Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  Based on documentation provided by Dave Jones. Thanks!
  3 *
  4 *  Licensed under the terms of the GNU GPL License version 2.
  5 *
  6 *  BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/cpufreq.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/timex.h>
 16#include <linux/io.h>
 17#include <linux/delay.h>
 18
 
 19#include <asm/msr.h>
 20#include <asm/tsc.h>
 21
 
 
 
 
 
 22#define EPS_BRAND_C7M	0
 23#define EPS_BRAND_C7	1
 24#define EPS_BRAND_EDEN	2
 25#define EPS_BRAND_C3	3
 26#define EPS_BRAND_C7D	4
 27
 28struct eps_cpu_data {
 29	u32 fsb;
 
 
 
 30	struct cpufreq_frequency_table freq_table[];
 31};
 32
 33static struct eps_cpu_data *eps_cpu[NR_CPUS];
 34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36static unsigned int eps_get(unsigned int cpu)
 37{
 38	struct eps_cpu_data *centaur;
 39	u32 lo, hi;
 40
 41	if (cpu)
 42		return 0;
 43	centaur = eps_cpu[cpu];
 44	if (centaur == NULL)
 45		return 0;
 46
 47	/* Return current frequency */
 48	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 49	return centaur->fsb * ((lo >> 8) & 0xff);
 50}
 51
 52static int eps_set_state(struct eps_cpu_data *centaur,
 53			 unsigned int cpu,
 54			 u32 dest_state)
 55{
 56	struct cpufreq_freqs freqs;
 57	u32 lo, hi;
 58	int err = 0;
 59	int i;
 60
 61	freqs.old = eps_get(cpu);
 62	freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
 63	freqs.cpu = cpu;
 64	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
 65
 66	/* Wait while CPU is busy */
 67	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 68	i = 0;
 69	while (lo & ((1 << 16) | (1 << 17))) {
 70		udelay(16);
 71		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 72		i++;
 73		if (unlikely(i > 64)) {
 74			err = -ENODEV;
 75			goto postchange;
 76		}
 77	}
 78	/* Set new multiplier and voltage */
 79	wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
 80	/* Wait until transition end */
 81	i = 0;
 82	do {
 83		udelay(16);
 84		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 85		i++;
 86		if (unlikely(i > 64)) {
 87			err = -ENODEV;
 88			goto postchange;
 89		}
 90	} while (lo & ((1 << 16) | (1 << 17)));
 91
 92	/* Return current frequency */
 93postchange:
 94	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 95	freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
 96
 97#ifdef DEBUG
 98	{
 99	u8 current_multiplier, current_voltage;
100
101	/* Print voltage and multiplier */
102	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
103	current_voltage = lo & 0xff;
104	printk(KERN_INFO "eps: Current voltage = %dmV\n",
105		current_voltage * 16 + 700);
106	current_multiplier = (lo >> 8) & 0xff;
107	printk(KERN_INFO "eps: Current multiplier = %d\n",
108		current_multiplier);
109	}
110#endif
111	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
112	return err;
113}
114
115static int eps_target(struct cpufreq_policy *policy,
116			       unsigned int target_freq,
117			       unsigned int relation)
118{
119	struct eps_cpu_data *centaur;
120	unsigned int newstate = 0;
121	unsigned int cpu = policy->cpu;
122	unsigned int dest_state;
123	int ret;
124
125	if (unlikely(eps_cpu[cpu] == NULL))
126		return -ENODEV;
127	centaur = eps_cpu[cpu];
128
129	if (unlikely(cpufreq_frequency_table_target(policy,
130			&eps_cpu[cpu]->freq_table[0],
131			target_freq,
132			relation,
133			&newstate))) {
134		return -EINVAL;
135	}
136
137	/* Make frequency transition */
138	dest_state = centaur->freq_table[newstate].index & 0xffff;
139	ret = eps_set_state(centaur, cpu, dest_state);
140	if (ret)
141		printk(KERN_ERR "eps: Timeout!\n");
142	return ret;
143}
144
145static int eps_verify(struct cpufreq_policy *policy)
146{
147	return cpufreq_frequency_table_verify(policy,
148			&eps_cpu[policy->cpu]->freq_table[0]);
149}
150
151static int eps_cpu_init(struct cpufreq_policy *policy)
152{
153	unsigned int i;
154	u32 lo, hi;
155	u64 val;
156	u8 current_multiplier, current_voltage;
157	u8 max_multiplier, max_voltage;
158	u8 min_multiplier, min_voltage;
159	u8 brand = 0;
160	u32 fsb;
161	struct eps_cpu_data *centaur;
162	struct cpuinfo_x86 *c = &cpu_data(0);
163	struct cpufreq_frequency_table *f_table;
164	int k, step, voltage;
165	int ret;
166	int states;
 
 
 
167
168	if (policy->cpu != 0)
169		return -ENODEV;
170
171	/* Check brand */
172	printk(KERN_INFO "eps: Detected VIA ");
173
174	switch (c->x86_model) {
175	case 10:
176		rdmsr(0x1153, lo, hi);
177		brand = (((lo >> 2) ^ lo) >> 18) & 3;
178		printk(KERN_CONT "Model A ");
179		break;
180	case 13:
181		rdmsr(0x1154, lo, hi);
182		brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
183		printk(KERN_CONT "Model D ");
184		break;
185	}
186
187	switch (brand) {
188	case EPS_BRAND_C7M:
189		printk(KERN_CONT "C7-M\n");
190		break;
191	case EPS_BRAND_C7:
192		printk(KERN_CONT "C7\n");
193		break;
194	case EPS_BRAND_EDEN:
195		printk(KERN_CONT "Eden\n");
196		break;
197	case EPS_BRAND_C7D:
198		printk(KERN_CONT "C7-D\n");
199		break;
200	case EPS_BRAND_C3:
201		printk(KERN_CONT "C3\n");
202		return -ENODEV;
203		break;
204	}
205	/* Enable Enhanced PowerSaver */
206	rdmsrl(MSR_IA32_MISC_ENABLE, val);
207	if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
208		val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
209		wrmsrl(MSR_IA32_MISC_ENABLE, val);
210		/* Can be locked at 0 */
211		rdmsrl(MSR_IA32_MISC_ENABLE, val);
212		if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
213			printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
214			return -ENODEV;
215		}
216	}
217
218	/* Print voltage and multiplier */
219	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
220	current_voltage = lo & 0xff;
221	printk(KERN_INFO "eps: Current voltage = %dmV\n",
222			current_voltage * 16 + 700);
223	current_multiplier = (lo >> 8) & 0xff;
224	printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
225
226	/* Print limits */
227	max_voltage = hi & 0xff;
228	printk(KERN_INFO "eps: Highest voltage = %dmV\n",
229			max_voltage * 16 + 700);
230	max_multiplier = (hi >> 8) & 0xff;
231	printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
232	min_voltage = (hi >> 16) & 0xff;
233	printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
234			min_voltage * 16 + 700);
235	min_multiplier = (hi >> 24) & 0xff;
236	printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
237
238	/* Sanity checks */
239	if (current_multiplier == 0 || max_multiplier == 0
240	    || min_multiplier == 0)
241		return -EINVAL;
242	if (current_multiplier > max_multiplier
243	    || max_multiplier <= min_multiplier)
244		return -EINVAL;
245	if (current_voltage > 0x1f || max_voltage > 0x1f)
246		return -EINVAL;
247	if (max_voltage < min_voltage)
 
 
248		return -EINVAL;
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250	/* Calc FSB speed */
251	fsb = cpu_khz / current_multiplier;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252	/* Calc number of p-states supported */
253	if (brand == EPS_BRAND_C7M)
254		states = max_multiplier - min_multiplier + 1;
255	else
256		states = 2;
257
258	/* Allocate private data and frequency table for current cpu */
259	centaur = kzalloc(sizeof(struct eps_cpu_data)
260		    + (states + 1) * sizeof(struct cpufreq_frequency_table),
261		    GFP_KERNEL);
262	if (!centaur)
263		return -ENOMEM;
264	eps_cpu[0] = centaur;
265
266	/* Copy basic values */
267	centaur->fsb = fsb;
 
 
 
268
269	/* Fill frequency and MSR value table */
270	f_table = &centaur->freq_table[0];
271	if (brand != EPS_BRAND_C7M) {
272		f_table[0].frequency = fsb * min_multiplier;
273		f_table[0].index = (min_multiplier << 8) | min_voltage;
274		f_table[1].frequency = fsb * max_multiplier;
275		f_table[1].index = (max_multiplier << 8) | max_voltage;
276		f_table[2].frequency = CPUFREQ_TABLE_END;
277	} else {
278		k = 0;
279		step = ((max_voltage - min_voltage) * 256)
280			/ (max_multiplier - min_multiplier);
281		for (i = min_multiplier; i <= max_multiplier; i++) {
282			voltage = (k * step) / 256 + min_voltage;
283			f_table[k].frequency = fsb * i;
284			f_table[k].index = (i << 8) | voltage;
285			k++;
286		}
287		f_table[k].frequency = CPUFREQ_TABLE_END;
288	}
289
290	policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
291	policy->cur = fsb * current_multiplier;
292
293	ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
294	if (ret) {
295		kfree(centaur);
296		return ret;
297	}
298
299	cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
300	return 0;
301}
302
303static int eps_cpu_exit(struct cpufreq_policy *policy)
304{
305	unsigned int cpu = policy->cpu;
306	struct eps_cpu_data *centaur;
307	u32 lo, hi;
308
309	if (eps_cpu[cpu] == NULL)
310		return -ENODEV;
311	centaur = eps_cpu[cpu];
312
313	/* Get max frequency */
314	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
315	/* Set max frequency */
316	eps_set_state(centaur, cpu, hi & 0xffff);
317	/* Bye */
318	cpufreq_frequency_table_put_attr(policy->cpu);
319	kfree(eps_cpu[cpu]);
320	eps_cpu[cpu] = NULL;
321	return 0;
322}
323
324static struct freq_attr *eps_attr[] = {
325	&cpufreq_freq_attr_scaling_available_freqs,
326	NULL,
327};
328
329static struct cpufreq_driver eps_driver = {
330	.verify		= eps_verify,
331	.target		= eps_target,
332	.init		= eps_cpu_init,
333	.exit		= eps_cpu_exit,
334	.get		= eps_get,
335	.name		= "e_powersaver",
336	.owner		= THIS_MODULE,
337	.attr		= eps_attr,
338};
339
 
 
 
 
 
 
 
 
 
340static int __init eps_init(void)
341{
342	struct cpuinfo_x86 *c = &cpu_data(0);
343
344	/* This driver will work only on Centaur C7 processors with
345	 * Enhanced SpeedStep/PowerSaver registers */
346	if (c->x86_vendor != X86_VENDOR_CENTAUR
347	    || c->x86 != 6 || c->x86_model < 10)
348		return -ENODEV;
349	if (!cpu_has(c, X86_FEATURE_EST))
350		return -ENODEV;
351
352	if (cpufreq_register_driver(&eps_driver))
353		return -EINVAL;
354	return 0;
355}
356
357static void __exit eps_exit(void)
358{
359	cpufreq_unregister_driver(&eps_driver);
360}
 
 
 
 
 
 
 
 
 
 
 
 
 
361
362MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
363MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
364MODULE_LICENSE("GPL");
365
366module_init(eps_init);
367module_exit(eps_exit);
v3.5.6
  1/*
  2 *  Based on documentation provided by Dave Jones. Thanks!
  3 *
  4 *  Licensed under the terms of the GNU GPL License version 2.
  5 *
  6 *  BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/cpufreq.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/timex.h>
 16#include <linux/io.h>
 17#include <linux/delay.h>
 18
 19#include <asm/cpu_device_id.h>
 20#include <asm/msr.h>
 21#include <asm/tsc.h>
 22
 23#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
 24#include <linux/acpi.h>
 25#include <acpi/processor.h>
 26#endif
 27
 28#define EPS_BRAND_C7M	0
 29#define EPS_BRAND_C7	1
 30#define EPS_BRAND_EDEN	2
 31#define EPS_BRAND_C3	3
 32#define EPS_BRAND_C7D	4
 33
 34struct eps_cpu_data {
 35	u32 fsb;
 36#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
 37	u32 bios_limit;
 38#endif
 39	struct cpufreq_frequency_table freq_table[];
 40};
 41
 42static struct eps_cpu_data *eps_cpu[NR_CPUS];
 43
 44/* Module parameters */
 45static int freq_failsafe_off;
 46static int voltage_failsafe_off;
 47static int set_max_voltage;
 48
 49#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
 50static int ignore_acpi_limit;
 51
 52static struct acpi_processor_performance *eps_acpi_cpu_perf;
 53
 54/* Minimum necessary to get acpi_processor_get_bios_limit() working */
 55static int eps_acpi_init(void)
 56{
 57	eps_acpi_cpu_perf = kzalloc(sizeof(struct acpi_processor_performance),
 58				      GFP_KERNEL);
 59	if (!eps_acpi_cpu_perf)
 60		return -ENOMEM;
 61
 62	if (!zalloc_cpumask_var(&eps_acpi_cpu_perf->shared_cpu_map,
 63								GFP_KERNEL)) {
 64		kfree(eps_acpi_cpu_perf);
 65		eps_acpi_cpu_perf = NULL;
 66		return -ENOMEM;
 67	}
 68
 69	if (acpi_processor_register_performance(eps_acpi_cpu_perf, 0)) {
 70		free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
 71		kfree(eps_acpi_cpu_perf);
 72		eps_acpi_cpu_perf = NULL;
 73		return -EIO;
 74	}
 75	return 0;
 76}
 77
 78static int eps_acpi_exit(struct cpufreq_policy *policy)
 79{
 80	if (eps_acpi_cpu_perf) {
 81		acpi_processor_unregister_performance(eps_acpi_cpu_perf, 0);
 82		free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
 83		kfree(eps_acpi_cpu_perf);
 84		eps_acpi_cpu_perf = NULL;
 85	}
 86	return 0;
 87}
 88#endif
 89
 90static unsigned int eps_get(unsigned int cpu)
 91{
 92	struct eps_cpu_data *centaur;
 93	u32 lo, hi;
 94
 95	if (cpu)
 96		return 0;
 97	centaur = eps_cpu[cpu];
 98	if (centaur == NULL)
 99		return 0;
100
101	/* Return current frequency */
102	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
103	return centaur->fsb * ((lo >> 8) & 0xff);
104}
105
106static int eps_set_state(struct eps_cpu_data *centaur,
107			 unsigned int cpu,
108			 u32 dest_state)
109{
110	struct cpufreq_freqs freqs;
111	u32 lo, hi;
112	int err = 0;
113	int i;
114
115	freqs.old = eps_get(cpu);
116	freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
117	freqs.cpu = cpu;
118	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
119
120	/* Wait while CPU is busy */
121	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
122	i = 0;
123	while (lo & ((1 << 16) | (1 << 17))) {
124		udelay(16);
125		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
126		i++;
127		if (unlikely(i > 64)) {
128			err = -ENODEV;
129			goto postchange;
130		}
131	}
132	/* Set new multiplier and voltage */
133	wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
134	/* Wait until transition end */
135	i = 0;
136	do {
137		udelay(16);
138		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
139		i++;
140		if (unlikely(i > 64)) {
141			err = -ENODEV;
142			goto postchange;
143		}
144	} while (lo & ((1 << 16) | (1 << 17)));
145
146	/* Return current frequency */
147postchange:
148	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
149	freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
150
151#ifdef DEBUG
152	{
153	u8 current_multiplier, current_voltage;
154
155	/* Print voltage and multiplier */
156	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
157	current_voltage = lo & 0xff;
158	printk(KERN_INFO "eps: Current voltage = %dmV\n",
159		current_voltage * 16 + 700);
160	current_multiplier = (lo >> 8) & 0xff;
161	printk(KERN_INFO "eps: Current multiplier = %d\n",
162		current_multiplier);
163	}
164#endif
165	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
166	return err;
167}
168
169static int eps_target(struct cpufreq_policy *policy,
170			       unsigned int target_freq,
171			       unsigned int relation)
172{
173	struct eps_cpu_data *centaur;
174	unsigned int newstate = 0;
175	unsigned int cpu = policy->cpu;
176	unsigned int dest_state;
177	int ret;
178
179	if (unlikely(eps_cpu[cpu] == NULL))
180		return -ENODEV;
181	centaur = eps_cpu[cpu];
182
183	if (unlikely(cpufreq_frequency_table_target(policy,
184			&eps_cpu[cpu]->freq_table[0],
185			target_freq,
186			relation,
187			&newstate))) {
188		return -EINVAL;
189	}
190
191	/* Make frequency transition */
192	dest_state = centaur->freq_table[newstate].index & 0xffff;
193	ret = eps_set_state(centaur, cpu, dest_state);
194	if (ret)
195		printk(KERN_ERR "eps: Timeout!\n");
196	return ret;
197}
198
199static int eps_verify(struct cpufreq_policy *policy)
200{
201	return cpufreq_frequency_table_verify(policy,
202			&eps_cpu[policy->cpu]->freq_table[0]);
203}
204
205static int eps_cpu_init(struct cpufreq_policy *policy)
206{
207	unsigned int i;
208	u32 lo, hi;
209	u64 val;
210	u8 current_multiplier, current_voltage;
211	u8 max_multiplier, max_voltage;
212	u8 min_multiplier, min_voltage;
213	u8 brand = 0;
214	u32 fsb;
215	struct eps_cpu_data *centaur;
216	struct cpuinfo_x86 *c = &cpu_data(0);
217	struct cpufreq_frequency_table *f_table;
218	int k, step, voltage;
219	int ret;
220	int states;
221#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
222	unsigned int limit;
223#endif
224
225	if (policy->cpu != 0)
226		return -ENODEV;
227
228	/* Check brand */
229	printk(KERN_INFO "eps: Detected VIA ");
230
231	switch (c->x86_model) {
232	case 10:
233		rdmsr(0x1153, lo, hi);
234		brand = (((lo >> 2) ^ lo) >> 18) & 3;
235		printk(KERN_CONT "Model A ");
236		break;
237	case 13:
238		rdmsr(0x1154, lo, hi);
239		brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
240		printk(KERN_CONT "Model D ");
241		break;
242	}
243
244	switch (brand) {
245	case EPS_BRAND_C7M:
246		printk(KERN_CONT "C7-M\n");
247		break;
248	case EPS_BRAND_C7:
249		printk(KERN_CONT "C7\n");
250		break;
251	case EPS_BRAND_EDEN:
252		printk(KERN_CONT "Eden\n");
253		break;
254	case EPS_BRAND_C7D:
255		printk(KERN_CONT "C7-D\n");
256		break;
257	case EPS_BRAND_C3:
258		printk(KERN_CONT "C3\n");
259		return -ENODEV;
260		break;
261	}
262	/* Enable Enhanced PowerSaver */
263	rdmsrl(MSR_IA32_MISC_ENABLE, val);
264	if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
265		val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
266		wrmsrl(MSR_IA32_MISC_ENABLE, val);
267		/* Can be locked at 0 */
268		rdmsrl(MSR_IA32_MISC_ENABLE, val);
269		if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
270			printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
271			return -ENODEV;
272		}
273	}
274
275	/* Print voltage and multiplier */
276	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
277	current_voltage = lo & 0xff;
278	printk(KERN_INFO "eps: Current voltage = %dmV\n",
279			current_voltage * 16 + 700);
280	current_multiplier = (lo >> 8) & 0xff;
281	printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
282
283	/* Print limits */
284	max_voltage = hi & 0xff;
285	printk(KERN_INFO "eps: Highest voltage = %dmV\n",
286			max_voltage * 16 + 700);
287	max_multiplier = (hi >> 8) & 0xff;
288	printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
289	min_voltage = (hi >> 16) & 0xff;
290	printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
291			min_voltage * 16 + 700);
292	min_multiplier = (hi >> 24) & 0xff;
293	printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
294
295	/* Sanity checks */
296	if (current_multiplier == 0 || max_multiplier == 0
297	    || min_multiplier == 0)
298		return -EINVAL;
299	if (current_multiplier > max_multiplier
300	    || max_multiplier <= min_multiplier)
301		return -EINVAL;
302	if (current_voltage > 0x1f || max_voltage > 0x1f)
303		return -EINVAL;
304	if (max_voltage < min_voltage
305	    || current_voltage < min_voltage
306	    || current_voltage > max_voltage)
307		return -EINVAL;
308
309	/* Check for systems using underclocked CPU */
310	if (!freq_failsafe_off && max_multiplier != current_multiplier) {
311		printk(KERN_INFO "eps: Your processor is running at different "
312			"frequency then its maximum. Aborting.\n");
313		printk(KERN_INFO "eps: You can use freq_failsafe_off option "
314			"to disable this check.\n");
315		return -EINVAL;
316	}
317	if (!voltage_failsafe_off && max_voltage != current_voltage) {
318		printk(KERN_INFO "eps: Your processor is running at different "
319			"voltage then its maximum. Aborting.\n");
320		printk(KERN_INFO "eps: You can use voltage_failsafe_off "
321			"option to disable this check.\n");
322		return -EINVAL;
323	}
324
325	/* Calc FSB speed */
326	fsb = cpu_khz / current_multiplier;
327
328#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
329	/* Check for ACPI processor speed limit */
330	if (!ignore_acpi_limit && !eps_acpi_init()) {
331		if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
332			printk(KERN_INFO "eps: ACPI limit %u.%uGHz\n",
333				limit/1000000,
334				(limit%1000000)/10000);
335			eps_acpi_exit(policy);
336			/* Check if max_multiplier is in BIOS limits */
337			if (limit && max_multiplier * fsb > limit) {
338				printk(KERN_INFO "eps: Aborting.\n");
339				return -EINVAL;
340			}
341		}
342	}
343#endif
344
345	/* Allow user to set lower maximum voltage then that reported
346	 * by processor */
347	if (brand == EPS_BRAND_C7M && set_max_voltage) {
348		u32 v;
349
350		/* Change mV to something hardware can use */
351		v = (set_max_voltage - 700) / 16;
352		/* Check if voltage is within limits */
353		if (v >= min_voltage && v <= max_voltage) {
354			printk(KERN_INFO "eps: Setting %dmV as maximum.\n",
355				v * 16 + 700);
356			max_voltage = v;
357		}
358	}
359
360	/* Calc number of p-states supported */
361	if (brand == EPS_BRAND_C7M)
362		states = max_multiplier - min_multiplier + 1;
363	else
364		states = 2;
365
366	/* Allocate private data and frequency table for current cpu */
367	centaur = kzalloc(sizeof(struct eps_cpu_data)
368		    + (states + 1) * sizeof(struct cpufreq_frequency_table),
369		    GFP_KERNEL);
370	if (!centaur)
371		return -ENOMEM;
372	eps_cpu[0] = centaur;
373
374	/* Copy basic values */
375	centaur->fsb = fsb;
376#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
377	centaur->bios_limit = limit;
378#endif
379
380	/* Fill frequency and MSR value table */
381	f_table = &centaur->freq_table[0];
382	if (brand != EPS_BRAND_C7M) {
383		f_table[0].frequency = fsb * min_multiplier;
384		f_table[0].index = (min_multiplier << 8) | min_voltage;
385		f_table[1].frequency = fsb * max_multiplier;
386		f_table[1].index = (max_multiplier << 8) | max_voltage;
387		f_table[2].frequency = CPUFREQ_TABLE_END;
388	} else {
389		k = 0;
390		step = ((max_voltage - min_voltage) * 256)
391			/ (max_multiplier - min_multiplier);
392		for (i = min_multiplier; i <= max_multiplier; i++) {
393			voltage = (k * step) / 256 + min_voltage;
394			f_table[k].frequency = fsb * i;
395			f_table[k].index = (i << 8) | voltage;
396			k++;
397		}
398		f_table[k].frequency = CPUFREQ_TABLE_END;
399	}
400
401	policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
402	policy->cur = fsb * current_multiplier;
403
404	ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
405	if (ret) {
406		kfree(centaur);
407		return ret;
408	}
409
410	cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
411	return 0;
412}
413
414static int eps_cpu_exit(struct cpufreq_policy *policy)
415{
416	unsigned int cpu = policy->cpu;
 
 
417
 
 
 
 
 
 
 
 
418	/* Bye */
419	cpufreq_frequency_table_put_attr(policy->cpu);
420	kfree(eps_cpu[cpu]);
421	eps_cpu[cpu] = NULL;
422	return 0;
423}
424
425static struct freq_attr *eps_attr[] = {
426	&cpufreq_freq_attr_scaling_available_freqs,
427	NULL,
428};
429
430static struct cpufreq_driver eps_driver = {
431	.verify		= eps_verify,
432	.target		= eps_target,
433	.init		= eps_cpu_init,
434	.exit		= eps_cpu_exit,
435	.get		= eps_get,
436	.name		= "e_powersaver",
437	.owner		= THIS_MODULE,
438	.attr		= eps_attr,
439};
440
441
442/* This driver will work only on Centaur C7 processors with
443 * Enhanced SpeedStep/PowerSaver registers */
444static const struct x86_cpu_id eps_cpu_id[] = {
445	{ X86_VENDOR_CENTAUR, 6, X86_MODEL_ANY, X86_FEATURE_EST },
446	{}
447};
448MODULE_DEVICE_TABLE(x86cpu, eps_cpu_id);
449
450static int __init eps_init(void)
451{
452	if (!x86_match_cpu(eps_cpu_id) || boot_cpu_data.x86_model < 10)
 
 
 
 
 
 
 
453		return -ENODEV;
 
454	if (cpufreq_register_driver(&eps_driver))
455		return -EINVAL;
456	return 0;
457}
458
459static void __exit eps_exit(void)
460{
461	cpufreq_unregister_driver(&eps_driver);
462}
463
464/* Allow user to overclock his machine or to change frequency to higher after
465 * unloading module */
466module_param(freq_failsafe_off, int, 0644);
467MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
468module_param(voltage_failsafe_off, int, 0644);
469MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
470#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
471module_param(ignore_acpi_limit, int, 0644);
472MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
473#endif
474module_param(set_max_voltage, int, 0644);
475MODULE_PARM_DESC(set_max_voltage, "Set maximum CPU voltage (mV) C7-M only");
476
477MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
478MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
479MODULE_LICENSE("GPL");
480
481module_init(eps_init);
482module_exit(eps_exit);