Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
  3 *
  4 * Copyright (C) 2004-2013 Synopsys, Inc.
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, this list of conditions, and the following disclaimer,
 11 *    without modification.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. The names of the above-listed copyright holders may not be used
 16 *    to endorse or promote products derived from this software without
 17 *    specific prior written permission.
 18 *
 19 * ALTERNATIVELY, this software may be distributed under the terms of the
 20 * GNU General Public License ("GPL") as published by the Free Software
 21 * Foundation; either version 2 of the License, or (at your option) any
 22 * later version.
 23 *
 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 35 */
 36#ifndef __DWC2_HCD_H__
 37#define __DWC2_HCD_H__
 38
 39/*
 40 * This file contains the structures, constants, and interfaces for the
 41 * Host Contoller Driver (HCD)
 42 *
 43 * The Host Controller Driver (HCD) is responsible for translating requests
 44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
 45 * It isolates the USBD from the specifics of the controller by providing an
 46 * API to the USBD.
 47 */
 48
 49struct dwc2_qh;
 50
 51/**
 52 * struct dwc2_host_chan - Software host channel descriptor
 53 *
 54 * @hc_num:             Host channel number, used for register address lookup
 55 * @dev_addr:           Address of the device
 56 * @ep_num:             Endpoint of the device
 57 * @ep_is_in:           Endpoint direction
 58 * @speed:              Device speed. One of the following values:
 59 *                       - USB_SPEED_LOW
 60 *                       - USB_SPEED_FULL
 61 *                       - USB_SPEED_HIGH
 62 * @ep_type:            Endpoint type. One of the following values:
 63 *                       - USB_ENDPOINT_XFER_CONTROL: 0
 64 *                       - USB_ENDPOINT_XFER_ISOC:    1
 65 *                       - USB_ENDPOINT_XFER_BULK:    2
 66 *                       - USB_ENDPOINT_XFER_INTR:    3
 67 * @max_packet:         Max packet size in bytes
 68 * @data_pid_start:     PID for initial transaction.
 69 *                       0: DATA0
 70 *                       1: DATA2
 71 *                       2: DATA1
 72 *                       3: MDATA (non-Control EP),
 73 *                          SETUP (Control EP)
 74 * @multi_count:        Number of additional periodic transactions per
 75 *                      (micro)frame
 76 * @xfer_buf:           Pointer to current transfer buffer position
 77 * @xfer_dma:           DMA address of xfer_buf
 78 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
 79 *                      DWORD aligned
 80 * @xfer_len:           Total number of bytes to transfer
 81 * @xfer_count:         Number of bytes transferred so far
 82 * @start_pkt_count:    Packet count at start of transfer
 83 * @xfer_started:       True if the transfer has been started
 84 * @ping:               True if a PING request should be issued on this channel
 85 * @error_state:        True if the error count for this transaction is non-zero
 86 * @halt_on_queue:      True if this channel should be halted the next time a
 87 *                      request is queued for the channel. This is necessary in
 88 *                      slave mode if no request queue space is available when
 89 *                      an attempt is made to halt the channel.
 90 * @halt_pending:       True if the host channel has been halted, but the core
 91 *                      is not finished flushing queued requests
 92 * @do_split:           Enable split for the channel
 93 * @complete_split:     Enable complete split
 94 * @hub_addr:           Address of high speed hub for the split
 95 * @hub_port:           Port of the low/full speed device for the split
 96 * @xact_pos:           Split transaction position. One of the following values:
 97 *                       - DWC2_HCSPLT_XACTPOS_MID
 98 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 99 *                       - DWC2_HCSPLT_XACTPOS_END
100 *                       - DWC2_HCSPLT_XACTPOS_ALL
101 * @requests:           Number of requests issued for this channel since it was
102 *                      assigned to the current transfer (not counting PINGs)
103 * @schinfo:            Scheduling micro-frame bitmap
104 * @ntd:                Number of transfer descriptors for the transfer
105 * @halt_status:        Reason for halting the host channel
106 * @hcint               Contents of the HCINT register when the interrupt came
107 * @qh:                 QH for the transfer being processed by this channel
108 * @hc_list_entry:      For linking to list of host channels
109 * @desc_list_addr:     Current QH's descriptor list DMA address
110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115struct dwc2_host_chan {
116	u8 hc_num;
117
118	unsigned dev_addr:7;
119	unsigned ep_num:4;
120	unsigned ep_is_in:1;
121	unsigned speed:4;
122	unsigned ep_type:2;
123	unsigned max_packet:11;
124	unsigned data_pid_start:2;
125#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130
131	unsigned multi_count:2;
132
133	u8 *xfer_buf;
134	dma_addr_t xfer_dma;
135	dma_addr_t align_buf;
136	u32 xfer_len;
137	u32 xfer_count;
138	u16 start_pkt_count;
139	u8 xfer_started;
140	u8 do_ping;
141	u8 error_state;
142	u8 halt_on_queue;
143	u8 halt_pending;
144	u8 do_split;
145	u8 complete_split;
146	u8 hub_addr;
147	u8 hub_port;
148	u8 xact_pos;
149#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153
154	u8 requests;
155	u8 schinfo;
156	u16 ntd;
157	enum dwc2_halt_status halt_status;
158	u32 hcint;
159	struct dwc2_qh *qh;
160	struct list_head hc_list_entry;
161	dma_addr_t desc_list_addr;
162};
163
164struct dwc2_hcd_pipe_info {
165	u8 dev_addr;
166	u8 ep_num;
167	u8 pipe_type;
168	u8 pipe_dir;
169	u16 mps;
170};
171
172struct dwc2_hcd_iso_packet_desc {
173	u32 offset;
174	u32 length;
175	u32 actual_length;
176	u32 status;
177};
178
179struct dwc2_qtd;
180
181struct dwc2_hcd_urb {
182	void *priv;
183	struct dwc2_qtd *qtd;
184	void *buf;
185	dma_addr_t dma;
186	void *setup_packet;
187	dma_addr_t setup_dma;
188	u32 length;
189	u32 actual_length;
190	u32 status;
191	u32 error_count;
192	u32 packet_count;
193	u32 flags;
194	u16 interval;
195	struct dwc2_hcd_pipe_info pipe_info;
196	struct dwc2_hcd_iso_packet_desc iso_descs[0];
197};
198
199/* Phases for control transfers */
200enum dwc2_control_phase {
201	DWC2_CONTROL_SETUP,
202	DWC2_CONTROL_DATA,
203	DWC2_CONTROL_STATUS,
204};
205
206/* Transaction types */
207enum dwc2_transaction_type {
208	DWC2_TRANSACTION_NONE,
209	DWC2_TRANSACTION_PERIODIC,
210	DWC2_TRANSACTION_NON_PERIODIC,
211	DWC2_TRANSACTION_ALL,
212};
213
214/**
215 * struct dwc2_qh - Software queue head structure
216 *
217 * @ep_type:            Endpoint type. One of the following values:
218 *                       - USB_ENDPOINT_XFER_CONTROL
219 *                       - USB_ENDPOINT_XFER_BULK
220 *                       - USB_ENDPOINT_XFER_INT
221 *                       - USB_ENDPOINT_XFER_ISOC
222 * @ep_is_in:           Endpoint direction
223 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
224 * @dev_speed:          Device speed. One of the following values:
225 *                       - USB_SPEED_LOW
226 *                       - USB_SPEED_FULL
227 *                       - USB_SPEED_HIGH
228 * @data_toggle:        Determines the PID of the next data packet for
229 *                      non-controltransfers. Ignored for control transfers.
230 *                      One of the following values:
231 *                       - DWC2_HC_PID_DATA0
232 *                       - DWC2_HC_PID_DATA1
233 * @ping_state:         Ping state
234 * @do_split:           Full/low speed endpoint on high-speed hub requires split
235 * @td_first:           Index of first activated isochronous transfer descriptor
236 * @td_last:            Index of last activated isochronous transfer descriptor
237 * @usecs:              Bandwidth in microseconds per (micro)frame
238 * @interval:           Interval between transfers in (micro)frames
239 * @sched_frame:        (Micro)frame to initialize a periodic transfer.
240 *                      The transfer executes in the following (micro)frame.
241 * @frame_usecs:        Internal variable used by the microframe scheduler
242 * @start_split_frame:  (Micro)frame at which last start split was initialized
243 * @ntd:                Actual number of transfer descriptors in a list
244 * @dw_align_buf:       Used instead of original buffer if its physical address
245 *                      is not dword-aligned
246 * @dw_align_buf_dma:   DMA address for align_buf
247 * @qtd_list:           List of QTDs for this QH
248 * @channel:            Host channel currently processing transfers for this QH
249 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
250 *                      schedule
251 * @desc_list:          List of transfer descriptors
252 * @desc_list_dma:      Physical address of desc_list
253 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
254 *                      descriptor and indicates original XferSize value for the
255 *                      descriptor
256 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
257 *
258 * A Queue Head (QH) holds the static characteristics of an endpoint and
259 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
260 * be entered in either the non-periodic or periodic schedule.
261 */
262struct dwc2_qh {
263	u8 ep_type;
264	u8 ep_is_in;
265	u16 maxp;
266	u8 dev_speed;
267	u8 data_toggle;
268	u8 ping_state;
269	u8 do_split;
270	u8 td_first;
271	u8 td_last;
272	u16 usecs;
273	u16 interval;
274	u16 sched_frame;
275	u16 frame_usecs[8];
276	u16 start_split_frame;
277	u16 ntd;
278	u8 *dw_align_buf;
279	dma_addr_t dw_align_buf_dma;
280	struct list_head qtd_list;
281	struct dwc2_host_chan *channel;
282	struct list_head qh_list_entry;
283	struct dwc2_hcd_dma_desc *desc_list;
284	dma_addr_t desc_list_dma;
285	u32 *n_bytes;
286	unsigned tt_buffer_dirty:1;
287};
288
289/**
290 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
291 *
292 * @control_phase:      Current phase for control transfers (Setup, Data, or
293 *                      Status)
294 * @in_process:         Indicates if this QTD is currently processed by HW
295 * @data_toggle:        Determines the PID of the next data packet for the
296 *                      data phase of control transfers. Ignored for other
297 *                      transfer types. One of the following values:
298 *                       - DWC2_HC_PID_DATA0
299 *                       - DWC2_HC_PID_DATA1
300 * @complete_split:     Keeps track of the current split type for FS/LS
301 *                      endpoints on a HS Hub
302 * @isoc_split_pos:     Position of the ISOC split in full/low speed
303 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
304 *                      transfer. A frame descriptor describes the buffer
305 *                      position and length of the data to be transferred in the
306 *                      next scheduled (micro)frame of an isochronous transfer.
307 *                      It also holds status for that transaction. The frame
308 *                      index starts at 0.
309 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
310 *                      current frame
311 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
312 * @error_count:        Holds the number of bus errors that have occurred for
313 *                      a transaction within this transfer
314 * @n_desc:             Number of DMA descriptors for this QTD
315 * @isoc_frame_index_last: Last activated frame (packet) index, used in
316 *                      descriptor DMA mode only
317 * @urb:                URB for this transfer
318 * @qh:                 Queue head for this QTD
319 * @qtd_list_entry:     For linking to the QH's list of QTDs
320 *
321 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
322 * interrupt, or isochronous transfer. A single QTD is created for each URB
323 * (of one of these types) submitted to the HCD. The transfer associated with
324 * a QTD may require one or multiple transactions.
325 *
326 * A QTD is linked to a Queue Head, which is entered in either the
327 * non-periodic or periodic schedule for execution. When a QTD is chosen for
328 * execution, some or all of its transactions may be executed. After
329 * execution, the state of the QTD is updated. The QTD may be retired if all
330 * its transactions are complete or if an error occurred. Otherwise, it
331 * remains in the schedule so more transactions can be executed later.
332 */
333struct dwc2_qtd {
334	enum dwc2_control_phase control_phase;
335	u8 in_process;
336	u8 data_toggle;
337	u8 complete_split;
338	u8 isoc_split_pos;
339	u16 isoc_frame_index;
340	u16 isoc_split_offset;
341	u32 ssplit_out_xfer_count;
342	u8 error_count;
343	u8 n_desc;
344	u16 isoc_frame_index_last;
345	struct dwc2_hcd_urb *urb;
346	struct dwc2_qh *qh;
347	struct list_head qtd_list_entry;
348};
349
350#ifdef DEBUG
351struct hc_xfer_info {
352	struct dwc2_hsotg *hsotg;
353	struct dwc2_host_chan *chan;
354};
355#endif
356
357/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
358static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
359{
360	return (struct usb_hcd *)hsotg->priv;
361}
362
363/*
364 * Inline used to disable one channel interrupt. Channel interrupts are
365 * disabled when the channel is halted or released by the interrupt handler.
366 * There is no need to handle further interrupts of that type until the
367 * channel is re-assigned. In fact, subsequent handling may cause crashes
368 * because the channel structures are cleaned up when the channel is released.
369 */
370static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
371{
372	u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
373
374	mask &= ~intr;
375	writel(mask, hsotg->regs + HCINTMSK(chnum));
376}
377
378/*
379 * Returns the mode of operation, host or device
380 */
381static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
382{
383	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
384}
385static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
386{
387	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
388}
389
390/*
391 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
392 * are read as 1, they won't clear when written back.
393 */
394static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
395{
396	u32 hprt0 = readl(hsotg->regs + HPRT0);
397
398	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
399	return hprt0;
400}
401
402static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
403{
404	return pipe->ep_num;
405}
406
407static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
408{
409	return pipe->pipe_type;
410}
411
412static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
413{
414	return pipe->mps;
415}
416
417static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
418{
419	return pipe->dev_addr;
420}
421
422static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
423{
424	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
425}
426
427static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
428{
429	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
430}
431
432static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
433{
434	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
435}
436
437static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
438{
439	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
440}
441
442static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
443{
444	return pipe->pipe_dir == USB_DIR_IN;
445}
446
447static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
448{
449	return !dwc2_hcd_is_pipe_in(pipe);
450}
451
452extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
453			 const struct dwc2_core_params *params);
454extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
455extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
456				const struct dwc2_core_params *params);
457extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
458extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
459
460/* Transaction Execution Functions */
461extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
462						struct dwc2_hsotg *hsotg);
463extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
464					enum dwc2_transaction_type tr_type);
465
466/* Schedule Queue Functions */
467/* Implemented in hcd_queue.c */
468extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
469extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
470extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
471extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
472extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
473				   int sched_csplit);
474
475extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
476extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
477			    struct dwc2_qh **qh, gfp_t mem_flags);
478
479/* Unlinks and frees a QTD */
480static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
481						struct dwc2_qtd *qtd,
482						struct dwc2_qh *qh)
483{
484	list_del(&qtd->qtd_list_entry);
485	kfree(qtd);
486}
487
488/* Descriptor DMA support functions */
489extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
490				     struct dwc2_qh *qh);
491extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
492					struct dwc2_host_chan *chan, int chnum,
493					enum dwc2_halt_status halt_status);
494
495extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
496				 gfp_t mem_flags);
497extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
498
499/* Check if QH is non-periodic */
500#define dwc2_qh_is_non_per(_qh_ptr_) \
501	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
502	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
503
504#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
505static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
506static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
507static inline bool dbg_urb(struct urb *urb) { return true; }
508static inline bool dbg_perio(void) { return true; }
509#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
510static inline bool dbg_hc(struct dwc2_host_chan *hc)
511{
512	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
513	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
514}
515
516static inline bool dbg_qh(struct dwc2_qh *qh)
517{
518	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
519	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
520}
521
522static inline bool dbg_urb(struct urb *urb)
523{
524	return usb_pipetype(urb->pipe) == PIPE_BULK ||
525	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
526}
527
528static inline bool dbg_perio(void) { return false; }
529#endif
530
531/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533
534/* Packet size for any kind of endpoint descriptor */
535#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536
537/*
538 * Returns true if frame1 is less than or equal to frame2. The comparison is
539 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540 * frame number when the max frame number is reached.
541 */
542static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543{
544	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545}
546
547/*
548 * Returns true if frame1 is greater than frame2. The comparison is done
549 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550 * number when the max frame number is reached.
551 */
552static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553{
554	return (frame1 != frame2) &&
555	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556}
557
558/*
559 * Increments frame by the amount specified by inc. The addition is done
560 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561 */
562static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563{
564	return (frame + inc) & HFNUM_MAX_FRNUM;
565}
566
567static inline u16 dwc2_full_frame_num(u16 frame)
568{
569	return (frame & HFNUM_MAX_FRNUM) >> 3;
570}
571
572static inline u16 dwc2_micro_frame_num(u16 frame)
573{
574	return frame & 0x7;
575}
576
577/*
578 * Returns the Core Interrupt Status register contents, ANDed with the Core
579 * Interrupt Mask register contents
580 */
581static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582{
583	return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
584}
585
586static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587{
588	return dwc2_urb->status;
589}
590
591static inline u32 dwc2_hcd_urb_get_actual_length(
592		struct dwc2_hcd_urb *dwc2_urb)
593{
594	return dwc2_urb->actual_length;
595}
596
597static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598{
599	return dwc2_urb->error_count;
600}
601
602static inline void dwc2_hcd_urb_set_iso_desc_params(
603		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604		u32 length)
605{
606	dwc2_urb->iso_descs[desc_num].offset = offset;
607	dwc2_urb->iso_descs[desc_num].length = length;
608}
609
610static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612{
613	return dwc2_urb->iso_descs[desc_num].status;
614}
615
616static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618{
619	return dwc2_urb->iso_descs[desc_num].actual_length;
620}
621
622static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623						  struct usb_host_endpoint *ep)
624{
625	struct dwc2_qh *qh = ep->hcpriv;
626
627	if (qh && !list_empty(&qh->qh_list_entry))
628		return 1;
629
630	return 0;
631}
632
633static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
634					    struct usb_host_endpoint *ep)
635{
636	struct dwc2_qh *qh = ep->hcpriv;
637
638	if (!qh) {
639		WARN_ON(1);
640		return 0;
641	}
642
643	return qh->usecs;
644}
645
646extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
647				      struct dwc2_host_chan *chan, int chnum,
648				      struct dwc2_qtd *qtd);
649
650/* HCD Core API */
651
652/**
653 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
654 *
655 * @hsotg: The DWC2 HCD
656 *
657 * Returns IRQ_HANDLED if interrupt is handled
658 * Return IRQ_NONE if interrupt is not handled
659 */
660extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
661
662/**
663 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
664 *
665 * @hsotg: The DWC2 HCD
666 */
667extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
668
669extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
670extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
671
672/**
673 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
674 * and 0 otherwise
675 *
676 * @hsotg: The DWC2 HCD
677 */
678extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
679
680/**
681 * dwc2_hcd_get_frame_number() - Returns current frame number
682 *
683 * @hsotg: The DWC2 HCD
684 */
685extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
686
687/**
688 * dwc2_hcd_dump_state() - Dumps hsotg state
689 *
690 * @hsotg: The DWC2 HCD
691 *
692 * NOTE: This function will be removed once the peripheral controller code
693 * is integrated and the driver is stable
694 */
695extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
696
697/**
698 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
699 *
700 * @hsotg: The DWC2 HCD
701 *
702 * This can be used to determine average interrupt latency. Frame remaining is
703 * also shown for start transfer and two additional sample points.
704 *
705 * NOTE: This function will be removed once the peripheral controller code
706 * is integrated and the driver is stable
707 */
708extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
709
710/* URB interface */
711
712/* Transfer flags */
713#define URB_GIVEBACK_ASAP	0x1
714#define URB_SEND_ZERO_PACKET	0x2
715
716/* Host driver callbacks */
717
718extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
719extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
720extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
721			       int *hub_addr, int *hub_port);
722extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
723extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
724			       int status);
725
726#ifdef DEBUG
727/*
728 * Macro to sample the remaining PHY clocks left in the current frame. This
729 * may be used during debugging to determine the average time it takes to
730 * execute sections of code. There are two possible sample points, "a" and
731 * "b", so the _letter_ argument must be one of these values.
732 *
733 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
734 * example, "cat /sys/devices/lm0/hcd_frrem".
735 */
736#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
737do {									\
738	struct hfnum_data _hfnum_;					\
739	struct dwc2_qtd *_qtd_;						\
740									\
741	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
742			   qtd_list_entry);				\
743	if (usb_pipeint(_qtd_->urb->pipe) &&				\
744	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
745		_hfnum_.d32 = readl((_hcd_)->regs + HFNUM);		\
746		switch (_hfnum_.b.frnum & 0x7) {			\
747		case 7:							\
748			(_hcd_)->hfnum_7_samples_##_letter_++;		\
749			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
750				_hfnum_.b.frrem;			\
751			break;						\
752		case 0:							\
753			(_hcd_)->hfnum_0_samples_##_letter_++;		\
754			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
755				_hfnum_.b.frrem;			\
756			break;						\
757		default:						\
758			(_hcd_)->hfnum_other_samples_##_letter_++;	\
759			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
760				_hfnum_.b.frrem;			\
761			break;						\
762		}							\
763	}								\
764} while (0)
765#else
766#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
767#endif
768
769#endif /* __DWC2_HCD_H__ */