Loading...
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
12#include <linux/dma-mapping.h>
13#include <linux/delay.h>
14#include <linux/interrupt.h>
15#include <linux/jiffies.h>
16#include <linux/sched.h>
17#include <linux/mtd/mtd.h>
18#include <linux/mtd/nand.h>
19#include <linux/mtd/partitions.h>
20#include <linux/io.h>
21#include <linux/slab.h>
22
23#include <plat/dma.h>
24#include <plat/gpmc.h>
25#include <plat/nand.h>
26
27#define DRIVER_NAME "omap2-nand"
28#define OMAP_NAND_TIMEOUT_MS 5000
29
30#define NAND_Ecc_P1e (1 << 0)
31#define NAND_Ecc_P2e (1 << 1)
32#define NAND_Ecc_P4e (1 << 2)
33#define NAND_Ecc_P8e (1 << 3)
34#define NAND_Ecc_P16e (1 << 4)
35#define NAND_Ecc_P32e (1 << 5)
36#define NAND_Ecc_P64e (1 << 6)
37#define NAND_Ecc_P128e (1 << 7)
38#define NAND_Ecc_P256e (1 << 8)
39#define NAND_Ecc_P512e (1 << 9)
40#define NAND_Ecc_P1024e (1 << 10)
41#define NAND_Ecc_P2048e (1 << 11)
42
43#define NAND_Ecc_P1o (1 << 16)
44#define NAND_Ecc_P2o (1 << 17)
45#define NAND_Ecc_P4o (1 << 18)
46#define NAND_Ecc_P8o (1 << 19)
47#define NAND_Ecc_P16o (1 << 20)
48#define NAND_Ecc_P32o (1 << 21)
49#define NAND_Ecc_P64o (1 << 22)
50#define NAND_Ecc_P128o (1 << 23)
51#define NAND_Ecc_P256o (1 << 24)
52#define NAND_Ecc_P512o (1 << 25)
53#define NAND_Ecc_P1024o (1 << 26)
54#define NAND_Ecc_P2048o (1 << 27)
55
56#define TF(value) (value ? 1 : 0)
57
58#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
59#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
60#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
61#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
62#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
63#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
64#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
65#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
66
67#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
68#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
69#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
70#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
71#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
72#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
73#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
74#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
75
76#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
77#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
78#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
79#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
80#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
81#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
82#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
83#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
84
85#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
86#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
87#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
88#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
89#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
90#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
91#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
92#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
93
94#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
95#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
96
97static const char *part_probes[] = { "cmdlinepart", NULL };
98
99/* oob info generated runtime depending on ecc algorithm and layout selected */
100static struct nand_ecclayout omap_oobinfo;
101/* Define some generic bad / good block scan pattern which are used
102 * while scanning a device for factory marked good / bad blocks
103 */
104static uint8_t scan_ff_pattern[] = { 0xff };
105static struct nand_bbt_descr bb_descrip_flashbased = {
106 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
107 .offs = 0,
108 .len = 1,
109 .pattern = scan_ff_pattern,
110};
111
112
113struct omap_nand_info {
114 struct nand_hw_control controller;
115 struct omap_nand_platform_data *pdata;
116 struct mtd_info mtd;
117 struct mtd_partition *parts;
118 struct nand_chip nand;
119 struct platform_device *pdev;
120
121 int gpmc_cs;
122 unsigned long phys_base;
123 struct completion comp;
124 int dma_ch;
125 int gpmc_irq;
126 enum {
127 OMAP_NAND_IO_READ = 0, /* read */
128 OMAP_NAND_IO_WRITE, /* write */
129 } iomode;
130 u_char *buf;
131 int buf_len;
132};
133
134/**
135 * omap_hwcontrol - hardware specific access to control-lines
136 * @mtd: MTD device structure
137 * @cmd: command to device
138 * @ctrl:
139 * NAND_NCE: bit 0 -> don't care
140 * NAND_CLE: bit 1 -> Command Latch
141 * NAND_ALE: bit 2 -> Address Latch
142 *
143 * NOTE: boards may use different bits for these!!
144 */
145static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
146{
147 struct omap_nand_info *info = container_of(mtd,
148 struct omap_nand_info, mtd);
149
150 if (cmd != NAND_CMD_NONE) {
151 if (ctrl & NAND_CLE)
152 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
153
154 else if (ctrl & NAND_ALE)
155 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
156
157 else /* NAND_NCE */
158 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
159 }
160}
161
162/**
163 * omap_read_buf8 - read data from NAND controller into buffer
164 * @mtd: MTD device structure
165 * @buf: buffer to store date
166 * @len: number of bytes to read
167 */
168static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
169{
170 struct nand_chip *nand = mtd->priv;
171
172 ioread8_rep(nand->IO_ADDR_R, buf, len);
173}
174
175/**
176 * omap_write_buf8 - write buffer to NAND controller
177 * @mtd: MTD device structure
178 * @buf: data buffer
179 * @len: number of bytes to write
180 */
181static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
182{
183 struct omap_nand_info *info = container_of(mtd,
184 struct omap_nand_info, mtd);
185 u_char *p = (u_char *)buf;
186 u32 status = 0;
187
188 while (len--) {
189 iowrite8(*p++, info->nand.IO_ADDR_W);
190 /* wait until buffer is available for write */
191 do {
192 status = gpmc_read_status(GPMC_STATUS_BUFFER);
193 } while (!status);
194 }
195}
196
197/**
198 * omap_read_buf16 - read data from NAND controller into buffer
199 * @mtd: MTD device structure
200 * @buf: buffer to store date
201 * @len: number of bytes to read
202 */
203static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
204{
205 struct nand_chip *nand = mtd->priv;
206
207 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
208}
209
210/**
211 * omap_write_buf16 - write buffer to NAND controller
212 * @mtd: MTD device structure
213 * @buf: data buffer
214 * @len: number of bytes to write
215 */
216static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
217{
218 struct omap_nand_info *info = container_of(mtd,
219 struct omap_nand_info, mtd);
220 u16 *p = (u16 *) buf;
221 u32 status = 0;
222 /* FIXME try bursts of writesw() or DMA ... */
223 len >>= 1;
224
225 while (len--) {
226 iowrite16(*p++, info->nand.IO_ADDR_W);
227 /* wait until buffer is available for write */
228 do {
229 status = gpmc_read_status(GPMC_STATUS_BUFFER);
230 } while (!status);
231 }
232}
233
234/**
235 * omap_read_buf_pref - read data from NAND controller into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
239 */
240static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
241{
242 struct omap_nand_info *info = container_of(mtd,
243 struct omap_nand_info, mtd);
244 uint32_t r_count = 0;
245 int ret = 0;
246 u32 *p = (u32 *)buf;
247
248 /* take care of subpage reads */
249 if (len % 4) {
250 if (info->nand.options & NAND_BUSWIDTH_16)
251 omap_read_buf16(mtd, buf, len % 4);
252 else
253 omap_read_buf8(mtd, buf, len % 4);
254 p = (u32 *) (buf + len % 4);
255 len -= len % 4;
256 }
257
258 /* configure and start prefetch transfer */
259 ret = gpmc_prefetch_enable(info->gpmc_cs,
260 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
261 if (ret) {
262 /* PFPW engine is busy, use cpu copy method */
263 if (info->nand.options & NAND_BUSWIDTH_16)
264 omap_read_buf16(mtd, (u_char *)p, len);
265 else
266 omap_read_buf8(mtd, (u_char *)p, len);
267 } else {
268 do {
269 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
270 r_count = r_count >> 2;
271 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
272 p += r_count;
273 len -= r_count << 2;
274 } while (len);
275 /* disable and stop the PFPW engine */
276 gpmc_prefetch_reset(info->gpmc_cs);
277 }
278}
279
280/**
281 * omap_write_buf_pref - write buffer to NAND controller
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
285 */
286static void omap_write_buf_pref(struct mtd_info *mtd,
287 const u_char *buf, int len)
288{
289 struct omap_nand_info *info = container_of(mtd,
290 struct omap_nand_info, mtd);
291 uint32_t w_count = 0;
292 int i = 0, ret = 0;
293 u16 *p = (u16 *)buf;
294 unsigned long tim, limit;
295
296 /* take care of subpage writes */
297 if (len % 2 != 0) {
298 writeb(*buf, info->nand.IO_ADDR_W);
299 p = (u16 *)(buf + 1);
300 len--;
301 }
302
303 /* configure and start prefetch transfer */
304 ret = gpmc_prefetch_enable(info->gpmc_cs,
305 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
306 if (ret) {
307 /* PFPW engine is busy, use cpu copy method */
308 if (info->nand.options & NAND_BUSWIDTH_16)
309 omap_write_buf16(mtd, (u_char *)p, len);
310 else
311 omap_write_buf8(mtd, (u_char *)p, len);
312 } else {
313 while (len) {
314 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
315 w_count = w_count >> 1;
316 for (i = 0; (i < w_count) && len; i++, len -= 2)
317 iowrite16(*p++, info->nand.IO_ADDR_W);
318 }
319 /* wait for data to flushed-out before reset the prefetch */
320 tim = 0;
321 limit = (loops_per_jiffy *
322 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
323 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
324 cpu_relax();
325
326 /* disable and stop the PFPW engine */
327 gpmc_prefetch_reset(info->gpmc_cs);
328 }
329}
330
331/*
332 * omap_nand_dma_cb: callback on the completion of dma transfer
333 * @lch: logical channel
334 * @ch_satuts: channel status
335 * @data: pointer to completion data structure
336 */
337static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
338{
339 complete((struct completion *) data);
340}
341
342/*
343 * omap_nand_dma_transfer: configer and start dma transfer
344 * @mtd: MTD device structure
345 * @addr: virtual address in RAM of source/destination
346 * @len: number of data bytes to be transferred
347 * @is_write: flag for read/write operation
348 */
349static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
350 unsigned int len, int is_write)
351{
352 struct omap_nand_info *info = container_of(mtd,
353 struct omap_nand_info, mtd);
354 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
355 DMA_FROM_DEVICE;
356 dma_addr_t dma_addr;
357 int ret;
358 unsigned long tim, limit;
359
360 /* The fifo depth is 64 bytes max.
361 * But configure the FIFO-threahold to 32 to get a sync at each frame
362 * and frame length is 32 bytes.
363 */
364 int buf_len = len >> 6;
365
366 if (addr >= high_memory) {
367 struct page *p1;
368
369 if (((size_t)addr & PAGE_MASK) !=
370 ((size_t)(addr + len - 1) & PAGE_MASK))
371 goto out_copy;
372 p1 = vmalloc_to_page(addr);
373 if (!p1)
374 goto out_copy;
375 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
376 }
377
378 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
379 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
380 dev_err(&info->pdev->dev,
381 "Couldn't DMA map a %d byte buffer\n", len);
382 goto out_copy;
383 }
384
385 if (is_write) {
386 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
387 info->phys_base, 0, 0);
388 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
389 dma_addr, 0, 0);
390 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
391 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
392 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
393 } else {
394 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
395 info->phys_base, 0, 0);
396 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
397 dma_addr, 0, 0);
398 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
399 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
400 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
401 }
402 /* configure and start prefetch transfer */
403 ret = gpmc_prefetch_enable(info->gpmc_cs,
404 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
405 if (ret)
406 /* PFPW engine is busy, use cpu copy method */
407 goto out_copy;
408
409 init_completion(&info->comp);
410
411 omap_start_dma(info->dma_ch);
412
413 /* setup and start DMA using dma_addr */
414 wait_for_completion(&info->comp);
415 tim = 0;
416 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
417 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
418 cpu_relax();
419
420 /* disable and stop the PFPW engine */
421 gpmc_prefetch_reset(info->gpmc_cs);
422
423 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
424 return 0;
425
426out_copy:
427 if (info->nand.options & NAND_BUSWIDTH_16)
428 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
429 : omap_write_buf16(mtd, (u_char *) addr, len);
430 else
431 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
432 : omap_write_buf8(mtd, (u_char *) addr, len);
433 return 0;
434}
435
436/**
437 * omap_read_buf_dma_pref - read data from NAND controller into buffer
438 * @mtd: MTD device structure
439 * @buf: buffer to store date
440 * @len: number of bytes to read
441 */
442static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
443{
444 if (len <= mtd->oobsize)
445 omap_read_buf_pref(mtd, buf, len);
446 else
447 /* start transfer in DMA mode */
448 omap_nand_dma_transfer(mtd, buf, len, 0x0);
449}
450
451/**
452 * omap_write_buf_dma_pref - write buffer to NAND controller
453 * @mtd: MTD device structure
454 * @buf: data buffer
455 * @len: number of bytes to write
456 */
457static void omap_write_buf_dma_pref(struct mtd_info *mtd,
458 const u_char *buf, int len)
459{
460 if (len <= mtd->oobsize)
461 omap_write_buf_pref(mtd, buf, len);
462 else
463 /* start transfer in DMA mode */
464 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
465}
466
467/*
468 * omap_nand_irq - GMPC irq handler
469 * @this_irq: gpmc irq number
470 * @dev: omap_nand_info structure pointer is passed here
471 */
472static irqreturn_t omap_nand_irq(int this_irq, void *dev)
473{
474 struct omap_nand_info *info = (struct omap_nand_info *) dev;
475 u32 bytes;
476 u32 irq_stat;
477
478 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
479 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
480 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
481 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
482 if (irq_stat & 0x2)
483 goto done;
484
485 if (info->buf_len && (info->buf_len < bytes))
486 bytes = info->buf_len;
487 else if (!info->buf_len)
488 bytes = 0;
489 iowrite32_rep(info->nand.IO_ADDR_W,
490 (u32 *)info->buf, bytes >> 2);
491 info->buf = info->buf + bytes;
492 info->buf_len -= bytes;
493
494 } else {
495 ioread32_rep(info->nand.IO_ADDR_R,
496 (u32 *)info->buf, bytes >> 2);
497 info->buf = info->buf + bytes;
498
499 if (irq_stat & 0x2)
500 goto done;
501 }
502 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
503
504 return IRQ_HANDLED;
505
506done:
507 complete(&info->comp);
508 /* disable irq */
509 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
510
511 /* clear status */
512 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
513
514 return IRQ_HANDLED;
515}
516
517/*
518 * omap_read_buf_irq_pref - read data from NAND controller into buffer
519 * @mtd: MTD device structure
520 * @buf: buffer to store date
521 * @len: number of bytes to read
522 */
523static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
524{
525 struct omap_nand_info *info = container_of(mtd,
526 struct omap_nand_info, mtd);
527 int ret = 0;
528
529 if (len <= mtd->oobsize) {
530 omap_read_buf_pref(mtd, buf, len);
531 return;
532 }
533
534 info->iomode = OMAP_NAND_IO_READ;
535 info->buf = buf;
536 init_completion(&info->comp);
537
538 /* configure and start prefetch transfer */
539 ret = gpmc_prefetch_enable(info->gpmc_cs,
540 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
541 if (ret)
542 /* PFPW engine is busy, use cpu copy method */
543 goto out_copy;
544
545 info->buf_len = len;
546 /* enable irq */
547 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
548 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
549
550 /* waiting for read to complete */
551 wait_for_completion(&info->comp);
552
553 /* disable and stop the PFPW engine */
554 gpmc_prefetch_reset(info->gpmc_cs);
555 return;
556
557out_copy:
558 if (info->nand.options & NAND_BUSWIDTH_16)
559 omap_read_buf16(mtd, buf, len);
560 else
561 omap_read_buf8(mtd, buf, len);
562}
563
564/*
565 * omap_write_buf_irq_pref - write buffer to NAND controller
566 * @mtd: MTD device structure
567 * @buf: data buffer
568 * @len: number of bytes to write
569 */
570static void omap_write_buf_irq_pref(struct mtd_info *mtd,
571 const u_char *buf, int len)
572{
573 struct omap_nand_info *info = container_of(mtd,
574 struct omap_nand_info, mtd);
575 int ret = 0;
576 unsigned long tim, limit;
577
578 if (len <= mtd->oobsize) {
579 omap_write_buf_pref(mtd, buf, len);
580 return;
581 }
582
583 info->iomode = OMAP_NAND_IO_WRITE;
584 info->buf = (u_char *) buf;
585 init_completion(&info->comp);
586
587 /* configure and start prefetch transfer : size=24 */
588 ret = gpmc_prefetch_enable(info->gpmc_cs,
589 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
590 if (ret)
591 /* PFPW engine is busy, use cpu copy method */
592 goto out_copy;
593
594 info->buf_len = len;
595 /* enable irq */
596 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
597 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
598
599 /* waiting for write to complete */
600 wait_for_completion(&info->comp);
601 /* wait for data to flushed-out before reset the prefetch */
602 tim = 0;
603 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
604 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
605 cpu_relax();
606
607 /* disable and stop the PFPW engine */
608 gpmc_prefetch_reset(info->gpmc_cs);
609 return;
610
611out_copy:
612 if (info->nand.options & NAND_BUSWIDTH_16)
613 omap_write_buf16(mtd, buf, len);
614 else
615 omap_write_buf8(mtd, buf, len);
616}
617
618/**
619 * omap_verify_buf - Verify chip data against buffer
620 * @mtd: MTD device structure
621 * @buf: buffer containing the data to compare
622 * @len: number of bytes to compare
623 */
624static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
625{
626 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
627 mtd);
628 u16 *p = (u16 *) buf;
629
630 len >>= 1;
631 while (len--) {
632 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
633 return -EFAULT;
634 }
635
636 return 0;
637}
638
639/**
640 * gen_true_ecc - This function will generate true ECC value
641 * @ecc_buf: buffer to store ecc code
642 *
643 * This generated true ECC value can be used when correcting
644 * data read from NAND flash memory core
645 */
646static void gen_true_ecc(u8 *ecc_buf)
647{
648 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
649 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
650
651 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
652 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
653 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
654 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
655 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
656 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
657}
658
659/**
660 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
661 * @ecc_data1: ecc code from nand spare area
662 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
663 * @page_data: page data
664 *
665 * This function compares two ECC's and indicates if there is an error.
666 * If the error can be corrected it will be corrected to the buffer.
667 * If there is no error, %0 is returned. If there is an error but it
668 * was corrected, %1 is returned. Otherwise, %-1 is returned.
669 */
670static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
671 u8 *ecc_data2, /* read from register */
672 u8 *page_data)
673{
674 uint i;
675 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
676 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
677 u8 ecc_bit[24];
678 u8 ecc_sum = 0;
679 u8 find_bit = 0;
680 uint find_byte = 0;
681 int isEccFF;
682
683 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
684
685 gen_true_ecc(ecc_data1);
686 gen_true_ecc(ecc_data2);
687
688 for (i = 0; i <= 2; i++) {
689 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
690 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
691 }
692
693 for (i = 0; i < 8; i++) {
694 tmp0_bit[i] = *ecc_data1 % 2;
695 *ecc_data1 = *ecc_data1 / 2;
696 }
697
698 for (i = 0; i < 8; i++) {
699 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
700 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
701 }
702
703 for (i = 0; i < 8; i++) {
704 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
705 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
706 }
707
708 for (i = 0; i < 8; i++) {
709 comp0_bit[i] = *ecc_data2 % 2;
710 *ecc_data2 = *ecc_data2 / 2;
711 }
712
713 for (i = 0; i < 8; i++) {
714 comp1_bit[i] = *(ecc_data2 + 1) % 2;
715 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
716 }
717
718 for (i = 0; i < 8; i++) {
719 comp2_bit[i] = *(ecc_data2 + 2) % 2;
720 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
721 }
722
723 for (i = 0; i < 6; i++)
724 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
725
726 for (i = 0; i < 8; i++)
727 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
728
729 for (i = 0; i < 8; i++)
730 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
731
732 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
733 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
734
735 for (i = 0; i < 24; i++)
736 ecc_sum += ecc_bit[i];
737
738 switch (ecc_sum) {
739 case 0:
740 /* Not reached because this function is not called if
741 * ECC values are equal
742 */
743 return 0;
744
745 case 1:
746 /* Uncorrectable error */
747 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
748 return -1;
749
750 case 11:
751 /* UN-Correctable error */
752 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
753 return -1;
754
755 case 12:
756 /* Correctable error */
757 find_byte = (ecc_bit[23] << 8) +
758 (ecc_bit[21] << 7) +
759 (ecc_bit[19] << 6) +
760 (ecc_bit[17] << 5) +
761 (ecc_bit[15] << 4) +
762 (ecc_bit[13] << 3) +
763 (ecc_bit[11] << 2) +
764 (ecc_bit[9] << 1) +
765 ecc_bit[7];
766
767 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
768
769 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
770 "offset: %d, bit: %d\n", find_byte, find_bit);
771
772 page_data[find_byte] ^= (1 << find_bit);
773
774 return 1;
775 default:
776 if (isEccFF) {
777 if (ecc_data2[0] == 0 &&
778 ecc_data2[1] == 0 &&
779 ecc_data2[2] == 0)
780 return 0;
781 }
782 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
783 return -1;
784 }
785}
786
787/**
788 * omap_correct_data - Compares the ECC read with HW generated ECC
789 * @mtd: MTD device structure
790 * @dat: page data
791 * @read_ecc: ecc read from nand flash
792 * @calc_ecc: ecc read from HW ECC registers
793 *
794 * Compares the ecc read from nand spare area with ECC registers values
795 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
796 * detection and correction. If there are no errors, %0 is returned. If
797 * there were errors and all of the errors were corrected, the number of
798 * corrected errors is returned. If uncorrectable errors exist, %-1 is
799 * returned.
800 */
801static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
802 u_char *read_ecc, u_char *calc_ecc)
803{
804 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
805 mtd);
806 int blockCnt = 0, i = 0, ret = 0;
807 int stat = 0;
808
809 /* Ex NAND_ECC_HW12_2048 */
810 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
811 (info->nand.ecc.size == 2048))
812 blockCnt = 4;
813 else
814 blockCnt = 1;
815
816 for (i = 0; i < blockCnt; i++) {
817 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
818 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
819 if (ret < 0)
820 return ret;
821 /* keep track of the number of corrected errors */
822 stat += ret;
823 }
824 read_ecc += 3;
825 calc_ecc += 3;
826 dat += 512;
827 }
828 return stat;
829}
830
831/**
832 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
833 * @mtd: MTD device structure
834 * @dat: The pointer to data on which ecc is computed
835 * @ecc_code: The ecc_code buffer
836 *
837 * Using noninverted ECC can be considered ugly since writing a blank
838 * page ie. padding will clear the ECC bytes. This is no problem as long
839 * nobody is trying to write data on the seemingly unused page. Reading
840 * an erased page will produce an ECC mismatch between generated and read
841 * ECC bytes that has to be dealt with separately.
842 */
843static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
844 u_char *ecc_code)
845{
846 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
847 mtd);
848 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
849}
850
851/**
852 * omap_enable_hwecc - This function enables the hardware ecc functionality
853 * @mtd: MTD device structure
854 * @mode: Read/Write mode
855 */
856static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
857{
858 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
859 mtd);
860 struct nand_chip *chip = mtd->priv;
861 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
862
863 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
864}
865
866/**
867 * omap_wait - wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND Chip structure
870 *
871 * Wait function is called during Program and erase operations and
872 * the way it is called from MTD layer, we should wait till the NAND
873 * chip is ready after the programming/erase operation has completed.
874 *
875 * Erase can take up to 400ms and program up to 20ms according to
876 * general NAND and SmartMedia specs
877 */
878static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
879{
880 struct nand_chip *this = mtd->priv;
881 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
882 mtd);
883 unsigned long timeo = jiffies;
884 int status = NAND_STATUS_FAIL, state = this->state;
885
886 if (state == FL_ERASING)
887 timeo += (HZ * 400) / 1000;
888 else
889 timeo += (HZ * 20) / 1000;
890
891 gpmc_nand_write(info->gpmc_cs,
892 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
893 while (time_before(jiffies, timeo)) {
894 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
895 if (status & NAND_STATUS_READY)
896 break;
897 cond_resched();
898 }
899 return status;
900}
901
902/**
903 * omap_dev_ready - calls the platform specific dev_ready function
904 * @mtd: MTD device structure
905 */
906static int omap_dev_ready(struct mtd_info *mtd)
907{
908 unsigned int val = 0;
909 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
910 mtd);
911
912 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
913 if ((val & 0x100) == 0x100) {
914 /* Clear IRQ Interrupt */
915 val |= 0x100;
916 val &= ~(0x0);
917 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
918 } else {
919 unsigned int cnt = 0;
920 while (cnt++ < 0x1FF) {
921 if ((val & 0x100) == 0x100)
922 return 0;
923 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924 }
925 }
926
927 return 1;
928}
929
930static int __devinit omap_nand_probe(struct platform_device *pdev)
931{
932 struct omap_nand_info *info;
933 struct omap_nand_platform_data *pdata;
934 int err;
935 int i, offset;
936
937 pdata = pdev->dev.platform_data;
938 if (pdata == NULL) {
939 dev_err(&pdev->dev, "platform data missing\n");
940 return -ENODEV;
941 }
942
943 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
944 if (!info)
945 return -ENOMEM;
946
947 platform_set_drvdata(pdev, info);
948
949 spin_lock_init(&info->controller.lock);
950 init_waitqueue_head(&info->controller.wq);
951
952 info->pdev = pdev;
953
954 info->gpmc_cs = pdata->cs;
955 info->phys_base = pdata->phys_base;
956
957 info->mtd.priv = &info->nand;
958 info->mtd.name = dev_name(&pdev->dev);
959 info->mtd.owner = THIS_MODULE;
960
961 info->nand.options = pdata->devsize;
962 info->nand.options |= NAND_SKIP_BBTSCAN;
963
964 /* NAND write protect off */
965 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
966
967 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
968 pdev->dev.driver->name)) {
969 err = -EBUSY;
970 goto out_free_info;
971 }
972
973 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
974 if (!info->nand.IO_ADDR_R) {
975 err = -ENOMEM;
976 goto out_release_mem_region;
977 }
978
979 info->nand.controller = &info->controller;
980
981 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
982 info->nand.cmd_ctrl = omap_hwcontrol;
983
984 /*
985 * If RDY/BSY line is connected to OMAP then use the omap ready
986 * funcrtion and the generic nand_wait function which reads the status
987 * register after monitoring the RDY/BSY line.Otherwise use a standard
988 * chip delay which is slightly more than tR (AC Timing) of the NAND
989 * device and read status register until you get a failure or success
990 */
991 if (pdata->dev_ready) {
992 info->nand.dev_ready = omap_dev_ready;
993 info->nand.chip_delay = 0;
994 } else {
995 info->nand.waitfunc = omap_wait;
996 info->nand.chip_delay = 50;
997 }
998
999 switch (pdata->xfer_type) {
1000 case NAND_OMAP_PREFETCH_POLLED:
1001 info->nand.read_buf = omap_read_buf_pref;
1002 info->nand.write_buf = omap_write_buf_pref;
1003 break;
1004
1005 case NAND_OMAP_POLLED:
1006 if (info->nand.options & NAND_BUSWIDTH_16) {
1007 info->nand.read_buf = omap_read_buf16;
1008 info->nand.write_buf = omap_write_buf16;
1009 } else {
1010 info->nand.read_buf = omap_read_buf8;
1011 info->nand.write_buf = omap_write_buf8;
1012 }
1013 break;
1014
1015 case NAND_OMAP_PREFETCH_DMA:
1016 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1017 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1018 if (err < 0) {
1019 info->dma_ch = -1;
1020 dev_err(&pdev->dev, "DMA request failed!\n");
1021 goto out_release_mem_region;
1022 } else {
1023 omap_set_dma_dest_burst_mode(info->dma_ch,
1024 OMAP_DMA_DATA_BURST_16);
1025 omap_set_dma_src_burst_mode(info->dma_ch,
1026 OMAP_DMA_DATA_BURST_16);
1027
1028 info->nand.read_buf = omap_read_buf_dma_pref;
1029 info->nand.write_buf = omap_write_buf_dma_pref;
1030 }
1031 break;
1032
1033 case NAND_OMAP_PREFETCH_IRQ:
1034 err = request_irq(pdata->gpmc_irq,
1035 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1036 if (err) {
1037 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1038 pdata->gpmc_irq, err);
1039 goto out_release_mem_region;
1040 } else {
1041 info->gpmc_irq = pdata->gpmc_irq;
1042 info->nand.read_buf = omap_read_buf_irq_pref;
1043 info->nand.write_buf = omap_write_buf_irq_pref;
1044 }
1045 break;
1046
1047 default:
1048 dev_err(&pdev->dev,
1049 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1050 err = -EINVAL;
1051 goto out_release_mem_region;
1052 }
1053
1054 info->nand.verify_buf = omap_verify_buf;
1055
1056 /* selsect the ecc type */
1057 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1058 info->nand.ecc.mode = NAND_ECC_SOFT;
1059 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1060 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1061 info->nand.ecc.bytes = 3;
1062 info->nand.ecc.size = 512;
1063 info->nand.ecc.calculate = omap_calculate_ecc;
1064 info->nand.ecc.hwctl = omap_enable_hwecc;
1065 info->nand.ecc.correct = omap_correct_data;
1066 info->nand.ecc.mode = NAND_ECC_HW;
1067 }
1068
1069 /* DIP switches on some boards change between 8 and 16 bit
1070 * bus widths for flash. Try the other width if the first try fails.
1071 */
1072 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073 info->nand.options ^= NAND_BUSWIDTH_16;
1074 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1075 err = -ENXIO;
1076 goto out_release_mem_region;
1077 }
1078 }
1079
1080 /* rom code layout */
1081 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1082
1083 if (info->nand.options & NAND_BUSWIDTH_16)
1084 offset = 2;
1085 else {
1086 offset = 1;
1087 info->nand.badblock_pattern = &bb_descrip_flashbased;
1088 }
1089 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1090 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1091 omap_oobinfo.eccpos[i] = i+offset;
1092
1093 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1094 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1095 (offset + omap_oobinfo.eccbytes);
1096
1097 info->nand.ecc.layout = &omap_oobinfo;
1098 }
1099
1100 /* second phase scan */
1101 if (nand_scan_tail(&info->mtd)) {
1102 err = -ENXIO;
1103 goto out_release_mem_region;
1104 }
1105
1106 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1107 if (err > 0)
1108 mtd_device_register(&info->mtd, info->parts, err);
1109 else if (pdata->parts)
1110 mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1111 else
1112 mtd_device_register(&info->mtd, NULL, 0);
1113
1114 platform_set_drvdata(pdev, &info->mtd);
1115
1116 return 0;
1117
1118out_release_mem_region:
1119 release_mem_region(info->phys_base, NAND_IO_SIZE);
1120out_free_info:
1121 kfree(info);
1122
1123 return err;
1124}
1125
1126static int omap_nand_remove(struct platform_device *pdev)
1127{
1128 struct mtd_info *mtd = platform_get_drvdata(pdev);
1129 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130 mtd);
1131
1132 platform_set_drvdata(pdev, NULL);
1133 if (info->dma_ch != -1)
1134 omap_free_dma(info->dma_ch);
1135
1136 if (info->gpmc_irq)
1137 free_irq(info->gpmc_irq, info);
1138
1139 /* Release NAND device, its internal structures and partitions */
1140 nand_release(&info->mtd);
1141 iounmap(info->nand.IO_ADDR_R);
1142 kfree(&info->mtd);
1143 return 0;
1144}
1145
1146static struct platform_driver omap_nand_driver = {
1147 .probe = omap_nand_probe,
1148 .remove = omap_nand_remove,
1149 .driver = {
1150 .name = DRIVER_NAME,
1151 .owner = THIS_MODULE,
1152 },
1153};
1154
1155static int __init omap_nand_init(void)
1156{
1157 pr_info("%s driver initializing\n", DRIVER_NAME);
1158
1159 return platform_driver_register(&omap_nand_driver);
1160}
1161
1162static void __exit omap_nand_exit(void)
1163{
1164 platform_driver_unregister(&omap_nand_driver);
1165}
1166
1167module_init(omap_nand_init);
1168module_exit(omap_nand_exit);
1169
1170MODULE_ALIAS("platform:" DRIVER_NAME);
1171MODULE_LICENSE("GPL");
1172MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
12#include <linux/dma-mapping.h>
13#include <linux/delay.h>
14#include <linux/module.h>
15#include <linux/interrupt.h>
16#include <linux/jiffies.h>
17#include <linux/sched.h>
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/nand.h>
20#include <linux/mtd/partitions.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23
24#ifdef CONFIG_MTD_NAND_OMAP_BCH
25#include <linux/bch.h>
26#endif
27
28#include <plat/dma.h>
29#include <plat/gpmc.h>
30#include <plat/nand.h>
31
32#define DRIVER_NAME "omap2-nand"
33#define OMAP_NAND_TIMEOUT_MS 5000
34
35#define NAND_Ecc_P1e (1 << 0)
36#define NAND_Ecc_P2e (1 << 1)
37#define NAND_Ecc_P4e (1 << 2)
38#define NAND_Ecc_P8e (1 << 3)
39#define NAND_Ecc_P16e (1 << 4)
40#define NAND_Ecc_P32e (1 << 5)
41#define NAND_Ecc_P64e (1 << 6)
42#define NAND_Ecc_P128e (1 << 7)
43#define NAND_Ecc_P256e (1 << 8)
44#define NAND_Ecc_P512e (1 << 9)
45#define NAND_Ecc_P1024e (1 << 10)
46#define NAND_Ecc_P2048e (1 << 11)
47
48#define NAND_Ecc_P1o (1 << 16)
49#define NAND_Ecc_P2o (1 << 17)
50#define NAND_Ecc_P4o (1 << 18)
51#define NAND_Ecc_P8o (1 << 19)
52#define NAND_Ecc_P16o (1 << 20)
53#define NAND_Ecc_P32o (1 << 21)
54#define NAND_Ecc_P64o (1 << 22)
55#define NAND_Ecc_P128o (1 << 23)
56#define NAND_Ecc_P256o (1 << 24)
57#define NAND_Ecc_P512o (1 << 25)
58#define NAND_Ecc_P1024o (1 << 26)
59#define NAND_Ecc_P2048o (1 << 27)
60
61#define TF(value) (value ? 1 : 0)
62
63#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
64#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
65#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
66#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
67#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
68#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
69#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
70#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
71
72#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
73#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
74#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
75#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
76#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
77#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
78#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
79#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
80
81#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
82#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
83#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
84#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
85#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
86#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
87#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
88#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
89
90#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
91#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
92#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
93#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
94#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
95#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
96#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
97#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
98
99#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
100#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
101
102/* oob info generated runtime depending on ecc algorithm and layout selected */
103static struct nand_ecclayout omap_oobinfo;
104/* Define some generic bad / good block scan pattern which are used
105 * while scanning a device for factory marked good / bad blocks
106 */
107static uint8_t scan_ff_pattern[] = { 0xff };
108static struct nand_bbt_descr bb_descrip_flashbased = {
109 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
110 .offs = 0,
111 .len = 1,
112 .pattern = scan_ff_pattern,
113};
114
115
116struct omap_nand_info {
117 struct nand_hw_control controller;
118 struct omap_nand_platform_data *pdata;
119 struct mtd_info mtd;
120 struct nand_chip nand;
121 struct platform_device *pdev;
122
123 int gpmc_cs;
124 unsigned long phys_base;
125 struct completion comp;
126 int dma_ch;
127 int gpmc_irq;
128 enum {
129 OMAP_NAND_IO_READ = 0, /* read */
130 OMAP_NAND_IO_WRITE, /* write */
131 } iomode;
132 u_char *buf;
133 int buf_len;
134
135#ifdef CONFIG_MTD_NAND_OMAP_BCH
136 struct bch_control *bch;
137 struct nand_ecclayout ecclayout;
138#endif
139};
140
141/**
142 * omap_hwcontrol - hardware specific access to control-lines
143 * @mtd: MTD device structure
144 * @cmd: command to device
145 * @ctrl:
146 * NAND_NCE: bit 0 -> don't care
147 * NAND_CLE: bit 1 -> Command Latch
148 * NAND_ALE: bit 2 -> Address Latch
149 *
150 * NOTE: boards may use different bits for these!!
151 */
152static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
153{
154 struct omap_nand_info *info = container_of(mtd,
155 struct omap_nand_info, mtd);
156
157 if (cmd != NAND_CMD_NONE) {
158 if (ctrl & NAND_CLE)
159 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
160
161 else if (ctrl & NAND_ALE)
162 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
163
164 else /* NAND_NCE */
165 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
166 }
167}
168
169/**
170 * omap_read_buf8 - read data from NAND controller into buffer
171 * @mtd: MTD device structure
172 * @buf: buffer to store date
173 * @len: number of bytes to read
174 */
175static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
176{
177 struct nand_chip *nand = mtd->priv;
178
179 ioread8_rep(nand->IO_ADDR_R, buf, len);
180}
181
182/**
183 * omap_write_buf8 - write buffer to NAND controller
184 * @mtd: MTD device structure
185 * @buf: data buffer
186 * @len: number of bytes to write
187 */
188static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
189{
190 struct omap_nand_info *info = container_of(mtd,
191 struct omap_nand_info, mtd);
192 u_char *p = (u_char *)buf;
193 u32 status = 0;
194
195 while (len--) {
196 iowrite8(*p++, info->nand.IO_ADDR_W);
197 /* wait until buffer is available for write */
198 do {
199 status = gpmc_read_status(GPMC_STATUS_BUFFER);
200 } while (!status);
201 }
202}
203
204/**
205 * omap_read_buf16 - read data from NAND controller into buffer
206 * @mtd: MTD device structure
207 * @buf: buffer to store date
208 * @len: number of bytes to read
209 */
210static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
211{
212 struct nand_chip *nand = mtd->priv;
213
214 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
215}
216
217/**
218 * omap_write_buf16 - write buffer to NAND controller
219 * @mtd: MTD device structure
220 * @buf: data buffer
221 * @len: number of bytes to write
222 */
223static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
224{
225 struct omap_nand_info *info = container_of(mtd,
226 struct omap_nand_info, mtd);
227 u16 *p = (u16 *) buf;
228 u32 status = 0;
229 /* FIXME try bursts of writesw() or DMA ... */
230 len >>= 1;
231
232 while (len--) {
233 iowrite16(*p++, info->nand.IO_ADDR_W);
234 /* wait until buffer is available for write */
235 do {
236 status = gpmc_read_status(GPMC_STATUS_BUFFER);
237 } while (!status);
238 }
239}
240
241/**
242 * omap_read_buf_pref - read data from NAND controller into buffer
243 * @mtd: MTD device structure
244 * @buf: buffer to store date
245 * @len: number of bytes to read
246 */
247static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
248{
249 struct omap_nand_info *info = container_of(mtd,
250 struct omap_nand_info, mtd);
251 uint32_t r_count = 0;
252 int ret = 0;
253 u32 *p = (u32 *)buf;
254
255 /* take care of subpage reads */
256 if (len % 4) {
257 if (info->nand.options & NAND_BUSWIDTH_16)
258 omap_read_buf16(mtd, buf, len % 4);
259 else
260 omap_read_buf8(mtd, buf, len % 4);
261 p = (u32 *) (buf + len % 4);
262 len -= len % 4;
263 }
264
265 /* configure and start prefetch transfer */
266 ret = gpmc_prefetch_enable(info->gpmc_cs,
267 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
268 if (ret) {
269 /* PFPW engine is busy, use cpu copy method */
270 if (info->nand.options & NAND_BUSWIDTH_16)
271 omap_read_buf16(mtd, (u_char *)p, len);
272 else
273 omap_read_buf8(mtd, (u_char *)p, len);
274 } else {
275 do {
276 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
277 r_count = r_count >> 2;
278 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
279 p += r_count;
280 len -= r_count << 2;
281 } while (len);
282 /* disable and stop the PFPW engine */
283 gpmc_prefetch_reset(info->gpmc_cs);
284 }
285}
286
287/**
288 * omap_write_buf_pref - write buffer to NAND controller
289 * @mtd: MTD device structure
290 * @buf: data buffer
291 * @len: number of bytes to write
292 */
293static void omap_write_buf_pref(struct mtd_info *mtd,
294 const u_char *buf, int len)
295{
296 struct omap_nand_info *info = container_of(mtd,
297 struct omap_nand_info, mtd);
298 uint32_t w_count = 0;
299 int i = 0, ret = 0;
300 u16 *p = (u16 *)buf;
301 unsigned long tim, limit;
302
303 /* take care of subpage writes */
304 if (len % 2 != 0) {
305 writeb(*buf, info->nand.IO_ADDR_W);
306 p = (u16 *)(buf + 1);
307 len--;
308 }
309
310 /* configure and start prefetch transfer */
311 ret = gpmc_prefetch_enable(info->gpmc_cs,
312 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
313 if (ret) {
314 /* PFPW engine is busy, use cpu copy method */
315 if (info->nand.options & NAND_BUSWIDTH_16)
316 omap_write_buf16(mtd, (u_char *)p, len);
317 else
318 omap_write_buf8(mtd, (u_char *)p, len);
319 } else {
320 while (len) {
321 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
322 w_count = w_count >> 1;
323 for (i = 0; (i < w_count) && len; i++, len -= 2)
324 iowrite16(*p++, info->nand.IO_ADDR_W);
325 }
326 /* wait for data to flushed-out before reset the prefetch */
327 tim = 0;
328 limit = (loops_per_jiffy *
329 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
330 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
331 cpu_relax();
332
333 /* disable and stop the PFPW engine */
334 gpmc_prefetch_reset(info->gpmc_cs);
335 }
336}
337
338/*
339 * omap_nand_dma_cb: callback on the completion of dma transfer
340 * @lch: logical channel
341 * @ch_satuts: channel status
342 * @data: pointer to completion data structure
343 */
344static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
345{
346 complete((struct completion *) data);
347}
348
349/*
350 * omap_nand_dma_transfer: configer and start dma transfer
351 * @mtd: MTD device structure
352 * @addr: virtual address in RAM of source/destination
353 * @len: number of data bytes to be transferred
354 * @is_write: flag for read/write operation
355 */
356static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
357 unsigned int len, int is_write)
358{
359 struct omap_nand_info *info = container_of(mtd,
360 struct omap_nand_info, mtd);
361 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
362 DMA_FROM_DEVICE;
363 dma_addr_t dma_addr;
364 int ret;
365 unsigned long tim, limit;
366
367 /* The fifo depth is 64 bytes max.
368 * But configure the FIFO-threahold to 32 to get a sync at each frame
369 * and frame length is 32 bytes.
370 */
371 int buf_len = len >> 6;
372
373 if (addr >= high_memory) {
374 struct page *p1;
375
376 if (((size_t)addr & PAGE_MASK) !=
377 ((size_t)(addr + len - 1) & PAGE_MASK))
378 goto out_copy;
379 p1 = vmalloc_to_page(addr);
380 if (!p1)
381 goto out_copy;
382 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
383 }
384
385 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
386 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
387 dev_err(&info->pdev->dev,
388 "Couldn't DMA map a %d byte buffer\n", len);
389 goto out_copy;
390 }
391
392 if (is_write) {
393 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
394 info->phys_base, 0, 0);
395 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
396 dma_addr, 0, 0);
397 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
398 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
399 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
400 } else {
401 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
402 info->phys_base, 0, 0);
403 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
404 dma_addr, 0, 0);
405 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
406 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
407 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
408 }
409 /* configure and start prefetch transfer */
410 ret = gpmc_prefetch_enable(info->gpmc_cs,
411 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
412 if (ret)
413 /* PFPW engine is busy, use cpu copy method */
414 goto out_copy_unmap;
415
416 init_completion(&info->comp);
417
418 omap_start_dma(info->dma_ch);
419
420 /* setup and start DMA using dma_addr */
421 wait_for_completion(&info->comp);
422 tim = 0;
423 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
424 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
425 cpu_relax();
426
427 /* disable and stop the PFPW engine */
428 gpmc_prefetch_reset(info->gpmc_cs);
429
430 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
431 return 0;
432
433out_copy_unmap:
434 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
435out_copy:
436 if (info->nand.options & NAND_BUSWIDTH_16)
437 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
438 : omap_write_buf16(mtd, (u_char *) addr, len);
439 else
440 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
441 : omap_write_buf8(mtd, (u_char *) addr, len);
442 return 0;
443}
444
445/**
446 * omap_read_buf_dma_pref - read data from NAND controller into buffer
447 * @mtd: MTD device structure
448 * @buf: buffer to store date
449 * @len: number of bytes to read
450 */
451static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
452{
453 if (len <= mtd->oobsize)
454 omap_read_buf_pref(mtd, buf, len);
455 else
456 /* start transfer in DMA mode */
457 omap_nand_dma_transfer(mtd, buf, len, 0x0);
458}
459
460/**
461 * omap_write_buf_dma_pref - write buffer to NAND controller
462 * @mtd: MTD device structure
463 * @buf: data buffer
464 * @len: number of bytes to write
465 */
466static void omap_write_buf_dma_pref(struct mtd_info *mtd,
467 const u_char *buf, int len)
468{
469 if (len <= mtd->oobsize)
470 omap_write_buf_pref(mtd, buf, len);
471 else
472 /* start transfer in DMA mode */
473 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
474}
475
476/*
477 * omap_nand_irq - GMPC irq handler
478 * @this_irq: gpmc irq number
479 * @dev: omap_nand_info structure pointer is passed here
480 */
481static irqreturn_t omap_nand_irq(int this_irq, void *dev)
482{
483 struct omap_nand_info *info = (struct omap_nand_info *) dev;
484 u32 bytes;
485 u32 irq_stat;
486
487 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
488 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
489 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
490 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
491 if (irq_stat & 0x2)
492 goto done;
493
494 if (info->buf_len && (info->buf_len < bytes))
495 bytes = info->buf_len;
496 else if (!info->buf_len)
497 bytes = 0;
498 iowrite32_rep(info->nand.IO_ADDR_W,
499 (u32 *)info->buf, bytes >> 2);
500 info->buf = info->buf + bytes;
501 info->buf_len -= bytes;
502
503 } else {
504 ioread32_rep(info->nand.IO_ADDR_R,
505 (u32 *)info->buf, bytes >> 2);
506 info->buf = info->buf + bytes;
507
508 if (irq_stat & 0x2)
509 goto done;
510 }
511 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
512
513 return IRQ_HANDLED;
514
515done:
516 complete(&info->comp);
517 /* disable irq */
518 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
519
520 /* clear status */
521 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
522
523 return IRQ_HANDLED;
524}
525
526/*
527 * omap_read_buf_irq_pref - read data from NAND controller into buffer
528 * @mtd: MTD device structure
529 * @buf: buffer to store date
530 * @len: number of bytes to read
531 */
532static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
533{
534 struct omap_nand_info *info = container_of(mtd,
535 struct omap_nand_info, mtd);
536 int ret = 0;
537
538 if (len <= mtd->oobsize) {
539 omap_read_buf_pref(mtd, buf, len);
540 return;
541 }
542
543 info->iomode = OMAP_NAND_IO_READ;
544 info->buf = buf;
545 init_completion(&info->comp);
546
547 /* configure and start prefetch transfer */
548 ret = gpmc_prefetch_enable(info->gpmc_cs,
549 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
550 if (ret)
551 /* PFPW engine is busy, use cpu copy method */
552 goto out_copy;
553
554 info->buf_len = len;
555 /* enable irq */
556 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
557 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
558
559 /* waiting for read to complete */
560 wait_for_completion(&info->comp);
561
562 /* disable and stop the PFPW engine */
563 gpmc_prefetch_reset(info->gpmc_cs);
564 return;
565
566out_copy:
567 if (info->nand.options & NAND_BUSWIDTH_16)
568 omap_read_buf16(mtd, buf, len);
569 else
570 omap_read_buf8(mtd, buf, len);
571}
572
573/*
574 * omap_write_buf_irq_pref - write buffer to NAND controller
575 * @mtd: MTD device structure
576 * @buf: data buffer
577 * @len: number of bytes to write
578 */
579static void omap_write_buf_irq_pref(struct mtd_info *mtd,
580 const u_char *buf, int len)
581{
582 struct omap_nand_info *info = container_of(mtd,
583 struct omap_nand_info, mtd);
584 int ret = 0;
585 unsigned long tim, limit;
586
587 if (len <= mtd->oobsize) {
588 omap_write_buf_pref(mtd, buf, len);
589 return;
590 }
591
592 info->iomode = OMAP_NAND_IO_WRITE;
593 info->buf = (u_char *) buf;
594 init_completion(&info->comp);
595
596 /* configure and start prefetch transfer : size=24 */
597 ret = gpmc_prefetch_enable(info->gpmc_cs,
598 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
599 if (ret)
600 /* PFPW engine is busy, use cpu copy method */
601 goto out_copy;
602
603 info->buf_len = len;
604 /* enable irq */
605 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
606 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
607
608 /* waiting for write to complete */
609 wait_for_completion(&info->comp);
610 /* wait for data to flushed-out before reset the prefetch */
611 tim = 0;
612 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
613 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
614 cpu_relax();
615
616 /* disable and stop the PFPW engine */
617 gpmc_prefetch_reset(info->gpmc_cs);
618 return;
619
620out_copy:
621 if (info->nand.options & NAND_BUSWIDTH_16)
622 omap_write_buf16(mtd, buf, len);
623 else
624 omap_write_buf8(mtd, buf, len);
625}
626
627/**
628 * omap_verify_buf - Verify chip data against buffer
629 * @mtd: MTD device structure
630 * @buf: buffer containing the data to compare
631 * @len: number of bytes to compare
632 */
633static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
634{
635 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
636 mtd);
637 u16 *p = (u16 *) buf;
638
639 len >>= 1;
640 while (len--) {
641 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
642 return -EFAULT;
643 }
644
645 return 0;
646}
647
648/**
649 * gen_true_ecc - This function will generate true ECC value
650 * @ecc_buf: buffer to store ecc code
651 *
652 * This generated true ECC value can be used when correcting
653 * data read from NAND flash memory core
654 */
655static void gen_true_ecc(u8 *ecc_buf)
656{
657 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
658 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
659
660 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
661 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
662 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
663 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
664 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
665 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
666}
667
668/**
669 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
670 * @ecc_data1: ecc code from nand spare area
671 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
672 * @page_data: page data
673 *
674 * This function compares two ECC's and indicates if there is an error.
675 * If the error can be corrected it will be corrected to the buffer.
676 * If there is no error, %0 is returned. If there is an error but it
677 * was corrected, %1 is returned. Otherwise, %-1 is returned.
678 */
679static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
680 u8 *ecc_data2, /* read from register */
681 u8 *page_data)
682{
683 uint i;
684 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
685 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
686 u8 ecc_bit[24];
687 u8 ecc_sum = 0;
688 u8 find_bit = 0;
689 uint find_byte = 0;
690 int isEccFF;
691
692 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
693
694 gen_true_ecc(ecc_data1);
695 gen_true_ecc(ecc_data2);
696
697 for (i = 0; i <= 2; i++) {
698 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
699 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
700 }
701
702 for (i = 0; i < 8; i++) {
703 tmp0_bit[i] = *ecc_data1 % 2;
704 *ecc_data1 = *ecc_data1 / 2;
705 }
706
707 for (i = 0; i < 8; i++) {
708 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
709 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
710 }
711
712 for (i = 0; i < 8; i++) {
713 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
714 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
715 }
716
717 for (i = 0; i < 8; i++) {
718 comp0_bit[i] = *ecc_data2 % 2;
719 *ecc_data2 = *ecc_data2 / 2;
720 }
721
722 for (i = 0; i < 8; i++) {
723 comp1_bit[i] = *(ecc_data2 + 1) % 2;
724 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
725 }
726
727 for (i = 0; i < 8; i++) {
728 comp2_bit[i] = *(ecc_data2 + 2) % 2;
729 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
730 }
731
732 for (i = 0; i < 6; i++)
733 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
734
735 for (i = 0; i < 8; i++)
736 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
737
738 for (i = 0; i < 8; i++)
739 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
740
741 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
742 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
743
744 for (i = 0; i < 24; i++)
745 ecc_sum += ecc_bit[i];
746
747 switch (ecc_sum) {
748 case 0:
749 /* Not reached because this function is not called if
750 * ECC values are equal
751 */
752 return 0;
753
754 case 1:
755 /* Uncorrectable error */
756 pr_debug("ECC UNCORRECTED_ERROR 1\n");
757 return -1;
758
759 case 11:
760 /* UN-Correctable error */
761 pr_debug("ECC UNCORRECTED_ERROR B\n");
762 return -1;
763
764 case 12:
765 /* Correctable error */
766 find_byte = (ecc_bit[23] << 8) +
767 (ecc_bit[21] << 7) +
768 (ecc_bit[19] << 6) +
769 (ecc_bit[17] << 5) +
770 (ecc_bit[15] << 4) +
771 (ecc_bit[13] << 3) +
772 (ecc_bit[11] << 2) +
773 (ecc_bit[9] << 1) +
774 ecc_bit[7];
775
776 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
777
778 pr_debug("Correcting single bit ECC error at offset: "
779 "%d, bit: %d\n", find_byte, find_bit);
780
781 page_data[find_byte] ^= (1 << find_bit);
782
783 return 1;
784 default:
785 if (isEccFF) {
786 if (ecc_data2[0] == 0 &&
787 ecc_data2[1] == 0 &&
788 ecc_data2[2] == 0)
789 return 0;
790 }
791 pr_debug("UNCORRECTED_ERROR default\n");
792 return -1;
793 }
794}
795
796/**
797 * omap_correct_data - Compares the ECC read with HW generated ECC
798 * @mtd: MTD device structure
799 * @dat: page data
800 * @read_ecc: ecc read from nand flash
801 * @calc_ecc: ecc read from HW ECC registers
802 *
803 * Compares the ecc read from nand spare area with ECC registers values
804 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
805 * detection and correction. If there are no errors, %0 is returned. If
806 * there were errors and all of the errors were corrected, the number of
807 * corrected errors is returned. If uncorrectable errors exist, %-1 is
808 * returned.
809 */
810static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
811 u_char *read_ecc, u_char *calc_ecc)
812{
813 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
814 mtd);
815 int blockCnt = 0, i = 0, ret = 0;
816 int stat = 0;
817
818 /* Ex NAND_ECC_HW12_2048 */
819 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
820 (info->nand.ecc.size == 2048))
821 blockCnt = 4;
822 else
823 blockCnt = 1;
824
825 for (i = 0; i < blockCnt; i++) {
826 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
827 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
828 if (ret < 0)
829 return ret;
830 /* keep track of the number of corrected errors */
831 stat += ret;
832 }
833 read_ecc += 3;
834 calc_ecc += 3;
835 dat += 512;
836 }
837 return stat;
838}
839
840/**
841 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
842 * @mtd: MTD device structure
843 * @dat: The pointer to data on which ecc is computed
844 * @ecc_code: The ecc_code buffer
845 *
846 * Using noninverted ECC can be considered ugly since writing a blank
847 * page ie. padding will clear the ECC bytes. This is no problem as long
848 * nobody is trying to write data on the seemingly unused page. Reading
849 * an erased page will produce an ECC mismatch between generated and read
850 * ECC bytes that has to be dealt with separately.
851 */
852static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
853 u_char *ecc_code)
854{
855 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
856 mtd);
857 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
858}
859
860/**
861 * omap_enable_hwecc - This function enables the hardware ecc functionality
862 * @mtd: MTD device structure
863 * @mode: Read/Write mode
864 */
865static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
866{
867 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
868 mtd);
869 struct nand_chip *chip = mtd->priv;
870 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
871
872 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
873}
874
875/**
876 * omap_wait - wait until the command is done
877 * @mtd: MTD device structure
878 * @chip: NAND Chip structure
879 *
880 * Wait function is called during Program and erase operations and
881 * the way it is called from MTD layer, we should wait till the NAND
882 * chip is ready after the programming/erase operation has completed.
883 *
884 * Erase can take up to 400ms and program up to 20ms according to
885 * general NAND and SmartMedia specs
886 */
887static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
888{
889 struct nand_chip *this = mtd->priv;
890 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
891 mtd);
892 unsigned long timeo = jiffies;
893 int status, state = this->state;
894
895 if (state == FL_ERASING)
896 timeo += (HZ * 400) / 1000;
897 else
898 timeo += (HZ * 20) / 1000;
899
900 gpmc_nand_write(info->gpmc_cs,
901 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
902 while (time_before(jiffies, timeo)) {
903 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
904 if (status & NAND_STATUS_READY)
905 break;
906 cond_resched();
907 }
908
909 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
910 return status;
911}
912
913/**
914 * omap_dev_ready - calls the platform specific dev_ready function
915 * @mtd: MTD device structure
916 */
917static int omap_dev_ready(struct mtd_info *mtd)
918{
919 unsigned int val = 0;
920 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
921 mtd);
922
923 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924 if ((val & 0x100) == 0x100) {
925 /* Clear IRQ Interrupt */
926 val |= 0x100;
927 val &= ~(0x0);
928 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
929 } else {
930 unsigned int cnt = 0;
931 while (cnt++ < 0x1FF) {
932 if ((val & 0x100) == 0x100)
933 return 0;
934 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
935 }
936 }
937
938 return 1;
939}
940
941#ifdef CONFIG_MTD_NAND_OMAP_BCH
942
943/**
944 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
945 * @mtd: MTD device structure
946 * @mode: Read/Write mode
947 */
948static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
949{
950 int nerrors;
951 unsigned int dev_width;
952 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
953 mtd);
954 struct nand_chip *chip = mtd->priv;
955
956 nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
957 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
958 /*
959 * Program GPMC to perform correction on one 512-byte sector at a time.
960 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
961 * gives a slight (5%) performance gain (but requires additional code).
962 */
963 (void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors);
964}
965
966/**
967 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
968 * @mtd: MTD device structure
969 * @dat: The pointer to data on which ecc is computed
970 * @ecc_code: The ecc_code buffer
971 */
972static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
973 u_char *ecc_code)
974{
975 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
976 mtd);
977 return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code);
978}
979
980/**
981 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
982 * @mtd: MTD device structure
983 * @dat: The pointer to data on which ecc is computed
984 * @ecc_code: The ecc_code buffer
985 */
986static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
987 u_char *ecc_code)
988{
989 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
990 mtd);
991 return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code);
992}
993
994/**
995 * omap3_correct_data_bch - Decode received data and correct errors
996 * @mtd: MTD device structure
997 * @data: page data
998 * @read_ecc: ecc read from nand flash
999 * @calc_ecc: ecc read from HW ECC registers
1000 */
1001static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1002 u_char *read_ecc, u_char *calc_ecc)
1003{
1004 int i, count;
1005 /* cannot correct more than 8 errors */
1006 unsigned int errloc[8];
1007 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1008 mtd);
1009
1010 count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1011 errloc);
1012 if (count > 0) {
1013 /* correct errors */
1014 for (i = 0; i < count; i++) {
1015 /* correct data only, not ecc bytes */
1016 if (errloc[i] < 8*512)
1017 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1018 pr_debug("corrected bitflip %u\n", errloc[i]);
1019 }
1020 } else if (count < 0) {
1021 pr_err("ecc unrecoverable error\n");
1022 }
1023 return count;
1024}
1025
1026/**
1027 * omap3_free_bch - Release BCH ecc resources
1028 * @mtd: MTD device structure
1029 */
1030static void omap3_free_bch(struct mtd_info *mtd)
1031{
1032 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1033 mtd);
1034 if (info->bch) {
1035 free_bch(info->bch);
1036 info->bch = NULL;
1037 }
1038}
1039
1040/**
1041 * omap3_init_bch - Initialize BCH ECC
1042 * @mtd: MTD device structure
1043 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1044 */
1045static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1046{
1047 int ret, max_errors;
1048 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1049 mtd);
1050#ifdef CONFIG_MTD_NAND_OMAP_BCH8
1051 const int hw_errors = 8;
1052#else
1053 const int hw_errors = 4;
1054#endif
1055 info->bch = NULL;
1056
1057 max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1058 if (max_errors != hw_errors) {
1059 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1060 max_errors, hw_errors);
1061 goto fail;
1062 }
1063
1064 /* initialize GPMC BCH engine */
1065 ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors);
1066 if (ret)
1067 goto fail;
1068
1069 /* software bch library is only used to detect and locate errors */
1070 info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1071 if (!info->bch)
1072 goto fail;
1073
1074 info->nand.ecc.size = 512;
1075 info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
1076 info->nand.ecc.correct = omap3_correct_data_bch;
1077 info->nand.ecc.mode = NAND_ECC_HW;
1078
1079 /*
1080 * The number of corrected errors in an ecc block that will trigger
1081 * block scrubbing defaults to the ecc strength (4 or 8).
1082 * Set mtd->bitflip_threshold here to define a custom threshold.
1083 */
1084
1085 if (max_errors == 8) {
1086 info->nand.ecc.strength = 8;
1087 info->nand.ecc.bytes = 13;
1088 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1089 } else {
1090 info->nand.ecc.strength = 4;
1091 info->nand.ecc.bytes = 7;
1092 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1093 }
1094
1095 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1096 return 0;
1097fail:
1098 omap3_free_bch(mtd);
1099 return -1;
1100}
1101
1102/**
1103 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1104 * @mtd: MTD device structure
1105 */
1106static int omap3_init_bch_tail(struct mtd_info *mtd)
1107{
1108 int i, steps;
1109 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1110 mtd);
1111 struct nand_ecclayout *layout = &info->ecclayout;
1112
1113 /* build oob layout */
1114 steps = mtd->writesize/info->nand.ecc.size;
1115 layout->eccbytes = steps*info->nand.ecc.bytes;
1116
1117 /* do not bother creating special oob layouts for small page devices */
1118 if (mtd->oobsize < 64) {
1119 pr_err("BCH ecc is not supported on small page devices\n");
1120 goto fail;
1121 }
1122
1123 /* reserve 2 bytes for bad block marker */
1124 if (layout->eccbytes+2 > mtd->oobsize) {
1125 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1126 mtd->oobsize, layout->eccbytes);
1127 goto fail;
1128 }
1129
1130 /* put ecc bytes at oob tail */
1131 for (i = 0; i < layout->eccbytes; i++)
1132 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1133
1134 layout->oobfree[0].offset = 2;
1135 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1136 info->nand.ecc.layout = layout;
1137
1138 if (!(info->nand.options & NAND_BUSWIDTH_16))
1139 info->nand.badblock_pattern = &bb_descrip_flashbased;
1140 return 0;
1141fail:
1142 omap3_free_bch(mtd);
1143 return -1;
1144}
1145
1146#else
1147static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1148{
1149 pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1150 return -1;
1151}
1152static int omap3_init_bch_tail(struct mtd_info *mtd)
1153{
1154 return -1;
1155}
1156static void omap3_free_bch(struct mtd_info *mtd)
1157{
1158}
1159#endif /* CONFIG_MTD_NAND_OMAP_BCH */
1160
1161static int __devinit omap_nand_probe(struct platform_device *pdev)
1162{
1163 struct omap_nand_info *info;
1164 struct omap_nand_platform_data *pdata;
1165 int err;
1166 int i, offset;
1167
1168 pdata = pdev->dev.platform_data;
1169 if (pdata == NULL) {
1170 dev_err(&pdev->dev, "platform data missing\n");
1171 return -ENODEV;
1172 }
1173
1174 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1175 if (!info)
1176 return -ENOMEM;
1177
1178 platform_set_drvdata(pdev, info);
1179
1180 spin_lock_init(&info->controller.lock);
1181 init_waitqueue_head(&info->controller.wq);
1182
1183 info->pdev = pdev;
1184
1185 info->gpmc_cs = pdata->cs;
1186 info->phys_base = pdata->phys_base;
1187
1188 info->mtd.priv = &info->nand;
1189 info->mtd.name = dev_name(&pdev->dev);
1190 info->mtd.owner = THIS_MODULE;
1191
1192 info->nand.options = pdata->devsize;
1193 info->nand.options |= NAND_SKIP_BBTSCAN;
1194
1195 /* NAND write protect off */
1196 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
1197
1198 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
1199 pdev->dev.driver->name)) {
1200 err = -EBUSY;
1201 goto out_free_info;
1202 }
1203
1204 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
1205 if (!info->nand.IO_ADDR_R) {
1206 err = -ENOMEM;
1207 goto out_release_mem_region;
1208 }
1209
1210 info->nand.controller = &info->controller;
1211
1212 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1213 info->nand.cmd_ctrl = omap_hwcontrol;
1214
1215 /*
1216 * If RDY/BSY line is connected to OMAP then use the omap ready
1217 * funcrtion and the generic nand_wait function which reads the status
1218 * register after monitoring the RDY/BSY line.Otherwise use a standard
1219 * chip delay which is slightly more than tR (AC Timing) of the NAND
1220 * device and read status register until you get a failure or success
1221 */
1222 if (pdata->dev_ready) {
1223 info->nand.dev_ready = omap_dev_ready;
1224 info->nand.chip_delay = 0;
1225 } else {
1226 info->nand.waitfunc = omap_wait;
1227 info->nand.chip_delay = 50;
1228 }
1229
1230 switch (pdata->xfer_type) {
1231 case NAND_OMAP_PREFETCH_POLLED:
1232 info->nand.read_buf = omap_read_buf_pref;
1233 info->nand.write_buf = omap_write_buf_pref;
1234 break;
1235
1236 case NAND_OMAP_POLLED:
1237 if (info->nand.options & NAND_BUSWIDTH_16) {
1238 info->nand.read_buf = omap_read_buf16;
1239 info->nand.write_buf = omap_write_buf16;
1240 } else {
1241 info->nand.read_buf = omap_read_buf8;
1242 info->nand.write_buf = omap_write_buf8;
1243 }
1244 break;
1245
1246 case NAND_OMAP_PREFETCH_DMA:
1247 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1248 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1249 if (err < 0) {
1250 info->dma_ch = -1;
1251 dev_err(&pdev->dev, "DMA request failed!\n");
1252 goto out_release_mem_region;
1253 } else {
1254 omap_set_dma_dest_burst_mode(info->dma_ch,
1255 OMAP_DMA_DATA_BURST_16);
1256 omap_set_dma_src_burst_mode(info->dma_ch,
1257 OMAP_DMA_DATA_BURST_16);
1258
1259 info->nand.read_buf = omap_read_buf_dma_pref;
1260 info->nand.write_buf = omap_write_buf_dma_pref;
1261 }
1262 break;
1263
1264 case NAND_OMAP_PREFETCH_IRQ:
1265 err = request_irq(pdata->gpmc_irq,
1266 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1267 if (err) {
1268 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1269 pdata->gpmc_irq, err);
1270 goto out_release_mem_region;
1271 } else {
1272 info->gpmc_irq = pdata->gpmc_irq;
1273 info->nand.read_buf = omap_read_buf_irq_pref;
1274 info->nand.write_buf = omap_write_buf_irq_pref;
1275 }
1276 break;
1277
1278 default:
1279 dev_err(&pdev->dev,
1280 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1281 err = -EINVAL;
1282 goto out_release_mem_region;
1283 }
1284
1285 info->nand.verify_buf = omap_verify_buf;
1286
1287 /* selsect the ecc type */
1288 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1289 info->nand.ecc.mode = NAND_ECC_SOFT;
1290 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1291 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1292 info->nand.ecc.bytes = 3;
1293 info->nand.ecc.size = 512;
1294 info->nand.ecc.strength = 1;
1295 info->nand.ecc.calculate = omap_calculate_ecc;
1296 info->nand.ecc.hwctl = omap_enable_hwecc;
1297 info->nand.ecc.correct = omap_correct_data;
1298 info->nand.ecc.mode = NAND_ECC_HW;
1299 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1300 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1301 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1302 if (err) {
1303 err = -EINVAL;
1304 goto out_release_mem_region;
1305 }
1306 }
1307
1308 /* DIP switches on some boards change between 8 and 16 bit
1309 * bus widths for flash. Try the other width if the first try fails.
1310 */
1311 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1312 info->nand.options ^= NAND_BUSWIDTH_16;
1313 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1314 err = -ENXIO;
1315 goto out_release_mem_region;
1316 }
1317 }
1318
1319 /* rom code layout */
1320 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1321
1322 if (info->nand.options & NAND_BUSWIDTH_16)
1323 offset = 2;
1324 else {
1325 offset = 1;
1326 info->nand.badblock_pattern = &bb_descrip_flashbased;
1327 }
1328 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1329 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1330 omap_oobinfo.eccpos[i] = i+offset;
1331
1332 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1333 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1334 (offset + omap_oobinfo.eccbytes);
1335
1336 info->nand.ecc.layout = &omap_oobinfo;
1337 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1338 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1339 /* build OOB layout for BCH ECC correction */
1340 err = omap3_init_bch_tail(&info->mtd);
1341 if (err) {
1342 err = -EINVAL;
1343 goto out_release_mem_region;
1344 }
1345 }
1346
1347 /* second phase scan */
1348 if (nand_scan_tail(&info->mtd)) {
1349 err = -ENXIO;
1350 goto out_release_mem_region;
1351 }
1352
1353 mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1354 pdata->nr_parts);
1355
1356 platform_set_drvdata(pdev, &info->mtd);
1357
1358 return 0;
1359
1360out_release_mem_region:
1361 release_mem_region(info->phys_base, NAND_IO_SIZE);
1362out_free_info:
1363 kfree(info);
1364
1365 return err;
1366}
1367
1368static int omap_nand_remove(struct platform_device *pdev)
1369{
1370 struct mtd_info *mtd = platform_get_drvdata(pdev);
1371 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1372 mtd);
1373 omap3_free_bch(&info->mtd);
1374
1375 platform_set_drvdata(pdev, NULL);
1376 if (info->dma_ch != -1)
1377 omap_free_dma(info->dma_ch);
1378
1379 if (info->gpmc_irq)
1380 free_irq(info->gpmc_irq, info);
1381
1382 /* Release NAND device, its internal structures and partitions */
1383 nand_release(&info->mtd);
1384 iounmap(info->nand.IO_ADDR_R);
1385 kfree(&info->mtd);
1386 return 0;
1387}
1388
1389static struct platform_driver omap_nand_driver = {
1390 .probe = omap_nand_probe,
1391 .remove = omap_nand_remove,
1392 .driver = {
1393 .name = DRIVER_NAME,
1394 .owner = THIS_MODULE,
1395 },
1396};
1397
1398module_platform_driver(omap_nand_driver);
1399
1400MODULE_ALIAS("platform:" DRIVER_NAME);
1401MODULE_LICENSE("GPL");
1402MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");