)) {
633 dprintk("%s: no suitable DS addresses found\n",
634 __func__);
635 goto out_err_free_deviceid;
636 }
637
638 dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags);
639 if (!dsaddr->ds_list[i])
640 goto out_err_drain_dsaddrs;
641
642 /* If DS was already in cache, free ds addrs */
643 while (!list_empty(&dsaddrs)) {
644 da = list_first_entry(&dsaddrs,
645 struct nfs4_pnfs_ds_addr,
646 da_node);
647 list_del_init(&da->da_node);
648 kfree(da->da_remotestr);
649 kfree(da);
650 }
651 }
652
653 __free_page(scratch);
654 return dsaddr;
655
656out_err_drain_dsaddrs:
657 while (!list_empty(&dsaddrs)) {
658 da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr,
659 da_node);
660 list_del_init(&da->da_node);
661 kfree(da->da_remotestr);
662 kfree(da);
663 }
664out_err_free_deviceid:
665 nfs4_fl_free_deviceid(dsaddr);
666 /* stripe_indicies was part of dsaddr */
667 goto out_err_free_scratch;
668out_err_free_stripe_indices:
669 kfree(stripe_indices);
670out_err_free_scratch:
671 __free_page(scratch);
672out_err:
673 dprintk("%s ERROR: returning NULL\n", __func__);
674 return NULL;
675}
676
677/*
678 * Decode the opaque device specified in 'dev' and add it to the cache of
679 * available devices.
680 */
681static struct nfs4_file_layout_dsaddr *
682decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags)
683{
684 struct nfs4_deviceid_node *d;
685 struct nfs4_file_layout_dsaddr *n, *new;
686
687 new = decode_device(inode, dev, gfp_flags);
688 if (!new) {
689 printk(KERN_WARNING "%s: Could not decode or add device\n",
690 __func__);
691 return NULL;
692 }
693
694 d = nfs4_insert_deviceid_node(&new->id_node);
695 n = container_of(d, struct nfs4_file_layout_dsaddr, id_node);
696 if (n != new) {
697 nfs4_fl_free_deviceid(new);
698 return n;
699 }
700
701 return new;
702}
703
704/*
705 * Retrieve the information for dev_id, add it to the list
706 * of available devices, and return it.
707 */
708struct nfs4_file_layout_dsaddr *
709get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags)
710{
711 struct pnfs_device *pdev = NULL;
712 u32 max_resp_sz;
713 int max_pages;
714 struct page **pages = NULL;
715 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
716 int rc, i;
717 struct nfs_server *server = NFS_SERVER(inode);
718
719 /*
720 * Use the session max response size as the basis for setting
721 * GETDEVICEINFO's maxcount
722 */
723 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
724 max_pages = max_resp_sz >> PAGE_SHIFT;
725 dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
726 __func__, inode, max_resp_sz, max_pages);
727
728 pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags);
729 if (pdev == NULL)
730 return NULL;
731
732 pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags);
733 if (pages == NULL) {
734 kfree(pdev);
735 return NULL;
736 }
737 for (i = 0; i < max_pages; i++) {
738 pages[i] = alloc_page(gfp_flags);
739 if (!pages[i])
740 goto out_free;
741 }
742
743 memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
744 pdev->layout_type = LAYOUT_NFSV4_1_FILES;
745 pdev->pages = pages;
746 pdev->pgbase = 0;
747 pdev->pglen = PAGE_SIZE * max_pages;
748 pdev->mincount = 0;
749
750 rc = nfs4_proc_getdeviceinfo(server, pdev);
751 dprintk("%s getdevice info returns %d\n", __func__, rc);
752 if (rc)
753 goto out_free;
754
755 /*
756 * Found new device, need to decode it and then add it to the
757 * list of known devices for this mountpoint.
758 */
759 dsaddr = decode_and_add_device(inode, pdev, gfp_flags);
760out_free:
761 for (i = 0; i < max_pages; i++)
762 __free_page(pages[i]);
763 kfree(pages);
764 kfree(pdev);
765 dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
766 return dsaddr;
767}
768
769void
770nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
771{
772 nfs4_put_deviceid_node(&dsaddr->id_node);
773}
774
775/*
776 * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
777 * Then: ((res + fsi) % dsaddr->stripe_count)
778 */
779u32
780nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset)
781{
782 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
783 u64 tmp;
784
785 tmp = offset - flseg->pattern_offset;
786 do_div(tmp, flseg->stripe_unit);
787 tmp += flseg->first_stripe_index;
788 return do_div(tmp, flseg->dsaddr->stripe_count);
789}
790
791u32
792nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j)
793{
794 return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
795}
796
797struct nfs_fh *
798nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j)
799{
800 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
801 u32 i;
802
803 if (flseg->stripe_type == STRIPE_SPARSE) {
804 if (flseg->num_fh == 1)
805 i = 0;
806 else if (flseg->num_fh == 0)
807 /* Use the MDS OPEN fh set in nfs_read_rpcsetup */
808 return NULL;
809 else
810 i = nfs4_fl_calc_ds_index(lseg, j);
811 } else
812 i = j;
813 return flseg->fh_array[i];
814}
815
816static void
817filelayout_mark_devid_negative(struct nfs4_file_layout_dsaddr *dsaddr,
818 int err, const char *ds_remotestr)
819{
820 u32 *p = (u32 *)&dsaddr->id_node.deviceid;
821
822 printk(KERN_ERR "NFS: data server %s connection error %d."
823 " Deviceid [%x%x%x%x] marked out of use.\n",
824 ds_remotestr, err, p[0], p[1], p[2], p[3]);
825
826 spin_lock(&nfs4_ds_cache_lock);
827 dsaddr->flags |= NFS4_DEVICE_ID_NEG_ENTRY;
828 spin_unlock(&nfs4_ds_cache_lock);
829}
830
831struct nfs4_pnfs_ds *
832nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx)
833{
834 struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
835 struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
836
837 if (ds == NULL) {
838 printk(KERN_ERR "%s: No data server for offset index %d\n",
839 __func__, ds_idx);
840 return NULL;
841 }
842
843 if (!ds->ds_clp) {
844 struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
845 int err;
846
847 if (dsaddr->flags & NFS4_DEVICE_ID_NEG_ENTRY) {
848 /* Already tried to connect, don't try again */
849 dprintk("%s Deviceid marked out of use\n", __func__);
850 return NULL;
851 }
852 err = nfs4_ds_connect(s, ds);
853 if (err) {
854 filelayout_mark_devid_negative(dsaddr, err,
855 ds->ds_remotestr);
856 return NULL;
857 }
858 }
859 return ds;
860}
1/*
2 * Device operations for the pnfs nfs4 file layout driver.
3 *
4 * Copyright (c) 2002
5 * The Regents of the University of Michigan
6 * All Rights Reserved
7 *
8 * Dean Hildebrand <dhildebz@umich.edu>
9 * Garth Goodson <Garth.Goodson@netapp.com>
10 *
11 * Permission is granted to use, copy, create derivative works, and
12 * redistribute this software and such derivative works for any purpose,
13 * so long as the name of the University of Michigan is not used in
14 * any advertising or publicity pertaining to the use or distribution
15 * of this software without specific, written prior authorization. If
16 * the above copyright notice or any other identification of the
17 * University of Michigan is included in any copy of any portion of
18 * this software, then the disclaimer below must also be included.
19 *
20 * This software is provided as is, without representation or warranty
21 * of any kind either express or implied, including without limitation
22 * the implied warranties of merchantability, fitness for a particular
23 * purpose, or noninfringement. The Regents of the University of
24 * Michigan shall not be liable for any damages, including special,
25 * indirect, incidental, or consequential damages, with respect to any
26 * claim arising out of or in connection with the use of the software,
27 * even if it has been or is hereafter advised of the possibility of
28 * such damages.
29 */
30
31#include <linux/nfs_fs.h>
32#include <linux/vmalloc.h>
33#include <linux/module.h>
34
35#include "internal.h"
36#include "nfs4filelayout.h"
37
38#define NFSDBG_FACILITY NFSDBG_PNFS_LD
39
40static unsigned int dataserver_timeo = NFS4_DEF_DS_TIMEO;
41static unsigned int dataserver_retrans = NFS4_DEF_DS_RETRANS;
42
43/*
44 * Data server cache
45 *
46 * Data servers can be mapped to different device ids.
47 * nfs4_pnfs_ds reference counting
48 * - set to 1 on allocation
49 * - incremented when a device id maps a data server already in the cache.
50 * - decremented when deviceid is removed from the cache.
51 */
52static DEFINE_SPINLOCK(nfs4_ds_cache_lock);
53static LIST_HEAD(nfs4_data_server_cache);
54
55/* Debug routines */
56void
57print_ds(struct nfs4_pnfs_ds *ds)
58{
59 if (ds == NULL) {
60 printk("%s NULL device\n", __func__);
61 return;
62 }
63 printk(" ds %s\n"
64 " ref count %d\n"
65 " client %p\n"
66 " cl_exchange_flags %x\n",
67 ds->ds_remotestr,
68 atomic_read(&ds->ds_count), ds->ds_clp,
69 ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
70}
71
72static bool
73same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2)
74{
75 struct sockaddr_in *a, *b;
76 struct sockaddr_in6 *a6, *b6;
77
78 if (addr1->sa_family != addr2->sa_family)
79 return false;
80
81 switch (addr1->sa_family) {
82 case AF_INET:
83 a = (struct sockaddr_in *)addr1;
84 b = (struct sockaddr_in *)addr2;
85
86 if (a->sin_addr.s_addr == b->sin_addr.s_addr &&
87 a->sin_port == b->sin_port)
88 return true;
89 break;
90
91 case AF_INET6:
92 a6 = (struct sockaddr_in6 *)addr1;
93 b6 = (struct sockaddr_in6 *)addr2;
94
95 /* LINKLOCAL addresses must have matching scope_id */
96 if (ipv6_addr_scope(&a6->sin6_addr) ==
97 IPV6_ADDR_SCOPE_LINKLOCAL &&
98 a6->sin6_scope_id != b6->sin6_scope_id)
99 return false;
100
101 if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) &&
102 a6->sin6_port == b6->sin6_port)
103 return true;
104 break;
105
106 default:
107 dprintk("%s: unhandled address family: %u\n",
108 __func__, addr1->sa_family);
109 return false;
110 }
111
112 return false;
113}
114
115static bool
116_same_data_server_addrs_locked(const struct list_head *dsaddrs1,
117 const struct list_head *dsaddrs2)
118{
119 struct nfs4_pnfs_ds_addr *da1, *da2;
120
121 /* step through both lists, comparing as we go */
122 for (da1 = list_first_entry(dsaddrs1, typeof(*da1), da_node),
123 da2 = list_first_entry(dsaddrs2, typeof(*da2), da_node);
124 da1 != NULL && da2 != NULL;
125 da1 = list_entry(da1->da_node.next, typeof(*da1), da_node),
126 da2 = list_entry(da2->da_node.next, typeof(*da2), da_node)) {
127 if (!same_sockaddr((struct sockaddr *)&da1->da_addr,
128 (struct sockaddr *)&da2->da_addr))
129 return false;
130 }
131 if (da1 == NULL && da2 == NULL)
132 return true;
133
134 return false;
135}
136
137/*
138 * Lookup DS by addresses. nfs4_ds_cache_lock is held
139 */
140static struct nfs4_pnfs_ds *
141_data_server_lookup_locked(const struct list_head *dsaddrs)
142{
143 struct nfs4_pnfs_ds *ds;
144
145 list_for_each_entry(ds, &nfs4_data_server_cache, ds_node)
146 if (_same_data_server_addrs_locked(&ds->ds_addrs, dsaddrs))
147 return ds;
148 return NULL;
149}
150
151/*
152 * Lookup DS by nfs_client pointer. Zero data server client pointer
153 */
154void nfs4_ds_disconnect(struct nfs_client *clp)
155{
156 struct nfs4_pnfs_ds *ds;
157 struct nfs_client *found = NULL;
158
159 dprintk("%s clp %p\n", __func__, clp);
160 spin_lock(&nfs4_ds_cache_lock);
161 list_for_each_entry(ds, &nfs4_data_server_cache, ds_node)
162 if (ds->ds_clp && ds->ds_clp == clp) {
163 found = ds->ds_clp;
164 ds->ds_clp = NULL;
165 }
166 spin_unlock(&nfs4_ds_cache_lock);
167 if (found) {
168 set_bit(NFS_CS_STOP_RENEW, &clp->cl_res_state);
169 nfs_put_client(clp);
170 }
171}
172
173/*
174 * Create an rpc connection to the nfs4_pnfs_ds data server
175 * Currently only supports IPv4 and IPv6 addresses
176 */
177static int
178nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
179{
180 struct nfs_client *clp = ERR_PTR(-EIO);
181 struct nfs4_pnfs_ds_addr *da;
182 int status = 0;
183
184 dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr,
185 mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
186
187 BUG_ON(list_empty(&ds->ds_addrs));
188
189 list_for_each_entry(da, &ds->ds_addrs, da_node) {
190 dprintk("%s: DS %s: trying address %s\n",
191 __func__, ds->ds_remotestr, da->da_remotestr);
192
193 clp = nfs4_set_ds_client(mds_srv->nfs_client,
194 (struct sockaddr *)&da->da_addr,
195 da->da_addrlen, IPPROTO_TCP,
196 dataserver_timeo, dataserver_retrans);
197 if (!IS_ERR(clp))
198 break;
199 }
200
201 if (IS_ERR(clp)) {
202 status = PTR_ERR(clp);
203 goto out;
204 }
205
206 status = nfs4_init_ds_session(clp, mds_srv->nfs_client->cl_lease_time);
207 if (status)
208 goto out_put;
209
210 ds->ds_clp = clp;
211 dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr);
212out:
213 return status;
214out_put:
215 nfs_put_client(clp);
216 goto out;
217}
218
219static void
220destroy_ds(struct nfs4_pnfs_ds *ds)
221{
222 struct nfs4_pnfs_ds_addr *da;
223
224 dprintk("--> %s\n", __func__);
225 ifdebug(FACILITY)
226 print_ds(ds);
227
228 if (ds->ds_clp)
229 nfs_put_client(ds->ds_clp);
230
231 while (!list_empty(&ds->ds_addrs)) {
232 da = list_first_entry(&ds->ds_addrs,
233 struct nfs4_pnfs_ds_addr,
234 da_node);
235 list_del_init(&da->da_node);
236 kfree(da->da_remotestr);
237 kfree(da);
238 }
239
240 kfree(ds->ds_remotestr);
241 kfree(ds);
242}
243
244void
245nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
246{
247 struct nfs4_pnfs_ds *ds;
248 int i;
249
250 nfs4_print_deviceid(&dsaddr->id_node.deviceid);
251
252 for (i = 0; i < dsaddr->ds_num; i++) {
253 ds = dsaddr->ds_list[i];
254 if (ds != NULL) {
255 if (atomic_dec_and_lock(&ds->ds_count,
256 &nfs4_ds_cache_lock)) {
257 list_del_init(&ds->ds_node);
258 spin_unlock(&nfs4_ds_cache_lock);
259 destroy_ds(ds);
260 }
261 }
262 }
263 kfree(dsaddr->stripe_indices);
264 kfree(dsaddr);
265}
266
267/*
268 * Create a string with a human readable address and port to avoid
269 * complicated setup around many dprinks.
270 */
271static char *
272nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags)
273{
274 struct nfs4_pnfs_ds_addr *da;
275 char *remotestr;
276 size_t len;
277 char *p;
278
279 len = 3; /* '{', '}' and eol */
280 list_for_each_entry(da, dsaddrs, da_node) {
281 len += strlen(da->da_remotestr) + 1; /* string plus comma */
282 }
283
284 remotestr = kzalloc(len, gfp_flags);
285 if (!remotestr)
286 return NULL;
287
288 p = remotestr;
289 *(p++) = '{';
290 len--;
291 list_for_each_entry(da, dsaddrs, da_node) {
292 size_t ll = strlen(da->da_remotestr);
293
294 if (ll > len)
295 goto out_err;
296
297 memcpy(p, da->da_remotestr, ll);
298 p += ll;
299 len -= ll;
300
301 if (len < 1)
302 goto out_err;
303 (*p++) = ',';
304 len--;
305 }
306 if (len < 2)
307 goto out_err;
308 *(p++) = '}';
309 *p = '\0';
310 return remotestr;
311out_err:
312 kfree(remotestr);
313 return NULL;
314}
315
316static struct nfs4_pnfs_ds *
317nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags)
318{
319 struct nfs4_pnfs_ds *tmp_ds, *ds = NULL;
320 char *remotestr;
321
322 if (list_empty(dsaddrs)) {
323 dprintk("%s: no addresses defined\n", __func__);
324 goto out;
325 }
326
327 ds = kzalloc(sizeof(*ds), gfp_flags);
328 if (!ds)
329 goto out;
330
331 /* this is only used for debugging, so it's ok if its NULL */
332 remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags);
333
334 spin_lock(&nfs4_ds_cache_lock);
335 tmp_ds = _data_server_lookup_locked(dsaddrs);
336 if (tmp_ds == NULL) {
337 INIT_LIST_HEAD(&ds->ds_addrs);
338 list_splice_init(dsaddrs, &ds->ds_addrs);
339 ds->ds_remotestr = remotestr;
340 atomic_set(&ds->ds_count, 1);
341 INIT_LIST_HEAD(&ds->ds_node);
342 ds->ds_clp = NULL;
343 list_add(&ds->ds_node, &nfs4_data_server_cache);
344 dprintk("%s add new data server %s\n", __func__,
345 ds->ds_remotestr);
346 } else {
347 kfree(remotestr);
348 kfree(ds);
349 atomic_inc(&tmp_ds->ds_count);
350 dprintk("%s data server %s found, inc'ed ds_count to %d\n",
351 __func__, tmp_ds->ds_remotestr,
352 atomic_read(&tmp_ds->ds_count));
353 ds = tmp_ds;
354 }
355 spin_unlock(&nfs4_ds_cache_lock);
356out:
357 return ds;
358}
359
360/*
361 * Currently only supports ipv4, ipv6 and one multi-path address.
362 */
363static struct nfs4_pnfs_ds_addr *
364decode_ds_addr(struct net *net, struct xdr_stream *streamp, gfp_t gfp_flags)
365{
366 struct nfs4_pnfs_ds_addr *da = NULL;
367 char *buf, *portstr;
368 __be16 port;
369 int nlen, rlen;
370 int tmp[2];
371 __be32 *p;
372 char *netid, *match_netid;
373 size_t len, match_netid_len;
374 char *startsep = "";
375 char *endsep = "";
376
377
378 /* r_netid */
379 p = xdr_inline_decode(streamp, 4);
380 if (unlikely(!p))
381 goto out_err;
382 nlen = be32_to_cpup(p++);
383
384 p = xdr_inline_decode(streamp, nlen);
385 if (unlikely(!p))
386 goto out_err;
387
388 netid = kmalloc(nlen+1, gfp_flags);
389 if (unlikely(!netid))
390 goto out_err;
391
392 netid[nlen] = '\0';
393 memcpy(netid, p, nlen);
394
395 /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */
396 p = xdr_inline_decode(streamp, 4);
397 if (unlikely(!p))
398 goto out_free_netid;
399 rlen = be32_to_cpup(p);
400
401 p = xdr_inline_decode(streamp, rlen);
402 if (unlikely(!p))
403 goto out_free_netid;
404
405 /* port is ".ABC.DEF", 8 chars max */
406 if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) {
407 dprintk("%s: Invalid address, length %d\n", __func__,
408 rlen);
409 goto out_free_netid;
410 }
411 buf = kmalloc(rlen + 1, gfp_flags);
412 if (!buf) {
413 dprintk("%s: Not enough memory\n", __func__);
414 goto out_free_netid;
415 }
416 buf[rlen] = '\0';
417 memcpy(buf, p, rlen);
418
419 /* replace port '.' with '-' */
420 portstr = strrchr(buf, '.');
421 if (!portstr) {
422 dprintk("%s: Failed finding expected dot in port\n",
423 __func__);
424 goto out_free_buf;
425 }
426 *portstr = '-';
427
428 /* find '.' between address and port */
429 portstr = strrchr(buf, '.');
430 if (!portstr) {
431 dprintk("%s: Failed finding expected dot between address and "
432 "port\n", __func__);
433 goto out_free_buf;
434 }
435 *portstr = '\0';
436
437 da = kzalloc(sizeof(*da), gfp_flags);
438 if (unlikely(!da))
439 goto out_free_buf;
440
441 INIT_LIST_HEAD(&da->da_node);
442
443 if (!rpc_pton(net, buf, portstr-buf, (struct sockaddr *)&da->da_addr,
444 sizeof(da->da_addr))) {
445 dprintk("%s: error parsing address %s\n", __func__, buf);
446 goto out_free_da;
447 }
448
449 portstr++;
450 sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]);
451 port = htons((tmp[0] << 8) | (tmp[1]));
452
453 switch (da->da_addr.ss_family) {
454 case AF_INET:
455 ((struct sockaddr_in *)&da->da_addr)->sin_port = port;
456 da->da_addrlen = sizeof(struct sockaddr_in);
457 match_netid = "tcp";
458 match_netid_len = 3;
459 break;
460
461 case AF_INET6:
462 ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port;
463 da->da_addrlen = sizeof(struct sockaddr_in6);
464 match_netid = "tcp6";
465 match_netid_len = 4;
466 startsep = "[";
467 endsep = "]";
468 break;
469
470 default:
471 dprintk("%s: unsupported address family: %u\n",
472 __func__, da->da_addr.ss_family);
473 goto out_free_da;
474 }
475
476 if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) {
477 dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n",
478 __func__, netid, match_netid);
479 goto out_free_da;
480 }
481
482 /* save human readable address */
483 len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7;
484 da->da_remotestr = kzalloc(len, gfp_flags);
485
486 /* NULL is ok, only used for dprintk */
487 if (da->da_remotestr)
488 snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep,
489 buf, endsep, ntohs(port));
490
491 dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr);
492 kfree(buf);
493 kfree(netid);
494 return da;
495
496out_free_da:
497 kfree(da);
498out_free_buf:
499 dprintk("%s: Error parsing DS addr: %s\n", __func__, buf);
500 kfree(buf);
501out_free_netid:
502 kfree(netid);
503out_err:
504 return NULL;
505}
506
507/* Decode opaque device data and return the result */
508static struct nfs4_file_layout_dsaddr*
509decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags)
510{
511 int i;
512 u32 cnt, num;
513 u8 *indexp;
514 __be32 *p;
515 u8 *stripe_indices;
516 u8 max_stripe_index;
517 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
518 struct xdr_stream stream;
519 struct xdr_buf buf;
520 struct page *scratch;
521 struct list_head dsaddrs;
522 struct nfs4_pnfs_ds_addr *da;
523
524 /* set up xdr stream */
525 scratch = alloc_page(gfp_flags);
526 if (!scratch)
527 goto out_err;
528
529 xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen);
530 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
531
532 /* Get the stripe count (number of stripe index) */
533 p = xdr_inline_decode(&stream, 4);
534 if (unlikely(!p))
535 goto out_err_free_scratch;
536
537 cnt = be32_to_cpup(p);
538 dprintk("%s stripe count %d\n", __func__, cnt);
539 if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
540 printk(KERN_WARNING "NFS: %s: stripe count %d greater than "
541 "supported maximum %d\n", __func__,
542 cnt, NFS4_PNFS_MAX_STRIPE_CNT);
543 goto out_err_free_scratch;
544 }
545
546 /* read stripe indices */
547 stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags);
548 if (!stripe_indices)
549 goto out_err_free_scratch;
550
551 p = xdr_inline_decode(&stream, cnt << 2);
552 if (unlikely(!p))
553 goto out_err_free_stripe_indices;
554
555 indexp = &stripe_indices[0];
556 max_stripe_index = 0;
557 for (i = 0; i < cnt; i++) {
558 *indexp = be32_to_cpup(p++);
559 max_stripe_index = max(max_stripe_index, *indexp);
560 indexp++;
561 }
562
563 /* Check the multipath list count */
564 p = xdr_inline_decode(&stream, 4);
565 if (unlikely(!p))
566 goto out_err_free_stripe_indices;
567
568 num = be32_to_cpup(p);
569 dprintk("%s ds_num %u\n", __func__, num);
570 if (num > NFS4_PNFS_MAX_MULTI_CNT) {
571 printk(KERN_WARNING "NFS: %s: multipath count %d greater than "
572 "supported maximum %d\n", __func__,
573 num, NFS4_PNFS_MAX_MULTI_CNT);
574 goto out_err_free_stripe_indices;
575 }
576
577 /* validate stripe indices are all < num */
578 if (max_stripe_index >= num) {
579 printk(KERN_WARNING "NFS: %s: stripe index %u >= num ds %u\n",
580 __func__, max_stripe_index, num);
581 goto out_err_free_stripe_indices;
582 }
583
584 dsaddr = kzalloc(sizeof(*dsaddr) +
585 (sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
586 gfp_flags);
587 if (!dsaddr)
588 goto out_err_free_stripe_indices;
589
590 dsaddr->stripe_count = cnt;
591 dsaddr->stripe_indices = stripe_indices;
592 stripe_indices = NULL;
593 dsaddr->ds_num = num;
594 nfs4_init_deviceid_node(&dsaddr->id_node,
595 NFS_SERVER(ino)->pnfs_curr_ld,
596 NFS_SERVER(ino)->nfs_client,
597 &pdev->dev_id);
598
599 INIT_LIST_HEAD(&dsaddrs);
600
601 for (i = 0; i < dsaddr->ds_num; i++) {
602 int j;
603 u32 mp_count;
604
605 p = xdr_inline_decode(&stream, 4);
606 if (unlikely(!p))
607 goto out_err_free_deviceid;
608
609 mp_count = be32_to_cpup(p); /* multipath count */
610 for (j = 0; j < mp_count; j++) {
611 da = decode_ds_addr(NFS_SERVER(ino)->nfs_client->cl_net,
612 &stream, gfp_flags);
613 if (da)
614 list_add_tail(&da->da_node, &dsaddrs);
615 }
616 if (list_empty(&dsaddrs)) {
617 dprintk("%s: no suitable DS addresses found\n",
618 __func__);
619 goto out_err_free_deviceid;
620 }
621
622 dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags);
623 if (!dsaddr->ds_list[i])
624 goto out_err_drain_dsaddrs;
625
626 /* If DS was already in cache, free ds addrs */
627 while (!list_empty(&dsaddrs)) {
628 da = list_first_entry(&dsaddrs,
629 struct nfs4_pnfs_ds_addr,
630 da_node);
631 list_del_init(&da->da_node);
632 kfree(da->da_remotestr);
633 kfree(da);
634 }
635 }
636
637 __free_page(scratch);
638 return dsaddr;
639
640out_err_drain_dsaddrs:
641 while (!list_empty(&dsaddrs)) {
642 da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr,
643 da_node);
644 list_del_init(&da->da_node);
645 kfree(da->da_remotestr);
646 kfree(da);
647 }
648out_err_free_deviceid:
649 nfs4_fl_free_deviceid(dsaddr);
650 /* stripe_indicies was part of dsaddr */
651 goto out_err_free_scratch;
652out_err_free_stripe_indices:
653 kfree(stripe_indices);
654out_err_free_scratch:
655 __free_page(scratch);
656out_err:
657 dprintk("%s ERROR: returning NULL\n", __func__);
658 return NULL;
659}
660
661/*
662 * Decode the opaque device specified in 'dev' and add it to the cache of
663 * available devices.
664 */
665static struct nfs4_file_layout_dsaddr *
666decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags)
667{
668 struct nfs4_deviceid_node *d;
669 struct nfs4_file_layout_dsaddr *n, *new;
670
671 new = decode_device(inode, dev, gfp_flags);
672 if (!new) {
673 printk(KERN_WARNING "NFS: %s: Could not decode or add device\n",
674 __func__);
675 return NULL;
676 }
677
678 d = nfs4_insert_deviceid_node(&new->id_node);
679 n = container_of(d, struct nfs4_file_layout_dsaddr, id_node);
680 if (n != new) {
681 nfs4_fl_free_deviceid(new);
682 return n;
683 }
684
685 return new;
686}
687
688/*
689 * Retrieve the information for dev_id, add it to the list
690 * of available devices, and return it.
691 */
692struct nfs4_file_layout_dsaddr *
693get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags)
694{
695 struct pnfs_device *pdev = NULL;
696 u32 max_resp_sz;
697 int max_pages;
698 struct page **pages = NULL;
699 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
700 int rc, i;
701 struct nfs_server *server = NFS_SERVER(inode);
702
703 /*
704 * Use the session max response size as the basis for setting
705 * GETDEVICEINFO's maxcount
706 */
707 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
708 max_pages = nfs_page_array_len(0, max_resp_sz);
709 dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
710 __func__, inode, max_resp_sz, max_pages);
711
712 pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags);
713 if (pdev == NULL)
714 return NULL;
715
716 pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags);
717 if (pages == NULL) {
718 kfree(pdev);
719 return NULL;
720 }
721 for (i = 0; i < max_pages; i++) {
722 pages[i] = alloc_page(gfp_flags);
723 if (!pages[i])
724 goto out_free;
725 }
726
727 memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
728 pdev->layout_type = LAYOUT_NFSV4_1_FILES;
729 pdev->pages = pages;
730 pdev->pgbase = 0;
731 pdev->pglen = PAGE_SIZE * max_pages;
732 pdev->mincount = 0;
733
734 rc = nfs4_proc_getdeviceinfo(server, pdev);
735 dprintk("%s getdevice info returns %d\n", __func__, rc);
736 if (rc)
737 goto out_free;
738
739 /*
740 * Found new device, need to decode it and then add it to the
741 * list of known devices for this mountpoint.
742 */
743 dsaddr = decode_and_add_device(inode, pdev, gfp_flags);
744out_free:
745 for (i = 0; i < max_pages; i++)
746 __free_page(pages[i]);
747 kfree(pages);
748 kfree(pdev);
749 dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
750 return dsaddr;
751}
752
753void
754nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
755{
756 nfs4_put_deviceid_node(&dsaddr->id_node);
757}
758
759/*
760 * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
761 * Then: ((res + fsi) % dsaddr->stripe_count)
762 */
763u32
764nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset)
765{
766 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
767 u64 tmp;
768
769 tmp = offset - flseg->pattern_offset;
770 do_div(tmp, flseg->stripe_unit);
771 tmp += flseg->first_stripe_index;
772 return do_div(tmp, flseg->dsaddr->stripe_count);
773}
774
775u32
776nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j)
777{
778 return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
779}
780
781struct nfs_fh *
782nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j)
783{
784 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
785 u32 i;
786
787 if (flseg->stripe_type == STRIPE_SPARSE) {
788 if (flseg->num_fh == 1)
789 i = 0;
790 else if (flseg->num_fh == 0)
791 /* Use the MDS OPEN fh set in nfs_read_rpcsetup */
792 return NULL;
793 else
794 i = nfs4_fl_calc_ds_index(lseg, j);
795 } else
796 i = j;
797 return flseg->fh_array[i];
798}
799
800struct nfs4_pnfs_ds *
801nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx)
802{
803 struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
804 struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
805 struct nfs4_deviceid_node *devid = FILELAYOUT_DEVID_NODE(lseg);
806
807 if (filelayout_test_devid_invalid(devid))
808 return NULL;
809
810 if (ds == NULL) {
811 printk(KERN_ERR "NFS: %s: No data server for offset index %d\n",
812 __func__, ds_idx);
813 goto mark_dev_invalid;
814 }
815
816 if (!ds->ds_clp) {
817 struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
818 int err;
819
820 err = nfs4_ds_connect(s, ds);
821 if (err)
822 goto mark_dev_invalid;
823 }
824 return ds;
825
826mark_dev_invalid:
827 filelayout_mark_devid_invalid(devid);
828 return NULL;
829}
830
831module_param(dataserver_retrans, uint, 0644);
832MODULE_PARM_DESC(dataserver_retrans, "The number of times the NFSv4.1 client "
833 "retries a request before it attempts further "
834 " recovery action.");
835module_param(dataserver_timeo, uint, 0644);
836MODULE_PARM_DESC(dataserver_timeo, "The time (in tenths of a second) the "
837 "NFSv4.1 client waits for a response from a "
838 " data server before it retries an NFS request.");