Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.1
  1/*
  2 *  linux/fs/file.c
  3 *
  4 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
  5 *
  6 *  Manage the dynamic fd arrays in the process files_struct.
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/mmzone.h>
 13#include <linux/time.h>
 14#include <linux/sched.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include <linux/file.h>
 18#include <linux/fdtable.h>
 19#include <linux/bitops.h>
 20#include <linux/interrupt.h>
 21#include <linux/spinlock.h>
 22#include <linux/rcupdate.h>
 23#include <linux/workqueue.h>
 24
 25struct fdtable_defer {
 26	spinlock_t lock;
 27	struct work_struct wq;
 28	struct fdtable *next;
 29};
 30
 31int sysctl_nr_open __read_mostly = 1024*1024;
 32int sysctl_nr_open_min = BITS_PER_LONG;
 33int sysctl_nr_open_max = 1024 * 1024; /* raised later */
 34
 35/*
 36 * We use this list to defer free fdtables that have vmalloced
 37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
 38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
 39 * this per-task structure.
 40 */
 41static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
 42
 43static void *alloc_fdmem(unsigned int size)
 44{
 45	/*
 46	 * Very large allocations can stress page reclaim, so fall back to
 47	 * vmalloc() if the allocation size will be considered "large" by the VM.
 48	 */
 49	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
 50		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
 51		if (data != NULL)
 52			return data;
 53	}
 54	return vmalloc(size);
 55}
 56
 57static void free_fdmem(void *ptr)
 58{
 59	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
 60}
 61
 62static void __free_fdtable(struct fdtable *fdt)
 63{
 64	free_fdmem(fdt->fd);
 65	free_fdmem(fdt->open_fds);
 66	kfree(fdt);
 67}
 68
 69static void free_fdtable_work(struct work_struct *work)
 70{
 71	struct fdtable_defer *f =
 72		container_of(work, struct fdtable_defer, wq);
 73	struct fdtable *fdt;
 74
 75	spin_lock_bh(&f->lock);
 76	fdt = f->next;
 77	f->next = NULL;
 78	spin_unlock_bh(&f->lock);
 79	while(fdt) {
 80		struct fdtable *next = fdt->next;
 81
 82		__free_fdtable(fdt);
 83		fdt = next;
 84	}
 85}
 86
 87void free_fdtable_rcu(struct rcu_head *rcu)
 88{
 89	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
 90	struct fdtable_defer *fddef;
 91
 92	BUG_ON(!fdt);
 93
 94	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
 95		/*
 96		 * This fdtable is embedded in the files structure and that
 97		 * structure itself is getting destroyed.
 98		 */
 99		kmem_cache_free(files_cachep,
100				container_of(fdt, struct files_struct, fdtab));
101		return;
102	}
103	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
104		kfree(fdt->fd);
105		kfree(fdt->open_fds);
106		kfree(fdt);
107	} else {
108		fddef = &get_cpu_var(fdtable_defer_list);
109		spin_lock(&fddef->lock);
110		fdt->next = fddef->next;
111		fddef->next = fdt;
112		/* vmallocs are handled from the workqueue context */
113		schedule_work(&fddef->wq);
114		spin_unlock(&fddef->lock);
115		put_cpu_var(fdtable_defer_list);
116	}
117}
118
119/*
120 * Expand the fdset in the files_struct.  Called with the files spinlock
121 * held for write.
122 */
123static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
124{
125	unsigned int cpy, set;
126
127	BUG_ON(nfdt->max_fds < ofdt->max_fds);
128
129	cpy = ofdt->max_fds * sizeof(struct file *);
130	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
131	memcpy(nfdt->fd, ofdt->fd, cpy);
132	memset((char *)(nfdt->fd) + cpy, 0, set);
133
134	cpy = ofdt->max_fds / BITS_PER_BYTE;
135	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
136	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
137	memset((char *)(nfdt->open_fds) + cpy, 0, set);
138	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
139	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
140}
141
142static struct fdtable * alloc_fdtable(unsigned int nr)
143{
144	struct fdtable *fdt;
145	char *data;
146
147	/*
148	 * Figure out how many fds we actually want to support in this fdtable.
149	 * Allocation steps are keyed to the size of the fdarray, since it
150	 * grows far faster than any of the other dynamic data. We try to fit
151	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152	 * and growing in powers of two from there on.
153	 */
154	nr /= (1024 / sizeof(struct file *));
155	nr = roundup_pow_of_two(nr + 1);
156	nr *= (1024 / sizeof(struct file *));
157	/*
158	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159	 * had been set lower between the check in expand_files() and here.  Deal
160	 * with that in caller, it's cheaper that way.
161	 *
162	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163	 * bitmaps handling below becomes unpleasant, to put it mildly...
164	 */
165	if (unlikely(nr > sysctl_nr_open))
166		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
167
168	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
169	if (!fdt)
170		goto out;
171	fdt->max_fds = nr;
172	data = alloc_fdmem(nr * sizeof(struct file *));
173	if (!data)
174		goto out_fdt;
175	fdt->fd = (struct file **)data;
176	data = alloc_fdmem(max_t(unsigned int,
 
177				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
178	if (!data)
179		goto out_arr;
180	fdt->open_fds = (fd_set *)data;
181	data += nr / BITS_PER_BYTE;
182	fdt->close_on_exec = (fd_set *)data;
183	fdt->next = NULL;
184
185	return fdt;
186
187out_arr:
188	free_fdmem(fdt->fd);
189out_fdt:
190	kfree(fdt);
191out:
192	return NULL;
193}
194
195/*
196 * Expand the file descriptor table.
197 * This function will allocate a new fdtable and both fd array and fdset, of
198 * the given size.
199 * Return <0 error code on error; 1 on successful completion.
200 * The files->file_lock should be held on entry, and will be held on exit.
201 */
202static int expand_fdtable(struct files_struct *files, int nr)
203	__releases(files->file_lock)
204	__acquires(files->file_lock)
205{
206	struct fdtable *new_fdt, *cur_fdt;
207
208	spin_unlock(&files->file_lock);
209	new_fdt = alloc_fdtable(nr);
210	spin_lock(&files->file_lock);
211	if (!new_fdt)
212		return -ENOMEM;
213	/*
214	 * extremely unlikely race - sysctl_nr_open decreased between the check in
215	 * caller and alloc_fdtable().  Cheaper to catch it here...
216	 */
217	if (unlikely(new_fdt->max_fds <= nr)) {
218		__free_fdtable(new_fdt);
219		return -EMFILE;
220	}
221	/*
222	 * Check again since another task may have expanded the fd table while
223	 * we dropped the lock
224	 */
225	cur_fdt = files_fdtable(files);
226	if (nr >= cur_fdt->max_fds) {
227		/* Continue as planned */
228		copy_fdtable(new_fdt, cur_fdt);
229		rcu_assign_pointer(files->fdt, new_fdt);
230		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
231			free_fdtable(cur_fdt);
232	} else {
233		/* Somebody else expanded, so undo our attempt */
234		__free_fdtable(new_fdt);
235	}
236	return 1;
237}
238
239/*
240 * Expand files.
241 * This function will expand the file structures, if the requested size exceeds
242 * the current capacity and there is room for expansion.
243 * Return <0 error code on error; 0 when nothing done; 1 when files were
244 * expanded and execution may have blocked.
245 * The files->file_lock should be held on entry, and will be held on exit.
246 */
247int expand_files(struct files_struct *files, int nr)
248{
249	struct fdtable *fdt;
250
251	fdt = files_fdtable(files);
252
253	/*
254	 * N.B. For clone tasks sharing a files structure, this test
255	 * will limit the total number of files that can be opened.
256	 */
257	if (nr >= rlimit(RLIMIT_NOFILE))
258		return -EMFILE;
259
260	/* Do we need to expand? */
261	if (nr < fdt->max_fds)
262		return 0;
263
264	/* Can we expand? */
265	if (nr >= sysctl_nr_open)
266		return -EMFILE;
267
268	/* All good, so we try */
269	return expand_fdtable(files, nr);
270}
271
272static int count_open_files(struct fdtable *fdt)
273{
274	int size = fdt->max_fds;
275	int i;
276
277	/* Find the last open fd */
278	for (i = size/(8*sizeof(long)); i > 0; ) {
279		if (fdt->open_fds->fds_bits[--i])
280			break;
281	}
282	i = (i+1) * 8 * sizeof(long);
283	return i;
284}
285
286/*
287 * Allocate a new files structure and copy contents from the
288 * passed in files structure.
289 * errorp will be valid only when the returned files_struct is NULL.
290 */
291struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
292{
293	struct files_struct *newf;
294	struct file **old_fds, **new_fds;
295	int open_files, size, i;
296	struct fdtable *old_fdt, *new_fdt;
297
298	*errorp = -ENOMEM;
299	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
300	if (!newf)
301		goto out;
302
303	atomic_set(&newf->count, 1);
304
305	spin_lock_init(&newf->file_lock);
306	newf->next_fd = 0;
307	new_fdt = &newf->fdtab;
308	new_fdt->max_fds = NR_OPEN_DEFAULT;
309	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
310	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
311	new_fdt->fd = &newf->fd_array[0];
312	new_fdt->next = NULL;
313
314	spin_lock(&oldf->file_lock);
315	old_fdt = files_fdtable(oldf);
316	open_files = count_open_files(old_fdt);
317
318	/*
319	 * Check whether we need to allocate a larger fd array and fd set.
320	 */
321	while (unlikely(open_files > new_fdt->max_fds)) {
322		spin_unlock(&oldf->file_lock);
323
324		if (new_fdt != &newf->fdtab)
325			__free_fdtable(new_fdt);
326
327		new_fdt = alloc_fdtable(open_files - 1);
328		if (!new_fdt) {
329			*errorp = -ENOMEM;
330			goto out_release;
331		}
332
333		/* beyond sysctl_nr_open; nothing to do */
334		if (unlikely(new_fdt->max_fds < open_files)) {
335			__free_fdtable(new_fdt);
336			*errorp = -EMFILE;
337			goto out_release;
338		}
339
340		/*
341		 * Reacquire the oldf lock and a pointer to its fd table
342		 * who knows it may have a new bigger fd table. We need
343		 * the latest pointer.
344		 */
345		spin_lock(&oldf->file_lock);
346		old_fdt = files_fdtable(oldf);
347		open_files = count_open_files(old_fdt);
348	}
349
350	old_fds = old_fdt->fd;
351	new_fds = new_fdt->fd;
352
353	memcpy(new_fdt->open_fds->fds_bits,
354		old_fdt->open_fds->fds_bits, open_files/8);
355	memcpy(new_fdt->close_on_exec->fds_bits,
356		old_fdt->close_on_exec->fds_bits, open_files/8);
357
358	for (i = open_files; i != 0; i--) {
359		struct file *f = *old_fds++;
360		if (f) {
361			get_file(f);
362		} else {
363			/*
364			 * The fd may be claimed in the fd bitmap but not yet
365			 * instantiated in the files array if a sibling thread
366			 * is partway through open().  So make sure that this
367			 * fd is available to the new process.
368			 */
369			FD_CLR(open_files - i, new_fdt->open_fds);
370		}
371		rcu_assign_pointer(*new_fds++, f);
372	}
373	spin_unlock(&oldf->file_lock);
374
375	/* compute the remainder to be cleared */
376	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
377
378	/* This is long word aligned thus could use a optimized version */
379	memset(new_fds, 0, size);
380
381	if (new_fdt->max_fds > open_files) {
382		int left = (new_fdt->max_fds-open_files)/8;
383		int start = open_files / (8 * sizeof(unsigned long));
384
385		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
386		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
387	}
388
389	rcu_assign_pointer(newf->fdt, new_fdt);
390
391	return newf;
392
393out_release:
394	kmem_cache_free(files_cachep, newf);
395out:
396	return NULL;
397}
398
399static void __devinit fdtable_defer_list_init(int cpu)
400{
401	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
402	spin_lock_init(&fddef->lock);
403	INIT_WORK(&fddef->wq, free_fdtable_work);
404	fddef->next = NULL;
405}
406
407void __init files_defer_init(void)
408{
409	int i;
410	for_each_possible_cpu(i)
411		fdtable_defer_list_init(i);
412	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
413			     -BITS_PER_LONG;
414}
415
416struct files_struct init_files = {
417	.count		= ATOMIC_INIT(1),
418	.fdt		= &init_files.fdtab,
419	.fdtab		= {
420		.max_fds	= NR_OPEN_DEFAULT,
421		.fd		= &init_files.fd_array[0],
422		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
423		.open_fds	= (fd_set *)&init_files.open_fds_init,
424	},
425	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
426};
427
428/*
429 * allocate a file descriptor, mark it busy.
430 */
431int alloc_fd(unsigned start, unsigned flags)
432{
433	struct files_struct *files = current->files;
434	unsigned int fd;
435	int error;
436	struct fdtable *fdt;
437
438	spin_lock(&files->file_lock);
439repeat:
440	fdt = files_fdtable(files);
441	fd = start;
442	if (fd < files->next_fd)
443		fd = files->next_fd;
444
445	if (fd < fdt->max_fds)
446		fd = find_next_zero_bit(fdt->open_fds->fds_bits,
447					   fdt->max_fds, fd);
448
449	error = expand_files(files, fd);
450	if (error < 0)
451		goto out;
452
453	/*
454	 * If we needed to expand the fs array we
455	 * might have blocked - try again.
456	 */
457	if (error)
458		goto repeat;
459
460	if (start <= files->next_fd)
461		files->next_fd = fd + 1;
462
463	FD_SET(fd, fdt->open_fds);
464	if (flags & O_CLOEXEC)
465		FD_SET(fd, fdt->close_on_exec);
466	else
467		FD_CLR(fd, fdt->close_on_exec);
468	error = fd;
469#if 1
470	/* Sanity check */
471	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
472		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
473		rcu_assign_pointer(fdt->fd[fd], NULL);
474	}
475#endif
476
477out:
478	spin_unlock(&files->file_lock);
479	return error;
480}
481
482int get_unused_fd(void)
483{
484	return alloc_fd(0, 0);
485}
486EXPORT_SYMBOL(get_unused_fd);
v3.5.6
  1/*
  2 *  linux/fs/file.c
  3 *
  4 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
  5 *
  6 *  Manage the dynamic fd arrays in the process files_struct.
  7 */
  8
  9#include <linux/export.h>
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/mmzone.h>
 13#include <linux/time.h>
 14#include <linux/sched.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include <linux/file.h>
 18#include <linux/fdtable.h>
 19#include <linux/bitops.h>
 20#include <linux/interrupt.h>
 21#include <linux/spinlock.h>
 22#include <linux/rcupdate.h>
 23#include <linux/workqueue.h>
 24
 25struct fdtable_defer {
 26	spinlock_t lock;
 27	struct work_struct wq;
 28	struct fdtable *next;
 29};
 30
 31int sysctl_nr_open __read_mostly = 1024*1024;
 32int sysctl_nr_open_min = BITS_PER_LONG;
 33int sysctl_nr_open_max = 1024 * 1024; /* raised later */
 34
 35/*
 36 * We use this list to defer free fdtables that have vmalloced
 37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
 38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
 39 * this per-task structure.
 40 */
 41static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
 42
 43static void *alloc_fdmem(size_t size)
 44{
 45	/*
 46	 * Very large allocations can stress page reclaim, so fall back to
 47	 * vmalloc() if the allocation size will be considered "large" by the VM.
 48	 */
 49	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
 50		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
 51		if (data != NULL)
 52			return data;
 53	}
 54	return vmalloc(size);
 55}
 56
 57static void free_fdmem(void *ptr)
 58{
 59	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
 60}
 61
 62static void __free_fdtable(struct fdtable *fdt)
 63{
 64	free_fdmem(fdt->fd);
 65	free_fdmem(fdt->open_fds);
 66	kfree(fdt);
 67}
 68
 69static void free_fdtable_work(struct work_struct *work)
 70{
 71	struct fdtable_defer *f =
 72		container_of(work, struct fdtable_defer, wq);
 73	struct fdtable *fdt;
 74
 75	spin_lock_bh(&f->lock);
 76	fdt = f->next;
 77	f->next = NULL;
 78	spin_unlock_bh(&f->lock);
 79	while(fdt) {
 80		struct fdtable *next = fdt->next;
 81
 82		__free_fdtable(fdt);
 83		fdt = next;
 84	}
 85}
 86
 87void free_fdtable_rcu(struct rcu_head *rcu)
 88{
 89	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
 90	struct fdtable_defer *fddef;
 91
 92	BUG_ON(!fdt);
 93
 94	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
 95		/*
 96		 * This fdtable is embedded in the files structure and that
 97		 * structure itself is getting destroyed.
 98		 */
 99		kmem_cache_free(files_cachep,
100				container_of(fdt, struct files_struct, fdtab));
101		return;
102	}
103	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
104		kfree(fdt->fd);
105		kfree(fdt->open_fds);
106		kfree(fdt);
107	} else {
108		fddef = &get_cpu_var(fdtable_defer_list);
109		spin_lock(&fddef->lock);
110		fdt->next = fddef->next;
111		fddef->next = fdt;
112		/* vmallocs are handled from the workqueue context */
113		schedule_work(&fddef->wq);
114		spin_unlock(&fddef->lock);
115		put_cpu_var(fdtable_defer_list);
116	}
117}
118
119/*
120 * Expand the fdset in the files_struct.  Called with the files spinlock
121 * held for write.
122 */
123static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
124{
125	unsigned int cpy, set;
126
127	BUG_ON(nfdt->max_fds < ofdt->max_fds);
128
129	cpy = ofdt->max_fds * sizeof(struct file *);
130	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
131	memcpy(nfdt->fd, ofdt->fd, cpy);
132	memset((char *)(nfdt->fd) + cpy, 0, set);
133
134	cpy = ofdt->max_fds / BITS_PER_BYTE;
135	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
136	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
137	memset((char *)(nfdt->open_fds) + cpy, 0, set);
138	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
139	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
140}
141
142static struct fdtable * alloc_fdtable(unsigned int nr)
143{
144	struct fdtable *fdt;
145	void *data;
146
147	/*
148	 * Figure out how many fds we actually want to support in this fdtable.
149	 * Allocation steps are keyed to the size of the fdarray, since it
150	 * grows far faster than any of the other dynamic data. We try to fit
151	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152	 * and growing in powers of two from there on.
153	 */
154	nr /= (1024 / sizeof(struct file *));
155	nr = roundup_pow_of_two(nr + 1);
156	nr *= (1024 / sizeof(struct file *));
157	/*
158	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159	 * had been set lower between the check in expand_files() and here.  Deal
160	 * with that in caller, it's cheaper that way.
161	 *
162	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163	 * bitmaps handling below becomes unpleasant, to put it mildly...
164	 */
165	if (unlikely(nr > sysctl_nr_open))
166		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
167
168	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
169	if (!fdt)
170		goto out;
171	fdt->max_fds = nr;
172	data = alloc_fdmem(nr * sizeof(struct file *));
173	if (!data)
174		goto out_fdt;
175	fdt->fd = data;
176
177	data = alloc_fdmem(max_t(size_t,
178				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
179	if (!data)
180		goto out_arr;
181	fdt->open_fds = data;
182	data += nr / BITS_PER_BYTE;
183	fdt->close_on_exec = data;
184	fdt->next = NULL;
185
186	return fdt;
187
188out_arr:
189	free_fdmem(fdt->fd);
190out_fdt:
191	kfree(fdt);
192out:
193	return NULL;
194}
195
196/*
197 * Expand the file descriptor table.
198 * This function will allocate a new fdtable and both fd array and fdset, of
199 * the given size.
200 * Return <0 error code on error; 1 on successful completion.
201 * The files->file_lock should be held on entry, and will be held on exit.
202 */
203static int expand_fdtable(struct files_struct *files, int nr)
204	__releases(files->file_lock)
205	__acquires(files->file_lock)
206{
207	struct fdtable *new_fdt, *cur_fdt;
208
209	spin_unlock(&files->file_lock);
210	new_fdt = alloc_fdtable(nr);
211	spin_lock(&files->file_lock);
212	if (!new_fdt)
213		return -ENOMEM;
214	/*
215	 * extremely unlikely race - sysctl_nr_open decreased between the check in
216	 * caller and alloc_fdtable().  Cheaper to catch it here...
217	 */
218	if (unlikely(new_fdt->max_fds <= nr)) {
219		__free_fdtable(new_fdt);
220		return -EMFILE;
221	}
222	/*
223	 * Check again since another task may have expanded the fd table while
224	 * we dropped the lock
225	 */
226	cur_fdt = files_fdtable(files);
227	if (nr >= cur_fdt->max_fds) {
228		/* Continue as planned */
229		copy_fdtable(new_fdt, cur_fdt);
230		rcu_assign_pointer(files->fdt, new_fdt);
231		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
232			free_fdtable(cur_fdt);
233	} else {
234		/* Somebody else expanded, so undo our attempt */
235		__free_fdtable(new_fdt);
236	}
237	return 1;
238}
239
240/*
241 * Expand files.
242 * This function will expand the file structures, if the requested size exceeds
243 * the current capacity and there is room for expansion.
244 * Return <0 error code on error; 0 when nothing done; 1 when files were
245 * expanded and execution may have blocked.
246 * The files->file_lock should be held on entry, and will be held on exit.
247 */
248int expand_files(struct files_struct *files, int nr)
249{
250	struct fdtable *fdt;
251
252	fdt = files_fdtable(files);
253
254	/*
255	 * N.B. For clone tasks sharing a files structure, this test
256	 * will limit the total number of files that can be opened.
257	 */
258	if (nr >= rlimit(RLIMIT_NOFILE))
259		return -EMFILE;
260
261	/* Do we need to expand? */
262	if (nr < fdt->max_fds)
263		return 0;
264
265	/* Can we expand? */
266	if (nr >= sysctl_nr_open)
267		return -EMFILE;
268
269	/* All good, so we try */
270	return expand_fdtable(files, nr);
271}
272
273static int count_open_files(struct fdtable *fdt)
274{
275	int size = fdt->max_fds;
276	int i;
277
278	/* Find the last open fd */
279	for (i = size / BITS_PER_LONG; i > 0; ) {
280		if (fdt->open_fds[--i])
281			break;
282	}
283	i = (i + 1) * BITS_PER_LONG;
284	return i;
285}
286
287/*
288 * Allocate a new files structure and copy contents from the
289 * passed in files structure.
290 * errorp will be valid only when the returned files_struct is NULL.
291 */
292struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
293{
294	struct files_struct *newf;
295	struct file **old_fds, **new_fds;
296	int open_files, size, i;
297	struct fdtable *old_fdt, *new_fdt;
298
299	*errorp = -ENOMEM;
300	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
301	if (!newf)
302		goto out;
303
304	atomic_set(&newf->count, 1);
305
306	spin_lock_init(&newf->file_lock);
307	newf->next_fd = 0;
308	new_fdt = &newf->fdtab;
309	new_fdt->max_fds = NR_OPEN_DEFAULT;
310	new_fdt->close_on_exec = newf->close_on_exec_init;
311	new_fdt->open_fds = newf->open_fds_init;
312	new_fdt->fd = &newf->fd_array[0];
313	new_fdt->next = NULL;
314
315	spin_lock(&oldf->file_lock);
316	old_fdt = files_fdtable(oldf);
317	open_files = count_open_files(old_fdt);
318
319	/*
320	 * Check whether we need to allocate a larger fd array and fd set.
321	 */
322	while (unlikely(open_files > new_fdt->max_fds)) {
323		spin_unlock(&oldf->file_lock);
324
325		if (new_fdt != &newf->fdtab)
326			__free_fdtable(new_fdt);
327
328		new_fdt = alloc_fdtable(open_files - 1);
329		if (!new_fdt) {
330			*errorp = -ENOMEM;
331			goto out_release;
332		}
333
334		/* beyond sysctl_nr_open; nothing to do */
335		if (unlikely(new_fdt->max_fds < open_files)) {
336			__free_fdtable(new_fdt);
337			*errorp = -EMFILE;
338			goto out_release;
339		}
340
341		/*
342		 * Reacquire the oldf lock and a pointer to its fd table
343		 * who knows it may have a new bigger fd table. We need
344		 * the latest pointer.
345		 */
346		spin_lock(&oldf->file_lock);
347		old_fdt = files_fdtable(oldf);
348		open_files = count_open_files(old_fdt);
349	}
350
351	old_fds = old_fdt->fd;
352	new_fds = new_fdt->fd;
353
354	memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
355	memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
 
 
356
357	for (i = open_files; i != 0; i--) {
358		struct file *f = *old_fds++;
359		if (f) {
360			get_file(f);
361		} else {
362			/*
363			 * The fd may be claimed in the fd bitmap but not yet
364			 * instantiated in the files array if a sibling thread
365			 * is partway through open().  So make sure that this
366			 * fd is available to the new process.
367			 */
368			__clear_open_fd(open_files - i, new_fdt);
369		}
370		rcu_assign_pointer(*new_fds++, f);
371	}
372	spin_unlock(&oldf->file_lock);
373
374	/* compute the remainder to be cleared */
375	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
376
377	/* This is long word aligned thus could use a optimized version */
378	memset(new_fds, 0, size);
379
380	if (new_fdt->max_fds > open_files) {
381		int left = (new_fdt->max_fds - open_files) / 8;
382		int start = open_files / BITS_PER_LONG;
383
384		memset(&new_fdt->open_fds[start], 0, left);
385		memset(&new_fdt->close_on_exec[start], 0, left);
386	}
387
388	rcu_assign_pointer(newf->fdt, new_fdt);
389
390	return newf;
391
392out_release:
393	kmem_cache_free(files_cachep, newf);
394out:
395	return NULL;
396}
397
398static void __devinit fdtable_defer_list_init(int cpu)
399{
400	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
401	spin_lock_init(&fddef->lock);
402	INIT_WORK(&fddef->wq, free_fdtable_work);
403	fddef->next = NULL;
404}
405
406void __init files_defer_init(void)
407{
408	int i;
409	for_each_possible_cpu(i)
410		fdtable_defer_list_init(i);
411	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
412			     -BITS_PER_LONG;
413}
414
415struct files_struct init_files = {
416	.count		= ATOMIC_INIT(1),
417	.fdt		= &init_files.fdtab,
418	.fdtab		= {
419		.max_fds	= NR_OPEN_DEFAULT,
420		.fd		= &init_files.fd_array[0],
421		.close_on_exec	= init_files.close_on_exec_init,
422		.open_fds	= init_files.open_fds_init,
423	},
424	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
425};
426
427/*
428 * allocate a file descriptor, mark it busy.
429 */
430int alloc_fd(unsigned start, unsigned flags)
431{
432	struct files_struct *files = current->files;
433	unsigned int fd;
434	int error;
435	struct fdtable *fdt;
436
437	spin_lock(&files->file_lock);
438repeat:
439	fdt = files_fdtable(files);
440	fd = start;
441	if (fd < files->next_fd)
442		fd = files->next_fd;
443
444	if (fd < fdt->max_fds)
445		fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
 
446
447	error = expand_files(files, fd);
448	if (error < 0)
449		goto out;
450
451	/*
452	 * If we needed to expand the fs array we
453	 * might have blocked - try again.
454	 */
455	if (error)
456		goto repeat;
457
458	if (start <= files->next_fd)
459		files->next_fd = fd + 1;
460
461	__set_open_fd(fd, fdt);
462	if (flags & O_CLOEXEC)
463		__set_close_on_exec(fd, fdt);
464	else
465		__clear_close_on_exec(fd, fdt);
466	error = fd;
467#if 1
468	/* Sanity check */
469	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
470		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
471		rcu_assign_pointer(fdt->fd[fd], NULL);
472	}
473#endif
474
475out:
476	spin_unlock(&files->file_lock);
477	return error;
478}
479
480int get_unused_fd(void)
481{
482	return alloc_fd(0, 0);
483}
484EXPORT_SYMBOL(get_unused_fd);