Loading...
1/*
2 * Device operations for the pnfs nfs4 file layout driver.
3 *
4 * Copyright (c) 2002
5 * The Regents of the University of Michigan
6 * All Rights Reserved
7 *
8 * Dean Hildebrand <dhildebz@umich.edu>
9 * Garth Goodson <Garth.Goodson@netapp.com>
10 *
11 * Permission is granted to use, copy, create derivative works, and
12 * redistribute this software and such derivative works for any purpose,
13 * so long as the name of the University of Michigan is not used in
14 * any advertising or publicity pertaining to the use or distribution
15 * of this software without specific, written prior authorization. If
16 * the above copyright notice or any other identification of the
17 * University of Michigan is included in any copy of any portion of
18 * this software, then the disclaimer below must also be included.
19 *
20 * This software is provided as is, without representation or warranty
21 * of any kind either express or implied, including without limitation
22 * the implied warranties of merchantability, fitness for a particular
23 * purpose, or noninfringement. The Regents of the University of
24 * Michigan shall not be liable for any damages, including special,
25 * indirect, incidental, or consequential damages, with respect to any
26 * claim arising out of or in connection with the use of the software,
27 * even if it has been or is hereafter advised of the possibility of
28 * such damages.
29 */
30
31#include <linux/nfs_fs.h>
32#include <linux/vmalloc.h>
33
34#include "internal.h"
35#include "nfs4filelayout.h"
36
37#define NFSDBG_FACILITY NFSDBG_PNFS_LD
38
39/*
40 * Data server cache
41 *
42 * Data servers can be mapped to different device ids.
43 * nfs4_pnfs_ds reference counting
44 * - set to 1 on allocation
45 * - incremented when a device id maps a data server already in the cache.
46 * - decremented when deviceid is removed from the cache.
47 */
48DEFINE_SPINLOCK(nfs4_ds_cache_lock);
49static LIST_HEAD(nfs4_data_server_cache);
50
51/* Debug routines */
52void
53print_ds(struct nfs4_pnfs_ds *ds)
54{
55 if (ds == NULL) {
56 printk("%s NULL device\n", __func__);
57 return;
58 }
59 printk(" ds %s\n"
60 " ref count %d\n"
61 " client %p\n"
62 " cl_exchange_flags %x\n",
63 ds->ds_remotestr,
64 atomic_read(&ds->ds_count), ds->ds_clp,
65 ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
66}
67
68static bool
69same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2)
70{
71 struct sockaddr_in *a, *b;
72 struct sockaddr_in6 *a6, *b6;
73
74 if (addr1->sa_family != addr2->sa_family)
75 return false;
76
77 switch (addr1->sa_family) {
78 case AF_INET:
79 a = (struct sockaddr_in *)addr1;
80 b = (struct sockaddr_in *)addr2;
81
82 if (a->sin_addr.s_addr == b->sin_addr.s_addr &&
83 a->sin_port == b->sin_port)
84 return true;
85 break;
86
87 case AF_INET6:
88 a6 = (struct sockaddr_in6 *)addr1;
89 b6 = (struct sockaddr_in6 *)addr2;
90
91 /* LINKLOCAL addresses must have matching scope_id */
92 if (ipv6_addr_scope(&a6->sin6_addr) ==
93 IPV6_ADDR_SCOPE_LINKLOCAL &&
94 a6->sin6_scope_id != b6->sin6_scope_id)
95 return false;
96
97 if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) &&
98 a6->sin6_port == b6->sin6_port)
99 return true;
100 break;
101
102 default:
103 dprintk("%s: unhandled address family: %u\n",
104 __func__, addr1->sa_family);
105 return false;
106 }
107
108 return false;
109}
110
111/*
112 * Lookup DS by addresses. The first matching address returns true.
113 * nfs4_ds_cache_lock is held
114 */
115static struct nfs4_pnfs_ds *
116_data_server_lookup_locked(struct list_head *dsaddrs)
117{
118 struct nfs4_pnfs_ds *ds;
119 struct nfs4_pnfs_ds_addr *da1, *da2;
120
121 list_for_each_entry(da1, dsaddrs, da_node) {
122 list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) {
123 list_for_each_entry(da2, &ds->ds_addrs, da_node) {
124 if (same_sockaddr(
125 (struct sockaddr *)&da1->da_addr,
126 (struct sockaddr *)&da2->da_addr))
127 return ds;
128 }
129 }
130 }
131 return NULL;
132}
133
134/*
135 * Compare two lists of addresses.
136 */
137static bool
138_data_server_match_all_addrs_locked(struct list_head *dsaddrs1,
139 struct list_head *dsaddrs2)
140{
141 struct nfs4_pnfs_ds_addr *da1, *da2;
142 size_t count1 = 0,
143 count2 = 0;
144
145 list_for_each_entry(da1, dsaddrs1, da_node)
146 count1++;
147
148 list_for_each_entry(da2, dsaddrs2, da_node) {
149 bool found = false;
150 count2++;
151 list_for_each_entry(da1, dsaddrs1, da_node) {
152 if (same_sockaddr((struct sockaddr *)&da1->da_addr,
153 (struct sockaddr *)&da2->da_addr)) {
154 found = true;
155 break;
156 }
157 }
158 if (!found)
159 return false;
160 }
161
162 return (count1 == count2);
163}
164
165/*
166 * Create an rpc connection to the nfs4_pnfs_ds data server
167 * Currently only supports IPv4 and IPv6 addresses
168 */
169static int
170nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
171{
172 struct nfs_client *clp = ERR_PTR(-EIO);
173 struct nfs4_pnfs_ds_addr *da;
174 int status = 0;
175
176 dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr,
177 mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
178
179 BUG_ON(list_empty(&ds->ds_addrs));
180
181 list_for_each_entry(da, &ds->ds_addrs, da_node) {
182 dprintk("%s: DS %s: trying address %s\n",
183 __func__, ds->ds_remotestr, da->da_remotestr);
184
185 clp = nfs4_set_ds_client(mds_srv->nfs_client,
186 (struct sockaddr *)&da->da_addr,
187 da->da_addrlen, IPPROTO_TCP);
188 if (!IS_ERR(clp))
189 break;
190 }
191
192 if (IS_ERR(clp)) {
193 status = PTR_ERR(clp);
194 goto out;
195 }
196
197 if ((clp->cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS) != 0) {
198 if (!is_ds_client(clp)) {
199 status = -ENODEV;
200 goto out_put;
201 }
202 ds->ds_clp = clp;
203 dprintk("%s [existing] server=%s\n", __func__,
204 ds->ds_remotestr);
205 goto out;
206 }
207
208 /*
209 * Do not set NFS_CS_CHECK_LEASE_TIME instead set the DS lease to
210 * be equal to the MDS lease. Renewal is scheduled in create_session.
211 */
212 spin_lock(&mds_srv->nfs_client->cl_lock);
213 clp->cl_lease_time = mds_srv->nfs_client->cl_lease_time;
214 spin_unlock(&mds_srv->nfs_client->cl_lock);
215 clp->cl_last_renewal = jiffies;
216
217 /* New nfs_client */
218 status = nfs4_init_ds_session(clp);
219 if (status)
220 goto out_put;
221
222 ds->ds_clp = clp;
223 dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr);
224out:
225 return status;
226out_put:
227 nfs_put_client(clp);
228 goto out;
229}
230
231static void
232destroy_ds(struct nfs4_pnfs_ds *ds)
233{
234 struct nfs4_pnfs_ds_addr *da;
235
236 dprintk("--> %s\n", __func__);
237 ifdebug(FACILITY)
238 print_ds(ds);
239
240 if (ds->ds_clp)
241 nfs_put_client(ds->ds_clp);
242
243 while (!list_empty(&ds->ds_addrs)) {
244 da = list_first_entry(&ds->ds_addrs,
245 struct nfs4_pnfs_ds_addr,
246 da_node);
247 list_del_init(&da->da_node);
248 kfree(da->da_remotestr);
249 kfree(da);
250 }
251
252 kfree(ds->ds_remotestr);
253 kfree(ds);
254}
255
256void
257nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
258{
259 struct nfs4_pnfs_ds *ds;
260 int i;
261
262 nfs4_print_deviceid(&dsaddr->id_node.deviceid);
263
264 for (i = 0; i < dsaddr->ds_num; i++) {
265 ds = dsaddr->ds_list[i];
266 if (ds != NULL) {
267 if (atomic_dec_and_lock(&ds->ds_count,
268 &nfs4_ds_cache_lock)) {
269 list_del_init(&ds->ds_node);
270 spin_unlock(&nfs4_ds_cache_lock);
271 destroy_ds(ds);
272 }
273 }
274 }
275 kfree(dsaddr->stripe_indices);
276 kfree(dsaddr);
277}
278
279/*
280 * Create a string with a human readable address and port to avoid
281 * complicated setup around many dprinks.
282 */
283static char *
284nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags)
285{
286 struct nfs4_pnfs_ds_addr *da;
287 char *remotestr;
288 size_t len;
289 char *p;
290
291 len = 3; /* '{', '}' and eol */
292 list_for_each_entry(da, dsaddrs, da_node) {
293 len += strlen(da->da_remotestr) + 1; /* string plus comma */
294 }
295
296 remotestr = kzalloc(len, gfp_flags);
297 if (!remotestr)
298 return NULL;
299
300 p = remotestr;
301 *(p++) = '{';
302 len--;
303 list_for_each_entry(da, dsaddrs, da_node) {
304 size_t ll = strlen(da->da_remotestr);
305
306 if (ll > len)
307 goto out_err;
308
309 memcpy(p, da->da_remotestr, ll);
310 p += ll;
311 len -= ll;
312
313 if (len < 1)
314 goto out_err;
315 (*p++) = ',';
316 len--;
317 }
318 if (len < 2)
319 goto out_err;
320 *(p++) = '}';
321 *p = '\0';
322 return remotestr;
323out_err:
324 kfree(remotestr);
325 return NULL;
326}
327
328static struct nfs4_pnfs_ds *
329nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags)
330{
331 struct nfs4_pnfs_ds *tmp_ds, *ds = NULL;
332 char *remotestr;
333
334 if (list_empty(dsaddrs)) {
335 dprintk("%s: no addresses defined\n", __func__);
336 goto out;
337 }
338
339 ds = kzalloc(sizeof(*ds), gfp_flags);
340 if (!ds)
341 goto out;
342
343 /* this is only used for debugging, so it's ok if its NULL */
344 remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags);
345
346 spin_lock(&nfs4_ds_cache_lock);
347 tmp_ds = _data_server_lookup_locked(dsaddrs);
348 if (tmp_ds == NULL) {
349 INIT_LIST_HEAD(&ds->ds_addrs);
350 list_splice_init(dsaddrs, &ds->ds_addrs);
351 ds->ds_remotestr = remotestr;
352 atomic_set(&ds->ds_count, 1);
353 INIT_LIST_HEAD(&ds->ds_node);
354 ds->ds_clp = NULL;
355 list_add(&ds->ds_node, &nfs4_data_server_cache);
356 dprintk("%s add new data server %s\n", __func__,
357 ds->ds_remotestr);
358 } else {
359 if (!_data_server_match_all_addrs_locked(&tmp_ds->ds_addrs,
360 dsaddrs)) {
361 dprintk("%s: multipath address mismatch: %s != %s",
362 __func__, tmp_ds->ds_remotestr, remotestr);
363 }
364 kfree(remotestr);
365 kfree(ds);
366 atomic_inc(&tmp_ds->ds_count);
367 dprintk("%s data server %s found, inc'ed ds_count to %d\n",
368 __func__, tmp_ds->ds_remotestr,
369 atomic_read(&tmp_ds->ds_count));
370 ds = tmp_ds;
371 }
372 spin_unlock(&nfs4_ds_cache_lock);
373out:
374 return ds;
375}
376
377/*
378 * Currently only supports ipv4, ipv6 and one multi-path address.
379 */
380static struct nfs4_pnfs_ds_addr *
381decode_ds_addr(struct xdr_stream *streamp, gfp_t gfp_flags)
382{
383 struct nfs4_pnfs_ds_addr *da = NULL;
384 char *buf, *portstr;
385 u32 port;
386 int nlen, rlen;
387 int tmp[2];
388 __be32 *p;
389 char *netid, *match_netid;
390 size_t len, match_netid_len;
391 char *startsep = "";
392 char *endsep = "";
393
394
395 /* r_netid */
396 p = xdr_inline_decode(streamp, 4);
397 if (unlikely(!p))
398 goto out_err;
399 nlen = be32_to_cpup(p++);
400
401 p = xdr_inline_decode(streamp, nlen);
402 if (unlikely(!p))
403 goto out_err;
404
405 netid = kmalloc(nlen+1, gfp_flags);
406 if (unlikely(!netid))
407 goto out_err;
408
409 netid[nlen] = '\0';
410 memcpy(netid, p, nlen);
411
412 /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */
413 p = xdr_inline_decode(streamp, 4);
414 if (unlikely(!p))
415 goto out_free_netid;
416 rlen = be32_to_cpup(p);
417
418 p = xdr_inline_decode(streamp, rlen);
419 if (unlikely(!p))
420 goto out_free_netid;
421
422 /* port is ".ABC.DEF", 8 chars max */
423 if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) {
424 dprintk("%s: Invalid address, length %d\n", __func__,
425 rlen);
426 goto out_free_netid;
427 }
428 buf = kmalloc(rlen + 1, gfp_flags);
429 if (!buf) {
430 dprintk("%s: Not enough memory\n", __func__);
431 goto out_free_netid;
432 }
433 buf[rlen] = '\0';
434 memcpy(buf, p, rlen);
435
436 /* replace port '.' with '-' */
437 portstr = strrchr(buf, '.');
438 if (!portstr) {
439 dprintk("%s: Failed finding expected dot in port\n",
440 __func__);
441 goto out_free_buf;
442 }
443 *portstr = '-';
444
445 /* find '.' between address and port */
446 portstr = strrchr(buf, '.');
447 if (!portstr) {
448 dprintk("%s: Failed finding expected dot between address and "
449 "port\n", __func__);
450 goto out_free_buf;
451 }
452 *portstr = '\0';
453
454 da = kzalloc(sizeof(*da), gfp_flags);
455 if (unlikely(!da))
456 goto out_free_buf;
457
458 INIT_LIST_HEAD(&da->da_node);
459
460 if (!rpc_pton(buf, portstr-buf, (struct sockaddr *)&da->da_addr,
461 sizeof(da->da_addr))) {
462 dprintk("%s: error parsing address %s\n", __func__, buf);
463 goto out_free_da;
464 }
465
466 portstr++;
467 sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]);
468 port = htons((tmp[0] << 8) | (tmp[1]));
469
470 switch (da->da_addr.ss_family) {
471 case AF_INET:
472 ((struct sockaddr_in *)&da->da_addr)->sin_port = port;
473 da->da_addrlen = sizeof(struct sockaddr_in);
474 match_netid = "tcp";
475 match_netid_len = 3;
476 break;
477
478 case AF_INET6:
479 ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port;
480 da->da_addrlen = sizeof(struct sockaddr_in6);
481 match_netid = "tcp6";
482 match_netid_len = 4;
483 startsep = "[";
484 endsep = "]";
485 break;
486
487 default:
488 dprintk("%s: unsupported address family: %u\n",
489 __func__, da->da_addr.ss_family);
490 goto out_free_da;
491 }
492
493 if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) {
494 dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n",
495 __func__, netid, match_netid);
496 goto out_free_da;
497 }
498
499 /* save human readable address */
500 len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7;
501 da->da_remotestr = kzalloc(len, gfp_flags);
502
503 /* NULL is ok, only used for dprintk */
504 if (da->da_remotestr)
505 snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep,
506 buf, endsep, ntohs(port));
507
508 dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr);
509 kfree(buf);
510 kfree(netid);
511 return da;
512
513out_free_da:
514 kfree(da);
515out_free_buf:
516 dprintk("%s: Error parsing DS addr: %s\n", __func__, buf);
517 kfree(buf);
518out_free_netid:
519 kfree(netid);
520out_err:
521 return NULL;
522}
523
524/* Decode opaque device data and return the result */
525static struct nfs4_file_layout_dsaddr*
526decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags)
527{
528 int i;
529 u32 cnt, num;
530 u8 *indexp;
531 __be32 *p;
532 u8 *stripe_indices;
533 u8 max_stripe_index;
534 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
535 struct xdr_stream stream;
536 struct xdr_buf buf;
537 struct page *scratch;
538 struct list_head dsaddrs;
539 struct nfs4_pnfs_ds_addr *da;
540
541 /* set up xdr stream */
542 scratch = alloc_page(gfp_flags);
543 if (!scratch)
544 goto out_err;
545
546 xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen);
547 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
548
549 /* Get the stripe count (number of stripe index) */
550 p = xdr_inline_decode(&stream, 4);
551 if (unlikely(!p))
552 goto out_err_free_scratch;
553
554 cnt = be32_to_cpup(p);
555 dprintk("%s stripe count %d\n", __func__, cnt);
556 if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
557 printk(KERN_WARNING "%s: stripe count %d greater than "
558 "supported maximum %d\n", __func__,
559 cnt, NFS4_PNFS_MAX_STRIPE_CNT);
560 goto out_err_free_scratch;
561 }
562
563 /* read stripe indices */
564 stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags);
565 if (!stripe_indices)
566 goto out_err_free_scratch;
567
568 p = xdr_inline_decode(&stream, cnt << 2);
569 if (unlikely(!p))
570 goto out_err_free_stripe_indices;
571
572 indexp = &stripe_indices[0];
573 max_stripe_index = 0;
574 for (i = 0; i < cnt; i++) {
575 *indexp = be32_to_cpup(p++);
576 max_stripe_index = max(max_stripe_index, *indexp);
577 indexp++;
578 }
579
580 /* Check the multipath list count */
581 p = xdr_inline_decode(&stream, 4);
582 if (unlikely(!p))
583 goto out_err_free_stripe_indices;
584
585 num = be32_to_cpup(p);
586 dprintk("%s ds_num %u\n", __func__, num);
587 if (num > NFS4_PNFS_MAX_MULTI_CNT) {
588 printk(KERN_WARNING "%s: multipath count %d greater than "
589 "supported maximum %d\n", __func__,
590 num, NFS4_PNFS_MAX_MULTI_CNT);
591 goto out_err_free_stripe_indices;
592 }
593
594 /* validate stripe indices are all < num */
595 if (max_stripe_index >= num) {
596 printk(KERN_WARNING "%s: stripe index %u >= num ds %u\n",
597 __func__, max_stripe_index, num);
598 goto out_err_free_stripe_indices;
599 }
600
601 dsaddr = kzalloc(sizeof(*dsaddr) +
602 (sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
603 gfp_flags);
604 if (!dsaddr)
605 goto out_err_free_stripe_indices;
606
607 dsaddr->stripe_count = cnt;
608 dsaddr->stripe_indices = stripe_indices;
609 stripe_indices = NULL;
610 dsaddr->ds_num = num;
611 nfs4_init_deviceid_node(&dsaddr->id_node,
612 NFS_SERVER(ino)->pnfs_curr_ld,
613 NFS_SERVER(ino)->nfs_client,
614 &pdev->dev_id);
615
616 INIT_LIST_HEAD(&dsaddrs);
617
618 for (i = 0; i < dsaddr->ds_num; i++) {
619 int j;
620 u32 mp_count;
621
622 p = xdr_inline_decode(&stream, 4);
623 if (unlikely(!p))
624 goto out_err_free_deviceid;
625
626 mp_count = be32_to_cpup(p); /* multipath count */
627 for (j = 0; j < mp_count; j++) {
628 da = decode_ds_addr(&stream, gfp_flags);
629 if (da)
630 list_add_tail(&da->da_node, &dsaddrs);
631 }
632 if (list_empty(&dsaddrs)) {
633 dprintk("%s: no suitable DS addresses found\n",
634 __func__);
635 goto out_err_free_deviceid;
636 }
637
638 dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags);
639 if (!dsaddr->ds_list[i])
640 goto out_err_drain_dsaddrs;
641
642 /* If DS was already in cache, free ds addrs */
643 while (!list_empty(&dsaddrs)) {
644 da = list_first_entry(&dsaddrs,
645 struct nfs4_pnfs_ds_addr,
646 da_node);
647 list_del_init(&da->da_node);
648 kfree(da->da_remotestr);
649 kfree(da);
650 }
651 }
652
653 __free_page(scratch);
654 return dsaddr;
655
656out_err_drain_dsaddrs:
657 while (!list_empty(&dsaddrs)) {
658 da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr,
659 da_node);
660 list_del_init(&da->da_node);
661 kfree(da->da_remotestr);
662 kfree(da);
663 }
664out_err_free_deviceid:
665 nfs4_fl_free_deviceid(dsaddr);
666 /* stripe_indicies was part of dsaddr */
667 goto out_err_free_scratch;
668out_err_free_stripe_indices:
669 kfree(stripe_indices);
670out_err_free_scratch:
671 __free_page(scratch);
672out_err:
673 dprintk("%s ERROR: returning NULL\n", __func__);
674 return NULL;
675}
676
677/*
678 * Decode the opaque device specified in 'dev' and add it to the cache of
679 * available devices.
680 */
681static struct nfs4_file_layout_dsaddr *
682decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags)
683{
684 struct nfs4_deviceid_node *d;
685 struct nfs4_file_layout_dsaddr *n, *new;
686
687 new = decode_device(inode, dev, gfp_flags);
688 if (!new) {
689 printk(KERN_WARNING "%s: Could not decode or add device\n",
690 __func__);
691 return NULL;
692 }
693
694 d = nfs4_insert_deviceid_node(&new->id_node);
695 n = container_of(d, struct nfs4_file_layout_dsaddr, id_node);
696 if (n != new) {
697 nfs4_fl_free_deviceid(new);
698 return n;
699 }
700
701 return new;
702}
703
704/*
705 * Retrieve the information for dev_id, add it to the list
706 * of available devices, and return it.
707 */
708struct nfs4_file_layout_dsaddr *
709get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags)
710{
711 struct pnfs_device *pdev = NULL;
712 u32 max_resp_sz;
713 int max_pages;
714 struct page **pages = NULL;
715 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
716 int rc, i;
717 struct nfs_server *server = NFS_SERVER(inode);
718
719 /*
720 * Use the session max response size as the basis for setting
721 * GETDEVICEINFO's maxcount
722 */
723 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
724 max_pages = max_resp_sz >> PAGE_SHIFT;
725 dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
726 __func__, inode, max_resp_sz, max_pages);
727
728 pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags);
729 if (pdev == NULL)
730 return NULL;
731
732 pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags);
733 if (pages == NULL) {
734 kfree(pdev);
735 return NULL;
736 }
737 for (i = 0; i < max_pages; i++) {
738 pages[i] = alloc_page(gfp_flags);
739 if (!pages[i])
740 goto out_free;
741 }
742
743 memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
744 pdev->layout_type = LAYOUT_NFSV4_1_FILES;
745 pdev->pages = pages;
746 pdev->pgbase = 0;
747 pdev->pglen = PAGE_SIZE * max_pages;
748 pdev->mincount = 0;
749
750 rc = nfs4_proc_getdeviceinfo(server, pdev);
751 dprintk("%s getdevice info returns %d\n", __func__, rc);
752 if (rc)
753 goto out_free;
754
755 /*
756 * Found new device, need to decode it and then add it to the
757 * list of known devices for this mountpoint.
758 */
759 dsaddr = decode_and_add_device(inode, pdev, gfp_flags);
760out_free:
761 for (i = 0; i < max_pages; i++)
762 __free_page(pages[i]);
763 kfree(pages);
764 kfree(pdev);
765 dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
766 return dsaddr;
767}
768
769void
770nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
771{
772 nfs4_put_deviceid_node(&dsaddr->id_node);
773}
774
775/*
776 * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
777 * Then: ((res + fsi) % dsaddr->stripe_count)
778 */
779u32
780nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset)
781{
782 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
783 u64 tmp;
784
785 tmp = offset - flseg->pattern_offset;
786 do_div(tmp, flseg->stripe_unit);
787 tmp += flseg->first_stripe_index;
788 return do_div(tmp, flseg->dsaddr->stripe_count);
789}
790
791u32
792nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j)
793{
794 return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
795}
796
797struct nfs_fh *
798nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j)
799{
800 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
801 u32 i;
802
803 if (flseg->stripe_type == STRIPE_SPARSE) {
804 if (flseg->num_fh == 1)
805 i = 0;
806 else if (flseg->num_fh == 0)
807 /* Use the MDS OPEN fh set in nfs_read_rpcsetup */
808 return NULL;
809 else
810 i = nfs4_fl_calc_ds_index(lseg, j);
811 } else
812 i = j;
813 return flseg->fh_array[i];
814}
815
816static void
817filelayout_mark_devid_negative(struct nfs4_file_layout_dsaddr *dsaddr,
818 int err, const char *ds_remotestr)
819{
820 u32 *p = (u32 *)&dsaddr->id_node.deviceid;
821
822 printk(KERN_ERR "NFS: data server %s connection error %d."
823 " Deviceid [%x%x%x%x] marked out of use.\n",
824 ds_remotestr, err, p[0], p[1], p[2], p[3]);
825
826 spin_lock(&nfs4_ds_cache_lock);
827 dsaddr->flags |= NFS4_DEVICE_ID_NEG_ENTRY;
828 spin_unlock(&nfs4_ds_cache_lock);
829}
830
831struct nfs4_pnfs_ds *
832nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx)
833{
834 struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
835 struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
836
837 if (ds == NULL) {
838 printk(KERN_ERR "%s: No data server for offset index %d\n",
839 __func__, ds_idx);
840 return NULL;
841 }
842
843 if (!ds->ds_clp) {
844 struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
845 int err;
846
847 if (dsaddr->flags & NFS4_DEVICE_ID_NEG_ENTRY) {
848 /* Already tried to connect, don't try again */
849 dprintk("%s Deviceid marked out of use\n", __func__);
850 return NULL;
851 }
852 err = nfs4_ds_connect(s, ds);
853 if (err) {
854 filelayout_mark_devid_negative(dsaddr, err,
855 ds->ds_remotestr);
856 return NULL;
857 }
858 }
859 return ds;
860}
1/*
2 * Device operations for the pnfs nfs4 file layout driver.
3 *
4 * Copyright (c) 2002
5 * The Regents of the University of Michigan
6 * All Rights Reserved
7 *
8 * Dean Hildebrand <dhildebz@umich.edu>
9 * Garth Goodson <Garth.Goodson@netapp.com>
10 *
11 * Permission is granted to use, copy, create derivative works, and
12 * redistribute this software and such derivative works for any purpose,
13 * so long as the name of the University of Michigan is not used in
14 * any advertising or publicity pertaining to the use or distribution
15 * of this software without specific, written prior authorization. If
16 * the above copyright notice or any other identification of the
17 * University of Michigan is included in any copy of any portion of
18 * this software, then the disclaimer below must also be included.
19 *
20 * This software is provided as is, without representation or warranty
21 * of any kind either express or implied, including without limitation
22 * the implied warranties of merchantability, fitness for a particular
23 * purpose, or noninfringement. The Regents of the University of
24 * Michigan shall not be liable for any damages, including special,
25 * indirect, incidental, or consequential damages, with respect to any
26 * claim arising out of or in connection with the use of the software,
27 * even if it has been or is hereafter advised of the possibility of
28 * such damages.
29 */
30
31#include <linux/nfs_fs.h>
32#include <linux/vmalloc.h>
33#include <linux/module.h>
34#include <linux/sunrpc/addr.h>
35
36#include "internal.h"
37#include "nfs4session.h"
38#include "nfs4filelayout.h"
39
40#define NFSDBG_FACILITY NFSDBG_PNFS_LD
41
42static unsigned int dataserver_timeo = NFS4_DEF_DS_TIMEO;
43static unsigned int dataserver_retrans = NFS4_DEF_DS_RETRANS;
44
45/*
46 * Data server cache
47 *
48 * Data servers can be mapped to different device ids.
49 * nfs4_pnfs_ds reference counting
50 * - set to 1 on allocation
51 * - incremented when a device id maps a data server already in the cache.
52 * - decremented when deviceid is removed from the cache.
53 */
54static DEFINE_SPINLOCK(nfs4_ds_cache_lock);
55static LIST_HEAD(nfs4_data_server_cache);
56
57/* Debug routines */
58void
59print_ds(struct nfs4_pnfs_ds *ds)
60{
61 if (ds == NULL) {
62 printk("%s NULL device\n", __func__);
63 return;
64 }
65 printk(" ds %s\n"
66 " ref count %d\n"
67 " client %p\n"
68 " cl_exchange_flags %x\n",
69 ds->ds_remotestr,
70 atomic_read(&ds->ds_count), ds->ds_clp,
71 ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
72}
73
74static bool
75same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2)
76{
77 struct sockaddr_in *a, *b;
78 struct sockaddr_in6 *a6, *b6;
79
80 if (addr1->sa_family != addr2->sa_family)
81 return false;
82
83 switch (addr1->sa_family) {
84 case AF_INET:
85 a = (struct sockaddr_in *)addr1;
86 b = (struct sockaddr_in *)addr2;
87
88 if (a->sin_addr.s_addr == b->sin_addr.s_addr &&
89 a->sin_port == b->sin_port)
90 return true;
91 break;
92
93 case AF_INET6:
94 a6 = (struct sockaddr_in6 *)addr1;
95 b6 = (struct sockaddr_in6 *)addr2;
96
97 /* LINKLOCAL addresses must have matching scope_id */
98 if (ipv6_addr_src_scope(&a6->sin6_addr) ==
99 IPV6_ADDR_SCOPE_LINKLOCAL &&
100 a6->sin6_scope_id != b6->sin6_scope_id)
101 return false;
102
103 if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) &&
104 a6->sin6_port == b6->sin6_port)
105 return true;
106 break;
107
108 default:
109 dprintk("%s: unhandled address family: %u\n",
110 __func__, addr1->sa_family);
111 return false;
112 }
113
114 return false;
115}
116
117static bool
118_same_data_server_addrs_locked(const struct list_head *dsaddrs1,
119 const struct list_head *dsaddrs2)
120{
121 struct nfs4_pnfs_ds_addr *da1, *da2;
122
123 /* step through both lists, comparing as we go */
124 for (da1 = list_first_entry(dsaddrs1, typeof(*da1), da_node),
125 da2 = list_first_entry(dsaddrs2, typeof(*da2), da_node);
126 da1 != NULL && da2 != NULL;
127 da1 = list_entry(da1->da_node.next, typeof(*da1), da_node),
128 da2 = list_entry(da2->da_node.next, typeof(*da2), da_node)) {
129 if (!same_sockaddr((struct sockaddr *)&da1->da_addr,
130 (struct sockaddr *)&da2->da_addr))
131 return false;
132 }
133 if (da1 == NULL && da2 == NULL)
134 return true;
135
136 return false;
137}
138
139/*
140 * Lookup DS by addresses. nfs4_ds_cache_lock is held
141 */
142static struct nfs4_pnfs_ds *
143_data_server_lookup_locked(const struct list_head *dsaddrs)
144{
145 struct nfs4_pnfs_ds *ds;
146
147 list_for_each_entry(ds, &nfs4_data_server_cache, ds_node)
148 if (_same_data_server_addrs_locked(&ds->ds_addrs, dsaddrs))
149 return ds;
150 return NULL;
151}
152
153/*
154 * Create an rpc connection to the nfs4_pnfs_ds data server
155 * Currently only supports IPv4 and IPv6 addresses
156 */
157static int
158nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
159{
160 struct nfs_client *clp = ERR_PTR(-EIO);
161 struct nfs4_pnfs_ds_addr *da;
162 int status = 0;
163
164 dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr,
165 mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
166
167 list_for_each_entry(da, &ds->ds_addrs, da_node) {
168 dprintk("%s: DS %s: trying address %s\n",
169 __func__, ds->ds_remotestr, da->da_remotestr);
170
171 clp = nfs4_set_ds_client(mds_srv->nfs_client,
172 (struct sockaddr *)&da->da_addr,
173 da->da_addrlen, IPPROTO_TCP,
174 dataserver_timeo, dataserver_retrans);
175 if (!IS_ERR(clp))
176 break;
177 }
178
179 if (IS_ERR(clp)) {
180 status = PTR_ERR(clp);
181 goto out;
182 }
183
184 status = nfs4_init_ds_session(clp, mds_srv->nfs_client->cl_lease_time);
185 if (status)
186 goto out_put;
187
188 smp_wmb();
189 ds->ds_clp = clp;
190 dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr);
191out:
192 return status;
193out_put:
194 nfs_put_client(clp);
195 goto out;
196}
197
198static void
199destroy_ds(struct nfs4_pnfs_ds *ds)
200{
201 struct nfs4_pnfs_ds_addr *da;
202
203 dprintk("--> %s\n", __func__);
204 ifdebug(FACILITY)
205 print_ds(ds);
206
207 if (ds->ds_clp)
208 nfs_put_client(ds->ds_clp);
209
210 while (!list_empty(&ds->ds_addrs)) {
211 da = list_first_entry(&ds->ds_addrs,
212 struct nfs4_pnfs_ds_addr,
213 da_node);
214 list_del_init(&da->da_node);
215 kfree(da->da_remotestr);
216 kfree(da);
217 }
218
219 kfree(ds->ds_remotestr);
220 kfree(ds);
221}
222
223void
224nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
225{
226 struct nfs4_pnfs_ds *ds;
227 int i;
228
229 nfs4_print_deviceid(&dsaddr->id_node.deviceid);
230
231 for (i = 0; i < dsaddr->ds_num; i++) {
232 ds = dsaddr->ds_list[i];
233 if (ds != NULL) {
234 if (atomic_dec_and_lock(&ds->ds_count,
235 &nfs4_ds_cache_lock)) {
236 list_del_init(&ds->ds_node);
237 spin_unlock(&nfs4_ds_cache_lock);
238 destroy_ds(ds);
239 }
240 }
241 }
242 kfree(dsaddr->stripe_indices);
243 kfree(dsaddr);
244}
245
246/*
247 * Create a string with a human readable address and port to avoid
248 * complicated setup around many dprinks.
249 */
250static char *
251nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags)
252{
253 struct nfs4_pnfs_ds_addr *da;
254 char *remotestr;
255 size_t len;
256 char *p;
257
258 len = 3; /* '{', '}' and eol */
259 list_for_each_entry(da, dsaddrs, da_node) {
260 len += strlen(da->da_remotestr) + 1; /* string plus comma */
261 }
262
263 remotestr = kzalloc(len, gfp_flags);
264 if (!remotestr)
265 return NULL;
266
267 p = remotestr;
268 *(p++) = '{';
269 len--;
270 list_for_each_entry(da, dsaddrs, da_node) {
271 size_t ll = strlen(da->da_remotestr);
272
273 if (ll > len)
274 goto out_err;
275
276 memcpy(p, da->da_remotestr, ll);
277 p += ll;
278 len -= ll;
279
280 if (len < 1)
281 goto out_err;
282 (*p++) = ',';
283 len--;
284 }
285 if (len < 2)
286 goto out_err;
287 *(p++) = '}';
288 *p = '\0';
289 return remotestr;
290out_err:
291 kfree(remotestr);
292 return NULL;
293}
294
295static struct nfs4_pnfs_ds *
296nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags)
297{
298 struct nfs4_pnfs_ds *tmp_ds, *ds = NULL;
299 char *remotestr;
300
301 if (list_empty(dsaddrs)) {
302 dprintk("%s: no addresses defined\n", __func__);
303 goto out;
304 }
305
306 ds = kzalloc(sizeof(*ds), gfp_flags);
307 if (!ds)
308 goto out;
309
310 /* this is only used for debugging, so it's ok if its NULL */
311 remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags);
312
313 spin_lock(&nfs4_ds_cache_lock);
314 tmp_ds = _data_server_lookup_locked(dsaddrs);
315 if (tmp_ds == NULL) {
316 INIT_LIST_HEAD(&ds->ds_addrs);
317 list_splice_init(dsaddrs, &ds->ds_addrs);
318 ds->ds_remotestr = remotestr;
319 atomic_set(&ds->ds_count, 1);
320 INIT_LIST_HEAD(&ds->ds_node);
321 ds->ds_clp = NULL;
322 list_add(&ds->ds_node, &nfs4_data_server_cache);
323 dprintk("%s add new data server %s\n", __func__,
324 ds->ds_remotestr);
325 } else {
326 kfree(remotestr);
327 kfree(ds);
328 atomic_inc(&tmp_ds->ds_count);
329 dprintk("%s data server %s found, inc'ed ds_count to %d\n",
330 __func__, tmp_ds->ds_remotestr,
331 atomic_read(&tmp_ds->ds_count));
332 ds = tmp_ds;
333 }
334 spin_unlock(&nfs4_ds_cache_lock);
335out:
336 return ds;
337}
338
339/*
340 * Currently only supports ipv4, ipv6 and one multi-path address.
341 */
342static struct nfs4_pnfs_ds_addr *
343decode_ds_addr(struct net *net, struct xdr_stream *streamp, gfp_t gfp_flags)
344{
345 struct nfs4_pnfs_ds_addr *da = NULL;
346 char *buf, *portstr;
347 __be16 port;
348 int nlen, rlen;
349 int tmp[2];
350 __be32 *p;
351 char *netid, *match_netid;
352 size_t len, match_netid_len;
353 char *startsep = "";
354 char *endsep = "";
355
356
357 /* r_netid */
358 p = xdr_inline_decode(streamp, 4);
359 if (unlikely(!p))
360 goto out_err;
361 nlen = be32_to_cpup(p++);
362
363 p = xdr_inline_decode(streamp, nlen);
364 if (unlikely(!p))
365 goto out_err;
366
367 netid = kmalloc(nlen+1, gfp_flags);
368 if (unlikely(!netid))
369 goto out_err;
370
371 netid[nlen] = '\0';
372 memcpy(netid, p, nlen);
373
374 /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */
375 p = xdr_inline_decode(streamp, 4);
376 if (unlikely(!p))
377 goto out_free_netid;
378 rlen = be32_to_cpup(p);
379
380 p = xdr_inline_decode(streamp, rlen);
381 if (unlikely(!p))
382 goto out_free_netid;
383
384 /* port is ".ABC.DEF", 8 chars max */
385 if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) {
386 dprintk("%s: Invalid address, length %d\n", __func__,
387 rlen);
388 goto out_free_netid;
389 }
390 buf = kmalloc(rlen + 1, gfp_flags);
391 if (!buf) {
392 dprintk("%s: Not enough memory\n", __func__);
393 goto out_free_netid;
394 }
395 buf[rlen] = '\0';
396 memcpy(buf, p, rlen);
397
398 /* replace port '.' with '-' */
399 portstr = strrchr(buf, '.');
400 if (!portstr) {
401 dprintk("%s: Failed finding expected dot in port\n",
402 __func__);
403 goto out_free_buf;
404 }
405 *portstr = '-';
406
407 /* find '.' between address and port */
408 portstr = strrchr(buf, '.');
409 if (!portstr) {
410 dprintk("%s: Failed finding expected dot between address and "
411 "port\n", __func__);
412 goto out_free_buf;
413 }
414 *portstr = '\0';
415
416 da = kzalloc(sizeof(*da), gfp_flags);
417 if (unlikely(!da))
418 goto out_free_buf;
419
420 INIT_LIST_HEAD(&da->da_node);
421
422 if (!rpc_pton(net, buf, portstr-buf, (struct sockaddr *)&da->da_addr,
423 sizeof(da->da_addr))) {
424 dprintk("%s: error parsing address %s\n", __func__, buf);
425 goto out_free_da;
426 }
427
428 portstr++;
429 sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]);
430 port = htons((tmp[0] << 8) | (tmp[1]));
431
432 switch (da->da_addr.ss_family) {
433 case AF_INET:
434 ((struct sockaddr_in *)&da->da_addr)->sin_port = port;
435 da->da_addrlen = sizeof(struct sockaddr_in);
436 match_netid = "tcp";
437 match_netid_len = 3;
438 break;
439
440 case AF_INET6:
441 ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port;
442 da->da_addrlen = sizeof(struct sockaddr_in6);
443 match_netid = "tcp6";
444 match_netid_len = 4;
445 startsep = "[";
446 endsep = "]";
447 break;
448
449 default:
450 dprintk("%s: unsupported address family: %u\n",
451 __func__, da->da_addr.ss_family);
452 goto out_free_da;
453 }
454
455 if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) {
456 dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n",
457 __func__, netid, match_netid);
458 goto out_free_da;
459 }
460
461 /* save human readable address */
462 len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7;
463 da->da_remotestr = kzalloc(len, gfp_flags);
464
465 /* NULL is ok, only used for dprintk */
466 if (da->da_remotestr)
467 snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep,
468 buf, endsep, ntohs(port));
469
470 dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr);
471 kfree(buf);
472 kfree(netid);
473 return da;
474
475out_free_da:
476 kfree(da);
477out_free_buf:
478 dprintk("%s: Error parsing DS addr: %s\n", __func__, buf);
479 kfree(buf);
480out_free_netid:
481 kfree(netid);
482out_err:
483 return NULL;
484}
485
486/* Decode opaque device data and return the result */
487static struct nfs4_file_layout_dsaddr*
488decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags)
489{
490 int i;
491 u32 cnt, num;
492 u8 *indexp;
493 __be32 *p;
494 u8 *stripe_indices;
495 u8 max_stripe_index;
496 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
497 struct xdr_stream stream;
498 struct xdr_buf buf;
499 struct page *scratch;
500 struct list_head dsaddrs;
501 struct nfs4_pnfs_ds_addr *da;
502
503 /* set up xdr stream */
504 scratch = alloc_page(gfp_flags);
505 if (!scratch)
506 goto out_err;
507
508 xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen);
509 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
510
511 /* Get the stripe count (number of stripe index) */
512 p = xdr_inline_decode(&stream, 4);
513 if (unlikely(!p))
514 goto out_err_free_scratch;
515
516 cnt = be32_to_cpup(p);
517 dprintk("%s stripe count %d\n", __func__, cnt);
518 if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
519 printk(KERN_WARNING "NFS: %s: stripe count %d greater than "
520 "supported maximum %d\n", __func__,
521 cnt, NFS4_PNFS_MAX_STRIPE_CNT);
522 goto out_err_free_scratch;
523 }
524
525 /* read stripe indices */
526 stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags);
527 if (!stripe_indices)
528 goto out_err_free_scratch;
529
530 p = xdr_inline_decode(&stream, cnt << 2);
531 if (unlikely(!p))
532 goto out_err_free_stripe_indices;
533
534 indexp = &stripe_indices[0];
535 max_stripe_index = 0;
536 for (i = 0; i < cnt; i++) {
537 *indexp = be32_to_cpup(p++);
538 max_stripe_index = max(max_stripe_index, *indexp);
539 indexp++;
540 }
541
542 /* Check the multipath list count */
543 p = xdr_inline_decode(&stream, 4);
544 if (unlikely(!p))
545 goto out_err_free_stripe_indices;
546
547 num = be32_to_cpup(p);
548 dprintk("%s ds_num %u\n", __func__, num);
549 if (num > NFS4_PNFS_MAX_MULTI_CNT) {
550 printk(KERN_WARNING "NFS: %s: multipath count %d greater than "
551 "supported maximum %d\n", __func__,
552 num, NFS4_PNFS_MAX_MULTI_CNT);
553 goto out_err_free_stripe_indices;
554 }
555
556 /* validate stripe indices are all < num */
557 if (max_stripe_index >= num) {
558 printk(KERN_WARNING "NFS: %s: stripe index %u >= num ds %u\n",
559 __func__, max_stripe_index, num);
560 goto out_err_free_stripe_indices;
561 }
562
563 dsaddr = kzalloc(sizeof(*dsaddr) +
564 (sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
565 gfp_flags);
566 if (!dsaddr)
567 goto out_err_free_stripe_indices;
568
569 dsaddr->stripe_count = cnt;
570 dsaddr->stripe_indices = stripe_indices;
571 stripe_indices = NULL;
572 dsaddr->ds_num = num;
573 nfs4_init_deviceid_node(&dsaddr->id_node,
574 NFS_SERVER(ino)->pnfs_curr_ld,
575 NFS_SERVER(ino)->nfs_client,
576 &pdev->dev_id);
577
578 INIT_LIST_HEAD(&dsaddrs);
579
580 for (i = 0; i < dsaddr->ds_num; i++) {
581 int j;
582 u32 mp_count;
583
584 p = xdr_inline_decode(&stream, 4);
585 if (unlikely(!p))
586 goto out_err_free_deviceid;
587
588 mp_count = be32_to_cpup(p); /* multipath count */
589 for (j = 0; j < mp_count; j++) {
590 da = decode_ds_addr(NFS_SERVER(ino)->nfs_client->cl_net,
591 &stream, gfp_flags);
592 if (da)
593 list_add_tail(&da->da_node, &dsaddrs);
594 }
595 if (list_empty(&dsaddrs)) {
596 dprintk("%s: no suitable DS addresses found\n",
597 __func__);
598 goto out_err_free_deviceid;
599 }
600
601 dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags);
602 if (!dsaddr->ds_list[i])
603 goto out_err_drain_dsaddrs;
604
605 /* If DS was already in cache, free ds addrs */
606 while (!list_empty(&dsaddrs)) {
607 da = list_first_entry(&dsaddrs,
608 struct nfs4_pnfs_ds_addr,
609 da_node);
610 list_del_init(&da->da_node);
611 kfree(da->da_remotestr);
612 kfree(da);
613 }
614 }
615
616 __free_page(scratch);
617 return dsaddr;
618
619out_err_drain_dsaddrs:
620 while (!list_empty(&dsaddrs)) {
621 da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr,
622 da_node);
623 list_del_init(&da->da_node);
624 kfree(da->da_remotestr);
625 kfree(da);
626 }
627out_err_free_deviceid:
628 nfs4_fl_free_deviceid(dsaddr);
629 /* stripe_indicies was part of dsaddr */
630 goto out_err_free_scratch;
631out_err_free_stripe_indices:
632 kfree(stripe_indices);
633out_err_free_scratch:
634 __free_page(scratch);
635out_err:
636 dprintk("%s ERROR: returning NULL\n", __func__);
637 return NULL;
638}
639
640/*
641 * Decode the opaque device specified in 'dev' and add it to the cache of
642 * available devices.
643 */
644static struct nfs4_file_layout_dsaddr *
645decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags)
646{
647 struct nfs4_deviceid_node *d;
648 struct nfs4_file_layout_dsaddr *n, *new;
649
650 new = decode_device(inode, dev, gfp_flags);
651 if (!new) {
652 printk(KERN_WARNING "NFS: %s: Could not decode or add device\n",
653 __func__);
654 return NULL;
655 }
656
657 d = nfs4_insert_deviceid_node(&new->id_node);
658 n = container_of(d, struct nfs4_file_layout_dsaddr, id_node);
659 if (n != new) {
660 nfs4_fl_free_deviceid(new);
661 return n;
662 }
663
664 return new;
665}
666
667/*
668 * Retrieve the information for dev_id, add it to the list
669 * of available devices, and return it.
670 */
671struct nfs4_file_layout_dsaddr *
672filelayout_get_device_info(struct inode *inode,
673 struct nfs4_deviceid *dev_id,
674 struct rpc_cred *cred,
675 gfp_t gfp_flags)
676{
677 struct pnfs_device *pdev = NULL;
678 u32 max_resp_sz;
679 int max_pages;
680 struct page **pages = NULL;
681 struct nfs4_file_layout_dsaddr *dsaddr = NULL;
682 int rc, i;
683 struct nfs_server *server = NFS_SERVER(inode);
684
685 /*
686 * Use the session max response size as the basis for setting
687 * GETDEVICEINFO's maxcount
688 */
689 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
690 max_pages = nfs_page_array_len(0, max_resp_sz);
691 dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
692 __func__, inode, max_resp_sz, max_pages);
693
694 pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags);
695 if (pdev == NULL)
696 return NULL;
697
698 pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags);
699 if (pages == NULL) {
700 kfree(pdev);
701 return NULL;
702 }
703 for (i = 0; i < max_pages; i++) {
704 pages[i] = alloc_page(gfp_flags);
705 if (!pages[i])
706 goto out_free;
707 }
708
709 memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
710 pdev->layout_type = LAYOUT_NFSV4_1_FILES;
711 pdev->pages = pages;
712 pdev->pgbase = 0;
713 pdev->pglen = max_resp_sz;
714 pdev->mincount = 0;
715 pdev->maxcount = max_resp_sz - nfs41_maxgetdevinfo_overhead;
716
717 rc = nfs4_proc_getdeviceinfo(server, pdev, cred);
718 dprintk("%s getdevice info returns %d\n", __func__, rc);
719 if (rc)
720 goto out_free;
721
722 /*
723 * Found new device, need to decode it and then add it to the
724 * list of known devices for this mountpoint.
725 */
726 dsaddr = decode_and_add_device(inode, pdev, gfp_flags);
727out_free:
728 for (i = 0; i < max_pages; i++)
729 __free_page(pages[i]);
730 kfree(pages);
731 kfree(pdev);
732 dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
733 return dsaddr;
734}
735
736void
737nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
738{
739 nfs4_put_deviceid_node(&dsaddr->id_node);
740}
741
742/*
743 * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
744 * Then: ((res + fsi) % dsaddr->stripe_count)
745 */
746u32
747nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset)
748{
749 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
750 u64 tmp;
751
752 tmp = offset - flseg->pattern_offset;
753 do_div(tmp, flseg->stripe_unit);
754 tmp += flseg->first_stripe_index;
755 return do_div(tmp, flseg->dsaddr->stripe_count);
756}
757
758u32
759nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j)
760{
761 return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
762}
763
764struct nfs_fh *
765nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j)
766{
767 struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
768 u32 i;
769
770 if (flseg->stripe_type == STRIPE_SPARSE) {
771 if (flseg->num_fh == 1)
772 i = 0;
773 else if (flseg->num_fh == 0)
774 /* Use the MDS OPEN fh set in nfs_read_rpcsetup */
775 return NULL;
776 else
777 i = nfs4_fl_calc_ds_index(lseg, j);
778 } else
779 i = j;
780 return flseg->fh_array[i];
781}
782
783static void nfs4_wait_ds_connect(struct nfs4_pnfs_ds *ds)
784{
785 might_sleep();
786 wait_on_bit(&ds->ds_state, NFS4DS_CONNECTING,
787 nfs_wait_bit_killable, TASK_KILLABLE);
788}
789
790static void nfs4_clear_ds_conn_bit(struct nfs4_pnfs_ds *ds)
791{
792 smp_mb__before_clear_bit();
793 clear_bit(NFS4DS_CONNECTING, &ds->ds_state);
794 smp_mb__after_clear_bit();
795 wake_up_bit(&ds->ds_state, NFS4DS_CONNECTING);
796}
797
798
799struct nfs4_pnfs_ds *
800nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx)
801{
802 struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
803 struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
804 struct nfs4_deviceid_node *devid = FILELAYOUT_DEVID_NODE(lseg);
805 struct nfs4_pnfs_ds *ret = ds;
806
807 if (ds == NULL) {
808 printk(KERN_ERR "NFS: %s: No data server for offset index %d\n",
809 __func__, ds_idx);
810 filelayout_mark_devid_invalid(devid);
811 goto out;
812 }
813 smp_rmb();
814 if (ds->ds_clp)
815 goto out_test_devid;
816
817 if (test_and_set_bit(NFS4DS_CONNECTING, &ds->ds_state) == 0) {
818 struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
819 int err;
820
821 err = nfs4_ds_connect(s, ds);
822 if (err)
823 nfs4_mark_deviceid_unavailable(devid);
824 nfs4_clear_ds_conn_bit(ds);
825 } else {
826 /* Either ds is connected, or ds is NULL */
827 nfs4_wait_ds_connect(ds);
828 }
829out_test_devid:
830 if (filelayout_test_devid_unavailable(devid))
831 ret = NULL;
832out:
833 return ret;
834}
835
836module_param(dataserver_retrans, uint, 0644);
837MODULE_PARM_DESC(dataserver_retrans, "The number of times the NFSv4.1 client "
838 "retries a request before it attempts further "
839 " recovery action.");
840module_param(dataserver_timeo, uint, 0644);
841MODULE_PARM_DESC(dataserver_timeo, "The time (in tenths of a second) the "
842 "NFSv4.1 client waits for a response from a "
843 " data server before it retries an NFS request.");