Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 
 14#include <linux/mempolicy.h>
 15#include <linux/syscalls.h>
 16#include <linux/sched.h>
 17#include <linux/module.h>
 18#include <linux/rmap.h>
 19#include <linux/mmzone.h>
 20#include <linux/hugetlb.h>
 
 
 21
 22#include "internal.h"
 23
 24int can_do_mlock(void)
 25{
 26	if (capable(CAP_IPC_LOCK))
 27		return 1;
 28	if (rlimit(RLIMIT_MEMLOCK) != 0)
 29		return 1;
 30	return 0;
 31}
 32EXPORT_SYMBOL(can_do_mlock);
 33
 34/*
 35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 36 * in vmscan and, possibly, the fault path; and to support semi-accurate
 37 * statistics.
 38 *
 39 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 41 * The unevictable list is an LRU sibling list to the [in]active lists.
 42 * PageUnevictable is set to indicate the unevictable state.
 43 *
 44 * When lazy mlocking via vmscan, it is important to ensure that the
 45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 46 * may have mlocked a page that is being munlocked. So lazy mlock must take
 47 * the mmap_sem for read, and verify that the vma really is locked
 48 * (see mm/rmap.c).
 49 */
 50
 51/*
 52 *  LRU accounting for clear_page_mlock()
 53 */
 54void __clear_page_mlock(struct page *page)
 55{
 56	VM_BUG_ON(!PageLocked(page));
 57
 58	if (!page->mapping) {	/* truncated ? */
 59		return;
 60	}
 61
 62	dec_zone_page_state(page, NR_MLOCK);
 
 63	count_vm_event(UNEVICTABLE_PGCLEARED);
 64	if (!isolate_lru_page(page)) {
 65		putback_lru_page(page);
 66	} else {
 67		/*
 68		 * We lost the race. the page already moved to evictable list.
 69		 */
 70		if (PageUnevictable(page))
 71			count_vm_event(UNEVICTABLE_PGSTRANDED);
 72	}
 73}
 74
 75/*
 76 * Mark page as mlocked if not already.
 77 * If page on LRU, isolate and putback to move to unevictable list.
 78 */
 79void mlock_vma_page(struct page *page)
 80{
 
 81	BUG_ON(!PageLocked(page));
 82
 83	if (!TestSetPageMlocked(page)) {
 84		inc_zone_page_state(page, NR_MLOCK);
 
 85		count_vm_event(UNEVICTABLE_PGMLOCKED);
 86		if (!isolate_lru_page(page))
 87			putback_lru_page(page);
 88	}
 89}
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91/**
 92 * munlock_vma_page - munlock a vma page
 93 * @page - page to be unlocked
 
 
 
 94 *
 95 * called from munlock()/munmap() path with page supposedly on the LRU.
 96 * When we munlock a page, because the vma where we found the page is being
 97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 98 * page locked so that we can leave it on the unevictable lru list and not
 99 * bother vmscan with it.  However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU.  If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance.  If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
105 */
106void munlock_vma_page(struct page *page)
107{
 
 
 
 
108	BUG_ON(!PageLocked(page));
109
110	if (TestClearPageMlocked(page)) {
111		dec_zone_page_state(page, NR_MLOCK);
112		if (!isolate_lru_page(page)) {
113			int ret = try_to_munlock(page);
114			/*
115			 * did try_to_unlock() succeed or punt?
116			 */
117			if (ret != SWAP_MLOCK)
118				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119
120			putback_lru_page(page);
121		} else {
122			/*
123			 * Some other task has removed the page from the LRU.
124			 * putback_lru_page() will take care of removing the
125			 * page from the unevictable list, if necessary.
126			 * vmscan [page_referenced()] will move the page back
127			 * to the unevictable list if some other vma has it
128			 * mlocked.
129			 */
130			if (PageUnevictable(page))
131				count_vm_event(UNEVICTABLE_PGSTRANDED);
132			else
133				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134		}
135	}
 
 
 
 
 
 
 
136}
137
138/**
139 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
140 * @vma:   target vma
141 * @start: start address
142 * @end:   end address
143 *
144 * This takes care of making the pages present too.
145 *
146 * return 0 on success, negative error code on error.
147 *
148 * vma->vm_mm->mmap_sem must be held for at least read.
149 */
150static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151				    unsigned long start, unsigned long end,
152				    int *nonblocking)
153{
154	struct mm_struct *mm = vma->vm_mm;
155	unsigned long addr = start;
156	int nr_pages = (end - start) / PAGE_SIZE;
157	int gup_flags;
158
159	VM_BUG_ON(start & ~PAGE_MASK);
160	VM_BUG_ON(end   & ~PAGE_MASK);
161	VM_BUG_ON(start < vma->vm_start);
162	VM_BUG_ON(end   > vma->vm_end);
163	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
164
165	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
166	/*
167	 * We want to touch writable mappings with a write fault in order
168	 * to break COW, except for shared mappings because these don't COW
169	 * and we would not want to dirty them for nothing.
170	 */
171	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
172		gup_flags |= FOLL_WRITE;
173
174	/*
175	 * We want mlock to succeed for regions that have any permissions
176	 * other than PROT_NONE.
177	 */
178	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
179		gup_flags |= FOLL_FORCE;
180
181	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
 
 
 
 
182				NULL, NULL, nonblocking);
183}
184
185/*
186 * convert get_user_pages() return value to posix mlock() error
187 */
188static int __mlock_posix_error_return(long retval)
189{
190	if (retval == -EFAULT)
191		retval = -ENOMEM;
192	else if (retval == -ENOMEM)
193		retval = -EAGAIN;
194	return retval;
195}
196
197/**
198 * mlock_vma_pages_range() - mlock pages in specified vma range.
199 * @vma - the vma containing the specfied address range
200 * @start - starting address in @vma to mlock
201 * @end   - end address [+1] in @vma to mlock
202 *
203 * For mmap()/mremap()/expansion of mlocked vma.
204 *
205 * return 0 on success for "normal" vmas.
 
 
 
 
206 *
207 * return number of pages [> 0] to be removed from locked_vm on success
208 * of "special" vmas.
209 */
210long mlock_vma_pages_range(struct vm_area_struct *vma,
211			unsigned long start, unsigned long end)
212{
213	int nr_pages = (end - start) / PAGE_SIZE;
214	BUG_ON(!(vma->vm_flags & VM_LOCKED));
 
 
 
 
 
 
 
 
 
 
 
215
 
 
 
 
 
 
 
 
 
216	/*
217	 * filter unlockable vmas
 
218	 */
219	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
220		goto no_mlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
223			is_vm_hugetlb_page(vma) ||
224			vma == get_gate_vma(current->mm))) {
 
 
 
 
 
 
 
225
226		__mlock_vma_pages_range(vma, start, end, NULL);
 
 
 
 
 
 
 
 
 
 
 
227
228		/* Hide errors from mmap() and other callers */
229		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230	}
231
232	/*
233	 * User mapped kernel pages or huge pages:
234	 * make these pages present to populate the ptes, but
235	 * fall thru' to reset VM_LOCKED--no need to unlock, and
236	 * return nr_pages so these don't get counted against task's
237	 * locked limit.  huge pages are already counted against
238	 * locked vm limit.
239	 */
240	make_pages_present(start, end);
 
 
241
242no_mlock:
243	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
244	return nr_pages;		/* error or pages NOT mlocked */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245}
246
247/*
248 * munlock_vma_pages_range() - munlock all pages in the vma range.'
249 * @vma - vma containing range to be munlock()ed.
250 * @start - start address in @vma of the range
251 * @end - end of range in @vma.
252 *
253 *  For mremap(), munmap() and exit().
254 *
255 * Called with @vma VM_LOCKED.
256 *
257 * Returns with VM_LOCKED cleared.  Callers must be prepared to
258 * deal with this.
259 *
260 * We don't save and restore VM_LOCKED here because pages are
261 * still on lru.  In unmap path, pages might be scanned by reclaim
262 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
263 * free them.  This will result in freeing mlocked pages.
264 */
265void munlock_vma_pages_range(struct vm_area_struct *vma,
266			     unsigned long start, unsigned long end)
267{
268	unsigned long addr;
269
270	lru_add_drain();
271	vma->vm_flags &= ~VM_LOCKED;
272
273	for (addr = start; addr < end; addr += PAGE_SIZE) {
274		struct page *page;
 
 
 
 
 
 
 
275		/*
276		 * Although FOLL_DUMP is intended for get_dump_page(),
277		 * it just so happens that its special treatment of the
278		 * ZERO_PAGE (returning an error instead of doing get_page)
279		 * suits munlock very well (and if somehow an abnormal page
280		 * has sneaked into the range, we won't oops here: great).
281		 */
282		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
 
283		if (page && !IS_ERR(page)) {
284			lock_page(page);
285			/*
286			 * Like in __mlock_vma_pages_range(),
287			 * because we lock page here and migration is
288			 * blocked by the elevated reference, we need
289			 * only check for file-cache page truncation.
290			 */
291			if (page->mapping)
292				munlock_vma_page(page);
293			unlock_page(page);
294			put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295		}
 
 
 
 
 
296		cond_resched();
297	}
298}
299
300/*
301 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
302 *
303 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
304 * munlock is a no-op.  However, for some special vmas, we go ahead and
305 * populate the ptes via make_pages_present().
306 *
307 * For vmas that pass the filters, merge/split as appropriate.
308 */
309static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
310	unsigned long start, unsigned long end, vm_flags_t newflags)
311{
312	struct mm_struct *mm = vma->vm_mm;
313	pgoff_t pgoff;
314	int nr_pages;
315	int ret = 0;
316	int lock = !!(newflags & VM_LOCKED);
317
318	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
319	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
320		goto out;	/* don't set VM_LOCKED,  don't count */
321
322	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
323	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
324			  vma->vm_file, pgoff, vma_policy(vma));
325	if (*prev) {
326		vma = *prev;
327		goto success;
328	}
329
330	if (start != vma->vm_start) {
331		ret = split_vma(mm, vma, start, 1);
332		if (ret)
333			goto out;
334	}
335
336	if (end != vma->vm_end) {
337		ret = split_vma(mm, vma, end, 0);
338		if (ret)
339			goto out;
340	}
341
342success:
343	/*
344	 * Keep track of amount of locked VM.
345	 */
346	nr_pages = (end - start) >> PAGE_SHIFT;
347	if (!lock)
348		nr_pages = -nr_pages;
349	mm->locked_vm += nr_pages;
350
351	/*
352	 * vm_flags is protected by the mmap_sem held in write mode.
353	 * It's okay if try_to_unmap_one unmaps a page just after we
354	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
355	 */
356
357	if (lock)
358		vma->vm_flags = newflags;
359	else
360		munlock_vma_pages_range(vma, start, end);
361
362out:
363	*prev = vma;
364	return ret;
365}
366
367static int do_mlock(unsigned long start, size_t len, int on)
368{
369	unsigned long nstart, end, tmp;
370	struct vm_area_struct * vma, * prev;
371	int error;
372
373	VM_BUG_ON(start & ~PAGE_MASK);
374	VM_BUG_ON(len != PAGE_ALIGN(len));
375	end = start + len;
376	if (end < start)
377		return -EINVAL;
378	if (end == start)
379		return 0;
380	vma = find_vma_prev(current->mm, start, &prev);
381	if (!vma || vma->vm_start > start)
382		return -ENOMEM;
383
 
384	if (start > vma->vm_start)
385		prev = vma;
386
387	for (nstart = start ; ; ) {
388		vm_flags_t newflags;
389
390		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
391
392		newflags = vma->vm_flags | VM_LOCKED;
393		if (!on)
394			newflags &= ~VM_LOCKED;
395
396		tmp = vma->vm_end;
397		if (tmp > end)
398			tmp = end;
399		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
400		if (error)
401			break;
402		nstart = tmp;
403		if (nstart < prev->vm_end)
404			nstart = prev->vm_end;
405		if (nstart >= end)
406			break;
407
408		vma = prev->vm_next;
409		if (!vma || vma->vm_start != nstart) {
410			error = -ENOMEM;
411			break;
412		}
413	}
414	return error;
415}
416
417static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
 
 
 
 
 
 
 
418{
419	struct mm_struct *mm = current->mm;
420	unsigned long end, nstart, nend;
421	struct vm_area_struct *vma = NULL;
422	int locked = 0;
423	int ret = 0;
424
425	VM_BUG_ON(start & ~PAGE_MASK);
426	VM_BUG_ON(len != PAGE_ALIGN(len));
427	end = start + len;
428
429	for (nstart = start; nstart < end; nstart = nend) {
430		/*
431		 * We want to fault in pages for [nstart; end) address range.
432		 * Find first corresponding VMA.
433		 */
434		if (!locked) {
435			locked = 1;
436			down_read(&mm->mmap_sem);
437			vma = find_vma(mm, nstart);
438		} else if (nstart >= vma->vm_end)
439			vma = vma->vm_next;
440		if (!vma || vma->vm_start >= end)
441			break;
442		/*
443		 * Set [nstart; nend) to intersection of desired address
444		 * range with the first VMA. Also, skip undesirable VMA types.
445		 */
446		nend = min(end, vma->vm_end);
447		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
448			continue;
449		if (nstart < vma->vm_start)
450			nstart = vma->vm_start;
451		/*
452		 * Now fault in a range of pages. __mlock_vma_pages_range()
453		 * double checks the vma flags, so that it won't mlock pages
454		 * if the vma was already munlocked.
455		 */
456		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
457		if (ret < 0) {
458			if (ignore_errors) {
459				ret = 0;
460				continue;	/* continue at next VMA */
461			}
462			ret = __mlock_posix_error_return(ret);
463			break;
464		}
465		nend = nstart + ret * PAGE_SIZE;
466		ret = 0;
467	}
468	if (locked)
469		up_read(&mm->mmap_sem);
470	return ret;	/* 0 or negative error code */
471}
472
473SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
474{
475	unsigned long locked;
476	unsigned long lock_limit;
477	int error = -ENOMEM;
478
479	if (!can_do_mlock())
480		return -EPERM;
481
482	lru_add_drain_all();	/* flush pagevec */
483
484	down_write(&current->mm->mmap_sem);
485	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
486	start &= PAGE_MASK;
487
488	locked = len >> PAGE_SHIFT;
489	locked += current->mm->locked_vm;
490
491	lock_limit = rlimit(RLIMIT_MEMLOCK);
492	lock_limit >>= PAGE_SHIFT;
 
 
 
 
 
493
494	/* check against resource limits */
495	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
496		error = do_mlock(start, len, 1);
 
497	up_write(&current->mm->mmap_sem);
498	if (!error)
499		error = do_mlock_pages(start, len, 0);
500	return error;
501}
502
503SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
504{
505	int ret;
506
507	down_write(&current->mm->mmap_sem);
508	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
509	start &= PAGE_MASK;
 
 
510	ret = do_mlock(start, len, 0);
511	up_write(&current->mm->mmap_sem);
 
512	return ret;
513}
514
515static int do_mlockall(int flags)
516{
517	struct vm_area_struct * vma, * prev = NULL;
518	unsigned int def_flags = 0;
519
520	if (flags & MCL_FUTURE)
521		def_flags = VM_LOCKED;
522	current->mm->def_flags = def_flags;
 
523	if (flags == MCL_FUTURE)
524		goto out;
525
526	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
527		vm_flags_t newflags;
528
529		newflags = vma->vm_flags | VM_LOCKED;
530		if (!(flags & MCL_CURRENT))
531			newflags &= ~VM_LOCKED;
532
533		/* Ignore errors */
534		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 
535	}
536out:
537	return 0;
538}
539
540SYSCALL_DEFINE1(mlockall, int, flags)
541{
542	unsigned long lock_limit;
543	int ret = -EINVAL;
544
545	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
546		goto out;
547
548	ret = -EPERM;
549	if (!can_do_mlock())
550		goto out;
551
552	lru_add_drain_all();	/* flush pagevec */
553
554	down_write(&current->mm->mmap_sem);
555
556	lock_limit = rlimit(RLIMIT_MEMLOCK);
557	lock_limit >>= PAGE_SHIFT;
558
559	ret = -ENOMEM;
 
 
560	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
561	    capable(CAP_IPC_LOCK))
562		ret = do_mlockall(flags);
563	up_write(&current->mm->mmap_sem);
564	if (!ret && (flags & MCL_CURRENT)) {
565		/* Ignore errors */
566		do_mlock_pages(0, TASK_SIZE, 1);
567	}
568out:
569	return ret;
570}
571
572SYSCALL_DEFINE0(munlockall)
573{
574	int ret;
575
576	down_write(&current->mm->mmap_sem);
577	ret = do_mlockall(0);
578	up_write(&current->mm->mmap_sem);
579	return ret;
580}
581
582/*
583 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
584 * shm segments) get accounted against the user_struct instead.
585 */
586static DEFINE_SPINLOCK(shmlock_user_lock);
587
588int user_shm_lock(size_t size, struct user_struct *user)
589{
590	unsigned long lock_limit, locked;
591	int allowed = 0;
592
593	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
594	lock_limit = rlimit(RLIMIT_MEMLOCK);
595	if (lock_limit == RLIM_INFINITY)
596		allowed = 1;
597	lock_limit >>= PAGE_SHIFT;
598	spin_lock(&shmlock_user_lock);
599	if (!allowed &&
600	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
601		goto out;
602	get_uid(user);
603	user->locked_shm += locked;
604	allowed = 1;
605out:
606	spin_unlock(&shmlock_user_lock);
607	return allowed;
608}
609
610void user_shm_unlock(size_t size, struct user_struct *user)
611{
612	spin_lock(&shmlock_user_lock);
613	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
614	spin_unlock(&shmlock_user_lock);
615	free_uid(user);
616}
v3.15
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 14#include <linux/pagevec.h>
 15#include <linux/mempolicy.h>
 16#include <linux/syscalls.h>
 17#include <linux/sched.h>
 18#include <linux/export.h>
 19#include <linux/rmap.h>
 20#include <linux/mmzone.h>
 21#include <linux/hugetlb.h>
 22#include <linux/memcontrol.h>
 23#include <linux/mm_inline.h>
 24
 25#include "internal.h"
 26
 27int can_do_mlock(void)
 28{
 29	if (capable(CAP_IPC_LOCK))
 30		return 1;
 31	if (rlimit(RLIMIT_MEMLOCK) != 0)
 32		return 1;
 33	return 0;
 34}
 35EXPORT_SYMBOL(can_do_mlock);
 36
 37/*
 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 39 * in vmscan and, possibly, the fault path; and to support semi-accurate
 40 * statistics.
 41 *
 42 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 44 * The unevictable list is an LRU sibling list to the [in]active lists.
 45 * PageUnevictable is set to indicate the unevictable state.
 46 *
 47 * When lazy mlocking via vmscan, it is important to ensure that the
 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 49 * may have mlocked a page that is being munlocked. So lazy mlock must take
 50 * the mmap_sem for read, and verify that the vma really is locked
 51 * (see mm/rmap.c).
 52 */
 53
 54/*
 55 *  LRU accounting for clear_page_mlock()
 56 */
 57void clear_page_mlock(struct page *page)
 58{
 59	if (!TestClearPageMlocked(page))
 
 
 60		return;
 
 61
 62	mod_zone_page_state(page_zone(page), NR_MLOCK,
 63			    -hpage_nr_pages(page));
 64	count_vm_event(UNEVICTABLE_PGCLEARED);
 65	if (!isolate_lru_page(page)) {
 66		putback_lru_page(page);
 67	} else {
 68		/*
 69		 * We lost the race. the page already moved to evictable list.
 70		 */
 71		if (PageUnevictable(page))
 72			count_vm_event(UNEVICTABLE_PGSTRANDED);
 73	}
 74}
 75
 76/*
 77 * Mark page as mlocked if not already.
 78 * If page on LRU, isolate and putback to move to unevictable list.
 79 */
 80void mlock_vma_page(struct page *page)
 81{
 82	/* Serialize with page migration */
 83	BUG_ON(!PageLocked(page));
 84
 85	if (!TestSetPageMlocked(page)) {
 86		mod_zone_page_state(page_zone(page), NR_MLOCK,
 87				    hpage_nr_pages(page));
 88		count_vm_event(UNEVICTABLE_PGMLOCKED);
 89		if (!isolate_lru_page(page))
 90			putback_lru_page(page);
 91	}
 92}
 93
 94/*
 95 * Isolate a page from LRU with optional get_page() pin.
 96 * Assumes lru_lock already held and page already pinned.
 97 */
 98static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
 99{
100	if (PageLRU(page)) {
101		struct lruvec *lruvec;
102
103		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104		if (getpage)
105			get_page(page);
106		ClearPageLRU(page);
107		del_page_from_lru_list(page, lruvec, page_lru(page));
108		return true;
109	}
110
111	return false;
112}
113
114/*
115 * Finish munlock after successful page isolation
116 *
117 * Page must be locked. This is a wrapper for try_to_munlock()
118 * and putback_lru_page() with munlock accounting.
119 */
120static void __munlock_isolated_page(struct page *page)
121{
122	int ret = SWAP_AGAIN;
123
124	/*
125	 * Optimization: if the page was mapped just once, that's our mapping
126	 * and we don't need to check all the other vmas.
127	 */
128	if (page_mapcount(page) > 1)
129		ret = try_to_munlock(page);
130
131	/* Did try_to_unlock() succeed or punt? */
132	if (ret != SWAP_MLOCK)
133		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134
135	putback_lru_page(page);
136}
137
138/*
139 * Accounting for page isolation fail during munlock
140 *
141 * Performs accounting when page isolation fails in munlock. There is nothing
142 * else to do because it means some other task has already removed the page
143 * from the LRU. putback_lru_page() will take care of removing the page from
144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
145 * the page back to the unevictable list if some other vma has it mlocked.
146 */
147static void __munlock_isolation_failed(struct page *page)
148{
149	if (PageUnevictable(page))
150		__count_vm_event(UNEVICTABLE_PGSTRANDED);
151	else
152		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153}
154
155/**
156 * munlock_vma_page - munlock a vma page
157 * @page - page to be unlocked, either a normal page or THP page head
158 *
159 * returns the size of the page as a page mask (0 for normal page,
160 *         HPAGE_PMD_NR - 1 for THP head page)
161 *
162 * called from munlock()/munmap() path with page supposedly on the LRU.
163 * When we munlock a page, because the vma where we found the page is being
164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165 * page locked so that we can leave it on the unevictable lru list and not
166 * bother vmscan with it.  However, to walk the page's rmap list in
167 * try_to_munlock() we must isolate the page from the LRU.  If some other
168 * task has removed the page from the LRU, we won't be able to do that.
169 * So we clear the PageMlocked as we might not get another chance.  If we
170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
171 * [page_referenced()/try_to_unmap()] to deal with.
172 */
173unsigned int munlock_vma_page(struct page *page)
174{
175	unsigned int nr_pages;
176	struct zone *zone = page_zone(page);
177
178	/* For try_to_munlock() and to serialize with page migration */
179	BUG_ON(!PageLocked(page));
180
181	/*
182	 * Serialize with any parallel __split_huge_page_refcount() which
183	 * might otherwise copy PageMlocked to part of the tail pages before
184	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185	 */
186	spin_lock_irq(&zone->lru_lock);
 
 
 
187
188	nr_pages = hpage_nr_pages(page);
189	if (!TestClearPageMlocked(page))
190		goto unlock_out;
191
192	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193
194	if (__munlock_isolate_lru_page(page, true)) {
195		spin_unlock_irq(&zone->lru_lock);
196		__munlock_isolated_page(page);
197		goto out;
 
 
 
 
 
198	}
199	__munlock_isolation_failed(page);
200
201unlock_out:
202	spin_unlock_irq(&zone->lru_lock);
203
204out:
205	return nr_pages - 1;
206}
207
208/**
209 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
210 * @vma:   target vma
211 * @start: start address
212 * @end:   end address
213 *
214 * This takes care of making the pages present too.
215 *
216 * return 0 on success, negative error code on error.
217 *
218 * vma->vm_mm->mmap_sem must be held for at least read.
219 */
220long __mlock_vma_pages_range(struct vm_area_struct *vma,
221		unsigned long start, unsigned long end, int *nonblocking)
 
222{
223	struct mm_struct *mm = vma->vm_mm;
224	unsigned long nr_pages = (end - start) / PAGE_SIZE;
 
225	int gup_flags;
226
227	VM_BUG_ON(start & ~PAGE_MASK);
228	VM_BUG_ON(end   & ~PAGE_MASK);
229	VM_BUG_ON(start < vma->vm_start);
230	VM_BUG_ON(end   > vma->vm_end);
231	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
232
233	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
234	/*
235	 * We want to touch writable mappings with a write fault in order
236	 * to break COW, except for shared mappings because these don't COW
237	 * and we would not want to dirty them for nothing.
238	 */
239	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
240		gup_flags |= FOLL_WRITE;
241
242	/*
243	 * We want mlock to succeed for regions that have any permissions
244	 * other than PROT_NONE.
245	 */
246	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
247		gup_flags |= FOLL_FORCE;
248
249	/*
250	 * We made sure addr is within a VMA, so the following will
251	 * not result in a stack expansion that recurses back here.
252	 */
253	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
254				NULL, NULL, nonblocking);
255}
256
257/*
258 * convert get_user_pages() return value to posix mlock() error
259 */
260static int __mlock_posix_error_return(long retval)
261{
262	if (retval == -EFAULT)
263		retval = -ENOMEM;
264	else if (retval == -ENOMEM)
265		retval = -EAGAIN;
266	return retval;
267}
268
269/*
270 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 
 
 
 
 
271 *
272 * The fast path is available only for evictable pages with single mapping.
273 * Then we can bypass the per-cpu pvec and get better performance.
274 * when mapcount > 1 we need try_to_munlock() which can fail.
275 * when !page_evictable(), we need the full redo logic of putback_lru_page to
276 * avoid leaving evictable page in unevictable list.
277 *
278 * In case of success, @page is added to @pvec and @pgrescued is incremented
279 * in case that the page was previously unevictable. @page is also unlocked.
280 */
281static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
282		int *pgrescued)
283{
284	VM_BUG_ON_PAGE(PageLRU(page), page);
285	VM_BUG_ON_PAGE(!PageLocked(page), page);
286
287	if (page_mapcount(page) <= 1 && page_evictable(page)) {
288		pagevec_add(pvec, page);
289		if (TestClearPageUnevictable(page))
290			(*pgrescued)++;
291		unlock_page(page);
292		return true;
293	}
294
295	return false;
296}
297
298/*
299 * Putback multiple evictable pages to the LRU
300 *
301 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
302 * the pages might have meanwhile become unevictable but that is OK.
303 */
304static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
305{
306	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
307	/*
308	 *__pagevec_lru_add() calls release_pages() so we don't call
309	 * put_page() explicitly
310	 */
311	__pagevec_lru_add(pvec);
312	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
313}
314
315/*
316 * Munlock a batch of pages from the same zone
317 *
318 * The work is split to two main phases. First phase clears the Mlocked flag
319 * and attempts to isolate the pages, all under a single zone lru lock.
320 * The second phase finishes the munlock only for pages where isolation
321 * succeeded.
322 *
323 * Note that the pagevec may be modified during the process.
324 */
325static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
326{
327	int i;
328	int nr = pagevec_count(pvec);
329	int delta_munlocked;
330	struct pagevec pvec_putback;
331	int pgrescued = 0;
332
333	pagevec_init(&pvec_putback, 0);
334
335	/* Phase 1: page isolation */
336	spin_lock_irq(&zone->lru_lock);
337	for (i = 0; i < nr; i++) {
338		struct page *page = pvec->pages[i];
339
340		if (TestClearPageMlocked(page)) {
341			/*
342			 * We already have pin from follow_page_mask()
343			 * so we can spare the get_page() here.
344			 */
345			if (__munlock_isolate_lru_page(page, false))
346				continue;
347			else
348				__munlock_isolation_failed(page);
349		}
350
351		/*
352		 * We won't be munlocking this page in the next phase
353		 * but we still need to release the follow_page_mask()
354		 * pin. We cannot do it under lru_lock however. If it's
355		 * the last pin, __page_cache_release() would deadlock.
356		 */
357		pagevec_add(&pvec_putback, pvec->pages[i]);
358		pvec->pages[i] = NULL;
359	}
360	delta_munlocked = -nr + pagevec_count(&pvec_putback);
361	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
362	spin_unlock_irq(&zone->lru_lock);
363
364	/* Now we can release pins of pages that we are not munlocking */
365	pagevec_release(&pvec_putback);
366
367	/* Phase 2: page munlock */
368	for (i = 0; i < nr; i++) {
369		struct page *page = pvec->pages[i];
370
371		if (page) {
372			lock_page(page);
373			if (!__putback_lru_fast_prepare(page, &pvec_putback,
374					&pgrescued)) {
375				/*
376				 * Slow path. We don't want to lose the last
377				 * pin before unlock_page()
378				 */
379				get_page(page); /* for putback_lru_page() */
380				__munlock_isolated_page(page);
381				unlock_page(page);
382				put_page(page); /* from follow_page_mask() */
383			}
384		}
385	}
386
387	/*
388	 * Phase 3: page putback for pages that qualified for the fast path
389	 * This will also call put_page() to return pin from follow_page_mask()
 
 
 
 
390	 */
391	if (pagevec_count(&pvec_putback))
392		__putback_lru_fast(&pvec_putback, pgrescued);
393}
394
395/*
396 * Fill up pagevec for __munlock_pagevec using pte walk
397 *
398 * The function expects that the struct page corresponding to @start address is
399 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
400 *
401 * The rest of @pvec is filled by subsequent pages within the same pmd and same
402 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
403 * pages also get pinned.
404 *
405 * Returns the address of the next page that should be scanned. This equals
406 * @start + PAGE_SIZE when no page could be added by the pte walk.
407 */
408static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
409		struct vm_area_struct *vma, int zoneid,	unsigned long start,
410		unsigned long end)
411{
412	pte_t *pte;
413	spinlock_t *ptl;
414
415	/*
416	 * Initialize pte walk starting at the already pinned page where we
417	 * are sure that there is a pte, as it was pinned under the same
418	 * mmap_sem write op.
419	 */
420	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
421	/* Make sure we do not cross the page table boundary */
422	end = pgd_addr_end(start, end);
423	end = pud_addr_end(start, end);
424	end = pmd_addr_end(start, end);
425
426	/* The page next to the pinned page is the first we will try to get */
427	start += PAGE_SIZE;
428	while (start < end) {
429		struct page *page = NULL;
430		pte++;
431		if (pte_present(*pte))
432			page = vm_normal_page(vma, start, *pte);
433		/*
434		 * Break if page could not be obtained or the page's node+zone does not
435		 * match
436		 */
437		if (!page || page_zone_id(page) != zoneid)
438			break;
439
440		get_page(page);
441		/*
442		 * Increase the address that will be returned *before* the
443		 * eventual break due to pvec becoming full by adding the page
444		 */
445		start += PAGE_SIZE;
446		if (pagevec_add(pvec, page) == 0)
447			break;
448	}
449	pte_unmap_unlock(pte, ptl);
450	return start;
451}
452
453/*
454 * munlock_vma_pages_range() - munlock all pages in the vma range.'
455 * @vma - vma containing range to be munlock()ed.
456 * @start - start address in @vma of the range
457 * @end - end of range in @vma.
458 *
459 *  For mremap(), munmap() and exit().
460 *
461 * Called with @vma VM_LOCKED.
462 *
463 * Returns with VM_LOCKED cleared.  Callers must be prepared to
464 * deal with this.
465 *
466 * We don't save and restore VM_LOCKED here because pages are
467 * still on lru.  In unmap path, pages might be scanned by reclaim
468 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
469 * free them.  This will result in freeing mlocked pages.
470 */
471void munlock_vma_pages_range(struct vm_area_struct *vma,
472			     unsigned long start, unsigned long end)
473{
 
 
 
474	vma->vm_flags &= ~VM_LOCKED;
475
476	while (start < end) {
477		struct page *page = NULL;
478		unsigned int page_mask;
479		unsigned long page_increm;
480		struct pagevec pvec;
481		struct zone *zone;
482		int zoneid;
483
484		pagevec_init(&pvec, 0);
485		/*
486		 * Although FOLL_DUMP is intended for get_dump_page(),
487		 * it just so happens that its special treatment of the
488		 * ZERO_PAGE (returning an error instead of doing get_page)
489		 * suits munlock very well (and if somehow an abnormal page
490		 * has sneaked into the range, we won't oops here: great).
491		 */
492		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
493				&page_mask);
494
495		if (page && !IS_ERR(page)) {
496			if (PageTransHuge(page)) {
497				lock_page(page);
498				/*
499				 * Any THP page found by follow_page_mask() may
500				 * have gotten split before reaching
501				 * munlock_vma_page(), so we need to recompute
502				 * the page_mask here.
503				 */
504				page_mask = munlock_vma_page(page);
505				unlock_page(page);
506				put_page(page); /* follow_page_mask() */
507			} else {
508				/*
509				 * Non-huge pages are handled in batches via
510				 * pagevec. The pin from follow_page_mask()
511				 * prevents them from collapsing by THP.
512				 */
513				pagevec_add(&pvec, page);
514				zone = page_zone(page);
515				zoneid = page_zone_id(page);
516
517				/*
518				 * Try to fill the rest of pagevec using fast
519				 * pte walk. This will also update start to
520				 * the next page to process. Then munlock the
521				 * pagevec.
522				 */
523				start = __munlock_pagevec_fill(&pvec, vma,
524						zoneid, start, end);
525				__munlock_pagevec(&pvec, zone);
526				goto next;
527			}
528		}
529		/* It's a bug to munlock in the middle of a THP page */
530		VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
531		page_increm = 1 + page_mask;
532		start += page_increm * PAGE_SIZE;
533next:
534		cond_resched();
535	}
536}
537
538/*
539 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
540 *
541 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
542 * munlock is a no-op.  However, for some special vmas, we go ahead and
543 * populate the ptes.
544 *
545 * For vmas that pass the filters, merge/split as appropriate.
546 */
547static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
548	unsigned long start, unsigned long end, vm_flags_t newflags)
549{
550	struct mm_struct *mm = vma->vm_mm;
551	pgoff_t pgoff;
552	int nr_pages;
553	int ret = 0;
554	int lock = !!(newflags & VM_LOCKED);
555
556	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
557	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
558		goto out;	/* don't set VM_LOCKED,  don't count */
559
560	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
561	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
562			  vma->vm_file, pgoff, vma_policy(vma));
563	if (*prev) {
564		vma = *prev;
565		goto success;
566	}
567
568	if (start != vma->vm_start) {
569		ret = split_vma(mm, vma, start, 1);
570		if (ret)
571			goto out;
572	}
573
574	if (end != vma->vm_end) {
575		ret = split_vma(mm, vma, end, 0);
576		if (ret)
577			goto out;
578	}
579
580success:
581	/*
582	 * Keep track of amount of locked VM.
583	 */
584	nr_pages = (end - start) >> PAGE_SHIFT;
585	if (!lock)
586		nr_pages = -nr_pages;
587	mm->locked_vm += nr_pages;
588
589	/*
590	 * vm_flags is protected by the mmap_sem held in write mode.
591	 * It's okay if try_to_unmap_one unmaps a page just after we
592	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
593	 */
594
595	if (lock)
596		vma->vm_flags = newflags;
597	else
598		munlock_vma_pages_range(vma, start, end);
599
600out:
601	*prev = vma;
602	return ret;
603}
604
605static int do_mlock(unsigned long start, size_t len, int on)
606{
607	unsigned long nstart, end, tmp;
608	struct vm_area_struct * vma, * prev;
609	int error;
610
611	VM_BUG_ON(start & ~PAGE_MASK);
612	VM_BUG_ON(len != PAGE_ALIGN(len));
613	end = start + len;
614	if (end < start)
615		return -EINVAL;
616	if (end == start)
617		return 0;
618	vma = find_vma(current->mm, start);
619	if (!vma || vma->vm_start > start)
620		return -ENOMEM;
621
622	prev = vma->vm_prev;
623	if (start > vma->vm_start)
624		prev = vma;
625
626	for (nstart = start ; ; ) {
627		vm_flags_t newflags;
628
629		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
630
631		newflags = vma->vm_flags & ~VM_LOCKED;
632		if (on)
633			newflags |= VM_LOCKED;
634
635		tmp = vma->vm_end;
636		if (tmp > end)
637			tmp = end;
638		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
639		if (error)
640			break;
641		nstart = tmp;
642		if (nstart < prev->vm_end)
643			nstart = prev->vm_end;
644		if (nstart >= end)
645			break;
646
647		vma = prev->vm_next;
648		if (!vma || vma->vm_start != nstart) {
649			error = -ENOMEM;
650			break;
651		}
652	}
653	return error;
654}
655
656/*
657 * __mm_populate - populate and/or mlock pages within a range of address space.
658 *
659 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
660 * flags. VMAs must be already marked with the desired vm_flags, and
661 * mmap_sem must not be held.
662 */
663int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
664{
665	struct mm_struct *mm = current->mm;
666	unsigned long end, nstart, nend;
667	struct vm_area_struct *vma = NULL;
668	int locked = 0;
669	long ret = 0;
670
671	VM_BUG_ON(start & ~PAGE_MASK);
672	VM_BUG_ON(len != PAGE_ALIGN(len));
673	end = start + len;
674
675	for (nstart = start; nstart < end; nstart = nend) {
676		/*
677		 * We want to fault in pages for [nstart; end) address range.
678		 * Find first corresponding VMA.
679		 */
680		if (!locked) {
681			locked = 1;
682			down_read(&mm->mmap_sem);
683			vma = find_vma(mm, nstart);
684		} else if (nstart >= vma->vm_end)
685			vma = vma->vm_next;
686		if (!vma || vma->vm_start >= end)
687			break;
688		/*
689		 * Set [nstart; nend) to intersection of desired address
690		 * range with the first VMA. Also, skip undesirable VMA types.
691		 */
692		nend = min(end, vma->vm_end);
693		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
694			continue;
695		if (nstart < vma->vm_start)
696			nstart = vma->vm_start;
697		/*
698		 * Now fault in a range of pages. __mlock_vma_pages_range()
699		 * double checks the vma flags, so that it won't mlock pages
700		 * if the vma was already munlocked.
701		 */
702		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
703		if (ret < 0) {
704			if (ignore_errors) {
705				ret = 0;
706				continue;	/* continue at next VMA */
707			}
708			ret = __mlock_posix_error_return(ret);
709			break;
710		}
711		nend = nstart + ret * PAGE_SIZE;
712		ret = 0;
713	}
714	if (locked)
715		up_read(&mm->mmap_sem);
716	return ret;	/* 0 or negative error code */
717}
718
719SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
720{
721	unsigned long locked;
722	unsigned long lock_limit;
723	int error = -ENOMEM;
724
725	if (!can_do_mlock())
726		return -EPERM;
727
728	lru_add_drain_all();	/* flush pagevec */
729
 
730	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
731	start &= PAGE_MASK;
732
 
 
 
733	lock_limit = rlimit(RLIMIT_MEMLOCK);
734	lock_limit >>= PAGE_SHIFT;
735	locked = len >> PAGE_SHIFT;
736
737	down_write(&current->mm->mmap_sem);
738
739	locked += current->mm->locked_vm;
740
741	/* check against resource limits */
742	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
743		error = do_mlock(start, len, 1);
744
745	up_write(&current->mm->mmap_sem);
746	if (!error)
747		error = __mm_populate(start, len, 0);
748	return error;
749}
750
751SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
752{
753	int ret;
754
 
755	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
756	start &= PAGE_MASK;
757
758	down_write(&current->mm->mmap_sem);
759	ret = do_mlock(start, len, 0);
760	up_write(&current->mm->mmap_sem);
761
762	return ret;
763}
764
765static int do_mlockall(int flags)
766{
767	struct vm_area_struct * vma, * prev = NULL;
 
768
769	if (flags & MCL_FUTURE)
770		current->mm->def_flags |= VM_LOCKED;
771	else
772		current->mm->def_flags &= ~VM_LOCKED;
773	if (flags == MCL_FUTURE)
774		goto out;
775
776	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
777		vm_flags_t newflags;
778
779		newflags = vma->vm_flags & ~VM_LOCKED;
780		if (flags & MCL_CURRENT)
781			newflags |= VM_LOCKED;
782
783		/* Ignore errors */
784		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
785		cond_resched();
786	}
787out:
788	return 0;
789}
790
791SYSCALL_DEFINE1(mlockall, int, flags)
792{
793	unsigned long lock_limit;
794	int ret = -EINVAL;
795
796	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
797		goto out;
798
799	ret = -EPERM;
800	if (!can_do_mlock())
801		goto out;
802
803	if (flags & MCL_CURRENT)
804		lru_add_drain_all();	/* flush pagevec */
 
805
806	lock_limit = rlimit(RLIMIT_MEMLOCK);
807	lock_limit >>= PAGE_SHIFT;
808
809	ret = -ENOMEM;
810	down_write(&current->mm->mmap_sem);
811
812	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
813	    capable(CAP_IPC_LOCK))
814		ret = do_mlockall(flags);
815	up_write(&current->mm->mmap_sem);
816	if (!ret && (flags & MCL_CURRENT))
817		mm_populate(0, TASK_SIZE);
 
 
818out:
819	return ret;
820}
821
822SYSCALL_DEFINE0(munlockall)
823{
824	int ret;
825
826	down_write(&current->mm->mmap_sem);
827	ret = do_mlockall(0);
828	up_write(&current->mm->mmap_sem);
829	return ret;
830}
831
832/*
833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834 * shm segments) get accounted against the user_struct instead.
835 */
836static DEFINE_SPINLOCK(shmlock_user_lock);
837
838int user_shm_lock(size_t size, struct user_struct *user)
839{
840	unsigned long lock_limit, locked;
841	int allowed = 0;
842
843	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844	lock_limit = rlimit(RLIMIT_MEMLOCK);
845	if (lock_limit == RLIM_INFINITY)
846		allowed = 1;
847	lock_limit >>= PAGE_SHIFT;
848	spin_lock(&shmlock_user_lock);
849	if (!allowed &&
850	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
851		goto out;
852	get_uid(user);
853	user->locked_shm += locked;
854	allowed = 1;
855out:
856	spin_unlock(&shmlock_user_lock);
857	return allowed;
858}
859
860void user_shm_unlock(size_t size, struct user_struct *user)
861{
862	spin_lock(&shmlock_user_lock);
863	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864	spin_unlock(&shmlock_user_lock);
865	free_uid(user);
866}