Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
  3 *
  4 * Copyright (C) 2004-2013 Synopsys, Inc.
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, this list of conditions, and the following disclaimer,
 11 *    without modification.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. The names of the above-listed copyright holders may not be used
 16 *    to endorse or promote products derived from this software without
 17 *    specific prior written permission.
 18 *
 19 * ALTERNATIVELY, this software may be distributed under the terms of the
 20 * GNU General Public License ("GPL") as published by the Free Software
 21 * Foundation; either version 2 of the License, or (at your option) any
 22 * later version.
 23 *
 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 35 */
 36
 37/*
 38 * This file contains the functions to manage Queue Heads and Queue
 39 * Transfer Descriptors for Host mode
 40 */
 41#include <linux/kernel.h>
 42#include <linux/module.h>
 43#include <linux/spinlock.h>
 44#include <linux/interrupt.h>
 45#include <linux/dma-mapping.h>
 46#include <linux/io.h>
 47#include <linux/slab.h>
 48#include <linux/usb.h>
 49
 50#include <linux/usb/hcd.h>
 51#include <linux/usb/ch11.h>
 52
 53#include "core.h"
 54#include "hcd.h"
 55
 56/**
 57 * dwc2_qh_init() - Initializes a QH structure
 58 *
 59 * @hsotg: The HCD state structure for the DWC OTG controller
 60 * @qh:    The QH to init
 61 * @urb:   Holds the information about the device/endpoint needed to initialize
 62 *         the QH
 63 */
 64#define SCHEDULE_SLOP 10
 65static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 66			 struct dwc2_hcd_urb *urb)
 67{
 68	int dev_speed, hub_addr, hub_port;
 69	char *speed, *type;
 70
 71	dev_vdbg(hsotg->dev, "%s()\n", __func__);
 72
 73	/* Initialize QH */
 74	qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
 75	qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
 76
 77	qh->data_toggle = DWC2_HC_PID_DATA0;
 78	qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info);
 79	INIT_LIST_HEAD(&qh->qtd_list);
 80	INIT_LIST_HEAD(&qh->qh_list_entry);
 81
 82	/* FS/LS Endpoint on HS Hub, NOT virtual root hub */
 83	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
 84
 85	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
 86
 87	if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) &&
 88	    hub_addr != 0 && hub_addr != 1) {
 89		dev_vdbg(hsotg->dev,
 90			 "QH init: EP %d: TT found at hub addr %d, for port %d\n",
 91			 dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr,
 92			 hub_port);
 93		qh->do_split = 1;
 94	}
 95
 96	if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
 97	    qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
 98		/* Compute scheduling parameters once and save them */
 99		u32 hprt, prtspd;
100
101		/* Todo: Account for split transfers in the bus time */
102		int bytecount =
103			dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
104
105		qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ?
106				USB_SPEED_HIGH : dev_speed, qh->ep_is_in,
107				qh->ep_type == USB_ENDPOINT_XFER_ISOC,
108				bytecount));
109		/* Start in a slightly future (micro)frame */
110		qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number,
111						     SCHEDULE_SLOP);
112		qh->interval = urb->interval;
113#if 0
114		/* Increase interrupt polling rate for debugging */
115		if (qh->ep_type == USB_ENDPOINT_XFER_INT)
116			qh->interval = 8;
117#endif
118		hprt = readl(hsotg->regs + HPRT0);
119		prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
120		if (prtspd == HPRT0_SPD_HIGH_SPEED &&
121		    (dev_speed == USB_SPEED_LOW ||
122		     dev_speed == USB_SPEED_FULL)) {
123			qh->interval *= 8;
124			qh->sched_frame |= 0x7;
125			qh->start_split_frame = qh->sched_frame;
126		}
127		dev_dbg(hsotg->dev, "interval=%d\n", qh->interval);
128	}
129
130	dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n");
131	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh);
132	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n",
133		 dwc2_hcd_get_dev_addr(&urb->pipe_info));
134	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n",
135		 dwc2_hcd_get_ep_num(&urb->pipe_info),
136		 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
137
138	qh->dev_speed = dev_speed;
139
140	switch (dev_speed) {
141	case USB_SPEED_LOW:
142		speed = "low";
143		break;
144	case USB_SPEED_FULL:
145		speed = "full";
146		break;
147	case USB_SPEED_HIGH:
148		speed = "high";
149		break;
150	default:
151		speed = "?";
152		break;
153	}
154	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed);
155
156	switch (qh->ep_type) {
157	case USB_ENDPOINT_XFER_ISOC:
158		type = "isochronous";
159		break;
160	case USB_ENDPOINT_XFER_INT:
161		type = "interrupt";
162		break;
163	case USB_ENDPOINT_XFER_CONTROL:
164		type = "control";
165		break;
166	case USB_ENDPOINT_XFER_BULK:
167		type = "bulk";
168		break;
169	default:
170		type = "?";
171		break;
172	}
173
174	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type);
175
176	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
177		dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n",
178			 qh->usecs);
179		dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n",
180			 qh->interval);
181	}
182}
183
184/**
185 * dwc2_hcd_qh_create() - Allocates and initializes a QH
186 *
187 * @hsotg:        The HCD state structure for the DWC OTG controller
188 * @urb:          Holds the information about the device/endpoint needed
189 *                to initialize the QH
190 * @atomic_alloc: Flag to do atomic allocation if needed
191 *
192 * Return: Pointer to the newly allocated QH, or NULL on error
193 */
194static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
195					  struct dwc2_hcd_urb *urb,
196					  gfp_t mem_flags)
197{
198	struct dwc2_qh *qh;
199
200	if (!urb->priv)
201		return NULL;
202
203	/* Allocate memory */
204	qh = kzalloc(sizeof(*qh), mem_flags);
205	if (!qh)
206		return NULL;
207
208	dwc2_qh_init(hsotg, qh, urb);
209
210	if (hsotg->core_params->dma_desc_enable > 0 &&
211	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
212		dwc2_hcd_qh_free(hsotg, qh);
213		return NULL;
214	}
215
216	return qh;
217}
218
219/**
220 * dwc2_hcd_qh_free() - Frees the QH
221 *
222 * @hsotg: HCD instance
223 * @qh:    The QH to free
224 *
225 * QH should already be removed from the list. QTD list should already be empty
226 * if called from URB Dequeue.
227 *
228 * Must NOT be called with interrupt disabled or spinlock held
229 */
230void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
231{
232	u32 buf_size;
233
234	if (hsotg->core_params->dma_desc_enable > 0) {
235		dwc2_hcd_qh_free_ddma(hsotg, qh);
236	} else if (qh->dw_align_buf) {
237		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
238			buf_size = 4096;
239		else
240			buf_size = hsotg->core_params->max_transfer_size;
241		dma_free_coherent(hsotg->dev, buf_size, qh->dw_align_buf,
242				  qh->dw_align_buf_dma);
243	}
244
245	kfree(qh);
246}
247
248/**
249 * dwc2_periodic_channel_available() - Checks that a channel is available for a
250 * periodic transfer
251 *
252 * @hsotg: The HCD state structure for the DWC OTG controller
253 *
254 * Return: 0 if successful, negative error code otherwise
255 */
256static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
257{
258	/*
259	 * Currently assuming that there is a dedicated host channel for
260	 * each periodic transaction plus at least one host channel for
261	 * non-periodic transactions
262	 */
263	int status;
264	int num_channels;
265
266	num_channels = hsotg->core_params->host_channels;
267	if (hsotg->periodic_channels + hsotg->non_periodic_channels <
268								num_channels
269	    && hsotg->periodic_channels < num_channels - 1) {
270		status = 0;
271	} else {
272		dev_dbg(hsotg->dev,
273			"%s: Total channels: %d, Periodic: %d, "
274			"Non-periodic: %d\n", __func__, num_channels,
275			hsotg->periodic_channels, hsotg->non_periodic_channels);
276		status = -ENOSPC;
277	}
278
279	return status;
280}
281
282/**
283 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
284 * for the specified QH in the periodic schedule
285 *
286 * @hsotg: The HCD state structure for the DWC OTG controller
287 * @qh:    QH containing periodic bandwidth required
288 *
289 * Return: 0 if successful, negative error code otherwise
290 *
291 * For simplicity, this calculation assumes that all the transfers in the
292 * periodic schedule may occur in the same (micro)frame
293 */
294static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
295					 struct dwc2_qh *qh)
296{
297	int status;
298	s16 max_claimed_usecs;
299
300	status = 0;
301
302	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
303		/*
304		 * High speed mode
305		 * Max periodic usecs is 80% x 125 usec = 100 usec
306		 */
307		max_claimed_usecs = 100 - qh->usecs;
308	} else {
309		/*
310		 * Full speed mode
311		 * Max periodic usecs is 90% x 1000 usec = 900 usec
312		 */
313		max_claimed_usecs = 900 - qh->usecs;
314	}
315
316	if (hsotg->periodic_usecs > max_claimed_usecs) {
317		dev_err(hsotg->dev,
318			"%s: already claimed usecs %d, required usecs %d\n",
319			__func__, hsotg->periodic_usecs, qh->usecs);
320		status = -ENOSPC;
321	}
322
323	return status;
324}
325
326/**
327 * Microframe scheduler
328 * track the total use in hsotg->frame_usecs
329 * keep each qh use in qh->frame_usecs
330 * when surrendering the qh then donate the time back
331 */
332static const unsigned short max_uframe_usecs[] = {
333	100, 100, 100, 100, 100, 100, 30, 0
334};
335
336void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg)
337{
338	int i;
339
340	for (i = 0; i < 8; i++)
341		hsotg->frame_usecs[i] = max_uframe_usecs[i];
342}
343
344static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
345{
346	unsigned short utime = qh->usecs;
347	int i;
348
349	for (i = 0; i < 8; i++) {
350		/* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */
351		if (utime <= hsotg->frame_usecs[i]) {
352			hsotg->frame_usecs[i] -= utime;
353			qh->frame_usecs[i] += utime;
354			return i;
355		}
356	}
357	return -ENOSPC;
358}
359
360/*
361 * use this for FS apps that can span multiple uframes
362 */
363static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
364{
365	unsigned short utime = qh->usecs;
366	unsigned short xtime;
367	int t_left;
368	int i;
369	int j;
370	int k;
371
372	for (i = 0; i < 8; i++) {
373		if (hsotg->frame_usecs[i] <= 0)
374			continue;
375
376		/*
377		 * we need n consecutive slots so use j as a start slot
378		 * j plus j+1 must be enough time (for now)
379		 */
380		xtime = hsotg->frame_usecs[i];
381		for (j = i + 1; j < 8; j++) {
382			/*
383			 * if we add this frame remaining time to xtime we may
384			 * be OK, if not we need to test j for a complete frame
385			 */
386			if (xtime + hsotg->frame_usecs[j] < utime) {
387				if (hsotg->frame_usecs[j] <
388							max_uframe_usecs[j])
389					continue;
390			}
391			if (xtime >= utime) {
392				t_left = utime;
393				for (k = i; k < 8; k++) {
394					t_left -= hsotg->frame_usecs[k];
395					if (t_left <= 0) {
396						qh->frame_usecs[k] +=
397							hsotg->frame_usecs[k]
398								+ t_left;
399						hsotg->frame_usecs[k] = -t_left;
400						return i;
401					} else {
402						qh->frame_usecs[k] +=
403							hsotg->frame_usecs[k];
404						hsotg->frame_usecs[k] = 0;
405					}
406				}
407			}
408			/* add the frame time to x time */
409			xtime += hsotg->frame_usecs[j];
410			/* we must have a fully available next frame or break */
411			if (xtime < utime &&
412			   hsotg->frame_usecs[j] == max_uframe_usecs[j])
413				continue;
414		}
415	}
416	return -ENOSPC;
417}
418
419static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
420{
421	int ret;
422
423	if (qh->dev_speed == USB_SPEED_HIGH) {
424		/* if this is a hs transaction we need a full frame */
425		ret = dwc2_find_single_uframe(hsotg, qh);
426	} else {
427		/*
428		 * if this is a fs transaction we may need a sequence
429		 * of frames
430		 */
431		ret = dwc2_find_multi_uframe(hsotg, qh);
432	}
433	return ret;
434}
435
436/**
437 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
438 * host channel is large enough to handle the maximum data transfer in a single
439 * (micro)frame for a periodic transfer
440 *
441 * @hsotg: The HCD state structure for the DWC OTG controller
442 * @qh:    QH for a periodic endpoint
443 *
444 * Return: 0 if successful, negative error code otherwise
445 */
446static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
447				    struct dwc2_qh *qh)
448{
449	u32 max_xfer_size;
450	u32 max_channel_xfer_size;
451	int status = 0;
452
453	max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
454	max_channel_xfer_size = hsotg->core_params->max_transfer_size;
455
456	if (max_xfer_size > max_channel_xfer_size) {
457		dev_err(hsotg->dev,
458			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
459			__func__, max_xfer_size, max_channel_xfer_size);
460		status = -ENOSPC;
461	}
462
463	return status;
464}
465
466/**
467 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
468 * the periodic schedule
469 *
470 * @hsotg: The HCD state structure for the DWC OTG controller
471 * @qh:    QH for the periodic transfer. The QH should already contain the
472 *         scheduling information.
473 *
474 * Return: 0 if successful, negative error code otherwise
475 */
476static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
477{
478	int status;
479
480	if (hsotg->core_params->uframe_sched > 0) {
481		int frame = -1;
482
483		status = dwc2_find_uframe(hsotg, qh);
484		if (status == 0)
485			frame = 7;
486		else if (status > 0)
487			frame = status - 1;
488
489		/* Set the new frame up */
490		if (frame >= 0) {
491			qh->sched_frame &= ~0x7;
492			qh->sched_frame |= (frame & 7);
493		}
494
495		if (status > 0)
496			status = 0;
497	} else {
498		status = dwc2_periodic_channel_available(hsotg);
499		if (status) {
500			dev_info(hsotg->dev,
501				 "%s: No host channel available for periodic transfer\n",
502				 __func__);
503			return status;
504		}
505
506		status = dwc2_check_periodic_bandwidth(hsotg, qh);
507	}
508
509	if (status) {
510		dev_dbg(hsotg->dev,
511			"%s: Insufficient periodic bandwidth for periodic transfer\n",
512			__func__);
513		return status;
514	}
515
516	status = dwc2_check_max_xfer_size(hsotg, qh);
517	if (status) {
518		dev_dbg(hsotg->dev,
519			"%s: Channel max transfer size too small for periodic transfer\n",
520			__func__);
521		return status;
522	}
523
524	if (hsotg->core_params->dma_desc_enable > 0)
525		/* Don't rely on SOF and start in ready schedule */
526		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
527	else
528		/* Always start in inactive schedule */
529		list_add_tail(&qh->qh_list_entry,
530			      &hsotg->periodic_sched_inactive);
531
532	if (hsotg->core_params->uframe_sched <= 0)
533		/* Reserve periodic channel */
534		hsotg->periodic_channels++;
535
536	/* Update claimed usecs per (micro)frame */
537	hsotg->periodic_usecs += qh->usecs;
538
539	return status;
540}
541
542/**
543 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
544 * from the periodic schedule
545 *
546 * @hsotg: The HCD state structure for the DWC OTG controller
547 * @qh:	   QH for the periodic transfer
548 */
549static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
550				     struct dwc2_qh *qh)
551{
552	int i;
553
554	list_del_init(&qh->qh_list_entry);
555
556	/* Update claimed usecs per (micro)frame */
557	hsotg->periodic_usecs -= qh->usecs;
558
559	if (hsotg->core_params->uframe_sched > 0) {
560		for (i = 0; i < 8; i++) {
561			hsotg->frame_usecs[i] += qh->frame_usecs[i];
562			qh->frame_usecs[i] = 0;
563		}
564	} else {
565		/* Release periodic channel reservation */
566		hsotg->periodic_channels--;
567	}
568}
569
570/**
571 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
572 * schedule if it is not already in the schedule. If the QH is already in
573 * the schedule, no action is taken.
574 *
575 * @hsotg: The HCD state structure for the DWC OTG controller
576 * @qh:    The QH to add
577 *
578 * Return: 0 if successful, negative error code otherwise
579 */
580int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
581{
582	int status;
583	u32 intr_mask;
584
585	if (dbg_qh(qh))
586		dev_vdbg(hsotg->dev, "%s()\n", __func__);
587
588	if (!list_empty(&qh->qh_list_entry))
589		/* QH already in a schedule */
590		return 0;
591
592	/* Add the new QH to the appropriate schedule */
593	if (dwc2_qh_is_non_per(qh)) {
594		/* Always start in inactive schedule */
595		list_add_tail(&qh->qh_list_entry,
596			      &hsotg->non_periodic_sched_inactive);
597		return 0;
598	}
599
600	status = dwc2_schedule_periodic(hsotg, qh);
601	if (status)
602		return status;
603	if (!hsotg->periodic_qh_count) {
604		intr_mask = readl(hsotg->regs + GINTMSK);
605		intr_mask |= GINTSTS_SOF;
606		writel(intr_mask, hsotg->regs + GINTMSK);
607	}
608	hsotg->periodic_qh_count++;
609
610	return 0;
611}
612
613/**
614 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
615 * schedule. Memory is not freed.
616 *
617 * @hsotg: The HCD state structure
618 * @qh:    QH to remove from schedule
619 */
620void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
621{
622	u32 intr_mask;
623
624	dev_vdbg(hsotg->dev, "%s()\n", __func__);
625
626	if (list_empty(&qh->qh_list_entry))
627		/* QH is not in a schedule */
628		return;
629
630	if (dwc2_qh_is_non_per(qh)) {
631		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
632			hsotg->non_periodic_qh_ptr =
633					hsotg->non_periodic_qh_ptr->next;
634		list_del_init(&qh->qh_list_entry);
635		return;
636	}
637
638	dwc2_deschedule_periodic(hsotg, qh);
639	hsotg->periodic_qh_count--;
640	if (!hsotg->periodic_qh_count) {
641		intr_mask = readl(hsotg->regs + GINTMSK);
642		intr_mask &= ~GINTSTS_SOF;
643		writel(intr_mask, hsotg->regs + GINTMSK);
644	}
645}
646
647/*
648 * Schedule the next continuing periodic split transfer
649 */
650static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg,
651				      struct dwc2_qh *qh, u16 frame_number,
652				      int sched_next_periodic_split)
653{
654	u16 incr;
655
656	if (sched_next_periodic_split) {
657		qh->sched_frame = frame_number;
658		incr = dwc2_frame_num_inc(qh->start_split_frame, 1);
659		if (dwc2_frame_num_le(frame_number, incr)) {
660			/*
661			 * Allow one frame to elapse after start split
662			 * microframe before scheduling complete split, but
663			 * DON'T if we are doing the next start split in the
664			 * same frame for an ISOC out
665			 */
666			if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
667			    qh->ep_is_in != 0) {
668				qh->sched_frame =
669					dwc2_frame_num_inc(qh->sched_frame, 1);
670			}
671		}
672	} else {
673		qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame,
674						     qh->interval);
675		if (dwc2_frame_num_le(qh->sched_frame, frame_number))
676			qh->sched_frame = frame_number;
677		qh->sched_frame |= 0x7;
678		qh->start_split_frame = qh->sched_frame;
679	}
680}
681
682/*
683 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
684 * non-periodic schedule. The QH is added to the inactive non-periodic
685 * schedule if any QTDs are still attached to the QH.
686 *
687 * For periodic QHs, the QH is removed from the periodic queued schedule. If
688 * there are any QTDs still attached to the QH, the QH is added to either the
689 * periodic inactive schedule or the periodic ready schedule and its next
690 * scheduled frame is calculated. The QH is placed in the ready schedule if
691 * the scheduled frame has been reached already. Otherwise it's placed in the
692 * inactive schedule. If there are no QTDs attached to the QH, the QH is
693 * completely removed from the periodic schedule.
694 */
695void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
696			    int sched_next_periodic_split)
697{
698	u16 frame_number;
699
700	if (dbg_qh(qh))
701		dev_vdbg(hsotg->dev, "%s()\n", __func__);
702
703	if (dwc2_qh_is_non_per(qh)) {
704		dwc2_hcd_qh_unlink(hsotg, qh);
705		if (!list_empty(&qh->qtd_list))
706			/* Add back to inactive non-periodic schedule */
707			dwc2_hcd_qh_add(hsotg, qh);
708		return;
709	}
710
711	frame_number = dwc2_hcd_get_frame_number(hsotg);
712
713	if (qh->do_split) {
714		dwc2_sched_periodic_split(hsotg, qh, frame_number,
715					  sched_next_periodic_split);
716	} else {
717		qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame,
718						     qh->interval);
719		if (dwc2_frame_num_le(qh->sched_frame, frame_number))
720			qh->sched_frame = frame_number;
721	}
722
723	if (list_empty(&qh->qtd_list)) {
724		dwc2_hcd_qh_unlink(hsotg, qh);
725		return;
726	}
727	/*
728	 * Remove from periodic_sched_queued and move to
729	 * appropriate queue
730	 */
731	if ((hsotg->core_params->uframe_sched > 0 &&
732	     dwc2_frame_num_le(qh->sched_frame, frame_number)) ||
733	    (hsotg->core_params->uframe_sched <= 0 &&
734	     qh->sched_frame == frame_number))
735		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
736	else
737		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive);
738}
739
740/**
741 * dwc2_hcd_qtd_init() - Initializes a QTD structure
742 *
743 * @qtd: The QTD to initialize
744 * @urb: The associated URB
745 */
746void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
747{
748	qtd->urb = urb;
749	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
750			USB_ENDPOINT_XFER_CONTROL) {
751		/*
752		 * The only time the QTD data toggle is used is on the data
753		 * phase of control transfers. This phase always starts with
754		 * DATA1.
755		 */
756		qtd->data_toggle = DWC2_HC_PID_DATA1;
757		qtd->control_phase = DWC2_CONTROL_SETUP;
758	}
759
760	/* Start split */
761	qtd->complete_split = 0;
762	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
763	qtd->isoc_split_offset = 0;
764	qtd->in_process = 0;
765
766	/* Store the qtd ptr in the urb to reference the QTD */
767	urb->qtd = qtd;
768}
769
770/**
771 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
772 *
773 * @hsotg:        The DWC HCD structure
774 * @qtd:          The QTD to add
775 * @qh:           Out parameter to return queue head
776 * @atomic_alloc: Flag to do atomic alloc if needed
777 *
778 * Return: 0 if successful, negative error code otherwise
779 *
780 * Finds the correct QH to place the QTD into. If it does not find a QH, it
781 * will create a new QH. If the QH to which the QTD is added is not currently
782 * scheduled, it is placed into the proper schedule based on its EP type.
783 */
784int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
785		     struct dwc2_qh **qh, gfp_t mem_flags)
786{
787	struct dwc2_hcd_urb *urb = qtd->urb;
788	unsigned long flags;
789	int allocated = 0;
790	int retval;
791
792	/*
793	 * Get the QH which holds the QTD-list to insert to. Create QH if it
794	 * doesn't exist.
795	 */
796	if (*qh == NULL) {
797		*qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags);
798		if (*qh == NULL)
799			return -ENOMEM;
800		allocated = 1;
801	}
802
803	spin_lock_irqsave(&hsotg->lock, flags);
804
805	retval = dwc2_hcd_qh_add(hsotg, *qh);
806	if (retval)
807		goto fail;
808
809	qtd->qh = *qh;
810	list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list);
811	spin_unlock_irqrestore(&hsotg->lock, flags);
812
813	return 0;
814
815fail:
816	if (allocated) {
817		struct dwc2_qtd *qtd2, *qtd2_tmp;
818		struct dwc2_qh *qh_tmp = *qh;
819
820		*qh = NULL;
821		dwc2_hcd_qh_unlink(hsotg, qh_tmp);
822
823		/* Free each QTD in the QH's QTD list */
824		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list,
825					 qtd_list_entry)
826			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp);
827
828		spin_unlock_irqrestore(&hsotg->lock, flags);
829		dwc2_hcd_qh_free(hsotg, qh_tmp);
830	} else {
831		spin_unlock_irqrestore(&hsotg->lock, flags);
832	}
833
834	return retval;
835}