Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/fs/file.c
  3 *
  4 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
  5 *
  6 *  Manage the dynamic fd arrays in the process files_struct.
  7 */
  8
  9#include <linux/module.h>
 
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/mmzone.h>
 13#include <linux/time.h>
 14#include <linux/sched.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include <linux/file.h>
 18#include <linux/fdtable.h>
 19#include <linux/bitops.h>
 20#include <linux/interrupt.h>
 21#include <linux/spinlock.h>
 22#include <linux/rcupdate.h>
 23#include <linux/workqueue.h>
 24
 25struct fdtable_defer {
 26	spinlock_t lock;
 27	struct work_struct wq;
 28	struct fdtable *next;
 29};
 30
 31int sysctl_nr_open __read_mostly = 1024*1024;
 32int sysctl_nr_open_min = BITS_PER_LONG;
 33int sysctl_nr_open_max = 1024 * 1024; /* raised later */
 34
 35/*
 36 * We use this list to defer free fdtables that have vmalloced
 37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
 38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
 39 * this per-task structure.
 40 */
 41static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
 42
 43static void *alloc_fdmem(unsigned int size)
 44{
 45	/*
 46	 * Very large allocations can stress page reclaim, so fall back to
 47	 * vmalloc() if the allocation size will be considered "large" by the VM.
 48	 */
 49	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
 50		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
 51		if (data != NULL)
 52			return data;
 53	}
 54	return vmalloc(size);
 55}
 56
 57static void free_fdmem(void *ptr)
 58{
 59	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
 60}
 61
 62static void __free_fdtable(struct fdtable *fdt)
 63{
 64	free_fdmem(fdt->fd);
 65	free_fdmem(fdt->open_fds);
 66	kfree(fdt);
 67}
 68
 69static void free_fdtable_work(struct work_struct *work)
 70{
 71	struct fdtable_defer *f =
 72		container_of(work, struct fdtable_defer, wq);
 73	struct fdtable *fdt;
 74
 75	spin_lock_bh(&f->lock);
 76	fdt = f->next;
 77	f->next = NULL;
 78	spin_unlock_bh(&f->lock);
 79	while(fdt) {
 80		struct fdtable *next = fdt->next;
 81
 82		__free_fdtable(fdt);
 83		fdt = next;
 84	}
 85}
 86
 87void free_fdtable_rcu(struct rcu_head *rcu)
 88{
 89	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
 90	struct fdtable_defer *fddef;
 91
 92	BUG_ON(!fdt);
 93
 94	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
 95		/*
 96		 * This fdtable is embedded in the files structure and that
 97		 * structure itself is getting destroyed.
 98		 */
 99		kmem_cache_free(files_cachep,
100				container_of(fdt, struct files_struct, fdtab));
101		return;
102	}
103	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
104		kfree(fdt->fd);
105		kfree(fdt->open_fds);
106		kfree(fdt);
107	} else {
108		fddef = &get_cpu_var(fdtable_defer_list);
109		spin_lock(&fddef->lock);
110		fdt->next = fddef->next;
111		fddef->next = fdt;
112		/* vmallocs are handled from the workqueue context */
113		schedule_work(&fddef->wq);
114		spin_unlock(&fddef->lock);
115		put_cpu_var(fdtable_defer_list);
116	}
117}
118
119/*
120 * Expand the fdset in the files_struct.  Called with the files spinlock
121 * held for write.
122 */
123static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
124{
125	unsigned int cpy, set;
126
127	BUG_ON(nfdt->max_fds < ofdt->max_fds);
128
129	cpy = ofdt->max_fds * sizeof(struct file *);
130	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
131	memcpy(nfdt->fd, ofdt->fd, cpy);
132	memset((char *)(nfdt->fd) + cpy, 0, set);
133
134	cpy = ofdt->max_fds / BITS_PER_BYTE;
135	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
136	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
137	memset((char *)(nfdt->open_fds) + cpy, 0, set);
138	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
139	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
140}
141
142static struct fdtable * alloc_fdtable(unsigned int nr)
143{
144	struct fdtable *fdt;
145	char *data;
146
147	/*
148	 * Figure out how many fds we actually want to support in this fdtable.
149	 * Allocation steps are keyed to the size of the fdarray, since it
150	 * grows far faster than any of the other dynamic data. We try to fit
151	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152	 * and growing in powers of two from there on.
153	 */
154	nr /= (1024 / sizeof(struct file *));
155	nr = roundup_pow_of_two(nr + 1);
156	nr *= (1024 / sizeof(struct file *));
157	/*
158	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159	 * had been set lower between the check in expand_files() and here.  Deal
160	 * with that in caller, it's cheaper that way.
161	 *
162	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163	 * bitmaps handling below becomes unpleasant, to put it mildly...
164	 */
165	if (unlikely(nr > sysctl_nr_open))
166		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
167
168	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
169	if (!fdt)
170		goto out;
171	fdt->max_fds = nr;
172	data = alloc_fdmem(nr * sizeof(struct file *));
173	if (!data)
174		goto out_fdt;
175	fdt->fd = (struct file **)data;
176	data = alloc_fdmem(max_t(unsigned int,
 
177				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
178	if (!data)
179		goto out_arr;
180	fdt->open_fds = (fd_set *)data;
181	data += nr / BITS_PER_BYTE;
182	fdt->close_on_exec = (fd_set *)data;
183	fdt->next = NULL;
184
185	return fdt;
186
187out_arr:
188	free_fdmem(fdt->fd);
189out_fdt:
190	kfree(fdt);
191out:
192	return NULL;
193}
194
195/*
196 * Expand the file descriptor table.
197 * This function will allocate a new fdtable and both fd array and fdset, of
198 * the given size.
199 * Return <0 error code on error; 1 on successful completion.
200 * The files->file_lock should be held on entry, and will be held on exit.
201 */
202static int expand_fdtable(struct files_struct *files, int nr)
203	__releases(files->file_lock)
204	__acquires(files->file_lock)
205{
206	struct fdtable *new_fdt, *cur_fdt;
207
208	spin_unlock(&files->file_lock);
209	new_fdt = alloc_fdtable(nr);
210	spin_lock(&files->file_lock);
211	if (!new_fdt)
212		return -ENOMEM;
213	/*
214	 * extremely unlikely race - sysctl_nr_open decreased between the check in
215	 * caller and alloc_fdtable().  Cheaper to catch it here...
216	 */
217	if (unlikely(new_fdt->max_fds <= nr)) {
218		__free_fdtable(new_fdt);
219		return -EMFILE;
220	}
221	/*
222	 * Check again since another task may have expanded the fd table while
223	 * we dropped the lock
224	 */
225	cur_fdt = files_fdtable(files);
226	if (nr >= cur_fdt->max_fds) {
227		/* Continue as planned */
228		copy_fdtable(new_fdt, cur_fdt);
229		rcu_assign_pointer(files->fdt, new_fdt);
230		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
231			free_fdtable(cur_fdt);
232	} else {
233		/* Somebody else expanded, so undo our attempt */
234		__free_fdtable(new_fdt);
235	}
236	return 1;
237}
238
239/*
240 * Expand files.
241 * This function will expand the file structures, if the requested size exceeds
242 * the current capacity and there is room for expansion.
243 * Return <0 error code on error; 0 when nothing done; 1 when files were
244 * expanded and execution may have blocked.
245 * The files->file_lock should be held on entry, and will be held on exit.
246 */
247int expand_files(struct files_struct *files, int nr)
248{
249	struct fdtable *fdt;
250
251	fdt = files_fdtable(files);
252
253	/*
254	 * N.B. For clone tasks sharing a files structure, this test
255	 * will limit the total number of files that can be opened.
256	 */
257	if (nr >= rlimit(RLIMIT_NOFILE))
258		return -EMFILE;
259
260	/* Do we need to expand? */
261	if (nr < fdt->max_fds)
262		return 0;
263
264	/* Can we expand? */
265	if (nr >= sysctl_nr_open)
266		return -EMFILE;
267
268	/* All good, so we try */
269	return expand_fdtable(files, nr);
270}
271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272static int count_open_files(struct fdtable *fdt)
273{
274	int size = fdt->max_fds;
275	int i;
276
277	/* Find the last open fd */
278	for (i = size/(8*sizeof(long)); i > 0; ) {
279		if (fdt->open_fds->fds_bits[--i])
280			break;
281	}
282	i = (i+1) * 8 * sizeof(long);
283	return i;
284}
285
286/*
287 * Allocate a new files structure and copy contents from the
288 * passed in files structure.
289 * errorp will be valid only when the returned files_struct is NULL.
290 */
291struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
292{
293	struct files_struct *newf;
294	struct file **old_fds, **new_fds;
295	int open_files, size, i;
296	struct fdtable *old_fdt, *new_fdt;
297
298	*errorp = -ENOMEM;
299	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
300	if (!newf)
301		goto out;
302
303	atomic_set(&newf->count, 1);
304
305	spin_lock_init(&newf->file_lock);
306	newf->next_fd = 0;
307	new_fdt = &newf->fdtab;
308	new_fdt->max_fds = NR_OPEN_DEFAULT;
309	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
310	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
311	new_fdt->fd = &newf->fd_array[0];
312	new_fdt->next = NULL;
313
314	spin_lock(&oldf->file_lock);
315	old_fdt = files_fdtable(oldf);
316	open_files = count_open_files(old_fdt);
317
318	/*
319	 * Check whether we need to allocate a larger fd array and fd set.
320	 */
321	while (unlikely(open_files > new_fdt->max_fds)) {
322		spin_unlock(&oldf->file_lock);
323
324		if (new_fdt != &newf->fdtab)
325			__free_fdtable(new_fdt);
326
327		new_fdt = alloc_fdtable(open_files - 1);
328		if (!new_fdt) {
329			*errorp = -ENOMEM;
330			goto out_release;
331		}
332
333		/* beyond sysctl_nr_open; nothing to do */
334		if (unlikely(new_fdt->max_fds < open_files)) {
335			__free_fdtable(new_fdt);
336			*errorp = -EMFILE;
337			goto out_release;
338		}
339
340		/*
341		 * Reacquire the oldf lock and a pointer to its fd table
342		 * who knows it may have a new bigger fd table. We need
343		 * the latest pointer.
344		 */
345		spin_lock(&oldf->file_lock);
346		old_fdt = files_fdtable(oldf);
347		open_files = count_open_files(old_fdt);
348	}
349
350	old_fds = old_fdt->fd;
351	new_fds = new_fdt->fd;
352
353	memcpy(new_fdt->open_fds->fds_bits,
354		old_fdt->open_fds->fds_bits, open_files/8);
355	memcpy(new_fdt->close_on_exec->fds_bits,
356		old_fdt->close_on_exec->fds_bits, open_files/8);
357
358	for (i = open_files; i != 0; i--) {
359		struct file *f = *old_fds++;
360		if (f) {
361			get_file(f);
362		} else {
363			/*
364			 * The fd may be claimed in the fd bitmap but not yet
365			 * instantiated in the files array if a sibling thread
366			 * is partway through open().  So make sure that this
367			 * fd is available to the new process.
368			 */
369			FD_CLR(open_files - i, new_fdt->open_fds);
370		}
371		rcu_assign_pointer(*new_fds++, f);
372	}
373	spin_unlock(&oldf->file_lock);
374
375	/* compute the remainder to be cleared */
376	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
377
378	/* This is long word aligned thus could use a optimized version */
379	memset(new_fds, 0, size);
380
381	if (new_fdt->max_fds > open_files) {
382		int left = (new_fdt->max_fds-open_files)/8;
383		int start = open_files / (8 * sizeof(unsigned long));
384
385		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
386		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
387	}
388
389	rcu_assign_pointer(newf->fdt, new_fdt);
390
391	return newf;
392
393out_release:
394	kmem_cache_free(files_cachep, newf);
395out:
396	return NULL;
397}
398
399static void __devinit fdtable_defer_list_init(int cpu)
400{
401	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
402	spin_lock_init(&fddef->lock);
403	INIT_WORK(&fddef->wq, free_fdtable_work);
404	fddef->next = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405}
406
407void __init files_defer_init(void)
408{
409	int i;
410	for_each_possible_cpu(i)
411		fdtable_defer_list_init(i);
412	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
413			     -BITS_PER_LONG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414}
415
416struct files_struct init_files = {
417	.count		= ATOMIC_INIT(1),
418	.fdt		= &init_files.fdtab,
419	.fdtab		= {
420		.max_fds	= NR_OPEN_DEFAULT,
421		.fd		= &init_files.fd_array[0],
422		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
423		.open_fds	= (fd_set *)&init_files.open_fds_init,
424	},
425	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
426};
427
428/*
429 * allocate a file descriptor, mark it busy.
430 */
431int alloc_fd(unsigned start, unsigned flags)
 
432{
433	struct files_struct *files = current->files;
434	unsigned int fd;
435	int error;
436	struct fdtable *fdt;
437
438	spin_lock(&files->file_lock);
439repeat:
440	fdt = files_fdtable(files);
441	fd = start;
442	if (fd < files->next_fd)
443		fd = files->next_fd;
444
445	if (fd < fdt->max_fds)
446		fd = find_next_zero_bit(fdt->open_fds->fds_bits,
447					   fdt->max_fds, fd);
 
 
 
 
 
 
 
448
449	error = expand_files(files, fd);
450	if (error < 0)
451		goto out;
452
453	/*
454	 * If we needed to expand the fs array we
455	 * might have blocked - try again.
456	 */
457	if (error)
458		goto repeat;
459
460	if (start <= files->next_fd)
461		files->next_fd = fd + 1;
462
463	FD_SET(fd, fdt->open_fds);
464	if (flags & O_CLOEXEC)
465		FD_SET(fd, fdt->close_on_exec);
466	else
467		FD_CLR(fd, fdt->close_on_exec);
468	error = fd;
469#if 1
470	/* Sanity check */
471	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
472		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
473		rcu_assign_pointer(fdt->fd[fd], NULL);
474	}
475#endif
476
477out:
478	spin_unlock(&files->file_lock);
479	return error;
480}
481
482int get_unused_fd(void)
483{
484	return alloc_fd(0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485}
486EXPORT_SYMBOL(get_unused_fd);
v3.15
  1/*
  2 *  linux/fs/file.c
  3 *
  4 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
  5 *
  6 *  Manage the dynamic fd arrays in the process files_struct.
  7 */
  8
  9#include <linux/syscalls.h>
 10#include <linux/export.h>
 11#include <linux/fs.h>
 12#include <linux/mm.h>
 13#include <linux/mmzone.h>
 14#include <linux/time.h>
 15#include <linux/sched.h>
 16#include <linux/slab.h>
 17#include <linux/vmalloc.h>
 18#include <linux/file.h>
 19#include <linux/fdtable.h>
 20#include <linux/bitops.h>
 21#include <linux/interrupt.h>
 22#include <linux/spinlock.h>
 23#include <linux/rcupdate.h>
 24#include <linux/workqueue.h>
 25
 
 
 
 
 
 
 26int sysctl_nr_open __read_mostly = 1024*1024;
 27int sysctl_nr_open_min = BITS_PER_LONG;
 28/* our max() is unusable in constant expressions ;-/ */
 29#define __const_max(x, y) ((x) < (y) ? (x) : (y))
 30int sysctl_nr_open_max = __const_max(INT_MAX, ~(size_t)0/sizeof(void *)) &
 31			 -BITS_PER_LONG;
 
 
 
 
 
 32
 33static void *alloc_fdmem(size_t size)
 34{
 35	/*
 36	 * Very large allocations can stress page reclaim, so fall back to
 37	 * vmalloc() if the allocation size will be considered "large" by the VM.
 38	 */
 39	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
 40		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY);
 41		if (data != NULL)
 42			return data;
 43	}
 44	return vmalloc(size);
 45}
 46
 47static void free_fdmem(void *ptr)
 48{
 49	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
 50}
 51
 52static void __free_fdtable(struct fdtable *fdt)
 53{
 54	free_fdmem(fdt->fd);
 55	free_fdmem(fdt->open_fds);
 56	kfree(fdt);
 57}
 58
 59static void free_fdtable_rcu(struct rcu_head *rcu)
 60{
 61	__free_fdtable(container_of(rcu, struct fdtable, rcu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62}
 63
 64/*
 65 * Expand the fdset in the files_struct.  Called with the files spinlock
 66 * held for write.
 67 */
 68static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
 69{
 70	unsigned int cpy, set;
 71
 72	BUG_ON(nfdt->max_fds < ofdt->max_fds);
 73
 74	cpy = ofdt->max_fds * sizeof(struct file *);
 75	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
 76	memcpy(nfdt->fd, ofdt->fd, cpy);
 77	memset((char *)(nfdt->fd) + cpy, 0, set);
 78
 79	cpy = ofdt->max_fds / BITS_PER_BYTE;
 80	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
 81	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
 82	memset((char *)(nfdt->open_fds) + cpy, 0, set);
 83	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
 84	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
 85}
 86
 87static struct fdtable * alloc_fdtable(unsigned int nr)
 88{
 89	struct fdtable *fdt;
 90	void *data;
 91
 92	/*
 93	 * Figure out how many fds we actually want to support in this fdtable.
 94	 * Allocation steps are keyed to the size of the fdarray, since it
 95	 * grows far faster than any of the other dynamic data. We try to fit
 96	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
 97	 * and growing in powers of two from there on.
 98	 */
 99	nr /= (1024 / sizeof(struct file *));
100	nr = roundup_pow_of_two(nr + 1);
101	nr *= (1024 / sizeof(struct file *));
102	/*
103	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
104	 * had been set lower between the check in expand_files() and here.  Deal
105	 * with that in caller, it's cheaper that way.
106	 *
107	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
108	 * bitmaps handling below becomes unpleasant, to put it mildly...
109	 */
110	if (unlikely(nr > sysctl_nr_open))
111		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
112
113	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
114	if (!fdt)
115		goto out;
116	fdt->max_fds = nr;
117	data = alloc_fdmem(nr * sizeof(struct file *));
118	if (!data)
119		goto out_fdt;
120	fdt->fd = data;
121
122	data = alloc_fdmem(max_t(size_t,
123				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
124	if (!data)
125		goto out_arr;
126	fdt->open_fds = data;
127	data += nr / BITS_PER_BYTE;
128	fdt->close_on_exec = data;
 
129
130	return fdt;
131
132out_arr:
133	free_fdmem(fdt->fd);
134out_fdt:
135	kfree(fdt);
136out:
137	return NULL;
138}
139
140/*
141 * Expand the file descriptor table.
142 * This function will allocate a new fdtable and both fd array and fdset, of
143 * the given size.
144 * Return <0 error code on error; 1 on successful completion.
145 * The files->file_lock should be held on entry, and will be held on exit.
146 */
147static int expand_fdtable(struct files_struct *files, int nr)
148	__releases(files->file_lock)
149	__acquires(files->file_lock)
150{
151	struct fdtable *new_fdt, *cur_fdt;
152
153	spin_unlock(&files->file_lock);
154	new_fdt = alloc_fdtable(nr);
155	spin_lock(&files->file_lock);
156	if (!new_fdt)
157		return -ENOMEM;
158	/*
159	 * extremely unlikely race - sysctl_nr_open decreased between the check in
160	 * caller and alloc_fdtable().  Cheaper to catch it here...
161	 */
162	if (unlikely(new_fdt->max_fds <= nr)) {
163		__free_fdtable(new_fdt);
164		return -EMFILE;
165	}
166	/*
167	 * Check again since another task may have expanded the fd table while
168	 * we dropped the lock
169	 */
170	cur_fdt = files_fdtable(files);
171	if (nr >= cur_fdt->max_fds) {
172		/* Continue as planned */
173		copy_fdtable(new_fdt, cur_fdt);
174		rcu_assign_pointer(files->fdt, new_fdt);
175		if (cur_fdt != &files->fdtab)
176			call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
177	} else {
178		/* Somebody else expanded, so undo our attempt */
179		__free_fdtable(new_fdt);
180	}
181	return 1;
182}
183
184/*
185 * Expand files.
186 * This function will expand the file structures, if the requested size exceeds
187 * the current capacity and there is room for expansion.
188 * Return <0 error code on error; 0 when nothing done; 1 when files were
189 * expanded and execution may have blocked.
190 * The files->file_lock should be held on entry, and will be held on exit.
191 */
192static int expand_files(struct files_struct *files, int nr)
193{
194	struct fdtable *fdt;
195
196	fdt = files_fdtable(files);
197
 
 
 
 
 
 
 
198	/* Do we need to expand? */
199	if (nr < fdt->max_fds)
200		return 0;
201
202	/* Can we expand? */
203	if (nr >= sysctl_nr_open)
204		return -EMFILE;
205
206	/* All good, so we try */
207	return expand_fdtable(files, nr);
208}
209
210static inline void __set_close_on_exec(int fd, struct fdtable *fdt)
211{
212	__set_bit(fd, fdt->close_on_exec);
213}
214
215static inline void __clear_close_on_exec(int fd, struct fdtable *fdt)
216{
217	__clear_bit(fd, fdt->close_on_exec);
218}
219
220static inline void __set_open_fd(int fd, struct fdtable *fdt)
221{
222	__set_bit(fd, fdt->open_fds);
223}
224
225static inline void __clear_open_fd(int fd, struct fdtable *fdt)
226{
227	__clear_bit(fd, fdt->open_fds);
228}
229
230static int count_open_files(struct fdtable *fdt)
231{
232	int size = fdt->max_fds;
233	int i;
234
235	/* Find the last open fd */
236	for (i = size / BITS_PER_LONG; i > 0; ) {
237		if (fdt->open_fds[--i])
238			break;
239	}
240	i = (i + 1) * BITS_PER_LONG;
241	return i;
242}
243
244/*
245 * Allocate a new files structure and copy contents from the
246 * passed in files structure.
247 * errorp will be valid only when the returned files_struct is NULL.
248 */
249struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
250{
251	struct files_struct *newf;
252	struct file **old_fds, **new_fds;
253	int open_files, size, i;
254	struct fdtable *old_fdt, *new_fdt;
255
256	*errorp = -ENOMEM;
257	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
258	if (!newf)
259		goto out;
260
261	atomic_set(&newf->count, 1);
262
263	spin_lock_init(&newf->file_lock);
264	newf->next_fd = 0;
265	new_fdt = &newf->fdtab;
266	new_fdt->max_fds = NR_OPEN_DEFAULT;
267	new_fdt->close_on_exec = newf->close_on_exec_init;
268	new_fdt->open_fds = newf->open_fds_init;
269	new_fdt->fd = &newf->fd_array[0];
 
270
271	spin_lock(&oldf->file_lock);
272	old_fdt = files_fdtable(oldf);
273	open_files = count_open_files(old_fdt);
274
275	/*
276	 * Check whether we need to allocate a larger fd array and fd set.
277	 */
278	while (unlikely(open_files > new_fdt->max_fds)) {
279		spin_unlock(&oldf->file_lock);
280
281		if (new_fdt != &newf->fdtab)
282			__free_fdtable(new_fdt);
283
284		new_fdt = alloc_fdtable(open_files - 1);
285		if (!new_fdt) {
286			*errorp = -ENOMEM;
287			goto out_release;
288		}
289
290		/* beyond sysctl_nr_open; nothing to do */
291		if (unlikely(new_fdt->max_fds < open_files)) {
292			__free_fdtable(new_fdt);
293			*errorp = -EMFILE;
294			goto out_release;
295		}
296
297		/*
298		 * Reacquire the oldf lock and a pointer to its fd table
299		 * who knows it may have a new bigger fd table. We need
300		 * the latest pointer.
301		 */
302		spin_lock(&oldf->file_lock);
303		old_fdt = files_fdtable(oldf);
304		open_files = count_open_files(old_fdt);
305	}
306
307	old_fds = old_fdt->fd;
308	new_fds = new_fdt->fd;
309
310	memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
311	memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
 
 
312
313	for (i = open_files; i != 0; i--) {
314		struct file *f = *old_fds++;
315		if (f) {
316			get_file(f);
317		} else {
318			/*
319			 * The fd may be claimed in the fd bitmap but not yet
320			 * instantiated in the files array if a sibling thread
321			 * is partway through open().  So make sure that this
322			 * fd is available to the new process.
323			 */
324			__clear_open_fd(open_files - i, new_fdt);
325		}
326		rcu_assign_pointer(*new_fds++, f);
327	}
328	spin_unlock(&oldf->file_lock);
329
330	/* compute the remainder to be cleared */
331	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
332
333	/* This is long word aligned thus could use a optimized version */
334	memset(new_fds, 0, size);
335
336	if (new_fdt->max_fds > open_files) {
337		int left = (new_fdt->max_fds - open_files) / 8;
338		int start = open_files / BITS_PER_LONG;
339
340		memset(&new_fdt->open_fds[start], 0, left);
341		memset(&new_fdt->close_on_exec[start], 0, left);
342	}
343
344	rcu_assign_pointer(newf->fdt, new_fdt);
345
346	return newf;
347
348out_release:
349	kmem_cache_free(files_cachep, newf);
350out:
351	return NULL;
352}
353
354static struct fdtable *close_files(struct files_struct * files)
355{
356	/*
357	 * It is safe to dereference the fd table without RCU or
358	 * ->file_lock because this is the last reference to the
359	 * files structure.
360	 */
361	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
362	int i, j = 0;
363
364	for (;;) {
365		unsigned long set;
366		i = j * BITS_PER_LONG;
367		if (i >= fdt->max_fds)
368			break;
369		set = fdt->open_fds[j++];
370		while (set) {
371			if (set & 1) {
372				struct file * file = xchg(&fdt->fd[i], NULL);
373				if (file) {
374					filp_close(file, files);
375					cond_resched();
376				}
377			}
378			i++;
379			set >>= 1;
380		}
381	}
382
383	return fdt;
384}
385
386struct files_struct *get_files_struct(struct task_struct *task)
387{
388	struct files_struct *files;
389
390	task_lock(task);
391	files = task->files;
392	if (files)
393		atomic_inc(&files->count);
394	task_unlock(task);
395
396	return files;
397}
398
399void put_files_struct(struct files_struct *files)
400{
401	if (atomic_dec_and_test(&files->count)) {
402		struct fdtable *fdt = close_files(files);
403
404		/* free the arrays if they are not embedded */
405		if (fdt != &files->fdtab)
406			__free_fdtable(fdt);
407		kmem_cache_free(files_cachep, files);
408	}
409}
410
411void reset_files_struct(struct files_struct *files)
412{
413	struct task_struct *tsk = current;
414	struct files_struct *old;
415
416	old = tsk->files;
417	task_lock(tsk);
418	tsk->files = files;
419	task_unlock(tsk);
420	put_files_struct(old);
421}
422
423void exit_files(struct task_struct *tsk)
424{
425	struct files_struct * files = tsk->files;
426
427	if (files) {
428		task_lock(tsk);
429		tsk->files = NULL;
430		task_unlock(tsk);
431		put_files_struct(files);
432	}
433}
434
435struct files_struct init_files = {
436	.count		= ATOMIC_INIT(1),
437	.fdt		= &init_files.fdtab,
438	.fdtab		= {
439		.max_fds	= NR_OPEN_DEFAULT,
440		.fd		= &init_files.fd_array[0],
441		.close_on_exec	= init_files.close_on_exec_init,
442		.open_fds	= init_files.open_fds_init,
443	},
444	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
445};
446
447/*
448 * allocate a file descriptor, mark it busy.
449 */
450int __alloc_fd(struct files_struct *files,
451	       unsigned start, unsigned end, unsigned flags)
452{
 
453	unsigned int fd;
454	int error;
455	struct fdtable *fdt;
456
457	spin_lock(&files->file_lock);
458repeat:
459	fdt = files_fdtable(files);
460	fd = start;
461	if (fd < files->next_fd)
462		fd = files->next_fd;
463
464	if (fd < fdt->max_fds)
465		fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
466
467	/*
468	 * N.B. For clone tasks sharing a files structure, this test
469	 * will limit the total number of files that can be opened.
470	 */
471	error = -EMFILE;
472	if (fd >= end)
473		goto out;
474
475	error = expand_files(files, fd);
476	if (error < 0)
477		goto out;
478
479	/*
480	 * If we needed to expand the fs array we
481	 * might have blocked - try again.
482	 */
483	if (error)
484		goto repeat;
485
486	if (start <= files->next_fd)
487		files->next_fd = fd + 1;
488
489	__set_open_fd(fd, fdt);
490	if (flags & O_CLOEXEC)
491		__set_close_on_exec(fd, fdt);
492	else
493		__clear_close_on_exec(fd, fdt);
494	error = fd;
495#if 1
496	/* Sanity check */
497	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
498		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
499		rcu_assign_pointer(fdt->fd[fd], NULL);
500	}
501#endif
502
503out:
504	spin_unlock(&files->file_lock);
505	return error;
506}
507
508static int alloc_fd(unsigned start, unsigned flags)
509{
510	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
511}
512
513int get_unused_fd_flags(unsigned flags)
514{
515	return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags);
516}
517EXPORT_SYMBOL(get_unused_fd_flags);
518
519static void __put_unused_fd(struct files_struct *files, unsigned int fd)
520{
521	struct fdtable *fdt = files_fdtable(files);
522	__clear_open_fd(fd, fdt);
523	if (fd < files->next_fd)
524		files->next_fd = fd;
525}
526
527void put_unused_fd(unsigned int fd)
528{
529	struct files_struct *files = current->files;
530	spin_lock(&files->file_lock);
531	__put_unused_fd(files, fd);
532	spin_unlock(&files->file_lock);
533}
534
535EXPORT_SYMBOL(put_unused_fd);
536
537/*
538 * Install a file pointer in the fd array.
539 *
540 * The VFS is full of places where we drop the files lock between
541 * setting the open_fds bitmap and installing the file in the file
542 * array.  At any such point, we are vulnerable to a dup2() race
543 * installing a file in the array before us.  We need to detect this and
544 * fput() the struct file we are about to overwrite in this case.
545 *
546 * It should never happen - if we allow dup2() do it, _really_ bad things
547 * will follow.
548 *
549 * NOTE: __fd_install() variant is really, really low-level; don't
550 * use it unless you are forced to by truly lousy API shoved down
551 * your throat.  'files' *MUST* be either current->files or obtained
552 * by get_files_struct(current) done by whoever had given it to you,
553 * or really bad things will happen.  Normally you want to use
554 * fd_install() instead.
555 */
556
557void __fd_install(struct files_struct *files, unsigned int fd,
558		struct file *file)
559{
560	struct fdtable *fdt;
561	spin_lock(&files->file_lock);
562	fdt = files_fdtable(files);
563	BUG_ON(fdt->fd[fd] != NULL);
564	rcu_assign_pointer(fdt->fd[fd], file);
565	spin_unlock(&files->file_lock);
566}
567
568void fd_install(unsigned int fd, struct file *file)
569{
570	__fd_install(current->files, fd, file);
571}
572
573EXPORT_SYMBOL(fd_install);
574
575/*
576 * The same warnings as for __alloc_fd()/__fd_install() apply here...
577 */
578int __close_fd(struct files_struct *files, unsigned fd)
579{
580	struct file *file;
581	struct fdtable *fdt;
582
583	spin_lock(&files->file_lock);
584	fdt = files_fdtable(files);
585	if (fd >= fdt->max_fds)
586		goto out_unlock;
587	file = fdt->fd[fd];
588	if (!file)
589		goto out_unlock;
590	rcu_assign_pointer(fdt->fd[fd], NULL);
591	__clear_close_on_exec(fd, fdt);
592	__put_unused_fd(files, fd);
593	spin_unlock(&files->file_lock);
594	return filp_close(file, files);
595
596out_unlock:
597	spin_unlock(&files->file_lock);
598	return -EBADF;
599}
600
601void do_close_on_exec(struct files_struct *files)
602{
603	unsigned i;
604	struct fdtable *fdt;
605
606	/* exec unshares first */
607	spin_lock(&files->file_lock);
608	for (i = 0; ; i++) {
609		unsigned long set;
610		unsigned fd = i * BITS_PER_LONG;
611		fdt = files_fdtable(files);
612		if (fd >= fdt->max_fds)
613			break;
614		set = fdt->close_on_exec[i];
615		if (!set)
616			continue;
617		fdt->close_on_exec[i] = 0;
618		for ( ; set ; fd++, set >>= 1) {
619			struct file *file;
620			if (!(set & 1))
621				continue;
622			file = fdt->fd[fd];
623			if (!file)
624				continue;
625			rcu_assign_pointer(fdt->fd[fd], NULL);
626			__put_unused_fd(files, fd);
627			spin_unlock(&files->file_lock);
628			filp_close(file, files);
629			cond_resched();
630			spin_lock(&files->file_lock);
631		}
632
633	}
634	spin_unlock(&files->file_lock);
635}
636
637static struct file *__fget(unsigned int fd, fmode_t mask)
638{
639	struct files_struct *files = current->files;
640	struct file *file;
641
642	rcu_read_lock();
643	file = fcheck_files(files, fd);
644	if (file) {
645		/* File object ref couldn't be taken */
646		if ((file->f_mode & mask) ||
647		    !atomic_long_inc_not_zero(&file->f_count))
648			file = NULL;
649	}
650	rcu_read_unlock();
651
652	return file;
653}
654
655struct file *fget(unsigned int fd)
656{
657	return __fget(fd, FMODE_PATH);
658}
659EXPORT_SYMBOL(fget);
660
661struct file *fget_raw(unsigned int fd)
662{
663	return __fget(fd, 0);
664}
665EXPORT_SYMBOL(fget_raw);
666
667/*
668 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
669 *
670 * You can use this instead of fget if you satisfy all of the following
671 * conditions:
672 * 1) You must call fput_light before exiting the syscall and returning control
673 *    to userspace (i.e. you cannot remember the returned struct file * after
674 *    returning to userspace).
675 * 2) You must not call filp_close on the returned struct file * in between
676 *    calls to fget_light and fput_light.
677 * 3) You must not clone the current task in between the calls to fget_light
678 *    and fput_light.
679 *
680 * The fput_needed flag returned by fget_light should be passed to the
681 * corresponding fput_light.
682 */
683static unsigned long __fget_light(unsigned int fd, fmode_t mask)
684{
685	struct files_struct *files = current->files;
686	struct file *file;
687
688	if (atomic_read(&files->count) == 1) {
689		file = __fcheck_files(files, fd);
690		if (!file || unlikely(file->f_mode & mask))
691			return 0;
692		return (unsigned long)file;
693	} else {
694		file = __fget(fd, mask);
695		if (!file)
696			return 0;
697		return FDPUT_FPUT | (unsigned long)file;
698	}
699}
700unsigned long __fdget(unsigned int fd)
701{
702	return __fget_light(fd, FMODE_PATH);
703}
704EXPORT_SYMBOL(__fdget);
705
706unsigned long __fdget_raw(unsigned int fd)
707{
708	return __fget_light(fd, 0);
709}
710
711unsigned long __fdget_pos(unsigned int fd)
712{
713	unsigned long v = __fdget(fd);
714	struct file *file = (struct file *)(v & ~3);
715
716	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
717		if (file_count(file) > 1) {
718			v |= FDPUT_POS_UNLOCK;
719			mutex_lock(&file->f_pos_lock);
720		}
721	}
722	return v;
723}
724
725/*
726 * We only lock f_pos if we have threads or if the file might be
727 * shared with another process. In both cases we'll have an elevated
728 * file count (done either by fdget() or by fork()).
729 */
730
731void set_close_on_exec(unsigned int fd, int flag)
732{
733	struct files_struct *files = current->files;
734	struct fdtable *fdt;
735	spin_lock(&files->file_lock);
736	fdt = files_fdtable(files);
737	if (flag)
738		__set_close_on_exec(fd, fdt);
739	else
740		__clear_close_on_exec(fd, fdt);
741	spin_unlock(&files->file_lock);
742}
743
744bool get_close_on_exec(unsigned int fd)
745{
746	struct files_struct *files = current->files;
747	struct fdtable *fdt;
748	bool res;
749	rcu_read_lock();
750	fdt = files_fdtable(files);
751	res = close_on_exec(fd, fdt);
752	rcu_read_unlock();
753	return res;
754}
755
756static int do_dup2(struct files_struct *files,
757	struct file *file, unsigned fd, unsigned flags)
758{
759	struct file *tofree;
760	struct fdtable *fdt;
761
762	/*
763	 * We need to detect attempts to do dup2() over allocated but still
764	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
765	 * extra work in their equivalent of fget() - they insert struct
766	 * file immediately after grabbing descriptor, mark it larval if
767	 * more work (e.g. actual opening) is needed and make sure that
768	 * fget() treats larval files as absent.  Potentially interesting,
769	 * but while extra work in fget() is trivial, locking implications
770	 * and amount of surgery on open()-related paths in VFS are not.
771	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
772	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
773	 * scope of POSIX or SUS, since neither considers shared descriptor
774	 * tables and this condition does not arise without those.
775	 */
776	fdt = files_fdtable(files);
777	tofree = fdt->fd[fd];
778	if (!tofree && fd_is_open(fd, fdt))
779		goto Ebusy;
780	get_file(file);
781	rcu_assign_pointer(fdt->fd[fd], file);
782	__set_open_fd(fd, fdt);
783	if (flags & O_CLOEXEC)
784		__set_close_on_exec(fd, fdt);
785	else
786		__clear_close_on_exec(fd, fdt);
787	spin_unlock(&files->file_lock);
788
789	if (tofree)
790		filp_close(tofree, files);
791
792	return fd;
793
794Ebusy:
795	spin_unlock(&files->file_lock);
796	return -EBUSY;
797}
798
799int replace_fd(unsigned fd, struct file *file, unsigned flags)
800{
801	int err;
802	struct files_struct *files = current->files;
803
804	if (!file)
805		return __close_fd(files, fd);
806
807	if (fd >= rlimit(RLIMIT_NOFILE))
808		return -EBADF;
809
810	spin_lock(&files->file_lock);
811	err = expand_files(files, fd);
812	if (unlikely(err < 0))
813		goto out_unlock;
814	return do_dup2(files, file, fd, flags);
815
816out_unlock:
817	spin_unlock(&files->file_lock);
818	return err;
819}
820
821SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
822{
823	int err = -EBADF;
824	struct file *file;
825	struct files_struct *files = current->files;
826
827	if ((flags & ~O_CLOEXEC) != 0)
828		return -EINVAL;
829
830	if (unlikely(oldfd == newfd))
831		return -EINVAL;
832
833	if (newfd >= rlimit(RLIMIT_NOFILE))
834		return -EBADF;
835
836	spin_lock(&files->file_lock);
837	err = expand_files(files, newfd);
838	file = fcheck(oldfd);
839	if (unlikely(!file))
840		goto Ebadf;
841	if (unlikely(err < 0)) {
842		if (err == -EMFILE)
843			goto Ebadf;
844		goto out_unlock;
845	}
846	return do_dup2(files, file, newfd, flags);
847
848Ebadf:
849	err = -EBADF;
850out_unlock:
851	spin_unlock(&files->file_lock);
852	return err;
853}
854
855SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
856{
857	if (unlikely(newfd == oldfd)) { /* corner case */
858		struct files_struct *files = current->files;
859		int retval = oldfd;
860
861		rcu_read_lock();
862		if (!fcheck_files(files, oldfd))
863			retval = -EBADF;
864		rcu_read_unlock();
865		return retval;
866	}
867	return sys_dup3(oldfd, newfd, 0);
868}
869
870SYSCALL_DEFINE1(dup, unsigned int, fildes)
871{
872	int ret = -EBADF;
873	struct file *file = fget_raw(fildes);
874
875	if (file) {
876		ret = get_unused_fd();
877		if (ret >= 0)
878			fd_install(ret, file);
879		else
880			fput(file);
881	}
882	return ret;
883}
884
885int f_dupfd(unsigned int from, struct file *file, unsigned flags)
886{
887	int err;
888	if (from >= rlimit(RLIMIT_NOFILE))
889		return -EINVAL;
890	err = alloc_fd(from, flags);
891	if (err >= 0) {
892		get_file(file);
893		fd_install(err, file);
894	}
895	return err;
896}
897
898int iterate_fd(struct files_struct *files, unsigned n,
899		int (*f)(const void *, struct file *, unsigned),
900		const void *p)
901{
902	struct fdtable *fdt;
903	int res = 0;
904	if (!files)
905		return 0;
906	spin_lock(&files->file_lock);
907	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
908		struct file *file;
909		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
910		if (!file)
911			continue;
912		res = f(p, file, n);
913		if (res)
914			break;
915	}
916	spin_unlock(&files->file_lock);
917	return res;
918}
919EXPORT_SYMBOL(iterate_fd);