Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * PHY functions
   3 *
   4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   8 *
   9 * Permission to use, copy, modify, and distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 *
  21 */
  22
 
 
 
 
 
 
  23#include <linux/delay.h>
  24#include <linux/slab.h>
  25#include <asm/unaligned.h>
  26
  27#include "ath5k.h"
  28#include "reg.h"
  29#include "base.h"
  30#include "rfbuffer.h"
  31#include "rfgain.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33
  34/******************\
  35* Helper functions *
  36\******************/
  37
  38/*
  39 * Get the PHY Chip revision
 
 
 
 
 
  40 */
  41u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
 
  42{
  43	unsigned int i;
  44	u32 srev;
  45	u16 ret;
  46
  47	/*
  48	 * Set the radio chip access register
  49	 */
  50	switch (chan) {
  51	case CHANNEL_2GHZ:
  52		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  53		break;
  54	case CHANNEL_5GHZ:
  55		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  56		break;
  57	default:
  58		return 0;
  59	}
  60
  61	mdelay(2);
  62
  63	/* ...wait until PHY is ready and read the selected radio revision */
  64	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
  65
  66	for (i = 0; i < 8; i++)
  67		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
  68
  69	if (ah->ah_version == AR5K_AR5210) {
  70		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
  71		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
  72	} else {
  73		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
  74		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
  75				((srev & 0x0f) << 4), 8);
  76	}
  77
  78	/* Reset to the 5GHz mode */
  79	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  80
  81	return ret;
  82}
  83
  84/*
  85 * Check if a channel is supported
 
 
 
 
 
  86 */
  87bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
 
  88{
 
 
  89	/* Check if the channel is in our supported range */
  90	if (flags & CHANNEL_2GHZ) {
  91		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
  92		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
  93			return true;
  94	} else if (flags & CHANNEL_5GHZ)
  95		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
  96		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
  97			return true;
  98
  99	return false;
 100}
 101
 102bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 
 
 
 
 
 
 103				struct ieee80211_channel *channel)
 104{
 105	u8 refclk_freq;
 106
 107	if ((ah->ah_radio == AR5K_RF5112) ||
 108	(ah->ah_radio == AR5K_RF5413) ||
 109	(ah->ah_radio == AR5K_RF2413) ||
 110	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 111		refclk_freq = 40;
 112	else
 113		refclk_freq = 32;
 114
 115	if ((channel->center_freq % refclk_freq != 0) &&
 116	((channel->center_freq % refclk_freq < 10) ||
 117	(channel->center_freq % refclk_freq > 22)))
 118		return true;
 119	else
 120		return false;
 121}
 122
 123/*
 124 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
 
 
 
 
 
 
 
 
 
 125 */
 126static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
 127					const struct ath5k_rf_reg *rf_regs,
 128					u32 val, u8 reg_id, bool set)
 129{
 130	const struct ath5k_rf_reg *rfreg = NULL;
 131	u8 offset, bank, num_bits, col, position;
 132	u16 entry;
 133	u32 mask, data, last_bit, bits_shifted, first_bit;
 134	u32 *rfb;
 135	s32 bits_left;
 136	int i;
 137
 138	data = 0;
 139	rfb = ah->ah_rf_banks;
 140
 141	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 142		if (rf_regs[i].index == reg_id) {
 143			rfreg = &rf_regs[i];
 144			break;
 145		}
 146	}
 147
 148	if (rfb == NULL || rfreg == NULL) {
 149		ATH5K_PRINTF("Rf register not found!\n");
 150		/* should not happen */
 151		return 0;
 152	}
 153
 154	bank = rfreg->bank;
 155	num_bits = rfreg->field.len;
 156	first_bit = rfreg->field.pos;
 157	col = rfreg->field.col;
 158
 159	/* first_bit is an offset from bank's
 160	 * start. Since we have all banks on
 161	 * the same array, we use this offset
 162	 * to mark each bank's start */
 163	offset = ah->ah_offset[bank];
 164
 165	/* Boundary check */
 166	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 167		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 168		return 0;
 169	}
 170
 171	entry = ((first_bit - 1) / 8) + offset;
 172	position = (first_bit - 1) % 8;
 173
 174	if (set)
 175		data = ath5k_hw_bitswap(val, num_bits);
 176
 177	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 178	     position = 0, entry++) {
 179
 180		last_bit = (position + bits_left > 8) ? 8 :
 181					position + bits_left;
 182
 183		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 184								(col * 8);
 185
 186		if (set) {
 187			rfb[entry] &= ~mask;
 188			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 189			data >>= (8 - position);
 190		} else {
 191			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 192				<< bits_shifted;
 193			bits_shifted += last_bit - position;
 194		}
 195
 196		bits_left -= 8 - position;
 197	}
 198
 199	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 200
 201	return data;
 202}
 203
 204/**
 205 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
 206 *
 207 * @ah: the &struct ath5k_hw
 208 * @channel: the currently set channel upon reset
 209 *
 210 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 211 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 212 *
 213 * Since delta slope is floating point we split it on its exponent and
 214 * mantissa and provide these values on hw.
 215 *
 216 * For more infos i think this patent is related
 217 * http://www.freepatentsonline.com/7184495.html
 218 */
 219static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 220	struct ieee80211_channel *channel)
 
 221{
 222	/* Get exponent and mantissa and set it */
 223	u32 coef_scaled, coef_exp, coef_man,
 224		ds_coef_exp, ds_coef_man, clock;
 225
 226	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 227		!(channel->hw_value & CHANNEL_OFDM));
 228
 229	/* Get coefficient
 230	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 231	 * we scale coef by shifting clock value by 24 for
 232	 * better precision since we use integers */
 233	switch (ah->ah_bwmode) {
 234	case AR5K_BWMODE_40MHZ:
 235		clock = 40 * 2;
 236		break;
 237	case AR5K_BWMODE_10MHZ:
 238		clock = 40 / 2;
 239		break;
 240	case AR5K_BWMODE_5MHZ:
 241		clock = 40 / 4;
 242		break;
 243	default:
 244		clock = 40;
 245		break;
 246	}
 247	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 248
 249	/* Get exponent
 250	 * ALGO: coef_exp = 14 - highest set bit position */
 251	coef_exp = ilog2(coef_scaled);
 252
 253	/* Doesn't make sense if it's zero*/
 254	if (!coef_scaled || !coef_exp)
 255		return -EINVAL;
 256
 257	/* Note: we've shifted coef_scaled by 24 */
 258	coef_exp = 14 - (coef_exp - 24);
 259
 260
 261	/* Get mantissa (significant digits)
 262	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 263	coef_man = coef_scaled +
 264		(1 << (24 - coef_exp - 1));
 265
 266	/* Calculate delta slope coefficient exponent
 267	 * and mantissa (remove scaling) and set them on hw */
 268	ds_coef_man = coef_man >> (24 - coef_exp);
 269	ds_coef_exp = coef_exp - 16;
 270
 271	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 272		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 273	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 274		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 275
 276	return 0;
 277}
 278
 
 
 
 
 279int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 280{
 281	/*Just a try M.F.*/
 282	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 283
 284	return 0;
 285}
 286
 287/*
 288 * Wait for synth to settle
 
 
 289 */
 290static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 
 291			struct ieee80211_channel *channel)
 292{
 293	/*
 294	 * On 5211+ read activation -> rx delay
 295	 * and use it (100ns steps).
 296	 */
 297	if (ah->ah_version != AR5K_AR5210) {
 298		u32 delay;
 299		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 300			AR5K_PHY_RX_DELAY_M;
 301		delay = (channel->hw_value & CHANNEL_CCK) ?
 302			((delay << 2) / 22) : (delay / 10);
 303		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 304			delay = delay << 1;
 305		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 306			delay = delay << 2;
 307		/* XXX: /2 on turbo ? Let's be safe
 308		 * for now */
 309		udelay(100 + delay);
 310	} else {
 311		mdelay(1);
 312	}
 313}
 314
 315
 316/**********************\
 317* RF Gain optimization *
 318\**********************/
 319
 320/*
 
 
 321 * This code is used to optimize RF gain on different environments
 322 * (temperature mostly) based on feedback from a power detector.
 323 *
 324 * It's only used on RF5111 and RF5112, later RF chips seem to have
 325 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 326 * no gain optimization ladder-.
 327 *
 328 * For more infos check out this patent doc
 329 * http://www.freepatentsonline.com/7400691.html
 330 *
 331 * This paper describes power drops as seen on the receiver due to
 332 * probe packets
 333 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 334 * %20of%20Power%20Control.pdf
 335 *
 336 * And this is the MadWiFi bug entry related to the above
 337 * http://madwifi-project.org/ticket/1659
 338 * with various measurements and diagrams
 339 *
 340 * TODO: Deal with power drops due to probes by setting an appropriate
 341 * tx power on the probe packets ! Make this part of the calibration process.
 342 */
 343
 344/* Initialize ah_gain during attach */
 
 
 
 345int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 346{
 347	/* Initialize the gain optimization values */
 348	switch (ah->ah_radio) {
 349	case AR5K_RF5111:
 350		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 351		ah->ah_gain.g_low = 20;
 352		ah->ah_gain.g_high = 35;
 353		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 354		break;
 355	case AR5K_RF5112:
 356		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 357		ah->ah_gain.g_low = 20;
 358		ah->ah_gain.g_high = 85;
 359		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 360		break;
 361	default:
 362		return -EINVAL;
 363	}
 364
 365	return 0;
 366}
 367
 368/* Schedule a gain probe check on the next transmitted packet.
 
 
 
 
 369 * That means our next packet is going to be sent with lower
 370 * tx power and a Peak to Average Power Detector (PAPD) will try
 371 * to measure the gain.
 372 *
 373 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 374 * just after we enable the probe so that we don't mess with
 375 * standard traffic ? Maybe it's time to use sw interrupts and
 376 * a probe tasklet !!!
 377 */
 378static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 
 379{
 380
 381	/* Skip if gain calibration is inactive or
 382	 * we already handle a probe request */
 383	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 384		return;
 385
 386	/* Send the packet with 2dB below max power as
 387	 * patent doc suggest */
 388	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 389			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 390			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 391
 392	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 393
 394}
 395
 396/* Calculate gain_F measurement correction
 397 * based on the current step for RF5112 rev. 2 */
 398static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 
 
 
 
 
 
 399{
 400	u32 mix, step;
 401	u32 *rf;
 402	const struct ath5k_gain_opt *go;
 403	const struct ath5k_gain_opt_step *g_step;
 404	const struct ath5k_rf_reg *rf_regs;
 405
 406	/* Only RF5112 Rev. 2 supports it */
 407	if ((ah->ah_radio != AR5K_RF5112) ||
 408	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 409		return 0;
 410
 411	go = &rfgain_opt_5112;
 412	rf_regs = rf_regs_5112a;
 413	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 414
 415	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 416
 417	if (ah->ah_rf_banks == NULL)
 418		return 0;
 419
 420	rf = ah->ah_rf_banks;
 421	ah->ah_gain.g_f_corr = 0;
 422
 423	/* No VGA (Variable Gain Amplifier) override, skip */
 424	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 425		return 0;
 426
 427	/* Mix gain stepping */
 428	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 429
 430	/* Mix gain override */
 431	mix = g_step->gos_param[0];
 432
 433	switch (mix) {
 434	case 3:
 435		ah->ah_gain.g_f_corr = step * 2;
 436		break;
 437	case 2:
 438		ah->ah_gain.g_f_corr = (step - 5) * 2;
 439		break;
 440	case 1:
 441		ah->ah_gain.g_f_corr = step;
 442		break;
 443	default:
 444		ah->ah_gain.g_f_corr = 0;
 445		break;
 446	}
 447
 448	return ah->ah_gain.g_f_corr;
 449}
 450
 451/* Check if current gain_F measurement is in the range of our
 
 
 
 
 452 * power detector windows. If we get a measurement outside range
 453 * we know it's not accurate (detectors can't measure anything outside
 454 * their detection window) so we must ignore it */
 455static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 
 
 
 
 456{
 457	const struct ath5k_rf_reg *rf_regs;
 458	u32 step, mix_ovr, level[4];
 459	u32 *rf;
 460
 461	if (ah->ah_rf_banks == NULL)
 462		return false;
 463
 464	rf = ah->ah_rf_banks;
 465
 466	if (ah->ah_radio == AR5K_RF5111) {
 467
 468		rf_regs = rf_regs_5111;
 469		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 470
 471		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 472			false);
 473
 474		level[0] = 0;
 475		level[1] = (step == 63) ? 50 : step + 4;
 476		level[2] = (step != 63) ? 64 : level[0];
 477		level[3] = level[2] + 50;
 478
 479		ah->ah_gain.g_high = level[3] -
 480			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 481		ah->ah_gain.g_low = level[0] +
 482			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 483	} else {
 484
 485		rf_regs = rf_regs_5112;
 486		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 487
 488		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 489			false);
 490
 491		level[0] = level[2] = 0;
 492
 493		if (mix_ovr == 1) {
 494			level[1] = level[3] = 83;
 495		} else {
 496			level[1] = level[3] = 107;
 497			ah->ah_gain.g_high = 55;
 498		}
 499	}
 500
 501	return (ah->ah_gain.g_current >= level[0] &&
 502			ah->ah_gain.g_current <= level[1]) ||
 503		(ah->ah_gain.g_current >= level[2] &&
 504			ah->ah_gain.g_current <= level[3]);
 505}
 506
 507/* Perform gain_F adjustment by choosing the right set
 508 * of parameters from RF gain optimization ladder */
 509static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 
 
 
 
 
 
 510{
 511	const struct ath5k_gain_opt *go;
 512	const struct ath5k_gain_opt_step *g_step;
 513	int ret = 0;
 514
 515	switch (ah->ah_radio) {
 516	case AR5K_RF5111:
 517		go = &rfgain_opt_5111;
 518		break;
 519	case AR5K_RF5112:
 520		go = &rfgain_opt_5112;
 521		break;
 522	default:
 523		return 0;
 524	}
 525
 526	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 527
 528	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 529
 530		/* Reached maximum */
 531		if (ah->ah_gain.g_step_idx == 0)
 532			return -1;
 533
 534		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 535				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 536				ah->ah_gain.g_step_idx > 0;
 537				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 538			ah->ah_gain.g_target -= 2 *
 539			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 540			    g_step->gos_gain);
 541
 542		ret = 1;
 543		goto done;
 544	}
 545
 546	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 547
 548		/* Reached minimum */
 549		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 550			return -2;
 551
 552		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 553				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 554				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 555				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 556			ah->ah_gain.g_target -= 2 *
 557			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 558			    g_step->gos_gain);
 559
 560		ret = 2;
 561		goto done;
 562	}
 563
 564done:
 565	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 566		"ret %d, gain step %u, current gain %u, target gain %u\n",
 567		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 568		ah->ah_gain.g_target);
 569
 570	return ret;
 571}
 572
 573/* Main callback for thermal RF gain calibration engine
 
 
 
 
 574 * Check for a new gain reading and schedule an adjustment
 575 * if needed.
 576 *
 577 * TODO: Use sw interrupt to schedule reset if gain_F needs
 578 * adjustment */
 579enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 
 580{
 581	u32 data, type;
 582	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 583
 584	if (ah->ah_rf_banks == NULL ||
 585	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 586		return AR5K_RFGAIN_INACTIVE;
 587
 588	/* No check requested, either engine is inactive
 589	 * or an adjustment is already requested */
 590	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 591		goto done;
 592
 593	/* Read the PAPD (Peak to Average Power Detector)
 594	 * register */
 595	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 596
 597	/* No probe is scheduled, read gain_F measurement */
 598	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 599		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 600		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 601
 602		/* If tx packet is CCK correct the gain_F measurement
 603		 * by cck ofdm gain delta */
 604		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 605			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 606				ah->ah_gain.g_current +=
 607					ee->ee_cck_ofdm_gain_delta;
 608			else
 609				ah->ah_gain.g_current +=
 610					AR5K_GAIN_CCK_PROBE_CORR;
 611		}
 612
 613		/* Further correct gain_F measurement for
 614		 * RF5112A radios */
 615		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 616			ath5k_hw_rf_gainf_corr(ah);
 617			ah->ah_gain.g_current =
 618				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 619				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 620				0;
 621		}
 622
 623		/* Check if measurement is ok and if we need
 624		 * to adjust gain, schedule a gain adjustment,
 625		 * else switch back to the active state */
 626		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 627		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 628		ath5k_hw_rf_gainf_adjust(ah)) {
 629			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 630		} else {
 631			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 632		}
 633	}
 634
 635done:
 636	return ah->ah_gain.g_state;
 637}
 638
 639/* Write initial RF gain table to set the RF sensitivity
 640 * this one works on all RF chips and has nothing to do
 641 * with gain_F calibration */
 642static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
 
 
 
 
 
 
 
 
 643{
 644	const struct ath5k_ini_rfgain *ath5k_rfg;
 645	unsigned int i, size, index;
 646
 647	switch (ah->ah_radio) {
 648	case AR5K_RF5111:
 649		ath5k_rfg = rfgain_5111;
 650		size = ARRAY_SIZE(rfgain_5111);
 651		break;
 652	case AR5K_RF5112:
 653		ath5k_rfg = rfgain_5112;
 654		size = ARRAY_SIZE(rfgain_5112);
 655		break;
 656	case AR5K_RF2413:
 657		ath5k_rfg = rfgain_2413;
 658		size = ARRAY_SIZE(rfgain_2413);
 659		break;
 660	case AR5K_RF2316:
 661		ath5k_rfg = rfgain_2316;
 662		size = ARRAY_SIZE(rfgain_2316);
 663		break;
 664	case AR5K_RF5413:
 665		ath5k_rfg = rfgain_5413;
 666		size = ARRAY_SIZE(rfgain_5413);
 667		break;
 668	case AR5K_RF2317:
 669	case AR5K_RF2425:
 670		ath5k_rfg = rfgain_2425;
 671		size = ARRAY_SIZE(rfgain_2425);
 672		break;
 673	default:
 674		return -EINVAL;
 675	}
 676
 677	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
 678
 679	for (i = 0; i < size; i++) {
 680		AR5K_REG_WAIT(i);
 681		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 682			(u32)ath5k_rfg[i].rfg_register);
 683	}
 684
 685	return 0;
 686}
 687
 688
 689
 690/********************\
 691* RF Registers setup *
 692\********************/
 693
 694/*
 695 * Setup RF registers by writing RF buffer on hw
 
 
 
 
 
 
 696 */
 697static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 698	struct ieee80211_channel *channel, unsigned int mode)
 
 
 699{
 700	const struct ath5k_rf_reg *rf_regs;
 701	const struct ath5k_ini_rfbuffer *ini_rfb;
 702	const struct ath5k_gain_opt *go = NULL;
 703	const struct ath5k_gain_opt_step *g_step;
 704	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 705	u8 ee_mode = 0;
 706	u32 *rfb;
 707	int i, obdb = -1, bank = -1;
 708
 709	switch (ah->ah_radio) {
 710	case AR5K_RF5111:
 711		rf_regs = rf_regs_5111;
 712		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 713		ini_rfb = rfb_5111;
 714		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 715		go = &rfgain_opt_5111;
 716		break;
 717	case AR5K_RF5112:
 718		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 719			rf_regs = rf_regs_5112a;
 720			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 721			ini_rfb = rfb_5112a;
 722			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 723		} else {
 724			rf_regs = rf_regs_5112;
 725			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 726			ini_rfb = rfb_5112;
 727			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 728		}
 729		go = &rfgain_opt_5112;
 730		break;
 731	case AR5K_RF2413:
 732		rf_regs = rf_regs_2413;
 733		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 734		ini_rfb = rfb_2413;
 735		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 736		break;
 737	case AR5K_RF2316:
 738		rf_regs = rf_regs_2316;
 739		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 740		ini_rfb = rfb_2316;
 741		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 742		break;
 743	case AR5K_RF5413:
 744		rf_regs = rf_regs_5413;
 745		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 746		ini_rfb = rfb_5413;
 747		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 748		break;
 749	case AR5K_RF2317:
 750		rf_regs = rf_regs_2425;
 751		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 752		ini_rfb = rfb_2317;
 753		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 754		break;
 755	case AR5K_RF2425:
 756		rf_regs = rf_regs_2425;
 757		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 758		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 759			ini_rfb = rfb_2425;
 760			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 761		} else {
 762			ini_rfb = rfb_2417;
 763			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 764		}
 765		break;
 766	default:
 767		return -EINVAL;
 768	}
 769
 770	/* If it's the first time we set RF buffer, allocate
 771	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 772	 * we set above */
 773	if (ah->ah_rf_banks == NULL) {
 774		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
 775								GFP_KERNEL);
 776		if (ah->ah_rf_banks == NULL) {
 777			ATH5K_ERR(ah, "out of memory\n");
 778			return -ENOMEM;
 779		}
 780	}
 781
 782	/* Copy values to modify them */
 783	rfb = ah->ah_rf_banks;
 784
 785	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 786		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 787			ATH5K_ERR(ah, "invalid bank\n");
 788			return -EINVAL;
 789		}
 790
 791		/* Bank changed, write down the offset */
 792		if (bank != ini_rfb[i].rfb_bank) {
 793			bank = ini_rfb[i].rfb_bank;
 794			ah->ah_offset[bank] = i;
 795		}
 796
 797		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 798	}
 799
 800	/* Set Output and Driver bias current (OB/DB) */
 801	if (channel->hw_value & CHANNEL_2GHZ) {
 802
 803		if (channel->hw_value & CHANNEL_CCK)
 804			ee_mode = AR5K_EEPROM_MODE_11B;
 805		else
 806			ee_mode = AR5K_EEPROM_MODE_11G;
 807
 808		/* For RF511X/RF211X combination we
 809		 * use b_OB and b_DB parameters stored
 810		 * in eeprom on ee->ee_ob[ee_mode][0]
 811		 *
 812		 * For all other chips we use OB/DB for 2GHz
 813		 * stored in the b/g modal section just like
 814		 * 802.11a on ee->ee_ob[ee_mode][1] */
 815		if ((ah->ah_radio == AR5K_RF5111) ||
 816		(ah->ah_radio == AR5K_RF5112))
 817			obdb = 0;
 818		else
 819			obdb = 1;
 820
 821		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 822						AR5K_RF_OB_2GHZ, true);
 823
 824		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 825						AR5K_RF_DB_2GHZ, true);
 826
 827	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 828	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
 829			(ah->ah_radio == AR5K_RF5111)) {
 830
 831		/* For 11a, Turbo and XR we need to choose
 832		 * OB/DB based on frequency range */
 833		ee_mode = AR5K_EEPROM_MODE_11A;
 834		obdb =	 channel->center_freq >= 5725 ? 3 :
 835			(channel->center_freq >= 5500 ? 2 :
 836			(channel->center_freq >= 5260 ? 1 :
 837			 (channel->center_freq > 4000 ? 0 : -1)));
 838
 839		if (obdb < 0)
 840			return -EINVAL;
 841
 842		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 843						AR5K_RF_OB_5GHZ, true);
 844
 845		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 846						AR5K_RF_DB_5GHZ, true);
 847	}
 848
 849	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 850
 851	/* Set turbo mode (N/A on RF5413) */
 852	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 853	(ah->ah_radio != AR5K_RF5413))
 854		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 855
 856	/* Bank Modifications (chip-specific) */
 857	if (ah->ah_radio == AR5K_RF5111) {
 858
 859		/* Set gain_F settings according to current step */
 860		if (channel->hw_value & CHANNEL_OFDM) {
 861
 862			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 863					AR5K_PHY_FRAME_CTL_TX_CLIP,
 864					g_step->gos_param[0]);
 865
 866			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 867							AR5K_RF_PWD_90, true);
 868
 869			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 870							AR5K_RF_PWD_84, true);
 871
 872			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 873						AR5K_RF_RFGAIN_SEL, true);
 874
 875			/* We programmed gain_F parameters, switch back
 876			 * to active state */
 877			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 878
 879		}
 880
 881		/* Bank 6/7 setup */
 882
 883		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 884						AR5K_RF_PWD_XPD, true);
 885
 886		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
 887						AR5K_RF_XPD_GAIN, true);
 888
 889		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
 890						AR5K_RF_GAIN_I, true);
 891
 892		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 893						AR5K_RF_PLO_SEL, true);
 894
 895		/* Tweak power detectors for half/quarter rate support */
 896		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
 897		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
 898			u8 wait_i;
 899
 900			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
 901						AR5K_RF_WAIT_S, true);
 902
 903			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
 904							0x1f : 0x10;
 905
 906			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
 907						AR5K_RF_WAIT_I, true);
 908			ath5k_hw_rfb_op(ah, rf_regs, 3,
 909						AR5K_RF_MAX_TIME, true);
 910
 911		}
 912	}
 913
 914	if (ah->ah_radio == AR5K_RF5112) {
 915
 916		/* Set gain_F settings according to current step */
 917		if (channel->hw_value & CHANNEL_OFDM) {
 918
 919			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
 920						AR5K_RF_MIXGAIN_OVR, true);
 921
 922			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 923						AR5K_RF_PWD_138, true);
 924
 925			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 926						AR5K_RF_PWD_137, true);
 927
 928			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 929						AR5K_RF_PWD_136, true);
 930
 931			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
 932						AR5K_RF_PWD_132, true);
 933
 934			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
 935						AR5K_RF_PWD_131, true);
 936
 937			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
 938						AR5K_RF_PWD_130, true);
 939
 940			/* We programmed gain_F parameters, switch back
 941			 * to active state */
 942			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 943		}
 944
 945		/* Bank 6/7 setup */
 946
 947		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 948						AR5K_RF_XPD_SEL, true);
 949
 950		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
 951			/* Rev. 1 supports only one xpd */
 952			ath5k_hw_rfb_op(ah, rf_regs,
 953						ee->ee_x_gain[ee_mode],
 954						AR5K_RF_XPD_GAIN, true);
 955
 956		} else {
 957			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
 958			if (ee->ee_pd_gains[ee_mode] > 1) {
 959				ath5k_hw_rfb_op(ah, rf_regs,
 960						pdg_curve_to_idx[0],
 961						AR5K_RF_PD_GAIN_LO, true);
 962				ath5k_hw_rfb_op(ah, rf_regs,
 963						pdg_curve_to_idx[1],
 964						AR5K_RF_PD_GAIN_HI, true);
 965			} else {
 966				ath5k_hw_rfb_op(ah, rf_regs,
 967						pdg_curve_to_idx[0],
 968						AR5K_RF_PD_GAIN_LO, true);
 969				ath5k_hw_rfb_op(ah, rf_regs,
 970						pdg_curve_to_idx[0],
 971						AR5K_RF_PD_GAIN_HI, true);
 972			}
 973
 974			/* Lower synth voltage on Rev 2 */
 975			if (ah->ah_radio == AR5K_RF5112 &&
 976			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
 977				ath5k_hw_rfb_op(ah, rf_regs, 2,
 978						AR5K_RF_HIGH_VC_CP, true);
 979
 980				ath5k_hw_rfb_op(ah, rf_regs, 2,
 981						AR5K_RF_MID_VC_CP, true);
 982
 983				ath5k_hw_rfb_op(ah, rf_regs, 2,
 984						AR5K_RF_LOW_VC_CP, true);
 985
 986				ath5k_hw_rfb_op(ah, rf_regs, 2,
 987						AR5K_RF_PUSH_UP, true);
 988			}
 989
 990			/* Decrease power consumption on 5213+ BaseBand */
 991			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 992				ath5k_hw_rfb_op(ah, rf_regs, 1,
 993						AR5K_RF_PAD2GND, true);
 994
 995				ath5k_hw_rfb_op(ah, rf_regs, 1,
 996						AR5K_RF_XB2_LVL, true);
 997
 998				ath5k_hw_rfb_op(ah, rf_regs, 1,
 999						AR5K_RF_XB5_LVL, true);
1000
1001				ath5k_hw_rfb_op(ah, rf_regs, 1,
1002						AR5K_RF_PWD_167, true);
1003
1004				ath5k_hw_rfb_op(ah, rf_regs, 1,
1005						AR5K_RF_PWD_166, true);
1006			}
1007		}
1008
1009		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1010						AR5K_RF_GAIN_I, true);
1011
1012		/* Tweak power detector for half/quarter rates */
1013		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1014		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1015			u8 pd_delay;
1016
1017			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1018							0xf : 0x8;
1019
1020			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1021						AR5K_RF_PD_PERIOD_A, true);
1022			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1023						AR5K_RF_PD_DELAY_A, true);
1024
1025		}
1026	}
1027
1028	if (ah->ah_radio == AR5K_RF5413 &&
1029	channel->hw_value & CHANNEL_2GHZ) {
1030
1031		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1032									true);
1033
1034		/* Set optimum value for early revisions (on pci-e chips) */
1035		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1036		ah->ah_mac_srev < AR5K_SREV_AR5413)
1037			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1038						AR5K_RF_PWD_ICLOBUF_2G, true);
1039
1040	}
1041
1042	/* Write RF banks on hw */
1043	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1044		AR5K_REG_WAIT(i);
1045		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1046	}
1047
1048	return 0;
1049}
1050
1051
1052/**************************\
1053  PHY/RF channel functions
1054\**************************/
1055
1056/*
1057 * Conversion needed for RF5110
 
 
 
 
1058 */
1059static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
 
1060{
1061	u32 athchan;
1062
1063	/*
1064	 * Convert IEEE channel/MHz to an internal channel value used
1065	 * by the AR5210 chipset. This has not been verified with
1066	 * newer chipsets like the AR5212A who have a completely
1067	 * different RF/PHY part.
1068	 */
1069	athchan = (ath5k_hw_bitswap(
1070			(ieee80211_frequency_to_channel(
1071				channel->center_freq) - 24) / 2, 5)
1072				<< 1) | (1 << 6) | 0x1;
1073	return athchan;
1074}
1075
1076/*
1077 * Set channel on RF5110
 
 
1078 */
1079static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
 
1080		struct ieee80211_channel *channel)
1081{
1082	u32 data;
1083
1084	/*
1085	 * Set the channel and wait
1086	 */
1087	data = ath5k_hw_rf5110_chan2athchan(channel);
1088	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1089	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1090	mdelay(1);
1091
1092	return 0;
1093}
1094
1095/*
1096 * Conversion needed for 5111
 
 
 
 
 
 
 
1097 */
1098static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
 
1099		struct ath5k_athchan_2ghz *athchan)
1100{
1101	int channel;
1102
1103	/* Cast this value to catch negative channel numbers (>= -19) */
1104	channel = (int)ieee;
1105
1106	/*
1107	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1108	 */
1109	if (channel <= 13) {
1110		athchan->a2_athchan = 115 + channel;
1111		athchan->a2_flags = 0x46;
1112	} else if (channel == 14) {
1113		athchan->a2_athchan = 124;
1114		athchan->a2_flags = 0x44;
1115	} else if (channel >= 15 && channel <= 26) {
1116		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1117		athchan->a2_flags = 0x46;
1118	} else
1119		return -EINVAL;
1120
1121	return 0;
1122}
1123
1124/*
1125 * Set channel on 5111
 
 
1126 */
1127static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
 
1128		struct ieee80211_channel *channel)
1129{
1130	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1131	unsigned int ath5k_channel =
1132		ieee80211_frequency_to_channel(channel->center_freq);
1133	u32 data0, data1, clock;
1134	int ret;
1135
1136	/*
1137	 * Set the channel on the RF5111 radio
1138	 */
1139	data0 = data1 = 0;
1140
1141	if (channel->hw_value & CHANNEL_2GHZ) {
1142		/* Map 2GHz channel to 5GHz Atheros channel ID */
1143		ret = ath5k_hw_rf5111_chan2athchan(
1144			ieee80211_frequency_to_channel(channel->center_freq),
1145			&ath5k_channel_2ghz);
1146		if (ret)
1147			return ret;
1148
1149		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1150		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1151		    << 5) | (1 << 4);
1152	}
1153
1154	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1155		clock = 1;
1156		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1157			(clock << 1) | (1 << 10) | 1;
1158	} else {
1159		clock = 0;
1160		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1161			<< 2) | (clock << 1) | (1 << 10) | 1;
1162	}
1163
1164	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1165			AR5K_RF_BUFFER);
1166	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1167			AR5K_RF_BUFFER_CONTROL_3);
1168
1169	return 0;
1170}
1171
1172/*
1173 * Set channel on 5112 and newer
 
 
 
 
 
 
 
 
 
1174 */
1175static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
 
1176		struct ieee80211_channel *channel)
1177{
1178	u32 data, data0, data1, data2;
1179	u16 c;
1180
1181	data = data0 = data1 = data2 = 0;
1182	c = channel->center_freq;
1183
 
 
 
 
 
1184	if (c < 4800) {
 
 
1185		if (!((c - 2224) % 5)) {
 
1186			data0 = ((2 * (c - 704)) - 3040) / 10;
1187			data1 = 1;
 
 
1188		} else if (!((c - 2192) % 5)) {
 
1189			data0 = ((2 * (c - 672)) - 3040) / 10;
1190			data1 = 0;
1191		} else
1192			return -EINVAL;
1193
1194		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
 
 
 
 
 
 
 
 
 
1195	} else if ((c % 5) != 2 || c > 5435) {
1196		if (!(c % 20) && c >= 5120) {
1197			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1198			data2 = ath5k_hw_bitswap(3, 2);
1199		} else if (!(c % 10)) {
1200			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1201			data2 = ath5k_hw_bitswap(2, 2);
1202		} else if (!(c % 5)) {
1203			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1204			data2 = ath5k_hw_bitswap(1, 2);
1205		} else
1206			return -EINVAL;
1207	} else {
1208		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1209		data2 = ath5k_hw_bitswap(0, 2);
1210	}
1211
1212	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1213
1214	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1215	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1216
1217	return 0;
1218}
1219
1220/*
1221 * Set the channel on the RF2425
 
 
 
 
 
1222 */
1223static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
 
1224		struct ieee80211_channel *channel)
1225{
1226	u32 data, data0, data2;
1227	u16 c;
1228
1229	data = data0 = data2 = 0;
1230	c = channel->center_freq;
1231
1232	if (c < 4800) {
1233		data0 = ath5k_hw_bitswap((c - 2272), 8);
1234		data2 = 0;
1235	/* ? 5GHz ? */
1236	} else if ((c % 5) != 2 || c > 5435) {
1237		if (!(c % 20) && c < 5120)
1238			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1239		else if (!(c % 10))
1240			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1241		else if (!(c % 5))
1242			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1243		else
1244			return -EINVAL;
1245		data2 = ath5k_hw_bitswap(1, 2);
1246	} else {
1247		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1248		data2 = ath5k_hw_bitswap(0, 2);
1249	}
1250
1251	data = (data0 << 4) | data2 << 2 | 0x1001;
1252
1253	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1254	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1255
1256	return 0;
1257}
1258
1259/*
1260 * Set a channel on the radio chip
 
 
 
 
 
1261 */
1262static int ath5k_hw_channel(struct ath5k_hw *ah,
 
1263		struct ieee80211_channel *channel)
1264{
1265	int ret;
1266	/*
1267	 * Check bounds supported by the PHY (we don't care about regulatory
1268	 * restrictions at this point). Note: hw_value already has the band
1269	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1270	 * of the band by that */
1271	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1272		ATH5K_ERR(ah,
1273			"channel frequency (%u MHz) out of supported "
1274			"band range\n",
1275			channel->center_freq);
1276			return -EINVAL;
1277	}
1278
1279	/*
1280	 * Set the channel and wait
1281	 */
1282	switch (ah->ah_radio) {
1283	case AR5K_RF5110:
1284		ret = ath5k_hw_rf5110_channel(ah, channel);
1285		break;
1286	case AR5K_RF5111:
1287		ret = ath5k_hw_rf5111_channel(ah, channel);
1288		break;
1289	case AR5K_RF2317:
1290	case AR5K_RF2425:
1291		ret = ath5k_hw_rf2425_channel(ah, channel);
1292		break;
1293	default:
1294		ret = ath5k_hw_rf5112_channel(ah, channel);
1295		break;
1296	}
1297
1298	if (ret)
1299		return ret;
1300
1301	/* Set JAPAN setting for channel 14 */
1302	if (channel->center_freq == 2484) {
1303		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1304				AR5K_PHY_CCKTXCTL_JAPAN);
1305	} else {
1306		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1307				AR5K_PHY_CCKTXCTL_WORLD);
1308	}
1309
1310	ah->ah_current_channel = channel;
1311
1312	return 0;
1313}
1314
 
1315/*****************\
1316  PHY calibration
1317\*****************/
1318
1319static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320{
1321	s32 val;
1322
1323	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1324	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1325}
1326
1327void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
 
 
 
 
 
1328{
1329	int i;
1330
1331	ah->ah_nfcal_hist.index = 0;
1332	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1333		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1334}
1335
 
 
 
 
 
1336static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1337{
1338	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1339	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1340	hist->nfval[hist->index] = noise_floor;
1341}
1342
1343static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
 
 
 
 
 
1344{
1345	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1346	s16 tmp;
1347	int i, j;
1348
1349	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1350	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1351		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1352			if (sort[j] > sort[j - 1]) {
1353				tmp = sort[j];
1354				sort[j] = sort[j - 1];
1355				sort[j - 1] = tmp;
1356			}
1357		}
1358	}
1359	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1360		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1361			"cal %d:%d\n", i, sort[i]);
1362	}
1363	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1364}
1365
1366/*
1367 * When we tell the hardware to perform a noise floor calibration
1368 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1369 * sample-and-hold the minimum noise level seen at the antennas.
1370 * This value is then stored in a ring buffer of recently measured
1371 * noise floor values so we have a moving window of the last few
1372 * samples.
1373 *
1374 * The median of the values in the history is then loaded into the
1375 * hardware for its own use for RSSI and CCA measurements.
 
1376 */
1377void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
 
1378{
1379	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1380	u32 val;
1381	s16 nf, threshold;
1382	u8 ee_mode;
1383
1384	/* keep last value if calibration hasn't completed */
1385	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1386		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1387			"NF did not complete in calibration window\n");
1388
1389		return;
1390	}
1391
1392	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
 
 
1393
1394	/* completed NF calibration, test threshold */
1395	nf = ath5k_hw_read_measured_noise_floor(ah);
1396	threshold = ee->ee_noise_floor_thr[ee_mode];
1397
1398	if (nf > threshold) {
1399		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1400			"noise floor failure detected; "
1401			"read %d, threshold %d\n",
1402			nf, threshold);
1403
1404		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1405	}
1406
1407	ath5k_hw_update_nfcal_hist(ah, nf);
1408	nf = ath5k_hw_get_median_noise_floor(ah);
1409
1410	/* load noise floor (in .5 dBm) so the hardware will use it */
1411	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1412	val |= (nf * 2) & AR5K_PHY_NF_M;
1413	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1414
1415	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1416		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1417
1418	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1419		0, false);
1420
1421	/*
1422	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1423	 * so that we're not capped by the median we just loaded.
1424	 * This will be used as the initial value for the next noise
1425	 * floor calibration.
1426	 */
1427	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1428	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1429	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1430		AR5K_PHY_AGCCTL_NF_EN |
1431		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1432		AR5K_PHY_AGCCTL_NF);
1433
1434	ah->ah_noise_floor = nf;
1435
 
 
1436	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1437		"noise floor calibrated: %d\n", nf);
1438}
1439
1440/*
1441 * Perform a PHY calibration on RF5110
1442 * -Fix BPSK/QAM Constellation (I/Q correction)
 
 
 
1443 */
1444static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
 
1445		struct ieee80211_channel *channel)
1446{
1447	u32 phy_sig, phy_agc, phy_sat, beacon;
1448	int ret;
1449
 
 
 
1450	/*
1451	 * Disable beacons and RX/TX queues, wait
1452	 */
1453	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1454		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1455	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1456	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1457
1458	mdelay(2);
1459
1460	/*
1461	 * Set the channel (with AGC turned off)
1462	 */
1463	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1464	udelay(10);
1465	ret = ath5k_hw_channel(ah, channel);
1466
1467	/*
1468	 * Activate PHY and wait
1469	 */
1470	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1471	mdelay(1);
1472
1473	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474
1475	if (ret)
1476		return ret;
1477
1478	/*
1479	 * Calibrate the radio chip
1480	 */
1481
1482	/* Remember normal state */
1483	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1484	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1485	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1486
1487	/* Update radio registers */
1488	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1489		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1490
1491	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1492			AR5K_PHY_AGCCOARSE_LO)) |
1493		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1494		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1495
1496	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1497			AR5K_PHY_ADCSAT_THR)) |
1498		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1499		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1500
1501	udelay(20);
1502
1503	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1504	udelay(10);
1505	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1506	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1507
1508	mdelay(1);
1509
1510	/*
1511	 * Enable calibration and wait until completion
1512	 */
1513	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1514
1515	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1516			AR5K_PHY_AGCCTL_CAL, 0, false);
1517
1518	/* Reset to normal state */
1519	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1520	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1521	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1522
1523	if (ret) {
1524		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1525				channel->center_freq);
1526		return ret;
1527	}
1528
1529	/*
1530	 * Re-enable RX/TX and beacons
1531	 */
1532	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1533		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1534	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1535
1536	return 0;
1537}
1538
1539/*
1540 * Perform I/Q calibration on RF5111/5112 and newer chips
 
1541 */
1542static int
1543ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1544{
1545	u32 i_pwr, q_pwr;
1546	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1547	int i;
1548
1549	if (!ah->ah_calibration ||
1550		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1551		return 0;
 
 
 
 
 
1552
1553	/* Calibration has finished, get the results and re-run */
1554	/* work around empty results which can apparently happen on 5212 */
 
 
1555	for (i = 0; i <= 10; i++) {
1556		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1557		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1558		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1559		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1560			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1561		if (i_pwr && q_pwr)
1562			break;
1563	}
1564
1565	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1566
1567	if (ah->ah_version == AR5K_AR5211)
1568		q_coffd = q_pwr >> 6;
1569	else
1570		q_coffd = q_pwr >> 7;
1571
1572	/* protect against divide by 0 and loss of sign bits */
 
 
1573	if (i_coffd == 0 || q_coffd < 2)
1574		return 0;
 
 
1575
1576	i_coff = (-iq_corr) / i_coffd;
1577	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1578
1579	if (ah->ah_version == AR5K_AR5211)
1580		q_coff = (i_pwr / q_coffd) - 64;
1581	else
1582		q_coff = (i_pwr / q_coffd) - 128;
1583	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1584
1585	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1586			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1587			i_coff, q_coff, i_coffd, q_coffd);
1588
1589	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1590	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1591	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1592	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1593
1594	/* Re-enable calibration -if we don't we'll commit
1595	 * the same values again and again */
1596	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1597			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1598	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1599
1600	return 0;
1601}
1602
1603/*
1604 * Perform a PHY calibration
 
 
 
 
 
 
1605 */
1606int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
 
1607		struct ieee80211_channel *channel)
1608{
1609	int ret;
1610
1611	if (ah->ah_radio == AR5K_RF5110)
1612		return ath5k_hw_rf5110_calibrate(ah, channel);
1613
1614	ret = ath5k_hw_rf511x_iq_calibrate(ah);
 
 
 
 
 
 
 
 
 
1615
1616	if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1617	    (channel->hw_value & CHANNEL_OFDM))
 
 
 
 
1618		ath5k_hw_request_rfgain_probe(ah);
1619
 
 
 
 
1620	return ret;
1621}
1622
1623
1624/***************************\
1625* Spur mitigation functions *
1626\***************************/
1627
 
 
 
 
 
 
 
 
 
 
1628static void
1629ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1630				struct ieee80211_channel *channel)
1631{
1632	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1633	u32 mag_mask[4] = {0, 0, 0, 0};
1634	u32 pilot_mask[2] = {0, 0};
1635	/* Note: fbin values are scaled up by 2 */
1636	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1637	s32 spur_delta_phase, spur_freq_sigma_delta;
1638	s32 spur_offset, num_symbols_x16;
1639	u8 num_symbol_offsets, i, freq_band;
1640
1641	/* Convert current frequency to fbin value (the same way channels
1642	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1643	 * up by 2 so we can compare it later */
1644	if (channel->hw_value & CHANNEL_2GHZ) {
1645		chan_fbin = (channel->center_freq - 2300) * 10;
1646		freq_band = AR5K_EEPROM_BAND_2GHZ;
1647	} else {
1648		chan_fbin = (channel->center_freq - 4900) * 10;
1649		freq_band = AR5K_EEPROM_BAND_5GHZ;
1650	}
1651
1652	/* Check if any spur_chan_fbin from EEPROM is
1653	 * within our current channel's spur detection range */
1654	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1655	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1656	/* XXX: Half/Quarter channels ?*/
1657	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1658		spur_detection_window *= 2;
1659
1660	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1661		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1662
1663		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1664		 * so it's zero if we got nothing from EEPROM */
1665		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1666			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1667			break;
1668		}
1669
1670		if ((chan_fbin - spur_detection_window <=
1671		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1672		(chan_fbin + spur_detection_window >=
1673		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1674			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1675			break;
1676		}
1677	}
1678
1679	/* We need to enable spur filter for this channel */
1680	if (spur_chan_fbin) {
1681		spur_offset = spur_chan_fbin - chan_fbin;
1682		/*
1683		 * Calculate deltas:
1684		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1685		 * spur_delta_phase -> spur_offset / chip_freq << 11
1686		 * Note: Both values have 100Hz resolution
1687		 */
1688		switch (ah->ah_bwmode) {
1689		case AR5K_BWMODE_40MHZ:
1690			/* Both sample_freq and chip_freq are 80MHz */
1691			spur_delta_phase = (spur_offset << 16) / 25;
1692			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1693			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1694			break;
1695		case AR5K_BWMODE_10MHZ:
1696			/* Both sample_freq and chip_freq are 20MHz (?) */
1697			spur_delta_phase = (spur_offset << 18) / 25;
1698			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1699			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
 
1700		case AR5K_BWMODE_5MHZ:
1701			/* Both sample_freq and chip_freq are 10MHz (?) */
1702			spur_delta_phase = (spur_offset << 19) / 25;
1703			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1704			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
 
1705		default:
1706			if (channel->hw_value == CHANNEL_A) {
1707				/* Both sample_freq and chip_freq are 40MHz */
1708				spur_delta_phase = (spur_offset << 17) / 25;
1709				spur_freq_sigma_delta =
1710						(spur_delta_phase >> 10);
1711				symbol_width =
1712					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1713			} else {
1714				/* sample_freq -> 40MHz chip_freq -> 44MHz
1715				 * (for b compatibility) */
1716				spur_delta_phase = (spur_offset << 17) / 25;
1717				spur_freq_sigma_delta =
1718						(spur_offset << 8) / 55;
1719				symbol_width =
1720					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1721			}
1722			break;
1723		}
1724
1725		/* Calculate pilot and magnitude masks */
1726
1727		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1728		 * and divide by symbol_width to find how many symbols we have
1729		 * Note: number of symbols is scaled up by 16 */
1730		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1731
1732		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1733		if (!(num_symbols_x16 & 0xF))
1734			/* _X_ */
1735			num_symbol_offsets = 3;
1736		else
1737			/* _xx_ */
1738			num_symbol_offsets = 4;
1739
1740		for (i = 0; i < num_symbol_offsets; i++) {
1741
1742			/* Calculate pilot mask */
1743			s32 curr_sym_off =
1744				(num_symbols_x16 / 16) + i + 25;
1745
1746			/* Pilot magnitude mask seems to be a way to
1747			 * declare the boundaries for our detection
1748			 * window or something, it's 2 for the middle
1749			 * value(s) where the symbol is expected to be
1750			 * and 1 on the boundary values */
1751			u8 plt_mag_map =
1752				(i == 0 || i == (num_symbol_offsets - 1))
1753								? 1 : 2;
1754
1755			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1756				if (curr_sym_off <= 25)
1757					pilot_mask[0] |= 1 << curr_sym_off;
1758				else if (curr_sym_off >= 27)
1759					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1760			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1761				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1762
1763			/* Calculate magnitude mask (for viterbi decoder) */
1764			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1765				mag_mask[0] |=
1766					plt_mag_map << (curr_sym_off + 1) * 2;
1767			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1768				mag_mask[1] |=
1769					plt_mag_map << (curr_sym_off - 15) * 2;
1770			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1771				mag_mask[2] |=
1772					plt_mag_map << (curr_sym_off - 31) * 2;
1773			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1774				mag_mask[3] |=
1775					plt_mag_map << (curr_sym_off - 47) * 2;
1776
1777		}
1778
1779		/* Write settings on hw to enable spur filter */
1780		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1781					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1782		/* XXX: Self correlator also ? */
1783		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1784					AR5K_PHY_IQ_PILOT_MASK_EN |
1785					AR5K_PHY_IQ_CHAN_MASK_EN |
1786					AR5K_PHY_IQ_SPUR_FILT_EN);
1787
1788		/* Set delta phase and freq sigma delta */
1789		ath5k_hw_reg_write(ah,
1790				AR5K_REG_SM(spur_delta_phase,
1791					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1792				AR5K_REG_SM(spur_freq_sigma_delta,
1793				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1794				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1795				AR5K_PHY_TIMING_11);
1796
1797		/* Write pilot masks */
1798		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1799		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1800					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1801					pilot_mask[1]);
1802
1803		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1804		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1805					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1806					pilot_mask[1]);
1807
1808		/* Write magnitude masks */
1809		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1810		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1811		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1812		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1813					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1814					mag_mask[3]);
1815
1816		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1817		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1818		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1819		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1820					AR5K_PHY_BIN_MASK2_4_MASK_4,
1821					mag_mask[3]);
1822
1823	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1824	AR5K_PHY_IQ_SPUR_FILT_EN) {
1825		/* Clean up spur mitigation settings and disable filter */
1826		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1827					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1828		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1829					AR5K_PHY_IQ_PILOT_MASK_EN |
1830					AR5K_PHY_IQ_CHAN_MASK_EN |
1831					AR5K_PHY_IQ_SPUR_FILT_EN);
1832		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1833
1834		/* Clear pilot masks */
1835		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1836		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1837					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1838					0);
1839
1840		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1841		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1842					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1843					0);
1844
1845		/* Clear magnitude masks */
1846		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1847		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1848		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1849		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1850					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1851					0);
1852
1853		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1854		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1855		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1856		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1857					AR5K_PHY_BIN_MASK2_4_MASK_4,
1858					0);
1859	}
1860}
1861
1862
1863/*****************\
1864* Antenna control *
1865\*****************/
1866
1867static void /*TODO:Boundary check*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1869{
1870	if (ah->ah_version != AR5K_AR5210)
1871		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1872}
1873
1874/*
1875 * Enable/disable fast rx antenna diversity
 
 
 
1876 */
1877static void
1878ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1879{
1880	switch (ee_mode) {
1881	case AR5K_EEPROM_MODE_11G:
1882		/* XXX: This is set to
1883		 * disabled on initvals !!! */
1884	case AR5K_EEPROM_MODE_11A:
1885		if (enable)
1886			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1887					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1888		else
1889			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1890					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1891		break;
1892	case AR5K_EEPROM_MODE_11B:
1893		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1894					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1895		break;
1896	default:
1897		return;
1898	}
1899
1900	if (enable) {
1901		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1902				AR5K_PHY_RESTART_DIV_GC, 4);
1903
1904		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1905					AR5K_PHY_FAST_ANT_DIV_EN);
1906	} else {
1907		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1908				AR5K_PHY_RESTART_DIV_GC, 0);
1909
1910		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1911					AR5K_PHY_FAST_ANT_DIV_EN);
1912	}
1913}
1914
 
 
 
 
 
 
 
 
1915void
1916ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1917{
1918	u8 ant0, ant1;
1919
1920	/*
1921	 * In case a fixed antenna was set as default
1922	 * use the same switch table twice.
1923	 */
1924	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1925		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1926	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1927		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1928	else {
1929		ant0 = AR5K_ANT_SWTABLE_A;
1930		ant1 = AR5K_ANT_SWTABLE_B;
1931	}
1932
1933	/* Set antenna idle switch table */
1934	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1935			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1936			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1937			AR5K_PHY_ANT_CTL_TXRX_EN));
1938
1939	/* Set antenna switch tables */
1940	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1941		AR5K_PHY_ANT_SWITCH_TABLE_0);
1942	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1943		AR5K_PHY_ANT_SWITCH_TABLE_1);
1944}
1945
1946/*
1947 * Set antenna operating mode
 
 
1948 */
1949void
1950ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1951{
1952	struct ieee80211_channel *channel = ah->ah_current_channel;
1953	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1954	bool use_def_for_sg;
1955	int ee_mode;
1956	u8 def_ant, tx_ant;
1957	u32 sta_id1 = 0;
1958
1959	/* if channel is not initialized yet we can't set the antennas
1960	 * so just store the mode. it will be set on the next reset */
1961	if (channel == NULL) {
1962		ah->ah_ant_mode = ant_mode;
1963		return;
1964	}
1965
1966	def_ant = ah->ah_def_ant;
1967
1968	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1969	if (ee_mode < 0) {
1970		ATH5K_ERR(ah,
1971			"invalid channel: %d\n", channel->center_freq);
1972		return;
1973	}
1974
1975	switch (ant_mode) {
1976	case AR5K_ANTMODE_DEFAULT:
1977		tx_ant = 0;
1978		use_def_for_tx = false;
1979		update_def_on_tx = false;
1980		use_def_for_rts = false;
1981		use_def_for_sg = false;
1982		fast_div = true;
1983		break;
1984	case AR5K_ANTMODE_FIXED_A:
1985		def_ant = 1;
1986		tx_ant = 1;
1987		use_def_for_tx = true;
1988		update_def_on_tx = false;
1989		use_def_for_rts = true;
1990		use_def_for_sg = true;
1991		fast_div = false;
1992		break;
1993	case AR5K_ANTMODE_FIXED_B:
1994		def_ant = 2;
1995		tx_ant = 2;
1996		use_def_for_tx = true;
1997		update_def_on_tx = false;
1998		use_def_for_rts = true;
1999		use_def_for_sg = true;
2000		fast_div = false;
2001		break;
2002	case AR5K_ANTMODE_SINGLE_AP:
2003		def_ant = 1;	/* updated on tx */
2004		tx_ant = 0;
2005		use_def_for_tx = true;
2006		update_def_on_tx = true;
2007		use_def_for_rts = true;
2008		use_def_for_sg = true;
2009		fast_div = true;
2010		break;
2011	case AR5K_ANTMODE_SECTOR_AP:
2012		tx_ant = 1;	/* variable */
2013		use_def_for_tx = false;
2014		update_def_on_tx = false;
2015		use_def_for_rts = true;
2016		use_def_for_sg = false;
2017		fast_div = false;
2018		break;
2019	case AR5K_ANTMODE_SECTOR_STA:
2020		tx_ant = 1;	/* variable */
2021		use_def_for_tx = true;
2022		update_def_on_tx = false;
2023		use_def_for_rts = true;
2024		use_def_for_sg = false;
2025		fast_div = true;
2026		break;
2027	case AR5K_ANTMODE_DEBUG:
2028		def_ant = 1;
2029		tx_ant = 2;
2030		use_def_for_tx = false;
2031		update_def_on_tx = false;
2032		use_def_for_rts = false;
2033		use_def_for_sg = false;
2034		fast_div = false;
2035		break;
2036	default:
2037		return;
2038	}
2039
2040	ah->ah_tx_ant = tx_ant;
2041	ah->ah_ant_mode = ant_mode;
2042	ah->ah_def_ant = def_ant;
2043
2044	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2045	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2046	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2047	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2048
2049	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2050
2051	if (sta_id1)
2052		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2053
2054	ath5k_hw_set_antenna_switch(ah, ee_mode);
2055	/* Note: set diversity before default antenna
2056	 * because it won't work correctly */
2057	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2058	ath5k_hw_set_def_antenna(ah, def_ant);
2059}
2060
2061
2062/****************\
2063* TX power setup *
2064\****************/
2065
2066/*
2067 * Helper functions
2068 */
2069
2070/*
2071 * Do linear interpolation between two given (x, y) points
 
 
 
 
 
2072 */
2073static s16
2074ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2075					s16 y_left, s16 y_right)
2076{
2077	s16 ratio, result;
2078
2079	/* Avoid divide by zero and skip interpolation
2080	 * if we have the same point */
2081	if ((x_left == x_right) || (y_left == y_right))
2082		return y_left;
2083
2084	/*
2085	 * Since we use ints and not fps, we need to scale up in
2086	 * order to get a sane ratio value (or else we 'll eg. get
2087	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2088	 * to have some accuracy both for 0.5 and 0.25 steps.
2089	 */
2090	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2091
2092	/* Now scale down to be in range */
2093	result = y_left + (ratio * (target - x_left) / 100);
2094
2095	return result;
2096}
2097
2098/*
2099 * Find vertical boundary (min pwr) for the linear PCDAC curve.
 
 
 
 
 
2100 *
2101 * Since we have the top of the curve and we draw the line below
2102 * until we reach 1 (1 pcdac step) we need to know which point
2103 * (x value) that is so that we don't go below y axis and have negative
2104 * pcdac values when creating the curve, or fill the table with zeroes.
2105 */
2106static s16
2107ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2108				const s16 *pwrL, const s16 *pwrR)
2109{
2110	s8 tmp;
2111	s16 min_pwrL, min_pwrR;
2112	s16 pwr_i;
2113
2114	/* Some vendors write the same pcdac value twice !!! */
2115	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2116		return max(pwrL[0], pwrR[0]);
2117
2118	if (pwrL[0] == pwrL[1])
2119		min_pwrL = pwrL[0];
2120	else {
2121		pwr_i = pwrL[0];
2122		do {
2123			pwr_i--;
2124			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2125							pwrL[0], pwrL[1],
2126							stepL[0], stepL[1]);
2127		} while (tmp > 1);
2128
2129		min_pwrL = pwr_i;
2130	}
2131
2132	if (pwrR[0] == pwrR[1])
2133		min_pwrR = pwrR[0];
2134	else {
2135		pwr_i = pwrR[0];
2136		do {
2137			pwr_i--;
2138			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2139							pwrR[0], pwrR[1],
2140							stepR[0], stepR[1]);
2141		} while (tmp > 1);
2142
2143		min_pwrR = pwr_i;
2144	}
2145
2146	/* Keep the right boundary so that it works for both curves */
2147	return max(min_pwrL, min_pwrR);
2148}
2149
2150/*
 
 
 
 
 
 
 
 
 
2151 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2152 * Power to PCDAC curve.
2153 *
2154 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2155 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2156 * PCDAC/PDADC step for each curve is 64 but we can write more than
2157 * one curves on hw so we can go up to 128 (which is the max step we
2158 * can write on the final table).
2159 *
2160 * We write y values (PCDAC/PDADC steps) on hw.
2161 */
2162static void
2163ath5k_create_power_curve(s16 pmin, s16 pmax,
2164			const s16 *pwr, const u8 *vpd,
2165			u8 num_points,
2166			u8 *vpd_table, u8 type)
2167{
2168	u8 idx[2] = { 0, 1 };
2169	s16 pwr_i = 2 * pmin;
2170	int i;
2171
2172	if (num_points < 2)
2173		return;
2174
2175	/* We want the whole line, so adjust boundaries
2176	 * to cover the entire power range. Note that
2177	 * power values are already 0.25dB so no need
2178	 * to multiply pwr_i by 2 */
2179	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2180		pwr_i = pmin;
2181		pmin = 0;
2182		pmax = 63;
2183	}
2184
2185	/* Find surrounding turning points (TPs)
2186	 * and interpolate between them */
2187	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2188	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2189
2190		/* We passed the right TP, move to the next set of TPs
2191		 * if we pass the last TP, extrapolate above using the last
2192		 * two TPs for ratio */
2193		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2194			idx[0]++;
2195			idx[1]++;
2196		}
2197
2198		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2199						pwr[idx[0]], pwr[idx[1]],
2200						vpd[idx[0]], vpd[idx[1]]);
2201
2202		/* Increase by 0.5dB
2203		 * (0.25 dB units) */
2204		pwr_i += 2;
2205	}
2206}
2207
2208/*
 
 
 
 
 
 
 
2209 * Get the surrounding per-channel power calibration piers
2210 * for a given frequency so that we can interpolate between
2211 * them and come up with an appropriate dataset for our current
2212 * channel.
2213 */
2214static void
2215ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2216			struct ieee80211_channel *channel,
2217			struct ath5k_chan_pcal_info **pcinfo_l,
2218			struct ath5k_chan_pcal_info **pcinfo_r)
2219{
2220	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2221	struct ath5k_chan_pcal_info *pcinfo;
2222	u8 idx_l, idx_r;
2223	u8 mode, max, i;
2224	u32 target = channel->center_freq;
2225
2226	idx_l = 0;
2227	idx_r = 0;
2228
2229	if (!(channel->hw_value & CHANNEL_OFDM)) {
 
 
 
 
 
2230		pcinfo = ee->ee_pwr_cal_b;
2231		mode = AR5K_EEPROM_MODE_11B;
2232	} else if (channel->hw_value & CHANNEL_2GHZ) {
 
 
2233		pcinfo = ee->ee_pwr_cal_g;
2234		mode = AR5K_EEPROM_MODE_11G;
2235	} else {
2236		pcinfo = ee->ee_pwr_cal_a;
2237		mode = AR5K_EEPROM_MODE_11A;
2238	}
2239	max = ee->ee_n_piers[mode] - 1;
2240
2241	/* Frequency is below our calibrated
2242	 * range. Use the lowest power curve
2243	 * we have */
2244	if (target < pcinfo[0].freq) {
2245		idx_l = idx_r = 0;
2246		goto done;
2247	}
2248
2249	/* Frequency is above our calibrated
2250	 * range. Use the highest power curve
2251	 * we have */
2252	if (target > pcinfo[max].freq) {
2253		idx_l = idx_r = max;
2254		goto done;
2255	}
2256
2257	/* Frequency is inside our calibrated
2258	 * channel range. Pick the surrounding
2259	 * calibration piers so that we can
2260	 * interpolate */
2261	for (i = 0; i <= max; i++) {
2262
2263		/* Frequency matches one of our calibration
2264		 * piers, no need to interpolate, just use
2265		 * that calibration pier */
2266		if (pcinfo[i].freq == target) {
2267			idx_l = idx_r = i;
2268			goto done;
2269		}
2270
2271		/* We found a calibration pier that's above
2272		 * frequency, use this pier and the previous
2273		 * one to interpolate */
2274		if (target < pcinfo[i].freq) {
2275			idx_r = i;
2276			idx_l = idx_r - 1;
2277			goto done;
2278		}
2279	}
2280
2281done:
2282	*pcinfo_l = &pcinfo[idx_l];
2283	*pcinfo_r = &pcinfo[idx_r];
2284}
2285
2286/*
 
 
 
 
 
 
2287 * Get the surrounding per-rate power calibration data
2288 * for a given frequency and interpolate between power
2289 * values to set max target power supported by hw for
2290 * each rate.
2291 */
2292static void
2293ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2294			struct ieee80211_channel *channel,
2295			struct ath5k_rate_pcal_info *rates)
2296{
2297	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2298	struct ath5k_rate_pcal_info *rpinfo;
2299	u8 idx_l, idx_r;
2300	u8 mode, max, i;
2301	u32 target = channel->center_freq;
2302
2303	idx_l = 0;
2304	idx_r = 0;
2305
2306	if (!(channel->hw_value & CHANNEL_OFDM)) {
 
 
 
 
 
2307		rpinfo = ee->ee_rate_tpwr_b;
2308		mode = AR5K_EEPROM_MODE_11B;
2309	} else if (channel->hw_value & CHANNEL_2GHZ) {
 
 
2310		rpinfo = ee->ee_rate_tpwr_g;
2311		mode = AR5K_EEPROM_MODE_11G;
2312	} else {
2313		rpinfo = ee->ee_rate_tpwr_a;
2314		mode = AR5K_EEPROM_MODE_11A;
2315	}
2316	max = ee->ee_rate_target_pwr_num[mode] - 1;
2317
2318	/* Get the surrounding calibration
2319	 * piers - same as above */
2320	if (target < rpinfo[0].freq) {
2321		idx_l = idx_r = 0;
2322		goto done;
2323	}
2324
2325	if (target > rpinfo[max].freq) {
2326		idx_l = idx_r = max;
2327		goto done;
2328	}
2329
2330	for (i = 0; i <= max; i++) {
2331
2332		if (rpinfo[i].freq == target) {
2333			idx_l = idx_r = i;
2334			goto done;
2335		}
2336
2337		if (target < rpinfo[i].freq) {
2338			idx_r = i;
2339			idx_l = idx_r - 1;
2340			goto done;
2341		}
2342	}
2343
2344done:
2345	/* Now interpolate power value, based on the frequency */
2346	rates->freq = target;
2347
2348	rates->target_power_6to24 =
2349		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2350					rpinfo[idx_r].freq,
2351					rpinfo[idx_l].target_power_6to24,
2352					rpinfo[idx_r].target_power_6to24);
2353
2354	rates->target_power_36 =
2355		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2356					rpinfo[idx_r].freq,
2357					rpinfo[idx_l].target_power_36,
2358					rpinfo[idx_r].target_power_36);
2359
2360	rates->target_power_48 =
2361		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2362					rpinfo[idx_r].freq,
2363					rpinfo[idx_l].target_power_48,
2364					rpinfo[idx_r].target_power_48);
2365
2366	rates->target_power_54 =
2367		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2368					rpinfo[idx_r].freq,
2369					rpinfo[idx_l].target_power_54,
2370					rpinfo[idx_r].target_power_54);
2371}
2372
2373/*
 
 
 
 
2374 * Get the max edge power for this channel if
2375 * we have such data from EEPROM's Conformance Test
2376 * Limits (CTL), and limit max power if needed.
2377 */
2378static void
2379ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2380			struct ieee80211_channel *channel)
2381{
2382	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2383	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2384	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2385	u8 *ctl_val = ee->ee_ctl;
2386	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2387	s16 edge_pwr = 0;
2388	u8 rep_idx;
2389	u8 i, ctl_mode;
2390	u8 ctl_idx = 0xFF;
2391	u32 target = channel->center_freq;
2392
2393	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2394
2395	switch (channel->hw_value & CHANNEL_MODES) {
2396	case CHANNEL_A:
2397		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2398			ctl_mode |= AR5K_CTL_TURBO;
2399		else
2400			ctl_mode |= AR5K_CTL_11A;
2401		break;
2402	case CHANNEL_G:
2403		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2404			ctl_mode |= AR5K_CTL_TURBOG;
2405		else
2406			ctl_mode |= AR5K_CTL_11G;
2407		break;
2408	case CHANNEL_B:
2409		ctl_mode |= AR5K_CTL_11B;
2410		break;
2411	case CHANNEL_XR:
2412		/* Fall through */
2413	default:
2414		return;
2415	}
2416
2417	for (i = 0; i < ee->ee_ctls; i++) {
2418		if (ctl_val[i] == ctl_mode) {
2419			ctl_idx = i;
2420			break;
2421		}
2422	}
2423
2424	/* If we have a CTL dataset available grab it and find the
2425	 * edge power for our frequency */
2426	if (ctl_idx == 0xFF)
2427		return;
2428
2429	/* Edge powers are sorted by frequency from lower
2430	 * to higher. Each CTL corresponds to 8 edge power
2431	 * measurements. */
2432	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2433
2434	/* Don't do boundaries check because we
2435	 * might have more that one bands defined
2436	 * for this mode */
2437
2438	/* Get the edge power that's closer to our
2439	 * frequency */
2440	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2441		rep_idx += i;
2442		if (target <= rep[rep_idx].freq)
2443			edge_pwr = (s16) rep[rep_idx].edge;
2444	}
2445
2446	if (edge_pwr)
2447		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2448}
2449
2450
2451/*
2452 * Power to PCDAC table functions
2453 */
2454
2455/*
2456 * Fill Power to PCDAC table on RF5111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457 *
2458 * No further processing is needed for RF5111, the only thing we have to
2459 * do is fill the values below and above calibration range since eeprom data
2460 * may not cover the entire PCDAC table.
2461 */
2462static void
2463ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2464							s16 *table_max)
2465{
2466	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2467	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2468	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2469	s16	min_pwr, max_pwr;
2470
2471	/* Get table boundaries */
2472	min_pwr = table_min[0];
2473	pcdac_0 = pcdac_tmp[0];
2474
2475	max_pwr = table_max[0];
2476	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2477
2478	/* Extrapolate below minimum using pcdac_0 */
2479	pcdac_i = 0;
2480	for (i = 0; i < min_pwr; i++)
2481		pcdac_out[pcdac_i++] = pcdac_0;
2482
2483	/* Copy values from pcdac_tmp */
2484	pwr_idx = min_pwr;
2485	for (i = 0; pwr_idx <= max_pwr &&
2486		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2487		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2488		pwr_idx++;
2489	}
2490
2491	/* Extrapolate above maximum */
2492	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2493		pcdac_out[pcdac_i++] = pcdac_n;
2494
2495}
2496
2497/*
2498 * Combine available XPD Curves and fill Linear Power to PCDAC table
2499 * on RF5112
 
 
 
2500 *
 
2501 * RFX112 can have up to 2 curves (one for low txpower range and one for
2502 * higher txpower range). We need to put them both on pcdac_out and place
2503 * them in the correct location. In case we only have one curve available
2504 * just fit it on pcdac_out (it's supposed to cover the entire range of
2505 * available pwr levels since it's always the higher power curve). Extrapolate
2506 * below and above final table if needed.
2507 */
2508static void
2509ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2510						s16 *table_max, u8 pdcurves)
2511{
2512	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2513	u8	*pcdac_low_pwr;
2514	u8	*pcdac_high_pwr;
2515	u8	*pcdac_tmp;
2516	u8	pwr;
2517	s16	max_pwr_idx;
2518	s16	min_pwr_idx;
2519	s16	mid_pwr_idx = 0;
2520	/* Edge flag turns on the 7nth bit on the PCDAC
2521	 * to declare the higher power curve (force values
2522	 * to be greater than 64). If we only have one curve
2523	 * we don't need to set this, if we have 2 curves and
2524	 * fill the table backwards this can also be used to
2525	 * switch from higher power curve to lower power curve */
2526	u8	edge_flag;
2527	int	i;
2528
2529	/* When we have only one curve available
2530	 * that's the higher power curve. If we have
2531	 * two curves the first is the high power curve
2532	 * and the next is the low power curve. */
2533	if (pdcurves > 1) {
2534		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2535		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2536		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2537		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2538
2539		/* If table size goes beyond 31.5dB, keep the
2540		 * upper 31.5dB range when setting tx power.
2541		 * Note: 126 = 31.5 dB in quarter dB steps */
2542		if (table_max[0] - table_min[1] > 126)
2543			min_pwr_idx = table_max[0] - 126;
2544		else
2545			min_pwr_idx = table_min[1];
2546
2547		/* Since we fill table backwards
2548		 * start from high power curve */
2549		pcdac_tmp = pcdac_high_pwr;
2550
2551		edge_flag = 0x40;
2552	} else {
2553		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2554		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2555		min_pwr_idx = table_min[0];
2556		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2557		pcdac_tmp = pcdac_high_pwr;
2558		edge_flag = 0;
2559	}
2560
2561	/* This is used when setting tx power*/
2562	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2563
2564	/* Fill Power to PCDAC table backwards */
2565	pwr = max_pwr_idx;
2566	for (i = 63; i >= 0; i--) {
2567		/* Entering lower power range, reset
2568		 * edge flag and set pcdac_tmp to lower
2569		 * power curve.*/
2570		if (edge_flag == 0x40 &&
2571		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2572			edge_flag = 0x00;
2573			pcdac_tmp = pcdac_low_pwr;
2574			pwr = mid_pwr_idx / 2;
2575		}
2576
2577		/* Don't go below 1, extrapolate below if we have
2578		 * already switched to the lower power curve -or
2579		 * we only have one curve and edge_flag is zero
2580		 * anyway */
2581		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2582			while (i >= 0) {
2583				pcdac_out[i] = pcdac_out[i + 1];
2584				i--;
2585			}
2586			break;
2587		}
2588
2589		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2590
2591		/* Extrapolate above if pcdac is greater than
2592		 * 126 -this can happen because we OR pcdac_out
2593		 * value with edge_flag on high power curve */
2594		if (pcdac_out[i] > 126)
2595			pcdac_out[i] = 126;
2596
2597		/* Decrease by a 0.5dB step */
2598		pwr--;
2599	}
2600}
2601
2602/* Write PCDAC values on hw */
 
 
 
2603static void
2604ath5k_write_pcdac_table(struct ath5k_hw *ah)
2605{
2606	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2607	int	i;
2608
2609	/*
2610	 * Write TX power values
2611	 */
2612	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2613		ath5k_hw_reg_write(ah,
2614			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2615			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2616			AR5K_PHY_PCDAC_TXPOWER(i));
2617	}
2618}
2619
2620
2621/*
2622 * Power to PDADC table functions
2623 */
2624
2625/*
2626 * Set the gain boundaries and create final Power to PDADC table
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627 *
 
2628 * We can have up to 4 pd curves, we need to do a similar process
2629 * as we do for RF5112. This time we don't have an edge_flag but we
2630 * set the gain boundaries on a separate register.
2631 */
2632static void
2633ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2634			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2635{
2636	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2637	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2638	u8 *pdadc_tmp;
2639	s16 pdadc_0;
2640	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2641	u8 pd_gain_overlap;
2642
2643	/* Note: Register value is initialized on initvals
2644	 * there is no feedback from hw.
2645	 * XXX: What about pd_gain_overlap from EEPROM ? */
2646	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2647		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2648
2649	/* Create final PDADC table */
2650	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2651		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2652
2653		if (pdg == pdcurves - 1)
2654			/* 2 dB boundary stretch for last
2655			 * (higher power) curve */
2656			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2657		else
2658			/* Set gain boundary in the middle
2659			 * between this curve and the next one */
2660			gain_boundaries[pdg] =
2661				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2662
2663		/* Sanity check in case our 2 db stretch got out of
2664		 * range. */
2665		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2666			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2667
2668		/* For the first curve (lower power)
2669		 * start from 0 dB */
2670		if (pdg == 0)
2671			pdadc_0 = 0;
2672		else
2673			/* For the other curves use the gain overlap */
2674			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2675							pd_gain_overlap;
2676
2677		/* Force each power step to be at least 0.5 dB */
2678		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2679			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2680		else
2681			pwr_step = 1;
2682
2683		/* If pdadc_0 is negative, we need to extrapolate
2684		 * below this pdgain by a number of pwr_steps */
2685		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2686			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2687			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2688			pdadc_0++;
2689		}
2690
2691		/* Set last pwr level, using gain boundaries */
2692		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2693		/* Limit it to be inside pwr range */
2694		table_size = pwr_max[pdg] - pwr_min[pdg];
2695		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2696
2697		/* Fill pdadc_out table */
2698		while (pdadc_0 < max_idx && pdadc_i < 128)
2699			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2700
2701		/* Need to extrapolate above this pdgain? */
2702		if (pdadc_n <= max_idx)
2703			continue;
2704
2705		/* Force each power step to be at least 0.5 dB */
2706		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2707			pwr_step = pdadc_tmp[table_size - 1] -
2708						pdadc_tmp[table_size - 2];
2709		else
2710			pwr_step = 1;
2711
2712		/* Extrapolate above */
2713		while ((pdadc_0 < (s16) pdadc_n) &&
2714		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2715			s16 tmp = pdadc_tmp[table_size - 1] +
2716					(pdadc_0 - max_idx) * pwr_step;
2717			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2718			pdadc_0++;
2719		}
2720	}
2721
2722	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2723		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2724		pdg++;
2725	}
2726
2727	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2728		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2729		pdadc_i++;
2730	}
2731
2732	/* Set gain boundaries */
2733	ath5k_hw_reg_write(ah,
2734		AR5K_REG_SM(pd_gain_overlap,
2735			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2736		AR5K_REG_SM(gain_boundaries[0],
2737			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2738		AR5K_REG_SM(gain_boundaries[1],
2739			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2740		AR5K_REG_SM(gain_boundaries[2],
2741			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2742		AR5K_REG_SM(gain_boundaries[3],
2743			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2744		AR5K_PHY_TPC_RG5);
2745
2746	/* Used for setting rate power table */
2747	ah->ah_txpower.txp_min_idx = pwr_min[0];
2748
2749}
2750
2751/* Write PDADC values on hw */
 
 
 
 
2752static void
2753ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2754{
2755	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2756	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2757	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2758	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2759	u32 reg;
2760	u8 i;
2761
2762	/* Select the right pdgain curves */
2763
2764	/* Clear current settings */
2765	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2766	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2767		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2768		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2769		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2770
2771	/*
2772	 * Use pd_gains curve from eeprom
2773	 *
2774	 * This overrides the default setting from initvals
2775	 * in case some vendors (e.g. Zcomax) don't use the default
2776	 * curves. If we don't honor their settings we 'll get a
2777	 * 5dB (1 * gain overlap ?) drop.
2778	 */
2779	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2780
2781	switch (pdcurves) {
2782	case 3:
2783		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2784		/* Fall through */
2785	case 2:
2786		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2787		/* Fall through */
2788	case 1:
2789		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2790		break;
2791	}
2792	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2793
2794	/*
2795	 * Write TX power values
2796	 */
2797	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2798		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
2799		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
2800	}
2801}
2802
2803
2804/*
2805 * Common code for PCDAC/PDADC tables
2806 */
2807
2808/*
 
 
 
 
 
 
2809 * This is the main function that uses all of the above
2810 * to set PCDAC/PDADC table on hw for the current channel.
2811 * This table is used for tx power calibration on the baseband,
2812 * without it we get weird tx power levels and in some cases
2813 * distorted spectral mask
2814 */
2815static int
2816ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2817			struct ieee80211_channel *channel,
2818			u8 ee_mode, u8 type)
2819{
2820	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2821	struct ath5k_chan_pcal_info *pcinfo_L;
2822	struct ath5k_chan_pcal_info *pcinfo_R;
2823	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2824	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2825	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2826	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2827	u8 *tmpL;
2828	u8 *tmpR;
2829	u32 target = channel->center_freq;
2830	int pdg, i;
2831
2832	/* Get surrounding freq piers for this channel */
2833	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2834						&pcinfo_L,
2835						&pcinfo_R);
2836
2837	/* Loop over pd gain curves on
2838	 * surrounding freq piers by index */
2839	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2840
2841		/* Fill curves in reverse order
2842		 * from lower power (max gain)
2843		 * to higher power. Use curve -> idx
2844		 * backmapping we did on eeprom init */
2845		u8 idx = pdg_curve_to_idx[pdg];
2846
2847		/* Grab the needed curves by index */
2848		pdg_L = &pcinfo_L->pd_curves[idx];
2849		pdg_R = &pcinfo_R->pd_curves[idx];
2850
2851		/* Initialize the temp tables */
2852		tmpL = ah->ah_txpower.tmpL[pdg];
2853		tmpR = ah->ah_txpower.tmpR[pdg];
2854
2855		/* Set curve's x boundaries and create
2856		 * curves so that they cover the same
2857		 * range (if we don't do that one table
2858		 * will have values on some range and the
2859		 * other one won't have any so interpolation
2860		 * will fail) */
2861		table_min[pdg] = min(pdg_L->pd_pwr[0],
2862					pdg_R->pd_pwr[0]) / 2;
2863
2864		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2865				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2866
2867		/* Now create the curves on surrounding channels
2868		 * and interpolate if needed to get the final
2869		 * curve for this gain on this channel */
2870		switch (type) {
2871		case AR5K_PWRTABLE_LINEAR_PCDAC:
2872			/* Override min/max so that we don't loose
2873			 * accuracy (don't divide by 2) */
2874			table_min[pdg] = min(pdg_L->pd_pwr[0],
2875						pdg_R->pd_pwr[0]);
2876
2877			table_max[pdg] =
2878				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2879					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2880
2881			/* Override minimum so that we don't get
2882			 * out of bounds while extrapolating
2883			 * below. Don't do this when we have 2
2884			 * curves and we are on the high power curve
2885			 * because table_min is ok in this case */
2886			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2887
2888				table_min[pdg] =
2889					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2890								pdg_R->pd_step,
2891								pdg_L->pd_pwr,
2892								pdg_R->pd_pwr);
2893
2894				/* Don't go too low because we will
2895				 * miss the upper part of the curve.
2896				 * Note: 126 = 31.5dB (max power supported)
2897				 * in 0.25dB units */
2898				if (table_max[pdg] - table_min[pdg] > 126)
2899					table_min[pdg] = table_max[pdg] - 126;
2900			}
2901
2902			/* Fall through */
2903		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2904		case AR5K_PWRTABLE_PWR_TO_PDADC:
2905
2906			ath5k_create_power_curve(table_min[pdg],
2907						table_max[pdg],
2908						pdg_L->pd_pwr,
2909						pdg_L->pd_step,
2910						pdg_L->pd_points, tmpL, type);
2911
2912			/* We are in a calibration
2913			 * pier, no need to interpolate
2914			 * between freq piers */
2915			if (pcinfo_L == pcinfo_R)
2916				continue;
2917
2918			ath5k_create_power_curve(table_min[pdg],
2919						table_max[pdg],
2920						pdg_R->pd_pwr,
2921						pdg_R->pd_step,
2922						pdg_R->pd_points, tmpR, type);
2923			break;
2924		default:
2925			return -EINVAL;
2926		}
2927
2928		/* Interpolate between curves
2929		 * of surrounding freq piers to
2930		 * get the final curve for this
2931		 * pd gain. Re-use tmpL for interpolation
2932		 * output */
2933		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2934		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2935			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2936							(s16) pcinfo_L->freq,
2937							(s16) pcinfo_R->freq,
2938							(s16) tmpL[i],
2939							(s16) tmpR[i]);
2940		}
2941	}
2942
2943	/* Now we have a set of curves for this
2944	 * channel on tmpL (x range is table_max - table_min
2945	 * and y values are tmpL[pdg][]) sorted in the same
2946	 * order as EEPROM (because we've used the backmapping).
2947	 * So for RF5112 it's from higher power to lower power
2948	 * and for RF2413 it's from lower power to higher power.
2949	 * For RF5111 we only have one curve. */
2950
2951	/* Fill min and max power levels for this
2952	 * channel by interpolating the values on
2953	 * surrounding channels to complete the dataset */
2954	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2955					(s16) pcinfo_L->freq,
2956					(s16) pcinfo_R->freq,
2957					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2958
2959	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2960					(s16) pcinfo_L->freq,
2961					(s16) pcinfo_R->freq,
2962					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2963
2964	/* Fill PCDAC/PDADC table */
2965	switch (type) {
2966	case AR5K_PWRTABLE_LINEAR_PCDAC:
2967		/* For RF5112 we can have one or two curves
2968		 * and each curve covers a certain power lvl
2969		 * range so we need to do some more processing */
2970		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2971						ee->ee_pd_gains[ee_mode]);
2972
2973		/* Set txp.offset so that we can
2974		 * match max power value with max
2975		 * table index */
2976		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2977		break;
2978	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2979		/* We are done for RF5111 since it has only
2980		 * one curve, just fit the curve on the table */
2981		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2982
2983		/* No rate powertable adjustment for RF5111 */
2984		ah->ah_txpower.txp_min_idx = 0;
2985		ah->ah_txpower.txp_offset = 0;
2986		break;
2987	case AR5K_PWRTABLE_PWR_TO_PDADC:
2988		/* Set PDADC boundaries and fill
2989		 * final PDADC table */
2990		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2991						ee->ee_pd_gains[ee_mode]);
2992
2993		/* Set txp.offset, note that table_min
2994		 * can be negative */
2995		ah->ah_txpower.txp_offset = table_min[0];
2996		break;
2997	default:
2998		return -EINVAL;
2999	}
3000
3001	ah->ah_txpower.txp_setup = true;
3002
3003	return 0;
3004}
3005
3006/* Write power table for current channel to hw */
 
 
 
 
 
3007static void
3008ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3009{
3010	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3011		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3012	else
3013		ath5k_write_pcdac_table(ah);
3014}
3015
3016/*
3017 * Per-rate tx power setting
 
3018 *
3019 * This is the code that sets the desired tx power (below
3020 * maximum) on hw for each rate (we also have TPC that sets
3021 * power per packet). We do that by providing an index on the
3022 * PCDAC/PDADC table we set up.
3023 */
3024
3025/*
3026 * Set rate power table
3027 *
3028 * For now we only limit txpower based on maximum tx power
3029 * supported by hw (what's inside rate_info). We need to limit
3030 * this even more, based on regulatory domain etc.
 
 
 
3031 *
3032 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3033 * and is indexed as follows:
3034 * rates[0] - rates[7] -> OFDM rates
3035 * rates[8] - rates[14] -> CCK rates
3036 * rates[15] -> XR rates (they all have the same power)
3037 */
 
 
 
 
 
 
 
 
3038static void
3039ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3040			struct ath5k_rate_pcal_info *rate_info,
3041			u8 ee_mode)
3042{
3043	unsigned int i;
3044	u16 *rates;
 
3045
3046	/* max_pwr is power level we got from driver/user in 0.5dB
3047	 * units, switch to 0.25dB units so we can compare */
3048	max_pwr *= 2;
3049	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3050
3051	/* apply rate limits */
3052	rates = ah->ah_txpower.txp_rates_power_table;
3053
3054	/* OFDM rates 6 to 24Mb/s */
3055	for (i = 0; i < 5; i++)
3056		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3057
3058	/* Rest OFDM rates */
3059	rates[5] = min(rates[0], rate_info->target_power_36);
3060	rates[6] = min(rates[0], rate_info->target_power_48);
3061	rates[7] = min(rates[0], rate_info->target_power_54);
3062
3063	/* CCK rates */
3064	/* 1L */
3065	rates[8] = min(rates[0], rate_info->target_power_6to24);
3066	/* 2L */
3067	rates[9] = min(rates[0], rate_info->target_power_36);
3068	/* 2S */
3069	rates[10] = min(rates[0], rate_info->target_power_36);
3070	/* 5L */
3071	rates[11] = min(rates[0], rate_info->target_power_48);
3072	/* 5S */
3073	rates[12] = min(rates[0], rate_info->target_power_48);
3074	/* 11L */
3075	rates[13] = min(rates[0], rate_info->target_power_54);
3076	/* 11S */
3077	rates[14] = min(rates[0], rate_info->target_power_54);
3078
3079	/* XR rates */
3080	rates[15] = min(rates[0], rate_info->target_power_6to24);
3081
3082	/* CCK rates have different peak to average ratio
3083	 * so we have to tweak their power so that gainf
3084	 * correction works ok. For this we use OFDM to
3085	 * CCK delta from eeprom */
3086	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3087	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3088		for (i = 8; i <= 15; i++)
3089			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	/* Now that we have all rates setup use table offset to
3092	 * match the power range set by user with the power indices
3093	 * on PCDAC/PDADC table */
3094	for (i = 0; i < 16; i++) {
3095		rates[i] += ah->ah_txpower.txp_offset;
3096		/* Don't get out of bounds */
3097		if (rates[i] > 63)
3098			rates[i] = 63;
 
 
 
3099	}
3100
3101	/* Min/max in 0.25dB units */
3102	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3103	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3104	ah->ah_txpower.txp_ofdm = rates[7];
3105}
3106
3107
3108/*
3109 * Set transmission power
 
 
 
 
 
 
3110 */
3111static int
3112ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3113		 u8 txpower)
3114{
3115	struct ath5k_rate_pcal_info rate_info;
3116	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3117	int ee_mode;
3118	u8 type;
3119	int ret;
3120
3121	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3122		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3123		return -EINVAL;
3124	}
3125
3126	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3127	if (ee_mode < 0) {
3128		ATH5K_ERR(ah,
3129			"invalid channel: %d\n", channel->center_freq);
3130		return -EINVAL;
3131	}
3132
3133	/* Initialize TX power table */
3134	switch (ah->ah_radio) {
3135	case AR5K_RF5110:
3136		/* TODO */
3137		return 0;
3138	case AR5K_RF5111:
3139		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3140		break;
3141	case AR5K_RF5112:
3142		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3143		break;
3144	case AR5K_RF2413:
3145	case AR5K_RF5413:
3146	case AR5K_RF2316:
3147	case AR5K_RF2317:
3148	case AR5K_RF2425:
3149		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3150		break;
3151	default:
3152		return -EINVAL;
3153	}
3154
3155	/*
3156	 * If we don't change channel/mode skip tx powertable calculation
3157	 * and use the cached one.
3158	 */
3159	if (!ah->ah_txpower.txp_setup ||
3160	    (channel->hw_value != curr_channel->hw_value) ||
3161	    (channel->center_freq != curr_channel->center_freq)) {
3162		/* Reset TX power values */
 
 
 
3163		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
 
 
3164		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3165
 
 
3166		/* Calculate the powertable */
3167		ret = ath5k_setup_channel_powertable(ah, channel,
3168							ee_mode, type);
3169		if (ret)
3170			return ret;
3171	}
3172
3173	/* Write table on hw */
3174	ath5k_write_channel_powertable(ah, ee_mode, type);
3175
3176	/* Limit max power if we have a CTL available */
3177	ath5k_get_max_ctl_power(ah, channel);
3178
3179	/* FIXME: Antenna reduction stuff */
3180
3181	/* FIXME: Limit power on turbo modes */
3182
3183	/* FIXME: TPC scale reduction */
3184
3185	/* Get surrounding channels for per-rate power table
3186	 * calibration */
3187	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3188
3189	/* Setup rate power table */
3190	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3191
3192	/* Write rate power table on hw */
3193	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3194		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3195		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3196
3197	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3198		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3199		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3200
3201	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3202		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3203		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3204
3205	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3206		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3207		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3208
3209	/* FIXME: TPC support */
3210	if (ah->ah_txpower.txp_tpc) {
3211		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3212			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3213
3214		ath5k_hw_reg_write(ah,
3215			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3216			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3217			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3218			AR5K_TPC);
3219	} else {
3220		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3221			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3222	}
3223
3224	return 0;
3225}
3226
3227int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
 
 
 
 
 
 
 
 
 
3228{
3229	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3230		"changing txpower to %d\n", txpower);
3231
3232	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3233}
3234
 
3235/*************\
3236 Init function
3237\*************/
3238
3239int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240		      u8 mode, bool fast)
3241{
3242	struct ieee80211_channel *curr_channel;
3243	int ret, i;
3244	u32 phy_tst1;
3245	ret = 0;
3246
3247	/*
3248	 * Sanity check for fast flag
3249	 * Don't try fast channel change when changing modulation
3250	 * mode/band. We check for chip compatibility on
3251	 * ath5k_hw_reset.
3252	 */
3253	curr_channel = ah->ah_current_channel;
3254	if (fast && (channel->hw_value != curr_channel->hw_value))
3255		return -EINVAL;
3256
3257	/*
3258	 * On fast channel change we only set the synth parameters
3259	 * while PHY is running, enable calibration and skip the rest.
3260	 */
3261	if (fast) {
3262		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3263				    AR5K_PHY_RFBUS_REQ_REQUEST);
3264		for (i = 0; i < 100; i++) {
3265			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3266				break;
3267			udelay(5);
3268		}
3269		/* Failed */
3270		if (i >= 100)
3271			return -EIO;
3272
3273		/* Set channel and wait for synth */
3274		ret = ath5k_hw_channel(ah, channel);
3275		if (ret)
3276			return ret;
3277
3278		ath5k_hw_wait_for_synth(ah, channel);
3279	}
3280
3281	/*
3282	 * Set TX power
3283	 *
3284	 * Note: We need to do that before we set
3285	 * RF buffer settings on 5211/5212+ so that we
3286	 * properly set curve indices.
3287	 */
3288	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3289			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
 
3290	if (ret)
3291		return ret;
3292
3293	/* Write OFDM timings on 5212*/
3294	if (ah->ah_version == AR5K_AR5212 &&
3295		channel->hw_value & CHANNEL_OFDM) {
3296
3297		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3298		if (ret)
3299			return ret;
3300
3301		/* Spur info is available only from EEPROM versions
3302		 * greater than 5.3, but the EEPROM routines will use
3303		 * static values for older versions */
3304		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3305			ath5k_hw_set_spur_mitigation_filter(ah,
3306							    channel);
3307	}
3308
3309	/* If we used fast channel switching
3310	 * we are done, release RF bus and
3311	 * fire up NF calibration.
3312	 *
3313	 * Note: Only NF calibration due to
3314	 * channel change, not AGC calibration
3315	 * since AGC is still running !
3316	 */
3317	if (fast) {
3318		/*
3319		 * Release RF Bus grant
3320		 */
3321		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3322				    AR5K_PHY_RFBUS_REQ_REQUEST);
3323
3324		/*
3325		 * Start NF calibration
3326		 */
3327		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3328					AR5K_PHY_AGCCTL_NF);
3329
3330		return ret;
3331	}
3332
3333	/*
3334	 * For 5210 we do all initialization using
3335	 * initvals, so we don't have to modify
3336	 * any settings (5210 also only supports
3337	 * a/aturbo modes)
3338	 */
3339	if (ah->ah_version != AR5K_AR5210) {
3340
3341		/*
3342		 * Write initial RF gain settings
3343		 * This should work for both 5111/5112
3344		 */
3345		ret = ath5k_hw_rfgain_init(ah, channel->band);
3346		if (ret)
3347			return ret;
3348
3349		mdelay(1);
3350
3351		/*
3352		 * Write RF buffer
3353		 */
3354		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3355		if (ret)
3356			return ret;
3357
3358		/*Enable/disable 802.11b mode on 5111
3359		(enable 2111 frequency converter + CCK)*/
3360		if (ah->ah_radio == AR5K_RF5111) {
3361			if (mode == AR5K_MODE_11B)
3362				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3363				    AR5K_TXCFG_B_MODE);
3364			else
3365				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3366				    AR5K_TXCFG_B_MODE);
3367		}
3368
3369	} else if (ah->ah_version == AR5K_AR5210) {
3370		mdelay(1);
3371		/* Disable phy and wait */
3372		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3373		mdelay(1);
3374	}
3375
3376	/* Set channel on PHY */
3377	ret = ath5k_hw_channel(ah, channel);
3378	if (ret)
3379		return ret;
3380
3381	/*
3382	 * Enable the PHY and wait until completion
3383	 * This includes BaseBand and Synthesizer
3384	 * activation.
3385	 */
3386	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3387
3388	ath5k_hw_wait_for_synth(ah, channel);
3389
3390	/*
3391	 * Perform ADC test to see if baseband is ready
3392	 * Set tx hold and check adc test register
3393	 */
3394	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3395	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3396	for (i = 0; i <= 20; i++) {
3397		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3398			break;
3399		udelay(200);
3400	}
3401	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3402
3403	/*
3404	 * Start automatic gain control calibration
3405	 *
3406	 * During AGC calibration RX path is re-routed to
3407	 * a power detector so we don't receive anything.
3408	 *
3409	 * This method is used to calibrate some static offsets
3410	 * used together with on-the fly I/Q calibration (the
3411	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3412	 * interrupt rx path.
3413	 *
3414	 * While rx path is re-routed to the power detector we also
3415	 * start a noise floor calibration to measure the
3416	 * card's noise floor (the noise we measure when we are not
3417	 * transmitting or receiving anything).
3418	 *
3419	 * If we are in a noisy environment, AGC calibration may time
3420	 * out and/or noise floor calibration might timeout.
3421	 */
3422	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3423				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3424
3425	/* At the same time start I/Q calibration for QAM constellation
3426	 * -no need for CCK- */
3427	ah->ah_calibration = false;
3428	if (!(mode == AR5K_MODE_11B)) {
3429		ah->ah_calibration = true;
3430		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3431				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3432		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3433				AR5K_PHY_IQ_RUN);
3434	}
3435
3436	/* Wait for gain calibration to finish (we check for I/Q calibration
3437	 * during ath5k_phy_calibrate) */
3438	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3439			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3440		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3441			channel->center_freq);
3442	}
3443
3444	/* Restore antenna mode */
3445	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3446
3447	return ret;
3448}
v3.15
   1/*
 
 
   2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6 *
   7 * Permission to use, copy, modify, and distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 *
  19 */
  20
  21/***********************\
  22* PHY related functions *
  23\***********************/
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/delay.h>
  28#include <linux/slab.h>
  29#include <asm/unaligned.h>
  30
  31#include "ath5k.h"
  32#include "reg.h"
 
  33#include "rfbuffer.h"
  34#include "rfgain.h"
  35#include "../regd.h"
  36
  37
  38/**
  39 * DOC: PHY related functions
  40 *
  41 * Here we handle the low-level functions related to baseband
  42 * and analog frontend (RF) parts. This is by far the most complex
  43 * part of the hw code so make sure you know what you are doing.
  44 *
  45 * Here is a list of what this is all about:
  46 *
  47 * - Channel setting/switching
  48 *
  49 * - Automatic Gain Control (AGC) calibration
  50 *
  51 * - Noise Floor calibration
  52 *
  53 * - I/Q imbalance calibration (QAM correction)
  54 *
  55 * - Calibration due to thermal changes (gain_F)
  56 *
  57 * - Spur noise mitigation
  58 *
  59 * - RF/PHY initialization for the various operating modes and bwmodes
  60 *
  61 * - Antenna control
  62 *
  63 * - TX power control per channel/rate/packet type
  64 *
  65 * Also have in mind we never got documentation for most of these
  66 * functions, what we have comes mostly from Atheros's code, reverse
  67 * engineering and patent docs/presentations etc.
  68 */
  69
  70
  71/******************\
  72* Helper functions *
  73\******************/
  74
  75/**
  76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
  77 * @ah: The &struct ath5k_hw
  78 * @band: One of enum ieee80211_band
  79 *
  80 * Returns the revision number of a 2GHz, 5GHz or single chip
  81 * radio.
  82 */
  83u16
  84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
  85{
  86	unsigned int i;
  87	u32 srev;
  88	u16 ret;
  89
  90	/*
  91	 * Set the radio chip access register
  92	 */
  93	switch (band) {
  94	case IEEE80211_BAND_2GHZ:
  95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  96		break;
  97	case IEEE80211_BAND_5GHZ:
  98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  99		break;
 100	default:
 101		return 0;
 102	}
 103
 104	usleep_range(2000, 2500);
 105
 106	/* ...wait until PHY is ready and read the selected radio revision */
 107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 108
 109	for (i = 0; i < 8; i++)
 110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 111
 112	if (ah->ah_version == AR5K_AR5210) {
 113		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 115	} else {
 116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 118				((srev & 0x0f) << 4), 8);
 119	}
 120
 121	/* Reset to the 5GHz mode */
 122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 123
 124	return ret;
 125}
 126
 127/**
 128 * ath5k_channel_ok() - Check if a channel is supported by the hw
 129 * @ah: The &struct ath5k_hw
 130 * @channel: The &struct ieee80211_channel
 131 *
 132 * Note: We don't do any regulatory domain checks here, it's just
 133 * a sanity check.
 134 */
 135bool
 136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 137{
 138	u16 freq = channel->center_freq;
 139
 140	/* Check if the channel is in our supported range */
 141	if (channel->band == IEEE80211_BAND_2GHZ) {
 142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 144			return true;
 145	} else if (channel->band == IEEE80211_BAND_5GHZ)
 146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 148			return true;
 149
 150	return false;
 151}
 152
 153/**
 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 155 * @ah: The &struct ath5k_hw
 156 * @channel: The &struct ieee80211_channel
 157 */
 158bool
 159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 160				struct ieee80211_channel *channel)
 161{
 162	u8 refclk_freq;
 163
 164	if ((ah->ah_radio == AR5K_RF5112) ||
 165	(ah->ah_radio == AR5K_RF5413) ||
 166	(ah->ah_radio == AR5K_RF2413) ||
 167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 168		refclk_freq = 40;
 169	else
 170		refclk_freq = 32;
 171
 172	if ((channel->center_freq % refclk_freq != 0) &&
 173	((channel->center_freq % refclk_freq < 10) ||
 174	(channel->center_freq % refclk_freq > 22)))
 175		return true;
 176	else
 177		return false;
 178}
 179
 180/**
 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 182 * @ah: The &struct ath5k_hw
 183 * @rf_regs: The struct ath5k_rf_reg
 184 * @val: New value
 185 * @reg_id: RF register ID
 186 * @set: Indicate we need to swap data
 187 *
 188 * This is an internal function used to modify RF Banks before
 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 190 * infos.
 191 */
 192static unsigned int
 193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 194					u32 val, u8 reg_id, bool set)
 195{
 196	const struct ath5k_rf_reg *rfreg = NULL;
 197	u8 offset, bank, num_bits, col, position;
 198	u16 entry;
 199	u32 mask, data, last_bit, bits_shifted, first_bit;
 200	u32 *rfb;
 201	s32 bits_left;
 202	int i;
 203
 204	data = 0;
 205	rfb = ah->ah_rf_banks;
 206
 207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 208		if (rf_regs[i].index == reg_id) {
 209			rfreg = &rf_regs[i];
 210			break;
 211		}
 212	}
 213
 214	if (rfb == NULL || rfreg == NULL) {
 215		ATH5K_PRINTF("Rf register not found!\n");
 216		/* should not happen */
 217		return 0;
 218	}
 219
 220	bank = rfreg->bank;
 221	num_bits = rfreg->field.len;
 222	first_bit = rfreg->field.pos;
 223	col = rfreg->field.col;
 224
 225	/* first_bit is an offset from bank's
 226	 * start. Since we have all banks on
 227	 * the same array, we use this offset
 228	 * to mark each bank's start */
 229	offset = ah->ah_offset[bank];
 230
 231	/* Boundary check */
 232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 234		return 0;
 235	}
 236
 237	entry = ((first_bit - 1) / 8) + offset;
 238	position = (first_bit - 1) % 8;
 239
 240	if (set)
 241		data = ath5k_hw_bitswap(val, num_bits);
 242
 243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 244	     position = 0, entry++) {
 245
 246		last_bit = (position + bits_left > 8) ? 8 :
 247					position + bits_left;
 248
 249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 250								(col * 8);
 251
 252		if (set) {
 253			rfb[entry] &= ~mask;
 254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 255			data >>= (8 - position);
 256		} else {
 257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 258				<< bits_shifted;
 259			bits_shifted += last_bit - position;
 260		}
 261
 262		bits_left -= 8 - position;
 263	}
 264
 265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 266
 267	return data;
 268}
 269
 270/**
 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 
 272 * @ah: the &struct ath5k_hw
 273 * @channel: the currently set channel upon reset
 274 *
 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 277 *
 278 * Since delta slope is floating point we split it on its exponent and
 279 * mantissa and provide these values on hw.
 280 *
 281 * For more infos i think this patent is related
 282 * "http://www.freepatentsonline.com/7184495.html"
 283 */
 284static inline int
 285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 286				struct ieee80211_channel *channel)
 287{
 288	/* Get exponent and mantissa and set it */
 289	u32 coef_scaled, coef_exp, coef_man,
 290		ds_coef_exp, ds_coef_man, clock;
 291
 292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 293		(channel->hw_value == AR5K_MODE_11B));
 294
 295	/* Get coefficient
 296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 297	 * we scale coef by shifting clock value by 24 for
 298	 * better precision since we use integers */
 299	switch (ah->ah_bwmode) {
 300	case AR5K_BWMODE_40MHZ:
 301		clock = 40 * 2;
 302		break;
 303	case AR5K_BWMODE_10MHZ:
 304		clock = 40 / 2;
 305		break;
 306	case AR5K_BWMODE_5MHZ:
 307		clock = 40 / 4;
 308		break;
 309	default:
 310		clock = 40;
 311		break;
 312	}
 313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 314
 315	/* Get exponent
 316	 * ALGO: coef_exp = 14 - highest set bit position */
 317	coef_exp = ilog2(coef_scaled);
 318
 319	/* Doesn't make sense if it's zero*/
 320	if (!coef_scaled || !coef_exp)
 321		return -EINVAL;
 322
 323	/* Note: we've shifted coef_scaled by 24 */
 324	coef_exp = 14 - (coef_exp - 24);
 325
 326
 327	/* Get mantissa (significant digits)
 328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 329	coef_man = coef_scaled +
 330		(1 << (24 - coef_exp - 1));
 331
 332	/* Calculate delta slope coefficient exponent
 333	 * and mantissa (remove scaling) and set them on hw */
 334	ds_coef_man = coef_man >> (24 - coef_exp);
 335	ds_coef_exp = coef_exp - 16;
 336
 337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 341
 342	return 0;
 343}
 344
 345/**
 346 * ath5k_hw_phy_disable() - Disable PHY
 347 * @ah: The &struct ath5k_hw
 348 */
 349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 350{
 351	/*Just a try M.F.*/
 352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 353
 354	return 0;
 355}
 356
 357/**
 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 359 * @ah: The &struct ath5k_hw
 360 * @channel: The &struct ieee80211_channel
 361 */
 362static void
 363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 364			struct ieee80211_channel *channel)
 365{
 366	/*
 367	 * On 5211+ read activation -> rx delay
 368	 * and use it (100ns steps).
 369	 */
 370	if (ah->ah_version != AR5K_AR5210) {
 371		u32 delay;
 372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 373			AR5K_PHY_RX_DELAY_M;
 374		delay = (channel->hw_value == AR5K_MODE_11B) ?
 375			((delay << 2) / 22) : (delay / 10);
 376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 377			delay = delay << 1;
 378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 379			delay = delay << 2;
 380		/* XXX: /2 on turbo ? Let's be safe
 381		 * for now */
 382		usleep_range(100 + delay, 100 + (2 * delay));
 383	} else {
 384		usleep_range(1000, 1500);
 385	}
 386}
 387
 388
 389/**********************\
 390* RF Gain optimization *
 391\**********************/
 392
 393/**
 394 * DOC: RF Gain optimization
 395 *
 396 * This code is used to optimize RF gain on different environments
 397 * (temperature mostly) based on feedback from a power detector.
 398 *
 399 * It's only used on RF5111 and RF5112, later RF chips seem to have
 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 401 * no gain optimization ladder-.
 402 *
 403 * For more infos check out this patent doc
 404 * "http://www.freepatentsonline.com/7400691.html"
 405 *
 406 * This paper describes power drops as seen on the receiver due to
 407 * probe packets
 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 409 * %20of%20Power%20Control.pdf"
 410 *
 411 * And this is the MadWiFi bug entry related to the above
 412 * "http://madwifi-project.org/ticket/1659"
 413 * with various measurements and diagrams
 
 
 
 414 */
 415
 416/**
 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 418 * @ah: The &struct ath5k_hw
 419 */
 420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 421{
 422	/* Initialize the gain optimization values */
 423	switch (ah->ah_radio) {
 424	case AR5K_RF5111:
 425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 426		ah->ah_gain.g_low = 20;
 427		ah->ah_gain.g_high = 35;
 428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 429		break;
 430	case AR5K_RF5112:
 431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 432		ah->ah_gain.g_low = 20;
 433		ah->ah_gain.g_high = 85;
 434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 435		break;
 436	default:
 437		return -EINVAL;
 438	}
 439
 440	return 0;
 441}
 442
 443/**
 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 445 * @ah: The &struct ath5k_hw
 446 *
 447 * Schedules a gain probe check on the next transmitted packet.
 448 * That means our next packet is going to be sent with lower
 449 * tx power and a Peak to Average Power Detector (PAPD) will try
 450 * to measure the gain.
 451 *
 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 453 * just after we enable the probe so that we don't mess with
 454 * standard traffic.
 
 455 */
 456static void
 457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 458{
 459
 460	/* Skip if gain calibration is inactive or
 461	 * we already handle a probe request */
 462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 463		return;
 464
 465	/* Send the packet with 2dB below max power as
 466	 * patent doc suggest */
 467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 470
 471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 472
 473}
 474
 475/**
 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 477 * @ah: The &struct ath5k_hw
 478 *
 479 * Calculate Gain_F measurement correction
 480 * based on the current step for RF5112 rev. 2
 481 */
 482static u32
 483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 484{
 485	u32 mix, step;
 486	u32 *rf;
 487	const struct ath5k_gain_opt *go;
 488	const struct ath5k_gain_opt_step *g_step;
 489	const struct ath5k_rf_reg *rf_regs;
 490
 491	/* Only RF5112 Rev. 2 supports it */
 492	if ((ah->ah_radio != AR5K_RF5112) ||
 493	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 494		return 0;
 495
 496	go = &rfgain_opt_5112;
 497	rf_regs = rf_regs_5112a;
 498	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 499
 500	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 501
 502	if (ah->ah_rf_banks == NULL)
 503		return 0;
 504
 505	rf = ah->ah_rf_banks;
 506	ah->ah_gain.g_f_corr = 0;
 507
 508	/* No VGA (Variable Gain Amplifier) override, skip */
 509	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 510		return 0;
 511
 512	/* Mix gain stepping */
 513	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 514
 515	/* Mix gain override */
 516	mix = g_step->gos_param[0];
 517
 518	switch (mix) {
 519	case 3:
 520		ah->ah_gain.g_f_corr = step * 2;
 521		break;
 522	case 2:
 523		ah->ah_gain.g_f_corr = (step - 5) * 2;
 524		break;
 525	case 1:
 526		ah->ah_gain.g_f_corr = step;
 527		break;
 528	default:
 529		ah->ah_gain.g_f_corr = 0;
 530		break;
 531	}
 532
 533	return ah->ah_gain.g_f_corr;
 534}
 535
 536/**
 537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 538 * @ah: The &struct ath5k_hw
 539 *
 540 * Check if current gain_F measurement is in the range of our
 541 * power detector windows. If we get a measurement outside range
 542 * we know it's not accurate (detectors can't measure anything outside
 543 * their detection window) so we must ignore it.
 544 *
 545 * Returns true if readback was O.K. or false on failure
 546 */
 547static bool
 548ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 549{
 550	const struct ath5k_rf_reg *rf_regs;
 551	u32 step, mix_ovr, level[4];
 552	u32 *rf;
 553
 554	if (ah->ah_rf_banks == NULL)
 555		return false;
 556
 557	rf = ah->ah_rf_banks;
 558
 559	if (ah->ah_radio == AR5K_RF5111) {
 560
 561		rf_regs = rf_regs_5111;
 562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 563
 564		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 565			false);
 566
 567		level[0] = 0;
 568		level[1] = (step == 63) ? 50 : step + 4;
 569		level[2] = (step != 63) ? 64 : level[0];
 570		level[3] = level[2] + 50;
 571
 572		ah->ah_gain.g_high = level[3] -
 573			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 574		ah->ah_gain.g_low = level[0] +
 575			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 576	} else {
 577
 578		rf_regs = rf_regs_5112;
 579		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 580
 581		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 582			false);
 583
 584		level[0] = level[2] = 0;
 585
 586		if (mix_ovr == 1) {
 587			level[1] = level[3] = 83;
 588		} else {
 589			level[1] = level[3] = 107;
 590			ah->ah_gain.g_high = 55;
 591		}
 592	}
 593
 594	return (ah->ah_gain.g_current >= level[0] &&
 595			ah->ah_gain.g_current <= level[1]) ||
 596		(ah->ah_gain.g_current >= level[2] &&
 597			ah->ah_gain.g_current <= level[3]);
 598}
 599
 600/**
 601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 602 * @ah: The &struct ath5k_hw
 603 *
 604 * Choose the right target gain based on current gain
 605 * and RF gain optimization ladder
 606 */
 607static s8
 608ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 609{
 610	const struct ath5k_gain_opt *go;
 611	const struct ath5k_gain_opt_step *g_step;
 612	int ret = 0;
 613
 614	switch (ah->ah_radio) {
 615	case AR5K_RF5111:
 616		go = &rfgain_opt_5111;
 617		break;
 618	case AR5K_RF5112:
 619		go = &rfgain_opt_5112;
 620		break;
 621	default:
 622		return 0;
 623	}
 624
 625	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 626
 627	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 628
 629		/* Reached maximum */
 630		if (ah->ah_gain.g_step_idx == 0)
 631			return -1;
 632
 633		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 634				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 635				ah->ah_gain.g_step_idx > 0;
 636				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 637			ah->ah_gain.g_target -= 2 *
 638			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 639			    g_step->gos_gain);
 640
 641		ret = 1;
 642		goto done;
 643	}
 644
 645	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 646
 647		/* Reached minimum */
 648		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 649			return -2;
 650
 651		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 652				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 653				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 654				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 655			ah->ah_gain.g_target -= 2 *
 656			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 657			    g_step->gos_gain);
 658
 659		ret = 2;
 660		goto done;
 661	}
 662
 663done:
 664	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 665		"ret %d, gain step %u, current gain %u, target gain %u\n",
 666		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 667		ah->ah_gain.g_target);
 668
 669	return ret;
 670}
 671
 672/**
 673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 674 * @ah: The &struct ath5k_hw
 675 *
 676 * Main callback for thermal RF gain calibration engine
 677 * Check for a new gain reading and schedule an adjustment
 678 * if needed.
 679 *
 680 * Returns one of enum ath5k_rfgain codes
 681 */
 682enum ath5k_rfgain
 683ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 684{
 685	u32 data, type;
 686	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 687
 688	if (ah->ah_rf_banks == NULL ||
 689	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 690		return AR5K_RFGAIN_INACTIVE;
 691
 692	/* No check requested, either engine is inactive
 693	 * or an adjustment is already requested */
 694	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 695		goto done;
 696
 697	/* Read the PAPD (Peak to Average Power Detector)
 698	 * register */
 699	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 700
 701	/* No probe is scheduled, read gain_F measurement */
 702	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 703		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 704		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 705
 706		/* If tx packet is CCK correct the gain_F measurement
 707		 * by cck ofdm gain delta */
 708		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 709			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 710				ah->ah_gain.g_current +=
 711					ee->ee_cck_ofdm_gain_delta;
 712			else
 713				ah->ah_gain.g_current +=
 714					AR5K_GAIN_CCK_PROBE_CORR;
 715		}
 716
 717		/* Further correct gain_F measurement for
 718		 * RF5112A radios */
 719		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 720			ath5k_hw_rf_gainf_corr(ah);
 721			ah->ah_gain.g_current =
 722				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 723				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 724				0;
 725		}
 726
 727		/* Check if measurement is ok and if we need
 728		 * to adjust gain, schedule a gain adjustment,
 729		 * else switch back to the active state */
 730		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 731		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 732		ath5k_hw_rf_gainf_adjust(ah)) {
 733			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 734		} else {
 735			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 736		}
 737	}
 738
 739done:
 740	return ah->ah_gain.g_state;
 741}
 742
 743/**
 744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 745 * @ah: The &struct ath5k_hw
 746 * @band: One of enum ieee80211_band
 747 *
 748 * Write initial RF gain table to set the RF sensitivity.
 749 *
 750 * NOTE: This one works on all RF chips and has nothing to do
 751 * with Gain_F calibration
 752 */
 753static int
 754ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
 755{
 756	const struct ath5k_ini_rfgain *ath5k_rfg;
 757	unsigned int i, size, index;
 758
 759	switch (ah->ah_radio) {
 760	case AR5K_RF5111:
 761		ath5k_rfg = rfgain_5111;
 762		size = ARRAY_SIZE(rfgain_5111);
 763		break;
 764	case AR5K_RF5112:
 765		ath5k_rfg = rfgain_5112;
 766		size = ARRAY_SIZE(rfgain_5112);
 767		break;
 768	case AR5K_RF2413:
 769		ath5k_rfg = rfgain_2413;
 770		size = ARRAY_SIZE(rfgain_2413);
 771		break;
 772	case AR5K_RF2316:
 773		ath5k_rfg = rfgain_2316;
 774		size = ARRAY_SIZE(rfgain_2316);
 775		break;
 776	case AR5K_RF5413:
 777		ath5k_rfg = rfgain_5413;
 778		size = ARRAY_SIZE(rfgain_5413);
 779		break;
 780	case AR5K_RF2317:
 781	case AR5K_RF2425:
 782		ath5k_rfg = rfgain_2425;
 783		size = ARRAY_SIZE(rfgain_2425);
 784		break;
 785	default:
 786		return -EINVAL;
 787	}
 788
 789	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
 790
 791	for (i = 0; i < size; i++) {
 792		AR5K_REG_WAIT(i);
 793		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 794			(u32)ath5k_rfg[i].rfg_register);
 795	}
 796
 797	return 0;
 798}
 799
 800
 
 801/********************\
 802* RF Registers setup *
 803\********************/
 804
 805/**
 806 * ath5k_hw_rfregs_init() - Initialize RF register settings
 807 * @ah: The &struct ath5k_hw
 808 * @channel: The &struct ieee80211_channel
 809 * @mode: One of enum ath5k_driver_mode
 810 *
 811 * Setup RF registers by writing RF buffer on hw. For
 812 * more infos on this, check out rfbuffer.h
 813 */
 814static int
 815ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 816			struct ieee80211_channel *channel,
 817			unsigned int mode)
 818{
 819	const struct ath5k_rf_reg *rf_regs;
 820	const struct ath5k_ini_rfbuffer *ini_rfb;
 821	const struct ath5k_gain_opt *go = NULL;
 822	const struct ath5k_gain_opt_step *g_step;
 823	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 824	u8 ee_mode = 0;
 825	u32 *rfb;
 826	int i, obdb = -1, bank = -1;
 827
 828	switch (ah->ah_radio) {
 829	case AR5K_RF5111:
 830		rf_regs = rf_regs_5111;
 831		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 832		ini_rfb = rfb_5111;
 833		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 834		go = &rfgain_opt_5111;
 835		break;
 836	case AR5K_RF5112:
 837		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 838			rf_regs = rf_regs_5112a;
 839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 840			ini_rfb = rfb_5112a;
 841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 842		} else {
 843			rf_regs = rf_regs_5112;
 844			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 845			ini_rfb = rfb_5112;
 846			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 847		}
 848		go = &rfgain_opt_5112;
 849		break;
 850	case AR5K_RF2413:
 851		rf_regs = rf_regs_2413;
 852		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 853		ini_rfb = rfb_2413;
 854		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 855		break;
 856	case AR5K_RF2316:
 857		rf_regs = rf_regs_2316;
 858		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 859		ini_rfb = rfb_2316;
 860		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 861		break;
 862	case AR5K_RF5413:
 863		rf_regs = rf_regs_5413;
 864		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 865		ini_rfb = rfb_5413;
 866		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 867		break;
 868	case AR5K_RF2317:
 869		rf_regs = rf_regs_2425;
 870		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 871		ini_rfb = rfb_2317;
 872		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 873		break;
 874	case AR5K_RF2425:
 875		rf_regs = rf_regs_2425;
 876		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 877		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 878			ini_rfb = rfb_2425;
 879			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 880		} else {
 881			ini_rfb = rfb_2417;
 882			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 883		}
 884		break;
 885	default:
 886		return -EINVAL;
 887	}
 888
 889	/* If it's the first time we set RF buffer, allocate
 890	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 891	 * we set above */
 892	if (ah->ah_rf_banks == NULL) {
 893		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
 894								GFP_KERNEL);
 895		if (ah->ah_rf_banks == NULL) {
 896			ATH5K_ERR(ah, "out of memory\n");
 897			return -ENOMEM;
 898		}
 899	}
 900
 901	/* Copy values to modify them */
 902	rfb = ah->ah_rf_banks;
 903
 904	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 905		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 906			ATH5K_ERR(ah, "invalid bank\n");
 907			return -EINVAL;
 908		}
 909
 910		/* Bank changed, write down the offset */
 911		if (bank != ini_rfb[i].rfb_bank) {
 912			bank = ini_rfb[i].rfb_bank;
 913			ah->ah_offset[bank] = i;
 914		}
 915
 916		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 917	}
 918
 919	/* Set Output and Driver bias current (OB/DB) */
 920	if (channel->band == IEEE80211_BAND_2GHZ) {
 921
 922		if (channel->hw_value == AR5K_MODE_11B)
 923			ee_mode = AR5K_EEPROM_MODE_11B;
 924		else
 925			ee_mode = AR5K_EEPROM_MODE_11G;
 926
 927		/* For RF511X/RF211X combination we
 928		 * use b_OB and b_DB parameters stored
 929		 * in eeprom on ee->ee_ob[ee_mode][0]
 930		 *
 931		 * For all other chips we use OB/DB for 2GHz
 932		 * stored in the b/g modal section just like
 933		 * 802.11a on ee->ee_ob[ee_mode][1] */
 934		if ((ah->ah_radio == AR5K_RF5111) ||
 935		(ah->ah_radio == AR5K_RF5112))
 936			obdb = 0;
 937		else
 938			obdb = 1;
 939
 940		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 941						AR5K_RF_OB_2GHZ, true);
 942
 943		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 944						AR5K_RF_DB_2GHZ, true);
 945
 946	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 947	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
 948			(ah->ah_radio == AR5K_RF5111)) {
 949
 950		/* For 11a, Turbo and XR we need to choose
 951		 * OB/DB based on frequency range */
 952		ee_mode = AR5K_EEPROM_MODE_11A;
 953		obdb =	 channel->center_freq >= 5725 ? 3 :
 954			(channel->center_freq >= 5500 ? 2 :
 955			(channel->center_freq >= 5260 ? 1 :
 956			 (channel->center_freq > 4000 ? 0 : -1)));
 957
 958		if (obdb < 0)
 959			return -EINVAL;
 960
 961		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 962						AR5K_RF_OB_5GHZ, true);
 963
 964		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 965						AR5K_RF_DB_5GHZ, true);
 966	}
 967
 968	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 969
 970	/* Set turbo mode (N/A on RF5413) */
 971	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 972	(ah->ah_radio != AR5K_RF5413))
 973		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 974
 975	/* Bank Modifications (chip-specific) */
 976	if (ah->ah_radio == AR5K_RF5111) {
 977
 978		/* Set gain_F settings according to current step */
 979		if (channel->hw_value != AR5K_MODE_11B) {
 980
 981			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 982					AR5K_PHY_FRAME_CTL_TX_CLIP,
 983					g_step->gos_param[0]);
 984
 985			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 986							AR5K_RF_PWD_90, true);
 987
 988			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 989							AR5K_RF_PWD_84, true);
 990
 991			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 992						AR5K_RF_RFGAIN_SEL, true);
 993
 994			/* We programmed gain_F parameters, switch back
 995			 * to active state */
 996			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 997
 998		}
 999
1000		/* Bank 6/7 setup */
1001
1002		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003						AR5K_RF_PWD_XPD, true);
1004
1005		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006						AR5K_RF_XPD_GAIN, true);
1007
1008		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009						AR5K_RF_GAIN_I, true);
1010
1011		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012						AR5K_RF_PLO_SEL, true);
1013
1014		/* Tweak power detectors for half/quarter rate support */
1015		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017			u8 wait_i;
1018
1019			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020						AR5K_RF_WAIT_S, true);
1021
1022			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023							0x1f : 0x10;
1024
1025			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026						AR5K_RF_WAIT_I, true);
1027			ath5k_hw_rfb_op(ah, rf_regs, 3,
1028						AR5K_RF_MAX_TIME, true);
1029
1030		}
1031	}
1032
1033	if (ah->ah_radio == AR5K_RF5112) {
1034
1035		/* Set gain_F settings according to current step */
1036		if (channel->hw_value != AR5K_MODE_11B) {
1037
1038			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039						AR5K_RF_MIXGAIN_OVR, true);
1040
1041			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042						AR5K_RF_PWD_138, true);
1043
1044			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045						AR5K_RF_PWD_137, true);
1046
1047			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048						AR5K_RF_PWD_136, true);
1049
1050			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051						AR5K_RF_PWD_132, true);
1052
1053			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054						AR5K_RF_PWD_131, true);
1055
1056			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057						AR5K_RF_PWD_130, true);
1058
1059			/* We programmed gain_F parameters, switch back
1060			 * to active state */
1061			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062		}
1063
1064		/* Bank 6/7 setup */
1065
1066		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067						AR5K_RF_XPD_SEL, true);
1068
1069		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070			/* Rev. 1 supports only one xpd */
1071			ath5k_hw_rfb_op(ah, rf_regs,
1072						ee->ee_x_gain[ee_mode],
1073						AR5K_RF_XPD_GAIN, true);
1074
1075		} else {
1076			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077			if (ee->ee_pd_gains[ee_mode] > 1) {
1078				ath5k_hw_rfb_op(ah, rf_regs,
1079						pdg_curve_to_idx[0],
1080						AR5K_RF_PD_GAIN_LO, true);
1081				ath5k_hw_rfb_op(ah, rf_regs,
1082						pdg_curve_to_idx[1],
1083						AR5K_RF_PD_GAIN_HI, true);
1084			} else {
1085				ath5k_hw_rfb_op(ah, rf_regs,
1086						pdg_curve_to_idx[0],
1087						AR5K_RF_PD_GAIN_LO, true);
1088				ath5k_hw_rfb_op(ah, rf_regs,
1089						pdg_curve_to_idx[0],
1090						AR5K_RF_PD_GAIN_HI, true);
1091			}
1092
1093			/* Lower synth voltage on Rev 2 */
1094			if (ah->ah_radio == AR5K_RF5112 &&
1095			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097						AR5K_RF_HIGH_VC_CP, true);
1098
1099				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100						AR5K_RF_MID_VC_CP, true);
1101
1102				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103						AR5K_RF_LOW_VC_CP, true);
1104
1105				ath5k_hw_rfb_op(ah, rf_regs, 2,
1106						AR5K_RF_PUSH_UP, true);
1107			}
1108
1109			/* Decrease power consumption on 5213+ BaseBand */
1110			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112						AR5K_RF_PAD2GND, true);
1113
1114				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115						AR5K_RF_XB2_LVL, true);
1116
1117				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118						AR5K_RF_XB5_LVL, true);
1119
1120				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121						AR5K_RF_PWD_167, true);
1122
1123				ath5k_hw_rfb_op(ah, rf_regs, 1,
1124						AR5K_RF_PWD_166, true);
1125			}
1126		}
1127
1128		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129						AR5K_RF_GAIN_I, true);
1130
1131		/* Tweak power detector for half/quarter rates */
1132		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134			u8 pd_delay;
1135
1136			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137							0xf : 0x8;
1138
1139			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140						AR5K_RF_PD_PERIOD_A, true);
1141			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142						AR5K_RF_PD_DELAY_A, true);
1143
1144		}
1145	}
1146
1147	if (ah->ah_radio == AR5K_RF5413 &&
1148	channel->band == IEEE80211_BAND_2GHZ) {
1149
1150		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151									true);
1152
1153		/* Set optimum value for early revisions (on pci-e chips) */
1154		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155		ah->ah_mac_srev < AR5K_SREV_AR5413)
1156			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157						AR5K_RF_PWD_ICLOBUF_2G, true);
1158
1159	}
1160
1161	/* Write RF banks on hw */
1162	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163		AR5K_REG_WAIT(i);
1164		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165	}
1166
1167	return 0;
1168}
1169
1170
1171/**************************\
1172  PHY/RF channel functions
1173\**************************/
1174
1175/**
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1178 *
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1181 */
1182static u32
1183ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1184{
1185	u32 athchan;
1186
 
 
 
 
 
 
1187	athchan = (ath5k_hw_bitswap(
1188			(ieee80211_frequency_to_channel(
1189				channel->center_freq) - 24) / 2, 5)
1190				<< 1) | (1 << 6) | 0x1;
1191	return athchan;
1192}
1193
1194/**
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1198 */
1199static int
1200ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201		struct ieee80211_channel *channel)
1202{
1203	u32 data;
1204
1205	/*
1206	 * Set the channel and wait
1207	 */
1208	data = ath5k_hw_rf5110_chan2athchan(channel);
1209	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211	usleep_range(1000, 1500);
1212
1213	return 0;
1214}
1215
1216/**
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1220 *
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1225 */
1226static int
1227ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228		struct ath5k_athchan_2ghz *athchan)
1229{
1230	int channel;
1231
1232	/* Cast this value to catch negative channel numbers (>= -19) */
1233	channel = (int)ieee;
1234
1235	/*
1236	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1237	 */
1238	if (channel <= 13) {
1239		athchan->a2_athchan = 115 + channel;
1240		athchan->a2_flags = 0x46;
1241	} else if (channel == 14) {
1242		athchan->a2_athchan = 124;
1243		athchan->a2_flags = 0x44;
1244	} else if (channel >= 15 && channel <= 26) {
1245		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246		athchan->a2_flags = 0x46;
1247	} else
1248		return -EINVAL;
1249
1250	return 0;
1251}
1252
1253/**
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1257 */
1258static int
1259ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260		struct ieee80211_channel *channel)
1261{
1262	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263	unsigned int ath5k_channel =
1264		ieee80211_frequency_to_channel(channel->center_freq);
1265	u32 data0, data1, clock;
1266	int ret;
1267
1268	/*
1269	 * Set the channel on the RF5111 radio
1270	 */
1271	data0 = data1 = 0;
1272
1273	if (channel->band == IEEE80211_BAND_2GHZ) {
1274		/* Map 2GHz channel to 5GHz Atheros channel ID */
1275		ret = ath5k_hw_rf5111_chan2athchan(
1276			ieee80211_frequency_to_channel(channel->center_freq),
1277			&ath5k_channel_2ghz);
1278		if (ret)
1279			return ret;
1280
1281		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283		    << 5) | (1 << 4);
1284	}
1285
1286	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287		clock = 1;
1288		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289			(clock << 1) | (1 << 10) | 1;
1290	} else {
1291		clock = 0;
1292		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293			<< 2) | (clock << 1) | (1 << 10) | 1;
1294	}
1295
1296	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297			AR5K_RF_BUFFER);
1298	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299			AR5K_RF_BUFFER_CONTROL_3);
1300
1301	return 0;
1302}
1303
1304/**
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1308 *
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1311 * chip directly.
1312 *
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1315 */
1316static int
1317ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318		struct ieee80211_channel *channel)
1319{
1320	u32 data, data0, data1, data2;
1321	u16 c;
1322
1323	data = data0 = data1 = data2 = 0;
1324	c = channel->center_freq;
1325
1326	/* My guess based on code:
1327	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329	 * (3040/2). data0 is used to set the PLL divider and data1
1330	 * selects synth mode. */
1331	if (c < 4800) {
1332		/* Channel 14 and all frequencies with 2Hz spacing
1333		 * below/above (non-standard channels) */
1334		if (!((c - 2224) % 5)) {
1335			/* Same as (c - 2224) / 5 */
1336			data0 = ((2 * (c - 704)) - 3040) / 10;
1337			data1 = 1;
1338		/* Channel 1 and all frequencies with 5Hz spacing
1339		 * below/above (standard channels without channel 14) */
1340		} else if (!((c - 2192) % 5)) {
1341			/* Same as (c - 2192) / 5 */
1342			data0 = ((2 * (c - 672)) - 3040) / 10;
1343			data1 = 0;
1344		} else
1345			return -EINVAL;
1346
1347		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348	/* This is more complex, we have a single synthesizer with
1349	 * 4 reference clock settings (?) based on frequency spacing
1350	 * and set using data2. LO is at 4800Hz and data0 is again used
1351	 * to set some divider.
1352	 *
1353	 * NOTE: There is an old atheros presentation at Stanford
1354	 * that mentions a method called dual direct conversion
1355	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356	 * have here, or an updated version. */
1357	} else if ((c % 5) != 2 || c > 5435) {
1358		if (!(c % 20) && c >= 5120) {
1359			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360			data2 = ath5k_hw_bitswap(3, 2);
1361		} else if (!(c % 10)) {
1362			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363			data2 = ath5k_hw_bitswap(2, 2);
1364		} else if (!(c % 5)) {
1365			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366			data2 = ath5k_hw_bitswap(1, 2);
1367		} else
1368			return -EINVAL;
1369	} else {
1370		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371		data2 = ath5k_hw_bitswap(0, 2);
1372	}
1373
1374	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1375
1376	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1378
1379	return 0;
1380}
1381
1382/**
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1386 *
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1389 */
1390static int
1391ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392		struct ieee80211_channel *channel)
1393{
1394	u32 data, data0, data2;
1395	u16 c;
1396
1397	data = data0 = data2 = 0;
1398	c = channel->center_freq;
1399
1400	if (c < 4800) {
1401		data0 = ath5k_hw_bitswap((c - 2272), 8);
1402		data2 = 0;
1403	/* ? 5GHz ? */
1404	} else if ((c % 5) != 2 || c > 5435) {
1405		if (!(c % 20) && c < 5120)
1406			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407		else if (!(c % 10))
1408			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409		else if (!(c % 5))
1410			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411		else
1412			return -EINVAL;
1413		data2 = ath5k_hw_bitswap(1, 2);
1414	} else {
1415		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416		data2 = ath5k_hw_bitswap(0, 2);
1417	}
1418
1419	data = (data0 << 4) | data2 << 2 | 0x1001;
1420
1421	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1423
1424	return 0;
1425}
1426
1427/**
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1431 *
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1434 */
1435static int
1436ath5k_hw_channel(struct ath5k_hw *ah,
1437		struct ieee80211_channel *channel)
1438{
1439	int ret;
1440	/*
1441	 * Check bounds supported by the PHY (we don't care about regulatory
1442	 * restrictions at this point).
1443	 */
1444	if (!ath5k_channel_ok(ah, channel)) {
 
1445		ATH5K_ERR(ah,
1446			"channel frequency (%u MHz) out of supported "
1447			"band range\n",
1448			channel->center_freq);
1449			return -EINVAL;
1450	}
1451
1452	/*
1453	 * Set the channel and wait
1454	 */
1455	switch (ah->ah_radio) {
1456	case AR5K_RF5110:
1457		ret = ath5k_hw_rf5110_channel(ah, channel);
1458		break;
1459	case AR5K_RF5111:
1460		ret = ath5k_hw_rf5111_channel(ah, channel);
1461		break;
1462	case AR5K_RF2317:
1463	case AR5K_RF2425:
1464		ret = ath5k_hw_rf2425_channel(ah, channel);
1465		break;
1466	default:
1467		ret = ath5k_hw_rf5112_channel(ah, channel);
1468		break;
1469	}
1470
1471	if (ret)
1472		return ret;
1473
1474	/* Set JAPAN setting for channel 14 */
1475	if (channel->center_freq == 2484) {
1476		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477				AR5K_PHY_CCKTXCTL_JAPAN);
1478	} else {
1479		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480				AR5K_PHY_CCKTXCTL_WORLD);
1481	}
1482
1483	ah->ah_current_channel = channel;
1484
1485	return 0;
1486}
1487
1488
1489/*****************\
1490  PHY calibration
1491\*****************/
1492
1493/**
1494 * DOC: PHY Calibration routines
1495 *
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1505 *
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1511 * part.
1512 *
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1517 *
1518 * For more infos on AGC and I/Q calibration check out patent doc
1519 * #03/094463.
1520 */
1521
1522/**
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1525 */
1526static s32
1527ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1528{
1529	s32 val;
1530
1531	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1533}
1534
1535/**
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1538 */
1539void
1540ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1541{
1542	int i;
1543
1544	ah->ah_nfcal_hist.index = 0;
1545	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1547}
1548
1549/**
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1553 */
1554static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1555{
1556	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558	hist->nfval[hist->index] = noise_floor;
1559}
1560
1561/**
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1564 */
1565static s16
1566ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1567{
1568	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569	s16 tmp;
1570	int i, j;
1571
1572	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575			if (sort[j] > sort[j - 1]) {
1576				tmp = sort[j];
1577				sort[j] = sort[j - 1];
1578				sort[j - 1] = tmp;
1579			}
1580		}
1581	}
1582	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584			"cal %d:%d\n", i, sort[i]);
1585	}
1586	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1587}
1588
1589/**
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
 
 
 
 
1592 *
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1595 * NF on hw.
1596 */
1597void
1598ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	u32 val;
1602	s16 nf, threshold;
1603	u8 ee_mode;
1604
1605	/* keep last value if calibration hasn't completed */
1606	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608			"NF did not complete in calibration window\n");
1609
1610		return;
1611	}
1612
1613	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1614
1615	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1616
1617	/* completed NF calibration, test threshold */
1618	nf = ath5k_hw_read_measured_noise_floor(ah);
1619	threshold = ee->ee_noise_floor_thr[ee_mode];
1620
1621	if (nf > threshold) {
1622		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1623			"noise floor failure detected; "
1624			"read %d, threshold %d\n",
1625			nf, threshold);
1626
1627		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1628	}
1629
1630	ath5k_hw_update_nfcal_hist(ah, nf);
1631	nf = ath5k_hw_get_median_noise_floor(ah);
1632
1633	/* load noise floor (in .5 dBm) so the hardware will use it */
1634	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1635	val |= (nf * 2) & AR5K_PHY_NF_M;
1636	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1637
1638	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1639		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1640
1641	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1642		0, false);
1643
1644	/*
1645	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646	 * so that we're not capped by the median we just loaded.
1647	 * This will be used as the initial value for the next noise
1648	 * floor calibration.
1649	 */
1650	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1651	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1652	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1653		AR5K_PHY_AGCCTL_NF_EN |
1654		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1655		AR5K_PHY_AGCCTL_NF);
1656
1657	ah->ah_noise_floor = nf;
1658
1659	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1660
1661	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1662		"noise floor calibrated: %d\n", nf);
1663}
1664
1665/**
1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667 * @ah: The &struct ath5k_hw
1668 * @channel: The &struct ieee80211_channel
1669 *
1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1671 */
1672static int
1673ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1674		struct ieee80211_channel *channel)
1675{
1676	u32 phy_sig, phy_agc, phy_sat, beacon;
1677	int ret;
1678
1679	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1680		return 0;
1681
1682	/*
1683	 * Disable beacons and RX/TX queues, wait
1684	 */
1685	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1686		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1687	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1688	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1689
1690	usleep_range(2000, 2500);
1691
1692	/*
1693	 * Set the channel (with AGC turned off)
1694	 */
1695	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1696	udelay(10);
1697	ret = ath5k_hw_channel(ah, channel);
1698
1699	/*
1700	 * Activate PHY and wait
1701	 */
1702	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1703	usleep_range(1000, 1500);
1704
1705	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1706
1707	if (ret)
1708		return ret;
1709
1710	/*
1711	 * Calibrate the radio chip
1712	 */
1713
1714	/* Remember normal state */
1715	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1716	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1717	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1718
1719	/* Update radio registers */
1720	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1721		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1722
1723	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1724			AR5K_PHY_AGCCOARSE_LO)) |
1725		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1726		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1727
1728	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1729			AR5K_PHY_ADCSAT_THR)) |
1730		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1731		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1732
1733	udelay(20);
1734
1735	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1736	udelay(10);
1737	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1738	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1739
1740	usleep_range(1000, 1500);
1741
1742	/*
1743	 * Enable calibration and wait until completion
1744	 */
1745	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1746
1747	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1748			AR5K_PHY_AGCCTL_CAL, 0, false);
1749
1750	/* Reset to normal state */
1751	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1752	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1753	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1754
1755	if (ret) {
1756		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1757				channel->center_freq);
1758		return ret;
1759	}
1760
1761	/*
1762	 * Re-enable RX/TX and beacons
1763	 */
1764	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1765		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1766	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1767
1768	return 0;
1769}
1770
1771/**
1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773 * @ah: The &struct ath5k_hw
1774 */
1775static int
1776ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1777{
1778	u32 i_pwr, q_pwr;
1779	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1780	int i;
1781
1782	/* Skip if I/Q calibration is not needed or if it's still running */
1783	if (!ah->ah_iq_cal_needed)
1784		return -EINVAL;
1785	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1786		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1787				"I/Q calibration still running");
1788		return -EBUSY;
1789	}
1790
1791	/* Calibration has finished, get the results and re-run */
1792
1793	/* Work around for empty results which can apparently happen on 5212:
1794	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1795	for (i = 0; i <= 10; i++) {
1796		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1797		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1798		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1799		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1800			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1801		if (i_pwr && q_pwr)
1802			break;
1803	}
1804
1805	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1806
1807	if (ah->ah_version == AR5K_AR5211)
1808		q_coffd = q_pwr >> 6;
1809	else
1810		q_coffd = q_pwr >> 7;
1811
1812	/* In case i_coffd became zero, cancel calibration
1813	 * not only it's too small, it'll also result a divide
1814	 * by zero later on. */
1815	if (i_coffd == 0 || q_coffd < 2)
1816		return -ECANCELED;
1817
1818	/* Protect against loss of sign bits */
1819
1820	i_coff = (-iq_corr) / i_coffd;
1821	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1822
1823	if (ah->ah_version == AR5K_AR5211)
1824		q_coff = (i_pwr / q_coffd) - 64;
1825	else
1826		q_coff = (i_pwr / q_coffd) - 128;
1827	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1828
1829	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1830			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831			i_coff, q_coff, i_coffd, q_coffd);
1832
1833	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1834	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1835	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1836	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1837
1838	/* Re-enable calibration -if we don't we'll commit
1839	 * the same values again and again */
1840	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1841			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1842	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1843
1844	return 0;
1845}
1846
1847/**
1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849 * @ah: The &struct ath5k_hw
1850 * @channel: The &struct ieee80211_channel
1851 *
1852 * The main function we call from above to perform
1853 * a short or full PHY calibration based on RF chip
1854 * and current channel
1855 */
1856int
1857ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1858		struct ieee80211_channel *channel)
1859{
1860	int ret;
1861
1862	if (ah->ah_radio == AR5K_RF5110)
1863		return ath5k_hw_rf5110_calibrate(ah, channel);
1864
1865	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1866	if (ret) {
1867		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1868			"No I/Q correction performed (%uMHz)\n",
1869			channel->center_freq);
1870
1871		/* Happens all the time if there is not much
1872		 * traffic, consider it normal behaviour. */
1873		ret = 0;
1874	}
1875
1876	/* On full calibration request a PAPD probe for
1877	 * gainf calibration if needed */
1878	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1879	    (ah->ah_radio == AR5K_RF5111 ||
1880	     ah->ah_radio == AR5K_RF5112) &&
1881	    channel->hw_value != AR5K_MODE_11B)
1882		ath5k_hw_request_rfgain_probe(ah);
1883
1884	/* Update noise floor */
1885	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1886		ath5k_hw_update_noise_floor(ah);
1887
1888	return ret;
1889}
1890
1891
1892/***************************\
1893* Spur mitigation functions *
1894\***************************/
1895
1896/**
1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898 * @ah: The &struct ath5k_hw
1899 * @channel: The &struct ieee80211_channel
1900 *
1901 * This function gets called during PHY initialization to
1902 * configure the spur filter for the given channel. Spur is noise
1903 * generated due to "reflection" effects, for more information on this
1904 * method check out patent US7643810
1905 */
1906static void
1907ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1908				struct ieee80211_channel *channel)
1909{
1910	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1911	u32 mag_mask[4] = {0, 0, 0, 0};
1912	u32 pilot_mask[2] = {0, 0};
1913	/* Note: fbin values are scaled up by 2 */
1914	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1915	s32 spur_delta_phase, spur_freq_sigma_delta;
1916	s32 spur_offset, num_symbols_x16;
1917	u8 num_symbol_offsets, i, freq_band;
1918
1919	/* Convert current frequency to fbin value (the same way channels
1920	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921	 * up by 2 so we can compare it later */
1922	if (channel->band == IEEE80211_BAND_2GHZ) {
1923		chan_fbin = (channel->center_freq - 2300) * 10;
1924		freq_band = AR5K_EEPROM_BAND_2GHZ;
1925	} else {
1926		chan_fbin = (channel->center_freq - 4900) * 10;
1927		freq_band = AR5K_EEPROM_BAND_5GHZ;
1928	}
1929
1930	/* Check if any spur_chan_fbin from EEPROM is
1931	 * within our current channel's spur detection range */
1932	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1933	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1934	/* XXX: Half/Quarter channels ?*/
1935	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1936		spur_detection_window *= 2;
1937
1938	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1939		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1940
1941		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942		 * so it's zero if we got nothing from EEPROM */
1943		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1944			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1945			break;
1946		}
1947
1948		if ((chan_fbin - spur_detection_window <=
1949		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1950		(chan_fbin + spur_detection_window >=
1951		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1952			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1953			break;
1954		}
1955	}
1956
1957	/* We need to enable spur filter for this channel */
1958	if (spur_chan_fbin) {
1959		spur_offset = spur_chan_fbin - chan_fbin;
1960		/*
1961		 * Calculate deltas:
1962		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963		 * spur_delta_phase -> spur_offset / chip_freq << 11
1964		 * Note: Both values have 100Hz resolution
1965		 */
1966		switch (ah->ah_bwmode) {
1967		case AR5K_BWMODE_40MHZ:
1968			/* Both sample_freq and chip_freq are 80MHz */
1969			spur_delta_phase = (spur_offset << 16) / 25;
1970			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1971			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1972			break;
1973		case AR5K_BWMODE_10MHZ:
1974			/* Both sample_freq and chip_freq are 20MHz (?) */
1975			spur_delta_phase = (spur_offset << 18) / 25;
1976			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1977			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1978			break;
1979		case AR5K_BWMODE_5MHZ:
1980			/* Both sample_freq and chip_freq are 10MHz (?) */
1981			spur_delta_phase = (spur_offset << 19) / 25;
1982			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1983			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1984			break;
1985		default:
1986			if (channel->band == IEEE80211_BAND_5GHZ) {
1987				/* Both sample_freq and chip_freq are 40MHz */
1988				spur_delta_phase = (spur_offset << 17) / 25;
1989				spur_freq_sigma_delta =
1990						(spur_delta_phase >> 10);
1991				symbol_width =
1992					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1993			} else {
1994				/* sample_freq -> 40MHz chip_freq -> 44MHz
1995				 * (for b compatibility) */
1996				spur_delta_phase = (spur_offset << 17) / 25;
1997				spur_freq_sigma_delta =
1998						(spur_offset << 8) / 55;
1999				symbol_width =
2000					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2001			}
2002			break;
2003		}
2004
2005		/* Calculate pilot and magnitude masks */
2006
2007		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2008		 * and divide by symbol_width to find how many symbols we have
2009		 * Note: number of symbols is scaled up by 16 */
2010		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2011
2012		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2013		if (!(num_symbols_x16 & 0xF))
2014			/* _X_ */
2015			num_symbol_offsets = 3;
2016		else
2017			/* _xx_ */
2018			num_symbol_offsets = 4;
2019
2020		for (i = 0; i < num_symbol_offsets; i++) {
2021
2022			/* Calculate pilot mask */
2023			s32 curr_sym_off =
2024				(num_symbols_x16 / 16) + i + 25;
2025
2026			/* Pilot magnitude mask seems to be a way to
2027			 * declare the boundaries for our detection
2028			 * window or something, it's 2 for the middle
2029			 * value(s) where the symbol is expected to be
2030			 * and 1 on the boundary values */
2031			u8 plt_mag_map =
2032				(i == 0 || i == (num_symbol_offsets - 1))
2033								? 1 : 2;
2034
2035			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2036				if (curr_sym_off <= 25)
2037					pilot_mask[0] |= 1 << curr_sym_off;
2038				else if (curr_sym_off >= 27)
2039					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2040			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2041				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2042
2043			/* Calculate magnitude mask (for viterbi decoder) */
2044			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2045				mag_mask[0] |=
2046					plt_mag_map << (curr_sym_off + 1) * 2;
2047			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2048				mag_mask[1] |=
2049					plt_mag_map << (curr_sym_off - 15) * 2;
2050			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2051				mag_mask[2] |=
2052					plt_mag_map << (curr_sym_off - 31) * 2;
2053			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2054				mag_mask[3] |=
2055					plt_mag_map << (curr_sym_off - 47) * 2;
2056
2057		}
2058
2059		/* Write settings on hw to enable spur filter */
2060		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2061					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2062		/* XXX: Self correlator also ? */
2063		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2064					AR5K_PHY_IQ_PILOT_MASK_EN |
2065					AR5K_PHY_IQ_CHAN_MASK_EN |
2066					AR5K_PHY_IQ_SPUR_FILT_EN);
2067
2068		/* Set delta phase and freq sigma delta */
2069		ath5k_hw_reg_write(ah,
2070				AR5K_REG_SM(spur_delta_phase,
2071					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2072				AR5K_REG_SM(spur_freq_sigma_delta,
2073				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2074				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2075				AR5K_PHY_TIMING_11);
2076
2077		/* Write pilot masks */
2078		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2079		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2080					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2081					pilot_mask[1]);
2082
2083		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2084		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2085					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2086					pilot_mask[1]);
2087
2088		/* Write magnitude masks */
2089		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2090		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2091		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2092		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2093					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2094					mag_mask[3]);
2095
2096		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2097		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2098		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2099		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2100					AR5K_PHY_BIN_MASK2_4_MASK_4,
2101					mag_mask[3]);
2102
2103	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2104	AR5K_PHY_IQ_SPUR_FILT_EN) {
2105		/* Clean up spur mitigation settings and disable filter */
2106		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2107					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2108		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2109					AR5K_PHY_IQ_PILOT_MASK_EN |
2110					AR5K_PHY_IQ_CHAN_MASK_EN |
2111					AR5K_PHY_IQ_SPUR_FILT_EN);
2112		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2113
2114		/* Clear pilot masks */
2115		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2116		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2117					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2118					0);
2119
2120		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2121		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2122					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2123					0);
2124
2125		/* Clear magnitude masks */
2126		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2127		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2128		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2129		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2130					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2131					0);
2132
2133		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2134		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2135		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2136		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2137					AR5K_PHY_BIN_MASK2_4_MASK_4,
2138					0);
2139	}
2140}
2141
2142
2143/*****************\
2144* Antenna control *
2145\*****************/
2146
2147/**
2148 * DOC: Antenna control
2149 *
2150 * Hw supports up to 14 antennas ! I haven't found any card that implements
2151 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2152 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2153 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2154 *
2155 * We can have a single antenna for RX and multiple antennas for TX.
2156 * RX antenna is our "default" antenna (usually antenna 1) set on
2157 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2158 * (0 for automatic selection, 1 - 14 antenna number).
2159 *
2160 * We can let hw do all the work doing fast antenna diversity for both
2161 * tx and rx or we can do things manually. Here are the options we have
2162 * (all are bits of STA_ID1 register):
2163 *
2164 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2165 * control descriptor, use the default antenna to transmit or else use the last
2166 * antenna on which we received an ACK.
2167 *
2168 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2169 * the antenna on which we got the ACK for that frame.
2170 *
2171 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2172 * one on the TX descriptor.
2173 *
2174 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2175 * (ACKs etc), or else use current antenna (the one we just used for TX).
2176 *
2177 * Using the above we support the following scenarios:
2178 *
2179 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2180 *
2181 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2182 *
2183 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2184 *
2185 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2186 *
2187 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2188 *
2189 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2190 *
2191 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2192 *
2193 * Also note that when setting antenna to F on tx descriptor card inverts
2194 * current tx antenna.
2195 */
2196
2197/**
2198 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2199 * @ah: The &struct ath5k_hw
2200 * @ant: Antenna number
2201 */
2202static void
2203ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2204{
2205	if (ah->ah_version != AR5K_AR5210)
2206		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2207}
2208
2209/**
2210 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2211 * @ah: The &struct ath5k_hw
2212 * @ee_mode: One of enum ath5k_driver_mode
2213 * @enable: True to enable, false to disable
2214 */
2215static void
2216ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2217{
2218	switch (ee_mode) {
2219	case AR5K_EEPROM_MODE_11G:
2220		/* XXX: This is set to
2221		 * disabled on initvals !!! */
2222	case AR5K_EEPROM_MODE_11A:
2223		if (enable)
2224			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226		else
2227			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229		break;
2230	case AR5K_EEPROM_MODE_11B:
2231		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2232					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2233		break;
2234	default:
2235		return;
2236	}
2237
2238	if (enable) {
2239		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2240				AR5K_PHY_RESTART_DIV_GC, 4);
2241
2242		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2243					AR5K_PHY_FAST_ANT_DIV_EN);
2244	} else {
2245		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2246				AR5K_PHY_RESTART_DIV_GC, 0);
2247
2248		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2249					AR5K_PHY_FAST_ANT_DIV_EN);
2250	}
2251}
2252
2253/**
2254 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2255 * @ah: The &struct ath5k_hw
2256 * @ee_mode: One of enum ath5k_driver_mode
2257 *
2258 * Switch table comes from EEPROM and includes information on controlling
2259 * the 2 antenna RX attenuators
2260 */
2261void
2262ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2263{
2264	u8 ant0, ant1;
2265
2266	/*
2267	 * In case a fixed antenna was set as default
2268	 * use the same switch table twice.
2269	 */
2270	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2271		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2272	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2273		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2274	else {
2275		ant0 = AR5K_ANT_SWTABLE_A;
2276		ant1 = AR5K_ANT_SWTABLE_B;
2277	}
2278
2279	/* Set antenna idle switch table */
2280	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2281			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2282			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2283			AR5K_PHY_ANT_CTL_TXRX_EN));
2284
2285	/* Set antenna switch tables */
2286	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2287		AR5K_PHY_ANT_SWITCH_TABLE_0);
2288	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2289		AR5K_PHY_ANT_SWITCH_TABLE_1);
2290}
2291
2292/**
2293 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2294 * @ah: The &struct ath5k_hw
2295 * @ant_mode: One of enum ath5k_ant_mode
2296 */
2297void
2298ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2299{
2300	struct ieee80211_channel *channel = ah->ah_current_channel;
2301	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2302	bool use_def_for_sg;
2303	int ee_mode;
2304	u8 def_ant, tx_ant;
2305	u32 sta_id1 = 0;
2306
2307	/* if channel is not initialized yet we can't set the antennas
2308	 * so just store the mode. it will be set on the next reset */
2309	if (channel == NULL) {
2310		ah->ah_ant_mode = ant_mode;
2311		return;
2312	}
2313
2314	def_ant = ah->ah_def_ant;
2315
2316	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 
 
 
 
 
2317
2318	switch (ant_mode) {
2319	case AR5K_ANTMODE_DEFAULT:
2320		tx_ant = 0;
2321		use_def_for_tx = false;
2322		update_def_on_tx = false;
2323		use_def_for_rts = false;
2324		use_def_for_sg = false;
2325		fast_div = true;
2326		break;
2327	case AR5K_ANTMODE_FIXED_A:
2328		def_ant = 1;
2329		tx_ant = 1;
2330		use_def_for_tx = true;
2331		update_def_on_tx = false;
2332		use_def_for_rts = true;
2333		use_def_for_sg = true;
2334		fast_div = false;
2335		break;
2336	case AR5K_ANTMODE_FIXED_B:
2337		def_ant = 2;
2338		tx_ant = 2;
2339		use_def_for_tx = true;
2340		update_def_on_tx = false;
2341		use_def_for_rts = true;
2342		use_def_for_sg = true;
2343		fast_div = false;
2344		break;
2345	case AR5K_ANTMODE_SINGLE_AP:
2346		def_ant = 1;	/* updated on tx */
2347		tx_ant = 0;
2348		use_def_for_tx = true;
2349		update_def_on_tx = true;
2350		use_def_for_rts = true;
2351		use_def_for_sg = true;
2352		fast_div = true;
2353		break;
2354	case AR5K_ANTMODE_SECTOR_AP:
2355		tx_ant = 1;	/* variable */
2356		use_def_for_tx = false;
2357		update_def_on_tx = false;
2358		use_def_for_rts = true;
2359		use_def_for_sg = false;
2360		fast_div = false;
2361		break;
2362	case AR5K_ANTMODE_SECTOR_STA:
2363		tx_ant = 1;	/* variable */
2364		use_def_for_tx = true;
2365		update_def_on_tx = false;
2366		use_def_for_rts = true;
2367		use_def_for_sg = false;
2368		fast_div = true;
2369		break;
2370	case AR5K_ANTMODE_DEBUG:
2371		def_ant = 1;
2372		tx_ant = 2;
2373		use_def_for_tx = false;
2374		update_def_on_tx = false;
2375		use_def_for_rts = false;
2376		use_def_for_sg = false;
2377		fast_div = false;
2378		break;
2379	default:
2380		return;
2381	}
2382
2383	ah->ah_tx_ant = tx_ant;
2384	ah->ah_ant_mode = ant_mode;
2385	ah->ah_def_ant = def_ant;
2386
2387	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2388	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2389	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2390	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2391
2392	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2393
2394	if (sta_id1)
2395		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2396
2397	ath5k_hw_set_antenna_switch(ah, ee_mode);
2398	/* Note: set diversity before default antenna
2399	 * because it won't work correctly */
2400	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2401	ath5k_hw_set_def_antenna(ah, def_ant);
2402}
2403
2404
2405/****************\
2406* TX power setup *
2407\****************/
2408
2409/*
2410 * Helper functions
2411 */
2412
2413/**
2414 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2415 * @target: X value of the middle point
2416 * @x_left: X value of the left point
2417 * @x_right: X value of the right point
2418 * @y_left: Y value of the left point
2419 * @y_right: Y value of the right point
2420 */
2421static s16
2422ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2423					s16 y_left, s16 y_right)
2424{
2425	s16 ratio, result;
2426
2427	/* Avoid divide by zero and skip interpolation
2428	 * if we have the same point */
2429	if ((x_left == x_right) || (y_left == y_right))
2430		return y_left;
2431
2432	/*
2433	 * Since we use ints and not fps, we need to scale up in
2434	 * order to get a sane ratio value (or else we 'll eg. get
2435	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2436	 * to have some accuracy both for 0.5 and 0.25 steps.
2437	 */
2438	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2439
2440	/* Now scale down to be in range */
2441	result = y_left + (ratio * (target - x_left) / 100);
2442
2443	return result;
2444}
2445
2446/**
2447 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2448 * linear PCDAC curve
2449 * @stepL: Left array with y values (pcdac steps)
2450 * @stepR: Right array with y values (pcdac steps)
2451 * @pwrL: Left array with x values (power steps)
2452 * @pwrR: Right array with x values (power steps)
2453 *
2454 * Since we have the top of the curve and we draw the line below
2455 * until we reach 1 (1 pcdac step) we need to know which point
2456 * (x value) that is so that we don't go below x axis and have negative
2457 * pcdac values when creating the curve, or fill the table with zeros.
2458 */
2459static s16
2460ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2461				const s16 *pwrL, const s16 *pwrR)
2462{
2463	s8 tmp;
2464	s16 min_pwrL, min_pwrR;
2465	s16 pwr_i;
2466
2467	/* Some vendors write the same pcdac value twice !!! */
2468	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2469		return max(pwrL[0], pwrR[0]);
2470
2471	if (pwrL[0] == pwrL[1])
2472		min_pwrL = pwrL[0];
2473	else {
2474		pwr_i = pwrL[0];
2475		do {
2476			pwr_i--;
2477			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2478							pwrL[0], pwrL[1],
2479							stepL[0], stepL[1]);
2480		} while (tmp > 1);
2481
2482		min_pwrL = pwr_i;
2483	}
2484
2485	if (pwrR[0] == pwrR[1])
2486		min_pwrR = pwrR[0];
2487	else {
2488		pwr_i = pwrR[0];
2489		do {
2490			pwr_i--;
2491			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2492							pwrR[0], pwrR[1],
2493							stepR[0], stepR[1]);
2494		} while (tmp > 1);
2495
2496		min_pwrR = pwr_i;
2497	}
2498
2499	/* Keep the right boundary so that it works for both curves */
2500	return max(min_pwrL, min_pwrR);
2501}
2502
2503/**
2504 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2505 * @pmin: Minimum power value (xmin)
2506 * @pmax: Maximum power value (xmax)
2507 * @pwr: Array of power steps (x values)
2508 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2509 * @num_points: Number of provided points
2510 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2511 * @type: One of enum ath5k_powertable_type (eeprom.h)
2512 *
2513 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2514 * Power to PCDAC curve.
2515 *
2516 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2517 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2518 * PCDAC/PDADC step for each curve is 64 but we can write more than
2519 * one curves on hw so we can go up to 128 (which is the max step we
2520 * can write on the final table).
2521 *
2522 * We write y values (PCDAC/PDADC steps) on hw.
2523 */
2524static void
2525ath5k_create_power_curve(s16 pmin, s16 pmax,
2526			const s16 *pwr, const u8 *vpd,
2527			u8 num_points,
2528			u8 *vpd_table, u8 type)
2529{
2530	u8 idx[2] = { 0, 1 };
2531	s16 pwr_i = 2 * pmin;
2532	int i;
2533
2534	if (num_points < 2)
2535		return;
2536
2537	/* We want the whole line, so adjust boundaries
2538	 * to cover the entire power range. Note that
2539	 * power values are already 0.25dB so no need
2540	 * to multiply pwr_i by 2 */
2541	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2542		pwr_i = pmin;
2543		pmin = 0;
2544		pmax = 63;
2545	}
2546
2547	/* Find surrounding turning points (TPs)
2548	 * and interpolate between them */
2549	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2550	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2551
2552		/* We passed the right TP, move to the next set of TPs
2553		 * if we pass the last TP, extrapolate above using the last
2554		 * two TPs for ratio */
2555		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2556			idx[0]++;
2557			idx[1]++;
2558		}
2559
2560		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2561						pwr[idx[0]], pwr[idx[1]],
2562						vpd[idx[0]], vpd[idx[1]]);
2563
2564		/* Increase by 0.5dB
2565		 * (0.25 dB units) */
2566		pwr_i += 2;
2567	}
2568}
2569
2570/**
2571 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2572 * for a given channel.
2573 * @ah: The &struct ath5k_hw
2574 * @channel: The &struct ieee80211_channel
2575 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2576 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2577 *
2578 * Get the surrounding per-channel power calibration piers
2579 * for a given frequency so that we can interpolate between
2580 * them and come up with an appropriate dataset for our current
2581 * channel.
2582 */
2583static void
2584ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2585			struct ieee80211_channel *channel,
2586			struct ath5k_chan_pcal_info **pcinfo_l,
2587			struct ath5k_chan_pcal_info **pcinfo_r)
2588{
2589	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2590	struct ath5k_chan_pcal_info *pcinfo;
2591	u8 idx_l, idx_r;
2592	u8 mode, max, i;
2593	u32 target = channel->center_freq;
2594
2595	idx_l = 0;
2596	idx_r = 0;
2597
2598	switch (channel->hw_value) {
2599	case AR5K_EEPROM_MODE_11A:
2600		pcinfo = ee->ee_pwr_cal_a;
2601		mode = AR5K_EEPROM_MODE_11A;
2602		break;
2603	case AR5K_EEPROM_MODE_11B:
2604		pcinfo = ee->ee_pwr_cal_b;
2605		mode = AR5K_EEPROM_MODE_11B;
2606		break;
2607	case AR5K_EEPROM_MODE_11G:
2608	default:
2609		pcinfo = ee->ee_pwr_cal_g;
2610		mode = AR5K_EEPROM_MODE_11G;
2611		break;
 
 
2612	}
2613	max = ee->ee_n_piers[mode] - 1;
2614
2615	/* Frequency is below our calibrated
2616	 * range. Use the lowest power curve
2617	 * we have */
2618	if (target < pcinfo[0].freq) {
2619		idx_l = idx_r = 0;
2620		goto done;
2621	}
2622
2623	/* Frequency is above our calibrated
2624	 * range. Use the highest power curve
2625	 * we have */
2626	if (target > pcinfo[max].freq) {
2627		idx_l = idx_r = max;
2628		goto done;
2629	}
2630
2631	/* Frequency is inside our calibrated
2632	 * channel range. Pick the surrounding
2633	 * calibration piers so that we can
2634	 * interpolate */
2635	for (i = 0; i <= max; i++) {
2636
2637		/* Frequency matches one of our calibration
2638		 * piers, no need to interpolate, just use
2639		 * that calibration pier */
2640		if (pcinfo[i].freq == target) {
2641			idx_l = idx_r = i;
2642			goto done;
2643		}
2644
2645		/* We found a calibration pier that's above
2646		 * frequency, use this pier and the previous
2647		 * one to interpolate */
2648		if (target < pcinfo[i].freq) {
2649			idx_r = i;
2650			idx_l = idx_r - 1;
2651			goto done;
2652		}
2653	}
2654
2655done:
2656	*pcinfo_l = &pcinfo[idx_l];
2657	*pcinfo_r = &pcinfo[idx_r];
2658}
2659
2660/**
2661 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2662 * calibration data
2663 * @ah: The &struct ath5k_hw *ah,
2664 * @channel: The &struct ieee80211_channel
2665 * @rates: The &struct ath5k_rate_pcal_info to fill
2666 *
2667 * Get the surrounding per-rate power calibration data
2668 * for a given frequency and interpolate between power
2669 * values to set max target power supported by hw for
2670 * each rate on this frequency.
2671 */
2672static void
2673ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2674			struct ieee80211_channel *channel,
2675			struct ath5k_rate_pcal_info *rates)
2676{
2677	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2678	struct ath5k_rate_pcal_info *rpinfo;
2679	u8 idx_l, idx_r;
2680	u8 mode, max, i;
2681	u32 target = channel->center_freq;
2682
2683	idx_l = 0;
2684	idx_r = 0;
2685
2686	switch (channel->hw_value) {
2687	case AR5K_MODE_11A:
2688		rpinfo = ee->ee_rate_tpwr_a;
2689		mode = AR5K_EEPROM_MODE_11A;
2690		break;
2691	case AR5K_MODE_11B:
2692		rpinfo = ee->ee_rate_tpwr_b;
2693		mode = AR5K_EEPROM_MODE_11B;
2694		break;
2695	case AR5K_MODE_11G:
2696	default:
2697		rpinfo = ee->ee_rate_tpwr_g;
2698		mode = AR5K_EEPROM_MODE_11G;
2699		break;
 
 
2700	}
2701	max = ee->ee_rate_target_pwr_num[mode] - 1;
2702
2703	/* Get the surrounding calibration
2704	 * piers - same as above */
2705	if (target < rpinfo[0].freq) {
2706		idx_l = idx_r = 0;
2707		goto done;
2708	}
2709
2710	if (target > rpinfo[max].freq) {
2711		idx_l = idx_r = max;
2712		goto done;
2713	}
2714
2715	for (i = 0; i <= max; i++) {
2716
2717		if (rpinfo[i].freq == target) {
2718			idx_l = idx_r = i;
2719			goto done;
2720		}
2721
2722		if (target < rpinfo[i].freq) {
2723			idx_r = i;
2724			idx_l = idx_r - 1;
2725			goto done;
2726		}
2727	}
2728
2729done:
2730	/* Now interpolate power value, based on the frequency */
2731	rates->freq = target;
2732
2733	rates->target_power_6to24 =
2734		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2735					rpinfo[idx_r].freq,
2736					rpinfo[idx_l].target_power_6to24,
2737					rpinfo[idx_r].target_power_6to24);
2738
2739	rates->target_power_36 =
2740		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2741					rpinfo[idx_r].freq,
2742					rpinfo[idx_l].target_power_36,
2743					rpinfo[idx_r].target_power_36);
2744
2745	rates->target_power_48 =
2746		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2747					rpinfo[idx_r].freq,
2748					rpinfo[idx_l].target_power_48,
2749					rpinfo[idx_r].target_power_48);
2750
2751	rates->target_power_54 =
2752		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2753					rpinfo[idx_r].freq,
2754					rpinfo[idx_l].target_power_54,
2755					rpinfo[idx_r].target_power_54);
2756}
2757
2758/**
2759 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2760 * @ah: the &struct ath5k_hw
2761 * @channel: The &struct ieee80211_channel
2762 *
2763 * Get the max edge power for this channel if
2764 * we have such data from EEPROM's Conformance Test
2765 * Limits (CTL), and limit max power if needed.
2766 */
2767static void
2768ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2769			struct ieee80211_channel *channel)
2770{
2771	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2772	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2773	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2774	u8 *ctl_val = ee->ee_ctl;
2775	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2776	s16 edge_pwr = 0;
2777	u8 rep_idx;
2778	u8 i, ctl_mode;
2779	u8 ctl_idx = 0xFF;
2780	u32 target = channel->center_freq;
2781
2782	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2783
2784	switch (channel->hw_value) {
2785	case AR5K_MODE_11A:
2786		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2787			ctl_mode |= AR5K_CTL_TURBO;
2788		else
2789			ctl_mode |= AR5K_CTL_11A;
2790		break;
2791	case AR5K_MODE_11G:
2792		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2793			ctl_mode |= AR5K_CTL_TURBOG;
2794		else
2795			ctl_mode |= AR5K_CTL_11G;
2796		break;
2797	case AR5K_MODE_11B:
2798		ctl_mode |= AR5K_CTL_11B;
2799		break;
 
 
2800	default:
2801		return;
2802	}
2803
2804	for (i = 0; i < ee->ee_ctls; i++) {
2805		if (ctl_val[i] == ctl_mode) {
2806			ctl_idx = i;
2807			break;
2808		}
2809	}
2810
2811	/* If we have a CTL dataset available grab it and find the
2812	 * edge power for our frequency */
2813	if (ctl_idx == 0xFF)
2814		return;
2815
2816	/* Edge powers are sorted by frequency from lower
2817	 * to higher. Each CTL corresponds to 8 edge power
2818	 * measurements. */
2819	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2820
2821	/* Don't do boundaries check because we
2822	 * might have more that one bands defined
2823	 * for this mode */
2824
2825	/* Get the edge power that's closer to our
2826	 * frequency */
2827	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2828		rep_idx += i;
2829		if (target <= rep[rep_idx].freq)
2830			edge_pwr = (s16) rep[rep_idx].edge;
2831	}
2832
2833	if (edge_pwr)
2834		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2835}
2836
2837
2838/*
2839 * Power to PCDAC table functions
2840 */
2841
2842/**
2843 * DOC: Power to PCDAC table functions
2844 *
2845 * For RF5111 we have an XPD -eXternal Power Detector- curve
2846 * for each calibrated channel. Each curve has 0,5dB Power steps
2847 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2848 * exponential function. To recreate the curve we read 11 points
2849 * from eeprom (eeprom.c) and interpolate here.
2850 *
2851 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2852 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2853 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2854 * power steps on x axis and PCDAC steps on y axis and looks like a
2855 * linear function. To recreate the curve and pass the power values
2856 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2857 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2858 * and interpolate here.
2859 *
2860 * For a given channel we get the calibrated points (piers) for it or
2861 * -if we don't have calibration data for this specific channel- from the
2862 * available surrounding channels we have calibration data for, after we do a
2863 * linear interpolation between them. Then since we have our calibrated points
2864 * for this channel, we do again a linear interpolation between them to get the
2865 * whole curve.
2866 *
2867 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2868 */
2869
2870/**
2871 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2872 * @ah: The &struct ath5k_hw
2873 * @table_min: Minimum power (x min)
2874 * @table_max: Maximum power (x max)
2875 *
2876 * No further processing is needed for RF5111, the only thing we have to
2877 * do is fill the values below and above calibration range since eeprom data
2878 * may not cover the entire PCDAC table.
2879 */
2880static void
2881ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2882							s16 *table_max)
2883{
2884	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2885	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2886	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2887	s16	min_pwr, max_pwr;
2888
2889	/* Get table boundaries */
2890	min_pwr = table_min[0];
2891	pcdac_0 = pcdac_tmp[0];
2892
2893	max_pwr = table_max[0];
2894	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2895
2896	/* Extrapolate below minimum using pcdac_0 */
2897	pcdac_i = 0;
2898	for (i = 0; i < min_pwr; i++)
2899		pcdac_out[pcdac_i++] = pcdac_0;
2900
2901	/* Copy values from pcdac_tmp */
2902	pwr_idx = min_pwr;
2903	for (i = 0; pwr_idx <= max_pwr &&
2904		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2905		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2906		pwr_idx++;
2907	}
2908
2909	/* Extrapolate above maximum */
2910	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2911		pcdac_out[pcdac_i++] = pcdac_n;
2912
2913}
2914
2915/**
2916 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2917 * @ah: The &struct ath5k_hw
2918 * @table_min: Minimum power (x min)
2919 * @table_max: Maximum power (x max)
2920 * @pdcurves: Number of pd curves
2921 *
2922 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2923 * RFX112 can have up to 2 curves (one for low txpower range and one for
2924 * higher txpower range). We need to put them both on pcdac_out and place
2925 * them in the correct location. In case we only have one curve available
2926 * just fit it on pcdac_out (it's supposed to cover the entire range of
2927 * available pwr levels since it's always the higher power curve). Extrapolate
2928 * below and above final table if needed.
2929 */
2930static void
2931ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2932						s16 *table_max, u8 pdcurves)
2933{
2934	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2935	u8	*pcdac_low_pwr;
2936	u8	*pcdac_high_pwr;
2937	u8	*pcdac_tmp;
2938	u8	pwr;
2939	s16	max_pwr_idx;
2940	s16	min_pwr_idx;
2941	s16	mid_pwr_idx = 0;
2942	/* Edge flag turns on the 7nth bit on the PCDAC
2943	 * to declare the higher power curve (force values
2944	 * to be greater than 64). If we only have one curve
2945	 * we don't need to set this, if we have 2 curves and
2946	 * fill the table backwards this can also be used to
2947	 * switch from higher power curve to lower power curve */
2948	u8	edge_flag;
2949	int	i;
2950
2951	/* When we have only one curve available
2952	 * that's the higher power curve. If we have
2953	 * two curves the first is the high power curve
2954	 * and the next is the low power curve. */
2955	if (pdcurves > 1) {
2956		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2957		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2958		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2959		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2960
2961		/* If table size goes beyond 31.5dB, keep the
2962		 * upper 31.5dB range when setting tx power.
2963		 * Note: 126 = 31.5 dB in quarter dB steps */
2964		if (table_max[0] - table_min[1] > 126)
2965			min_pwr_idx = table_max[0] - 126;
2966		else
2967			min_pwr_idx = table_min[1];
2968
2969		/* Since we fill table backwards
2970		 * start from high power curve */
2971		pcdac_tmp = pcdac_high_pwr;
2972
2973		edge_flag = 0x40;
2974	} else {
2975		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2976		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2977		min_pwr_idx = table_min[0];
2978		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2979		pcdac_tmp = pcdac_high_pwr;
2980		edge_flag = 0;
2981	}
2982
2983	/* This is used when setting tx power*/
2984	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2985
2986	/* Fill Power to PCDAC table backwards */
2987	pwr = max_pwr_idx;
2988	for (i = 63; i >= 0; i--) {
2989		/* Entering lower power range, reset
2990		 * edge flag and set pcdac_tmp to lower
2991		 * power curve.*/
2992		if (edge_flag == 0x40 &&
2993		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2994			edge_flag = 0x00;
2995			pcdac_tmp = pcdac_low_pwr;
2996			pwr = mid_pwr_idx / 2;
2997		}
2998
2999		/* Don't go below 1, extrapolate below if we have
3000		 * already switched to the lower power curve -or
3001		 * we only have one curve and edge_flag is zero
3002		 * anyway */
3003		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3004			while (i >= 0) {
3005				pcdac_out[i] = pcdac_out[i + 1];
3006				i--;
3007			}
3008			break;
3009		}
3010
3011		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3012
3013		/* Extrapolate above if pcdac is greater than
3014		 * 126 -this can happen because we OR pcdac_out
3015		 * value with edge_flag on high power curve */
3016		if (pcdac_out[i] > 126)
3017			pcdac_out[i] = 126;
3018
3019		/* Decrease by a 0.5dB step */
3020		pwr--;
3021	}
3022}
3023
3024/**
3025 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3026 * @ah: The &struct ath5k_hw
3027 */
3028static void
3029ath5k_write_pcdac_table(struct ath5k_hw *ah)
3030{
3031	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3032	int	i;
3033
3034	/*
3035	 * Write TX power values
3036	 */
3037	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3038		ath5k_hw_reg_write(ah,
3039			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3040			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3041			AR5K_PHY_PCDAC_TXPOWER(i));
3042	}
3043}
3044
3045
3046/*
3047 * Power to PDADC table functions
3048 */
3049
3050/**
3051 * DOC: Power to PDADC table functions
3052 *
3053 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3054 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3055 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3056 * PDADC steps on y axis and looks like an exponential function like the
3057 * RF5111 curve.
3058 *
3059 * To recreate the curves we read the points from eeprom (eeprom.c)
3060 * and interpolate here. Note that in most cases only 2 (higher and lower)
3061 * curves are used (like RF5112) but vendors have the opportunity to include
3062 * all 4 curves on eeprom. The final curve (higher power) has an extra
3063 * point for better accuracy like RF5112.
3064 *
3065 * The process is similar to what we do above for RF5111/5112
3066 */
3067
3068/**
3069 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3070 * @ah: The &struct ath5k_hw
3071 * @pwr_min: Minimum power (x min)
3072 * @pwr_max: Maximum power (x max)
3073 * @pdcurves: Number of available curves
3074 *
3075 * Combine the various pd curves and create the final Power to PDADC table
3076 * We can have up to 4 pd curves, we need to do a similar process
3077 * as we do for RF5112. This time we don't have an edge_flag but we
3078 * set the gain boundaries on a separate register.
3079 */
3080static void
3081ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3082			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3083{
3084	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3085	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3086	u8 *pdadc_tmp;
3087	s16 pdadc_0;
3088	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3089	u8 pd_gain_overlap;
3090
3091	/* Note: Register value is initialized on initvals
3092	 * there is no feedback from hw.
3093	 * XXX: What about pd_gain_overlap from EEPROM ? */
3094	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3095		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3096
3097	/* Create final PDADC table */
3098	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3099		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3100
3101		if (pdg == pdcurves - 1)
3102			/* 2 dB boundary stretch for last
3103			 * (higher power) curve */
3104			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3105		else
3106			/* Set gain boundary in the middle
3107			 * between this curve and the next one */
3108			gain_boundaries[pdg] =
3109				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3110
3111		/* Sanity check in case our 2 db stretch got out of
3112		 * range. */
3113		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3114			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3115
3116		/* For the first curve (lower power)
3117		 * start from 0 dB */
3118		if (pdg == 0)
3119			pdadc_0 = 0;
3120		else
3121			/* For the other curves use the gain overlap */
3122			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3123							pd_gain_overlap;
3124
3125		/* Force each power step to be at least 0.5 dB */
3126		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3127			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3128		else
3129			pwr_step = 1;
3130
3131		/* If pdadc_0 is negative, we need to extrapolate
3132		 * below this pdgain by a number of pwr_steps */
3133		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3134			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3135			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3136			pdadc_0++;
3137		}
3138
3139		/* Set last pwr level, using gain boundaries */
3140		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3141		/* Limit it to be inside pwr range */
3142		table_size = pwr_max[pdg] - pwr_min[pdg];
3143		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3144
3145		/* Fill pdadc_out table */
3146		while (pdadc_0 < max_idx && pdadc_i < 128)
3147			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3148
3149		/* Need to extrapolate above this pdgain? */
3150		if (pdadc_n <= max_idx)
3151			continue;
3152
3153		/* Force each power step to be at least 0.5 dB */
3154		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3155			pwr_step = pdadc_tmp[table_size - 1] -
3156						pdadc_tmp[table_size - 2];
3157		else
3158			pwr_step = 1;
3159
3160		/* Extrapolate above */
3161		while ((pdadc_0 < (s16) pdadc_n) &&
3162		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3163			s16 tmp = pdadc_tmp[table_size - 1] +
3164					(pdadc_0 - max_idx) * pwr_step;
3165			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3166			pdadc_0++;
3167		}
3168	}
3169
3170	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3171		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3172		pdg++;
3173	}
3174
3175	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3176		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3177		pdadc_i++;
3178	}
3179
3180	/* Set gain boundaries */
3181	ath5k_hw_reg_write(ah,
3182		AR5K_REG_SM(pd_gain_overlap,
3183			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3184		AR5K_REG_SM(gain_boundaries[0],
3185			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3186		AR5K_REG_SM(gain_boundaries[1],
3187			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3188		AR5K_REG_SM(gain_boundaries[2],
3189			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3190		AR5K_REG_SM(gain_boundaries[3],
3191			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3192		AR5K_PHY_TPC_RG5);
3193
3194	/* Used for setting rate power table */
3195	ah->ah_txpower.txp_min_idx = pwr_min[0];
3196
3197}
3198
3199/**
3200 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3201 * @ah: The &struct ath5k_hw
3202 * @ee_mode: One of enum ath5k_driver_mode
3203 */
3204static void
3205ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3206{
3207	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3208	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3209	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3210	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3211	u32 reg;
3212	u8 i;
3213
3214	/* Select the right pdgain curves */
3215
3216	/* Clear current settings */
3217	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3218	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3219		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3220		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3221		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3222
3223	/*
3224	 * Use pd_gains curve from eeprom
3225	 *
3226	 * This overrides the default setting from initvals
3227	 * in case some vendors (e.g. Zcomax) don't use the default
3228	 * curves. If we don't honor their settings we 'll get a
3229	 * 5dB (1 * gain overlap ?) drop.
3230	 */
3231	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3232
3233	switch (pdcurves) {
3234	case 3:
3235		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3236		/* Fall through */
3237	case 2:
3238		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3239		/* Fall through */
3240	case 1:
3241		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3242		break;
3243	}
3244	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3245
3246	/*
3247	 * Write TX power values
3248	 */
3249	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3250		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3251		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3252	}
3253}
3254
3255
3256/*
3257 * Common code for PCDAC/PDADC tables
3258 */
3259
3260/**
3261 * ath5k_setup_channel_powertable() - Set up power table for this channel
3262 * @ah: The &struct ath5k_hw
3263 * @channel: The &struct ieee80211_channel
3264 * @ee_mode: One of enum ath5k_driver_mode
3265 * @type: One of enum ath5k_powertable_type (eeprom.h)
3266 *
3267 * This is the main function that uses all of the above
3268 * to set PCDAC/PDADC table on hw for the current channel.
3269 * This table is used for tx power calibration on the baseband,
3270 * without it we get weird tx power levels and in some cases
3271 * distorted spectral mask
3272 */
3273static int
3274ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3275			struct ieee80211_channel *channel,
3276			u8 ee_mode, u8 type)
3277{
3278	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3279	struct ath5k_chan_pcal_info *pcinfo_L;
3280	struct ath5k_chan_pcal_info *pcinfo_R;
3281	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3282	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3283	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3284	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3285	u8 *tmpL;
3286	u8 *tmpR;
3287	u32 target = channel->center_freq;
3288	int pdg, i;
3289
3290	/* Get surrounding freq piers for this channel */
3291	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3292						&pcinfo_L,
3293						&pcinfo_R);
3294
3295	/* Loop over pd gain curves on
3296	 * surrounding freq piers by index */
3297	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3298
3299		/* Fill curves in reverse order
3300		 * from lower power (max gain)
3301		 * to higher power. Use curve -> idx
3302		 * backmapping we did on eeprom init */
3303		u8 idx = pdg_curve_to_idx[pdg];
3304
3305		/* Grab the needed curves by index */
3306		pdg_L = &pcinfo_L->pd_curves[idx];
3307		pdg_R = &pcinfo_R->pd_curves[idx];
3308
3309		/* Initialize the temp tables */
3310		tmpL = ah->ah_txpower.tmpL[pdg];
3311		tmpR = ah->ah_txpower.tmpR[pdg];
3312
3313		/* Set curve's x boundaries and create
3314		 * curves so that they cover the same
3315		 * range (if we don't do that one table
3316		 * will have values on some range and the
3317		 * other one won't have any so interpolation
3318		 * will fail) */
3319		table_min[pdg] = min(pdg_L->pd_pwr[0],
3320					pdg_R->pd_pwr[0]) / 2;
3321
3322		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3323				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3324
3325		/* Now create the curves on surrounding channels
3326		 * and interpolate if needed to get the final
3327		 * curve for this gain on this channel */
3328		switch (type) {
3329		case AR5K_PWRTABLE_LINEAR_PCDAC:
3330			/* Override min/max so that we don't loose
3331			 * accuracy (don't divide by 2) */
3332			table_min[pdg] = min(pdg_L->pd_pwr[0],
3333						pdg_R->pd_pwr[0]);
3334
3335			table_max[pdg] =
3336				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3337					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3338
3339			/* Override minimum so that we don't get
3340			 * out of bounds while extrapolating
3341			 * below. Don't do this when we have 2
3342			 * curves and we are on the high power curve
3343			 * because table_min is ok in this case */
3344			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3345
3346				table_min[pdg] =
3347					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3348								pdg_R->pd_step,
3349								pdg_L->pd_pwr,
3350								pdg_R->pd_pwr);
3351
3352				/* Don't go too low because we will
3353				 * miss the upper part of the curve.
3354				 * Note: 126 = 31.5dB (max power supported)
3355				 * in 0.25dB units */
3356				if (table_max[pdg] - table_min[pdg] > 126)
3357					table_min[pdg] = table_max[pdg] - 126;
3358			}
3359
3360			/* Fall through */
3361		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3362		case AR5K_PWRTABLE_PWR_TO_PDADC:
3363
3364			ath5k_create_power_curve(table_min[pdg],
3365						table_max[pdg],
3366						pdg_L->pd_pwr,
3367						pdg_L->pd_step,
3368						pdg_L->pd_points, tmpL, type);
3369
3370			/* We are in a calibration
3371			 * pier, no need to interpolate
3372			 * between freq piers */
3373			if (pcinfo_L == pcinfo_R)
3374				continue;
3375
3376			ath5k_create_power_curve(table_min[pdg],
3377						table_max[pdg],
3378						pdg_R->pd_pwr,
3379						pdg_R->pd_step,
3380						pdg_R->pd_points, tmpR, type);
3381			break;
3382		default:
3383			return -EINVAL;
3384		}
3385
3386		/* Interpolate between curves
3387		 * of surrounding freq piers to
3388		 * get the final curve for this
3389		 * pd gain. Re-use tmpL for interpolation
3390		 * output */
3391		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3392		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3393			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3394							(s16) pcinfo_L->freq,
3395							(s16) pcinfo_R->freq,
3396							(s16) tmpL[i],
3397							(s16) tmpR[i]);
3398		}
3399	}
3400
3401	/* Now we have a set of curves for this
3402	 * channel on tmpL (x range is table_max - table_min
3403	 * and y values are tmpL[pdg][]) sorted in the same
3404	 * order as EEPROM (because we've used the backmapping).
3405	 * So for RF5112 it's from higher power to lower power
3406	 * and for RF2413 it's from lower power to higher power.
3407	 * For RF5111 we only have one curve. */
3408
3409	/* Fill min and max power levels for this
3410	 * channel by interpolating the values on
3411	 * surrounding channels to complete the dataset */
3412	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3413					(s16) pcinfo_L->freq,
3414					(s16) pcinfo_R->freq,
3415					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3416
3417	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3418					(s16) pcinfo_L->freq,
3419					(s16) pcinfo_R->freq,
3420					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3421
3422	/* Fill PCDAC/PDADC table */
3423	switch (type) {
3424	case AR5K_PWRTABLE_LINEAR_PCDAC:
3425		/* For RF5112 we can have one or two curves
3426		 * and each curve covers a certain power lvl
3427		 * range so we need to do some more processing */
3428		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3429						ee->ee_pd_gains[ee_mode]);
3430
3431		/* Set txp.offset so that we can
3432		 * match max power value with max
3433		 * table index */
3434		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3435		break;
3436	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3437		/* We are done for RF5111 since it has only
3438		 * one curve, just fit the curve on the table */
3439		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3440
3441		/* No rate powertable adjustment for RF5111 */
3442		ah->ah_txpower.txp_min_idx = 0;
3443		ah->ah_txpower.txp_offset = 0;
3444		break;
3445	case AR5K_PWRTABLE_PWR_TO_PDADC:
3446		/* Set PDADC boundaries and fill
3447		 * final PDADC table */
3448		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3449						ee->ee_pd_gains[ee_mode]);
3450
3451		/* Set txp.offset, note that table_min
3452		 * can be negative */
3453		ah->ah_txpower.txp_offset = table_min[0];
3454		break;
3455	default:
3456		return -EINVAL;
3457	}
3458
3459	ah->ah_txpower.txp_setup = true;
3460
3461	return 0;
3462}
3463
3464/**
3465 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3466 * @ah: The &struct ath5k_hw
3467 * @ee_mode: One of enum ath5k_driver_mode
3468 * @type: One of enum ath5k_powertable_type (eeprom.h)
3469 */
3470static void
3471ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3472{
3473	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3474		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3475	else
3476		ath5k_write_pcdac_table(ah);
3477}
3478
3479
3480/**
3481 * DOC: Per-rate tx power setting
3482 *
3483 * This is the code that sets the desired tx power limit (below
3484 * maximum) on hw for each rate (we also have TPC that sets
3485 * power per packet type). We do that by providing an index on the
3486 * PCDAC/PDADC table we set up above, for each rate.
 
 
 
 
3487 *
3488 * For now we only limit txpower based on maximum tx power
3489 * supported by hw (what's inside rate_info) + conformance test
3490 * limits. We need to limit this even more, based on regulatory domain
3491 * etc to be safe. Normally this is done from above so we don't care
3492 * here, all we care is that the tx power we set will be O.K.
3493 * for the hw (e.g. won't create noise on PA etc).
3494 *
3495 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3496 * x values) and is indexed as follows:
3497 * rates[0] - rates[7] -> OFDM rates
3498 * rates[8] - rates[14] -> CCK rates
3499 * rates[15] -> XR rates (they all have the same power)
3500 */
3501
3502/**
3503 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3504 * @ah: The &struct ath5k_hw
3505 * @max_pwr: The maximum tx power requested in 0.5dB steps
3506 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3507 * @ee_mode: One of enum ath5k_driver_mode
3508 */
3509static void
3510ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3511			struct ath5k_rate_pcal_info *rate_info,
3512			u8 ee_mode)
3513{
3514	unsigned int i;
3515	u16 *rates;
3516	s16 rate_idx_scaled = 0;
3517
3518	/* max_pwr is power level we got from driver/user in 0.5dB
3519	 * units, switch to 0.25dB units so we can compare */
3520	max_pwr *= 2;
3521	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3522
3523	/* apply rate limits */
3524	rates = ah->ah_txpower.txp_rates_power_table;
3525
3526	/* OFDM rates 6 to 24Mb/s */
3527	for (i = 0; i < 5; i++)
3528		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3529
3530	/* Rest OFDM rates */
3531	rates[5] = min(rates[0], rate_info->target_power_36);
3532	rates[6] = min(rates[0], rate_info->target_power_48);
3533	rates[7] = min(rates[0], rate_info->target_power_54);
3534
3535	/* CCK rates */
3536	/* 1L */
3537	rates[8] = min(rates[0], rate_info->target_power_6to24);
3538	/* 2L */
3539	rates[9] = min(rates[0], rate_info->target_power_36);
3540	/* 2S */
3541	rates[10] = min(rates[0], rate_info->target_power_36);
3542	/* 5L */
3543	rates[11] = min(rates[0], rate_info->target_power_48);
3544	/* 5S */
3545	rates[12] = min(rates[0], rate_info->target_power_48);
3546	/* 11L */
3547	rates[13] = min(rates[0], rate_info->target_power_54);
3548	/* 11S */
3549	rates[14] = min(rates[0], rate_info->target_power_54);
3550
3551	/* XR rates */
3552	rates[15] = min(rates[0], rate_info->target_power_6to24);
3553
3554	/* CCK rates have different peak to average ratio
3555	 * so we have to tweak their power so that gainf
3556	 * correction works ok. For this we use OFDM to
3557	 * CCK delta from eeprom */
3558	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3559	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3560		for (i = 8; i <= 15; i++)
3561			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3562
3563	/* Save min/max and current tx power for this channel
3564	 * in 0.25dB units.
3565	 *
3566	 * Note: We use rates[0] for current tx power because
3567	 * it covers most of the rates, in most cases. It's our
3568	 * tx power limit and what the user expects to see. */
3569	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3570	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3571
3572	/* Set max txpower for correct OFDM operation on all rates
3573	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3574	 * gain probe and it's in 0.5dB units */
3575	ah->ah_txpower.txp_ofdm = rates[7];
3576
3577	/* Now that we have all rates setup use table offset to
3578	 * match the power range set by user with the power indices
3579	 * on PCDAC/PDADC table */
3580	for (i = 0; i < 16; i++) {
3581		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3582		/* Don't get out of bounds */
3583		if (rate_idx_scaled > 63)
3584			rate_idx_scaled = 63;
3585		if (rate_idx_scaled < 0)
3586			rate_idx_scaled = 0;
3587		rates[i] = rate_idx_scaled;
3588	}
 
 
 
 
 
3589}
3590
3591
3592/**
3593 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3594 * @ah: The &struct ath5k_hw
3595 * @channel: The &struct ieee80211_channel
3596 * @txpower: Requested tx power in 0.5dB steps
3597 *
3598 * Combines all of the above to set the requested tx power limit
3599 * on hw.
3600 */
3601static int
3602ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3603		 u8 txpower)
3604{
3605	struct ath5k_rate_pcal_info rate_info;
3606	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3607	int ee_mode;
3608	u8 type;
3609	int ret;
3610
3611	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3612		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3613		return -EINVAL;
3614	}
3615
3616	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 
 
 
 
 
3617
3618	/* Initialize TX power table */
3619	switch (ah->ah_radio) {
3620	case AR5K_RF5110:
3621		/* TODO */
3622		return 0;
3623	case AR5K_RF5111:
3624		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3625		break;
3626	case AR5K_RF5112:
3627		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3628		break;
3629	case AR5K_RF2413:
3630	case AR5K_RF5413:
3631	case AR5K_RF2316:
3632	case AR5K_RF2317:
3633	case AR5K_RF2425:
3634		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3635		break;
3636	default:
3637		return -EINVAL;
3638	}
3639
3640	/*
3641	 * If we don't change channel/mode skip tx powertable calculation
3642	 * and use the cached one.
3643	 */
3644	if (!ah->ah_txpower.txp_setup ||
3645	    (channel->hw_value != curr_channel->hw_value) ||
3646	    (channel->center_freq != curr_channel->center_freq)) {
3647		/* Reset TX power values but preserve requested
3648		 * tx power from above */
3649		int requested_txpower = ah->ah_txpower.txp_requested;
3650
3651		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3652
3653		/* Restore TPC setting and requested tx power */
3654		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3655
3656		ah->ah_txpower.txp_requested = requested_txpower;
3657
3658		/* Calculate the powertable */
3659		ret = ath5k_setup_channel_powertable(ah, channel,
3660							ee_mode, type);
3661		if (ret)
3662			return ret;
3663	}
3664
3665	/* Write table on hw */
3666	ath5k_write_channel_powertable(ah, ee_mode, type);
3667
3668	/* Limit max power if we have a CTL available */
3669	ath5k_get_max_ctl_power(ah, channel);
3670
3671	/* FIXME: Antenna reduction stuff */
3672
3673	/* FIXME: Limit power on turbo modes */
3674
3675	/* FIXME: TPC scale reduction */
3676
3677	/* Get surrounding channels for per-rate power table
3678	 * calibration */
3679	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3680
3681	/* Setup rate power table */
3682	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3683
3684	/* Write rate power table on hw */
3685	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3686		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3687		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3688
3689	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3690		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3691		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3692
3693	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3694		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3695		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3696
3697	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3698		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3699		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3700
3701	/* FIXME: TPC support */
3702	if (ah->ah_txpower.txp_tpc) {
3703		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3704			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3705
3706		ath5k_hw_reg_write(ah,
3707			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3708			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3709			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3710			AR5K_TPC);
3711	} else {
3712		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3713			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3714	}
3715
3716	return 0;
3717}
3718
3719/**
3720 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3721 * @ah: The &struct ath5k_hw
3722 * @txpower: The requested tx power limit in 0.5dB steps
3723 *
3724 * This function provides access to ath5k_hw_txpower to the driver in
3725 * case user or an application changes it while PHY is running.
3726 */
3727int
3728ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3729{
3730	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3731		"changing txpower to %d\n", txpower);
3732
3733	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3734}
3735
3736
3737/*************\
3738 Init function
3739\*************/
3740
3741/**
3742 * ath5k_hw_phy_init() - Initialize PHY
3743 * @ah: The &struct ath5k_hw
3744 * @channel: The @struct ieee80211_channel
3745 * @mode: One of enum ath5k_driver_mode
3746 * @fast: Try a fast channel switch instead
3747 *
3748 * This is the main function used during reset to initialize PHY
3749 * or do a fast channel change if possible.
3750 *
3751 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3752 * warm reset state !
3753 */
3754int
3755ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3756		      u8 mode, bool fast)
3757{
3758	struct ieee80211_channel *curr_channel;
3759	int ret, i;
3760	u32 phy_tst1;
3761	ret = 0;
3762
3763	/*
3764	 * Sanity check for fast flag
3765	 * Don't try fast channel change when changing modulation
3766	 * mode/band. We check for chip compatibility on
3767	 * ath5k_hw_reset.
3768	 */
3769	curr_channel = ah->ah_current_channel;
3770	if (fast && (channel->hw_value != curr_channel->hw_value))
3771		return -EINVAL;
3772
3773	/*
3774	 * On fast channel change we only set the synth parameters
3775	 * while PHY is running, enable calibration and skip the rest.
3776	 */
3777	if (fast) {
3778		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3779				    AR5K_PHY_RFBUS_REQ_REQUEST);
3780		for (i = 0; i < 100; i++) {
3781			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3782				break;
3783			udelay(5);
3784		}
3785		/* Failed */
3786		if (i >= 100)
3787			return -EIO;
3788
3789		/* Set channel and wait for synth */
3790		ret = ath5k_hw_channel(ah, channel);
3791		if (ret)
3792			return ret;
3793
3794		ath5k_hw_wait_for_synth(ah, channel);
3795	}
3796
3797	/*
3798	 * Set TX power
3799	 *
3800	 * Note: We need to do that before we set
3801	 * RF buffer settings on 5211/5212+ so that we
3802	 * properly set curve indices.
3803	 */
3804	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3805					ah->ah_txpower.txp_requested * 2 :
3806					AR5K_TUNE_MAX_TXPOWER);
3807	if (ret)
3808		return ret;
3809
3810	/* Write OFDM timings on 5212*/
3811	if (ah->ah_version == AR5K_AR5212 &&
3812		channel->hw_value != AR5K_MODE_11B) {
3813
3814		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3815		if (ret)
3816			return ret;
3817
3818		/* Spur info is available only from EEPROM versions
3819		 * greater than 5.3, but the EEPROM routines will use
3820		 * static values for older versions */
3821		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3822			ath5k_hw_set_spur_mitigation_filter(ah,
3823							    channel);
3824	}
3825
3826	/* If we used fast channel switching
3827	 * we are done, release RF bus and
3828	 * fire up NF calibration.
3829	 *
3830	 * Note: Only NF calibration due to
3831	 * channel change, not AGC calibration
3832	 * since AGC is still running !
3833	 */
3834	if (fast) {
3835		/*
3836		 * Release RF Bus grant
3837		 */
3838		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3839				    AR5K_PHY_RFBUS_REQ_REQUEST);
3840
3841		/*
3842		 * Start NF calibration
3843		 */
3844		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3845					AR5K_PHY_AGCCTL_NF);
3846
3847		return ret;
3848	}
3849
3850	/*
3851	 * For 5210 we do all initialization using
3852	 * initvals, so we don't have to modify
3853	 * any settings (5210 also only supports
3854	 * a/aturbo modes)
3855	 */
3856	if (ah->ah_version != AR5K_AR5210) {
3857
3858		/*
3859		 * Write initial RF gain settings
3860		 * This should work for both 5111/5112
3861		 */
3862		ret = ath5k_hw_rfgain_init(ah, channel->band);
3863		if (ret)
3864			return ret;
3865
3866		usleep_range(1000, 1500);
3867
3868		/*
3869		 * Write RF buffer
3870		 */
3871		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3872		if (ret)
3873			return ret;
3874
3875		/*Enable/disable 802.11b mode on 5111
3876		(enable 2111 frequency converter + CCK)*/
3877		if (ah->ah_radio == AR5K_RF5111) {
3878			if (mode == AR5K_MODE_11B)
3879				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3880				    AR5K_TXCFG_B_MODE);
3881			else
3882				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3883				    AR5K_TXCFG_B_MODE);
3884		}
3885
3886	} else if (ah->ah_version == AR5K_AR5210) {
3887		usleep_range(1000, 1500);
3888		/* Disable phy and wait */
3889		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3890		usleep_range(1000, 1500);
3891	}
3892
3893	/* Set channel on PHY */
3894	ret = ath5k_hw_channel(ah, channel);
3895	if (ret)
3896		return ret;
3897
3898	/*
3899	 * Enable the PHY and wait until completion
3900	 * This includes BaseBand and Synthesizer
3901	 * activation.
3902	 */
3903	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3904
3905	ath5k_hw_wait_for_synth(ah, channel);
3906
3907	/*
3908	 * Perform ADC test to see if baseband is ready
3909	 * Set tx hold and check adc test register
3910	 */
3911	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3912	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3913	for (i = 0; i <= 20; i++) {
3914		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3915			break;
3916		usleep_range(200, 250);
3917	}
3918	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3919
3920	/*
3921	 * Start automatic gain control calibration
3922	 *
3923	 * During AGC calibration RX path is re-routed to
3924	 * a power detector so we don't receive anything.
3925	 *
3926	 * This method is used to calibrate some static offsets
3927	 * used together with on-the fly I/Q calibration (the
3928	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3929	 * interrupt rx path.
3930	 *
3931	 * While rx path is re-routed to the power detector we also
3932	 * start a noise floor calibration to measure the
3933	 * card's noise floor (the noise we measure when we are not
3934	 * transmitting or receiving anything).
3935	 *
3936	 * If we are in a noisy environment, AGC calibration may time
3937	 * out and/or noise floor calibration might timeout.
3938	 */
3939	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3940				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3941
3942	/* At the same time start I/Q calibration for QAM constellation
3943	 * -no need for CCK- */
3944	ah->ah_iq_cal_needed = false;
3945	if (!(mode == AR5K_MODE_11B)) {
3946		ah->ah_iq_cal_needed = true;
3947		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3948				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3949		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3950				AR5K_PHY_IQ_RUN);
3951	}
3952
3953	/* Wait for gain calibration to finish (we check for I/Q calibration
3954	 * during ath5k_phy_calibrate) */
3955	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3956			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3957		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3958			channel->center_freq);
3959	}
3960
3961	/* Restore antenna mode */
3962	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3963
3964	return ret;
3965}