Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * PHY functions
   3 *
   4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   8 *
   9 * Permission to use, copy, modify, and distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 *
  21 */
  22
 
 
 
 
 
 
  23#include <linux/delay.h>
  24#include <linux/slab.h>
  25#include <asm/unaligned.h>
  26
  27#include "ath5k.h"
  28#include "reg.h"
  29#include "base.h"
  30#include "rfbuffer.h"
  31#include "rfgain.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33
  34/******************\
  35* Helper functions *
  36\******************/
  37
  38/*
  39 * Get the PHY Chip revision
 
 
 
 
 
  40 */
  41u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
 
  42{
  43	unsigned int i;
  44	u32 srev;
  45	u16 ret;
  46
  47	/*
  48	 * Set the radio chip access register
  49	 */
  50	switch (chan) {
  51	case CHANNEL_2GHZ:
  52		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  53		break;
  54	case CHANNEL_5GHZ:
  55		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  56		break;
  57	default:
  58		return 0;
  59	}
  60
  61	mdelay(2);
  62
  63	/* ...wait until PHY is ready and read the selected radio revision */
  64	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
  65
  66	for (i = 0; i < 8; i++)
  67		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
  68
  69	if (ah->ah_version == AR5K_AR5210) {
  70		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
  71		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
  72	} else {
  73		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
  74		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
  75				((srev & 0x0f) << 4), 8);
  76	}
  77
  78	/* Reset to the 5GHz mode */
  79	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  80
  81	return ret;
  82}
  83
  84/*
  85 * Check if a channel is supported
 
 
 
 
 
  86 */
  87bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
 
  88{
 
 
  89	/* Check if the channel is in our supported range */
  90	if (flags & CHANNEL_2GHZ) {
  91		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
  92		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
  93			return true;
  94	} else if (flags & CHANNEL_5GHZ)
  95		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
  96		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
  97			return true;
  98
  99	return false;
 100}
 101
 102bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 
 
 
 
 
 
 103				struct ieee80211_channel *channel)
 104{
 105	u8 refclk_freq;
 106
 107	if ((ah->ah_radio == AR5K_RF5112) ||
 108	(ah->ah_radio == AR5K_RF5413) ||
 109	(ah->ah_radio == AR5K_RF2413) ||
 110	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 111		refclk_freq = 40;
 112	else
 113		refclk_freq = 32;
 114
 115	if ((channel->center_freq % refclk_freq != 0) &&
 116	((channel->center_freq % refclk_freq < 10) ||
 117	(channel->center_freq % refclk_freq > 22)))
 118		return true;
 119	else
 120		return false;
 121}
 122
 123/*
 124 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
 
 
 
 
 
 
 
 
 
 125 */
 126static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
 127					const struct ath5k_rf_reg *rf_regs,
 128					u32 val, u8 reg_id, bool set)
 129{
 130	const struct ath5k_rf_reg *rfreg = NULL;
 131	u8 offset, bank, num_bits, col, position;
 132	u16 entry;
 133	u32 mask, data, last_bit, bits_shifted, first_bit;
 134	u32 *rfb;
 135	s32 bits_left;
 136	int i;
 137
 138	data = 0;
 139	rfb = ah->ah_rf_banks;
 140
 141	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 142		if (rf_regs[i].index == reg_id) {
 143			rfreg = &rf_regs[i];
 144			break;
 145		}
 146	}
 147
 148	if (rfb == NULL || rfreg == NULL) {
 149		ATH5K_PRINTF("Rf register not found!\n");
 150		/* should not happen */
 151		return 0;
 152	}
 153
 154	bank = rfreg->bank;
 155	num_bits = rfreg->field.len;
 156	first_bit = rfreg->field.pos;
 157	col = rfreg->field.col;
 158
 159	/* first_bit is an offset from bank's
 160	 * start. Since we have all banks on
 161	 * the same array, we use this offset
 162	 * to mark each bank's start */
 163	offset = ah->ah_offset[bank];
 164
 165	/* Boundary check */
 166	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 167		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 168		return 0;
 169	}
 170
 171	entry = ((first_bit - 1) / 8) + offset;
 172	position = (first_bit - 1) % 8;
 173
 174	if (set)
 175		data = ath5k_hw_bitswap(val, num_bits);
 176
 177	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 178	     position = 0, entry++) {
 179
 180		last_bit = (position + bits_left > 8) ? 8 :
 181					position + bits_left;
 182
 183		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 184								(col * 8);
 185
 186		if (set) {
 187			rfb[entry] &= ~mask;
 188			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 189			data >>= (8 - position);
 190		} else {
 191			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 192				<< bits_shifted;
 193			bits_shifted += last_bit - position;
 194		}
 195
 196		bits_left -= 8 - position;
 197	}
 198
 199	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 200
 201	return data;
 202}
 203
 204/**
 205 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
 206 *
 207 * @ah: the &struct ath5k_hw
 208 * @channel: the currently set channel upon reset
 209 *
 210 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 211 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 212 *
 213 * Since delta slope is floating point we split it on its exponent and
 214 * mantissa and provide these values on hw.
 215 *
 216 * For more infos i think this patent is related
 217 * http://www.freepatentsonline.com/7184495.html
 218 */
 219static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 220	struct ieee80211_channel *channel)
 
 221{
 222	/* Get exponent and mantissa and set it */
 223	u32 coef_scaled, coef_exp, coef_man,
 224		ds_coef_exp, ds_coef_man, clock;
 225
 226	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 227		!(channel->hw_value & CHANNEL_OFDM));
 228
 229	/* Get coefficient
 230	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 231	 * we scale coef by shifting clock value by 24 for
 232	 * better precision since we use integers */
 233	switch (ah->ah_bwmode) {
 234	case AR5K_BWMODE_40MHZ:
 235		clock = 40 * 2;
 236		break;
 237	case AR5K_BWMODE_10MHZ:
 238		clock = 40 / 2;
 239		break;
 240	case AR5K_BWMODE_5MHZ:
 241		clock = 40 / 4;
 242		break;
 243	default:
 244		clock = 40;
 245		break;
 246	}
 247	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 248
 249	/* Get exponent
 250	 * ALGO: coef_exp = 14 - highest set bit position */
 251	coef_exp = ilog2(coef_scaled);
 252
 253	/* Doesn't make sense if it's zero*/
 254	if (!coef_scaled || !coef_exp)
 255		return -EINVAL;
 256
 257	/* Note: we've shifted coef_scaled by 24 */
 258	coef_exp = 14 - (coef_exp - 24);
 259
 260
 261	/* Get mantissa (significant digits)
 262	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 263	coef_man = coef_scaled +
 264		(1 << (24 - coef_exp - 1));
 265
 266	/* Calculate delta slope coefficient exponent
 267	 * and mantissa (remove scaling) and set them on hw */
 268	ds_coef_man = coef_man >> (24 - coef_exp);
 269	ds_coef_exp = coef_exp - 16;
 270
 271	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 272		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 273	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 274		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 275
 276	return 0;
 277}
 278
 
 
 
 
 279int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 280{
 281	/*Just a try M.F.*/
 282	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 283
 284	return 0;
 285}
 286
 287/*
 288 * Wait for synth to settle
 
 
 289 */
 290static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 
 291			struct ieee80211_channel *channel)
 292{
 293	/*
 294	 * On 5211+ read activation -> rx delay
 295	 * and use it (100ns steps).
 296	 */
 297	if (ah->ah_version != AR5K_AR5210) {
 298		u32 delay;
 299		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 300			AR5K_PHY_RX_DELAY_M;
 301		delay = (channel->hw_value & CHANNEL_CCK) ?
 302			((delay << 2) / 22) : (delay / 10);
 303		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 304			delay = delay << 1;
 305		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 306			delay = delay << 2;
 307		/* XXX: /2 on turbo ? Let's be safe
 308		 * for now */
 309		udelay(100 + delay);
 310	} else {
 311		mdelay(1);
 312	}
 313}
 314
 315
 316/**********************\
 317* RF Gain optimization *
 318\**********************/
 319
 320/*
 
 
 321 * This code is used to optimize RF gain on different environments
 322 * (temperature mostly) based on feedback from a power detector.
 323 *
 324 * It's only used on RF5111 and RF5112, later RF chips seem to have
 325 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 326 * no gain optimization ladder-.
 327 *
 328 * For more infos check out this patent doc
 329 * http://www.freepatentsonline.com/7400691.html
 330 *
 331 * This paper describes power drops as seen on the receiver due to
 332 * probe packets
 333 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 334 * %20of%20Power%20Control.pdf
 335 *
 336 * And this is the MadWiFi bug entry related to the above
 337 * http://madwifi-project.org/ticket/1659
 338 * with various measurements and diagrams
 339 *
 340 * TODO: Deal with power drops due to probes by setting an appropriate
 341 * tx power on the probe packets ! Make this part of the calibration process.
 342 */
 343
 344/* Initialize ah_gain during attach */
 
 
 
 345int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 346{
 347	/* Initialize the gain optimization values */
 348	switch (ah->ah_radio) {
 349	case AR5K_RF5111:
 350		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 351		ah->ah_gain.g_low = 20;
 352		ah->ah_gain.g_high = 35;
 353		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 354		break;
 355	case AR5K_RF5112:
 356		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 357		ah->ah_gain.g_low = 20;
 358		ah->ah_gain.g_high = 85;
 359		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 360		break;
 361	default:
 362		return -EINVAL;
 363	}
 364
 365	return 0;
 366}
 367
 368/* Schedule a gain probe check on the next transmitted packet.
 
 
 
 
 369 * That means our next packet is going to be sent with lower
 370 * tx power and a Peak to Average Power Detector (PAPD) will try
 371 * to measure the gain.
 372 *
 373 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 374 * just after we enable the probe so that we don't mess with
 375 * standard traffic ? Maybe it's time to use sw interrupts and
 376 * a probe tasklet !!!
 377 */
 378static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 
 379{
 380
 381	/* Skip if gain calibration is inactive or
 382	 * we already handle a probe request */
 383	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 384		return;
 385
 386	/* Send the packet with 2dB below max power as
 387	 * patent doc suggest */
 388	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 389			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 390			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 391
 392	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 393
 394}
 395
 396/* Calculate gain_F measurement correction
 397 * based on the current step for RF5112 rev. 2 */
 398static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 
 
 
 
 
 
 399{
 400	u32 mix, step;
 401	u32 *rf;
 402	const struct ath5k_gain_opt *go;
 403	const struct ath5k_gain_opt_step *g_step;
 404	const struct ath5k_rf_reg *rf_regs;
 405
 406	/* Only RF5112 Rev. 2 supports it */
 407	if ((ah->ah_radio != AR5K_RF5112) ||
 408	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 409		return 0;
 410
 411	go = &rfgain_opt_5112;
 412	rf_regs = rf_regs_5112a;
 413	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 414
 415	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 416
 417	if (ah->ah_rf_banks == NULL)
 418		return 0;
 419
 420	rf = ah->ah_rf_banks;
 421	ah->ah_gain.g_f_corr = 0;
 422
 423	/* No VGA (Variable Gain Amplifier) override, skip */
 424	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 425		return 0;
 426
 427	/* Mix gain stepping */
 428	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 429
 430	/* Mix gain override */
 431	mix = g_step->gos_param[0];
 432
 433	switch (mix) {
 434	case 3:
 435		ah->ah_gain.g_f_corr = step * 2;
 436		break;
 437	case 2:
 438		ah->ah_gain.g_f_corr = (step - 5) * 2;
 439		break;
 440	case 1:
 441		ah->ah_gain.g_f_corr = step;
 442		break;
 443	default:
 444		ah->ah_gain.g_f_corr = 0;
 445		break;
 446	}
 447
 448	return ah->ah_gain.g_f_corr;
 449}
 450
 451/* Check if current gain_F measurement is in the range of our
 
 
 
 
 452 * power detector windows. If we get a measurement outside range
 453 * we know it's not accurate (detectors can't measure anything outside
 454 * their detection window) so we must ignore it */
 455static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 
 
 
 
 456{
 457	const struct ath5k_rf_reg *rf_regs;
 458	u32 step, mix_ovr, level[4];
 459	u32 *rf;
 460
 461	if (ah->ah_rf_banks == NULL)
 462		return false;
 463
 464	rf = ah->ah_rf_banks;
 465
 466	if (ah->ah_radio == AR5K_RF5111) {
 467
 468		rf_regs = rf_regs_5111;
 469		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 470
 471		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 472			false);
 473
 474		level[0] = 0;
 475		level[1] = (step == 63) ? 50 : step + 4;
 476		level[2] = (step != 63) ? 64 : level[0];
 477		level[3] = level[2] + 50;
 478
 479		ah->ah_gain.g_high = level[3] -
 480			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 481		ah->ah_gain.g_low = level[0] +
 482			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 483	} else {
 484
 485		rf_regs = rf_regs_5112;
 486		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 487
 488		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 489			false);
 490
 491		level[0] = level[2] = 0;
 492
 493		if (mix_ovr == 1) {
 494			level[1] = level[3] = 83;
 495		} else {
 496			level[1] = level[3] = 107;
 497			ah->ah_gain.g_high = 55;
 498		}
 499	}
 500
 501	return (ah->ah_gain.g_current >= level[0] &&
 502			ah->ah_gain.g_current <= level[1]) ||
 503		(ah->ah_gain.g_current >= level[2] &&
 504			ah->ah_gain.g_current <= level[3]);
 505}
 506
 507/* Perform gain_F adjustment by choosing the right set
 508 * of parameters from RF gain optimization ladder */
 509static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 
 
 
 
 
 
 510{
 511	const struct ath5k_gain_opt *go;
 512	const struct ath5k_gain_opt_step *g_step;
 513	int ret = 0;
 514
 515	switch (ah->ah_radio) {
 516	case AR5K_RF5111:
 517		go = &rfgain_opt_5111;
 518		break;
 519	case AR5K_RF5112:
 520		go = &rfgain_opt_5112;
 521		break;
 522	default:
 523		return 0;
 524	}
 525
 526	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 527
 528	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 529
 530		/* Reached maximum */
 531		if (ah->ah_gain.g_step_idx == 0)
 532			return -1;
 533
 534		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 535				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 536				ah->ah_gain.g_step_idx > 0;
 537				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 538			ah->ah_gain.g_target -= 2 *
 539			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 540			    g_step->gos_gain);
 541
 542		ret = 1;
 543		goto done;
 544	}
 545
 546	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 547
 548		/* Reached minimum */
 549		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 550			return -2;
 551
 552		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 553				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 554				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 555				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 556			ah->ah_gain.g_target -= 2 *
 557			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 558			    g_step->gos_gain);
 559
 560		ret = 2;
 561		goto done;
 562	}
 563
 564done:
 565	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 566		"ret %d, gain step %u, current gain %u, target gain %u\n",
 567		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 568		ah->ah_gain.g_target);
 569
 570	return ret;
 571}
 572
 573/* Main callback for thermal RF gain calibration engine
 
 
 
 
 574 * Check for a new gain reading and schedule an adjustment
 575 * if needed.
 576 *
 577 * TODO: Use sw interrupt to schedule reset if gain_F needs
 578 * adjustment */
 579enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 
 580{
 581	u32 data, type;
 582	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 583
 584	if (ah->ah_rf_banks == NULL ||
 585	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 586		return AR5K_RFGAIN_INACTIVE;
 587
 588	/* No check requested, either engine is inactive
 589	 * or an adjustment is already requested */
 590	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 591		goto done;
 592
 593	/* Read the PAPD (Peak to Average Power Detector)
 594	 * register */
 595	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 596
 597	/* No probe is scheduled, read gain_F measurement */
 598	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 599		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 600		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 601
 602		/* If tx packet is CCK correct the gain_F measurement
 603		 * by cck ofdm gain delta */
 604		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 605			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 606				ah->ah_gain.g_current +=
 607					ee->ee_cck_ofdm_gain_delta;
 608			else
 609				ah->ah_gain.g_current +=
 610					AR5K_GAIN_CCK_PROBE_CORR;
 611		}
 612
 613		/* Further correct gain_F measurement for
 614		 * RF5112A radios */
 615		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 616			ath5k_hw_rf_gainf_corr(ah);
 617			ah->ah_gain.g_current =
 618				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 619				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 620				0;
 621		}
 622
 623		/* Check if measurement is ok and if we need
 624		 * to adjust gain, schedule a gain adjustment,
 625		 * else switch back to the active state */
 626		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 627		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 628		ath5k_hw_rf_gainf_adjust(ah)) {
 629			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 630		} else {
 631			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 632		}
 633	}
 634
 635done:
 636	return ah->ah_gain.g_state;
 637}
 638
 639/* Write initial RF gain table to set the RF sensitivity
 640 * this one works on all RF chips and has nothing to do
 641 * with gain_F calibration */
 642static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
 
 
 
 
 
 
 
 
 643{
 644	const struct ath5k_ini_rfgain *ath5k_rfg;
 645	unsigned int i, size, index;
 646
 647	switch (ah->ah_radio) {
 648	case AR5K_RF5111:
 649		ath5k_rfg = rfgain_5111;
 650		size = ARRAY_SIZE(rfgain_5111);
 651		break;
 652	case AR5K_RF5112:
 653		ath5k_rfg = rfgain_5112;
 654		size = ARRAY_SIZE(rfgain_5112);
 655		break;
 656	case AR5K_RF2413:
 657		ath5k_rfg = rfgain_2413;
 658		size = ARRAY_SIZE(rfgain_2413);
 659		break;
 660	case AR5K_RF2316:
 661		ath5k_rfg = rfgain_2316;
 662		size = ARRAY_SIZE(rfgain_2316);
 663		break;
 664	case AR5K_RF5413:
 665		ath5k_rfg = rfgain_5413;
 666		size = ARRAY_SIZE(rfgain_5413);
 667		break;
 668	case AR5K_RF2317:
 669	case AR5K_RF2425:
 670		ath5k_rfg = rfgain_2425;
 671		size = ARRAY_SIZE(rfgain_2425);
 672		break;
 673	default:
 674		return -EINVAL;
 675	}
 676
 677	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
 678
 679	for (i = 0; i < size; i++) {
 680		AR5K_REG_WAIT(i);
 681		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 682			(u32)ath5k_rfg[i].rfg_register);
 683	}
 684
 685	return 0;
 686}
 687
 688
 689
 690/********************\
 691* RF Registers setup *
 692\********************/
 693
 694/*
 695 * Setup RF registers by writing RF buffer on hw
 
 
 
 
 
 
 696 */
 697static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 698	struct ieee80211_channel *channel, unsigned int mode)
 
 
 699{
 700	const struct ath5k_rf_reg *rf_regs;
 701	const struct ath5k_ini_rfbuffer *ini_rfb;
 702	const struct ath5k_gain_opt *go = NULL;
 703	const struct ath5k_gain_opt_step *g_step;
 704	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 705	u8 ee_mode = 0;
 706	u32 *rfb;
 707	int i, obdb = -1, bank = -1;
 708
 709	switch (ah->ah_radio) {
 710	case AR5K_RF5111:
 711		rf_regs = rf_regs_5111;
 712		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 713		ini_rfb = rfb_5111;
 714		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 715		go = &rfgain_opt_5111;
 716		break;
 717	case AR5K_RF5112:
 718		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 719			rf_regs = rf_regs_5112a;
 720			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 721			ini_rfb = rfb_5112a;
 722			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 723		} else {
 724			rf_regs = rf_regs_5112;
 725			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 726			ini_rfb = rfb_5112;
 727			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 728		}
 729		go = &rfgain_opt_5112;
 730		break;
 731	case AR5K_RF2413:
 732		rf_regs = rf_regs_2413;
 733		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 734		ini_rfb = rfb_2413;
 735		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 736		break;
 737	case AR5K_RF2316:
 738		rf_regs = rf_regs_2316;
 739		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 740		ini_rfb = rfb_2316;
 741		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 742		break;
 743	case AR5K_RF5413:
 744		rf_regs = rf_regs_5413;
 745		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 746		ini_rfb = rfb_5413;
 747		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 748		break;
 749	case AR5K_RF2317:
 750		rf_regs = rf_regs_2425;
 751		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 752		ini_rfb = rfb_2317;
 753		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 754		break;
 755	case AR5K_RF2425:
 756		rf_regs = rf_regs_2425;
 757		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 758		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 759			ini_rfb = rfb_2425;
 760			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 761		} else {
 762			ini_rfb = rfb_2417;
 763			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 764		}
 765		break;
 766	default:
 767		return -EINVAL;
 768	}
 769
 770	/* If it's the first time we set RF buffer, allocate
 771	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 772	 * we set above */
 773	if (ah->ah_rf_banks == NULL) {
 774		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
 
 775								GFP_KERNEL);
 776		if (ah->ah_rf_banks == NULL) {
 777			ATH5K_ERR(ah, "out of memory\n");
 778			return -ENOMEM;
 779		}
 780	}
 781
 782	/* Copy values to modify them */
 783	rfb = ah->ah_rf_banks;
 784
 785	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 786		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 787			ATH5K_ERR(ah, "invalid bank\n");
 788			return -EINVAL;
 789		}
 790
 791		/* Bank changed, write down the offset */
 792		if (bank != ini_rfb[i].rfb_bank) {
 793			bank = ini_rfb[i].rfb_bank;
 794			ah->ah_offset[bank] = i;
 795		}
 796
 797		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 798	}
 799
 800	/* Set Output and Driver bias current (OB/DB) */
 801	if (channel->hw_value & CHANNEL_2GHZ) {
 802
 803		if (channel->hw_value & CHANNEL_CCK)
 804			ee_mode = AR5K_EEPROM_MODE_11B;
 805		else
 806			ee_mode = AR5K_EEPROM_MODE_11G;
 807
 808		/* For RF511X/RF211X combination we
 809		 * use b_OB and b_DB parameters stored
 810		 * in eeprom on ee->ee_ob[ee_mode][0]
 811		 *
 812		 * For all other chips we use OB/DB for 2GHz
 813		 * stored in the b/g modal section just like
 814		 * 802.11a on ee->ee_ob[ee_mode][1] */
 815		if ((ah->ah_radio == AR5K_RF5111) ||
 816		(ah->ah_radio == AR5K_RF5112))
 817			obdb = 0;
 818		else
 819			obdb = 1;
 820
 821		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 822						AR5K_RF_OB_2GHZ, true);
 823
 824		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 825						AR5K_RF_DB_2GHZ, true);
 826
 827	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 828	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
 829			(ah->ah_radio == AR5K_RF5111)) {
 830
 831		/* For 11a, Turbo and XR we need to choose
 832		 * OB/DB based on frequency range */
 833		ee_mode = AR5K_EEPROM_MODE_11A;
 834		obdb =	 channel->center_freq >= 5725 ? 3 :
 835			(channel->center_freq >= 5500 ? 2 :
 836			(channel->center_freq >= 5260 ? 1 :
 837			 (channel->center_freq > 4000 ? 0 : -1)));
 838
 839		if (obdb < 0)
 840			return -EINVAL;
 841
 842		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 843						AR5K_RF_OB_5GHZ, true);
 844
 845		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 846						AR5K_RF_DB_5GHZ, true);
 847	}
 848
 849	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 850
 851	/* Set turbo mode (N/A on RF5413) */
 852	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 853	(ah->ah_radio != AR5K_RF5413))
 854		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 855
 856	/* Bank Modifications (chip-specific) */
 857	if (ah->ah_radio == AR5K_RF5111) {
 858
 859		/* Set gain_F settings according to current step */
 860		if (channel->hw_value & CHANNEL_OFDM) {
 861
 862			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 863					AR5K_PHY_FRAME_CTL_TX_CLIP,
 864					g_step->gos_param[0]);
 865
 866			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 867							AR5K_RF_PWD_90, true);
 868
 869			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 870							AR5K_RF_PWD_84, true);
 871
 872			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 873						AR5K_RF_RFGAIN_SEL, true);
 874
 875			/* We programmed gain_F parameters, switch back
 876			 * to active state */
 877			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 878
 879		}
 880
 881		/* Bank 6/7 setup */
 882
 883		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 884						AR5K_RF_PWD_XPD, true);
 885
 886		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
 887						AR5K_RF_XPD_GAIN, true);
 888
 889		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
 890						AR5K_RF_GAIN_I, true);
 891
 892		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 893						AR5K_RF_PLO_SEL, true);
 894
 895		/* Tweak power detectors for half/quarter rate support */
 896		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
 897		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
 898			u8 wait_i;
 899
 900			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
 901						AR5K_RF_WAIT_S, true);
 902
 903			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
 904							0x1f : 0x10;
 905
 906			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
 907						AR5K_RF_WAIT_I, true);
 908			ath5k_hw_rfb_op(ah, rf_regs, 3,
 909						AR5K_RF_MAX_TIME, true);
 910
 911		}
 912	}
 913
 914	if (ah->ah_radio == AR5K_RF5112) {
 915
 916		/* Set gain_F settings according to current step */
 917		if (channel->hw_value & CHANNEL_OFDM) {
 918
 919			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
 920						AR5K_RF_MIXGAIN_OVR, true);
 921
 922			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 923						AR5K_RF_PWD_138, true);
 924
 925			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 926						AR5K_RF_PWD_137, true);
 927
 928			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 929						AR5K_RF_PWD_136, true);
 930
 931			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
 932						AR5K_RF_PWD_132, true);
 933
 934			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
 935						AR5K_RF_PWD_131, true);
 936
 937			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
 938						AR5K_RF_PWD_130, true);
 939
 940			/* We programmed gain_F parameters, switch back
 941			 * to active state */
 942			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 943		}
 944
 945		/* Bank 6/7 setup */
 946
 947		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 948						AR5K_RF_XPD_SEL, true);
 949
 950		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
 951			/* Rev. 1 supports only one xpd */
 952			ath5k_hw_rfb_op(ah, rf_regs,
 953						ee->ee_x_gain[ee_mode],
 954						AR5K_RF_XPD_GAIN, true);
 955
 956		} else {
 957			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
 958			if (ee->ee_pd_gains[ee_mode] > 1) {
 959				ath5k_hw_rfb_op(ah, rf_regs,
 960						pdg_curve_to_idx[0],
 961						AR5K_RF_PD_GAIN_LO, true);
 962				ath5k_hw_rfb_op(ah, rf_regs,
 963						pdg_curve_to_idx[1],
 964						AR5K_RF_PD_GAIN_HI, true);
 965			} else {
 966				ath5k_hw_rfb_op(ah, rf_regs,
 967						pdg_curve_to_idx[0],
 968						AR5K_RF_PD_GAIN_LO, true);
 969				ath5k_hw_rfb_op(ah, rf_regs,
 970						pdg_curve_to_idx[0],
 971						AR5K_RF_PD_GAIN_HI, true);
 972			}
 973
 974			/* Lower synth voltage on Rev 2 */
 975			if (ah->ah_radio == AR5K_RF5112 &&
 976			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
 977				ath5k_hw_rfb_op(ah, rf_regs, 2,
 978						AR5K_RF_HIGH_VC_CP, true);
 979
 980				ath5k_hw_rfb_op(ah, rf_regs, 2,
 981						AR5K_RF_MID_VC_CP, true);
 982
 983				ath5k_hw_rfb_op(ah, rf_regs, 2,
 984						AR5K_RF_LOW_VC_CP, true);
 985
 986				ath5k_hw_rfb_op(ah, rf_regs, 2,
 987						AR5K_RF_PUSH_UP, true);
 988			}
 989
 990			/* Decrease power consumption on 5213+ BaseBand */
 991			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 992				ath5k_hw_rfb_op(ah, rf_regs, 1,
 993						AR5K_RF_PAD2GND, true);
 994
 995				ath5k_hw_rfb_op(ah, rf_regs, 1,
 996						AR5K_RF_XB2_LVL, true);
 997
 998				ath5k_hw_rfb_op(ah, rf_regs, 1,
 999						AR5K_RF_XB5_LVL, true);
1000
1001				ath5k_hw_rfb_op(ah, rf_regs, 1,
1002						AR5K_RF_PWD_167, true);
1003
1004				ath5k_hw_rfb_op(ah, rf_regs, 1,
1005						AR5K_RF_PWD_166, true);
1006			}
1007		}
1008
1009		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1010						AR5K_RF_GAIN_I, true);
1011
1012		/* Tweak power detector for half/quarter rates */
1013		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1014		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1015			u8 pd_delay;
1016
1017			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1018							0xf : 0x8;
1019
1020			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1021						AR5K_RF_PD_PERIOD_A, true);
1022			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1023						AR5K_RF_PD_DELAY_A, true);
1024
1025		}
1026	}
1027
1028	if (ah->ah_radio == AR5K_RF5413 &&
1029	channel->hw_value & CHANNEL_2GHZ) {
1030
1031		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1032									true);
1033
1034		/* Set optimum value for early revisions (on pci-e chips) */
1035		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1036		ah->ah_mac_srev < AR5K_SREV_AR5413)
1037			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1038						AR5K_RF_PWD_ICLOBUF_2G, true);
1039
1040	}
1041
1042	/* Write RF banks on hw */
1043	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1044		AR5K_REG_WAIT(i);
1045		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1046	}
1047
1048	return 0;
1049}
1050
1051
1052/**************************\
1053  PHY/RF channel functions
1054\**************************/
1055
1056/*
1057 * Conversion needed for RF5110
 
 
 
 
1058 */
1059static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
 
1060{
1061	u32 athchan;
1062
1063	/*
1064	 * Convert IEEE channel/MHz to an internal channel value used
1065	 * by the AR5210 chipset. This has not been verified with
1066	 * newer chipsets like the AR5212A who have a completely
1067	 * different RF/PHY part.
1068	 */
1069	athchan = (ath5k_hw_bitswap(
1070			(ieee80211_frequency_to_channel(
1071				channel->center_freq) - 24) / 2, 5)
1072				<< 1) | (1 << 6) | 0x1;
1073	return athchan;
1074}
1075
1076/*
1077 * Set channel on RF5110
 
 
1078 */
1079static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
 
1080		struct ieee80211_channel *channel)
1081{
1082	u32 data;
1083
1084	/*
1085	 * Set the channel and wait
1086	 */
1087	data = ath5k_hw_rf5110_chan2athchan(channel);
1088	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1089	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1090	mdelay(1);
1091
1092	return 0;
1093}
1094
1095/*
1096 * Conversion needed for 5111
 
 
 
 
 
 
 
1097 */
1098static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
 
1099		struct ath5k_athchan_2ghz *athchan)
1100{
1101	int channel;
1102
1103	/* Cast this value to catch negative channel numbers (>= -19) */
1104	channel = (int)ieee;
1105
1106	/*
1107	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1108	 */
1109	if (channel <= 13) {
1110		athchan->a2_athchan = 115 + channel;
1111		athchan->a2_flags = 0x46;
1112	} else if (channel == 14) {
1113		athchan->a2_athchan = 124;
1114		athchan->a2_flags = 0x44;
1115	} else if (channel >= 15 && channel <= 26) {
1116		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1117		athchan->a2_flags = 0x46;
1118	} else
1119		return -EINVAL;
1120
1121	return 0;
1122}
1123
1124/*
1125 * Set channel on 5111
 
 
1126 */
1127static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
 
1128		struct ieee80211_channel *channel)
1129{
1130	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1131	unsigned int ath5k_channel =
1132		ieee80211_frequency_to_channel(channel->center_freq);
1133	u32 data0, data1, clock;
1134	int ret;
1135
1136	/*
1137	 * Set the channel on the RF5111 radio
1138	 */
1139	data0 = data1 = 0;
1140
1141	if (channel->hw_value & CHANNEL_2GHZ) {
1142		/* Map 2GHz channel to 5GHz Atheros channel ID */
1143		ret = ath5k_hw_rf5111_chan2athchan(
1144			ieee80211_frequency_to_channel(channel->center_freq),
1145			&ath5k_channel_2ghz);
1146		if (ret)
1147			return ret;
1148
1149		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1150		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1151		    << 5) | (1 << 4);
1152	}
1153
1154	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1155		clock = 1;
1156		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1157			(clock << 1) | (1 << 10) | 1;
1158	} else {
1159		clock = 0;
1160		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1161			<< 2) | (clock << 1) | (1 << 10) | 1;
1162	}
1163
1164	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1165			AR5K_RF_BUFFER);
1166	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1167			AR5K_RF_BUFFER_CONTROL_3);
1168
1169	return 0;
1170}
1171
1172/*
1173 * Set channel on 5112 and newer
 
 
 
 
 
 
 
 
 
1174 */
1175static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
 
1176		struct ieee80211_channel *channel)
1177{
1178	u32 data, data0, data1, data2;
1179	u16 c;
1180
1181	data = data0 = data1 = data2 = 0;
1182	c = channel->center_freq;
1183
 
 
 
 
 
1184	if (c < 4800) {
 
 
1185		if (!((c - 2224) % 5)) {
 
1186			data0 = ((2 * (c - 704)) - 3040) / 10;
1187			data1 = 1;
 
 
1188		} else if (!((c - 2192) % 5)) {
 
1189			data0 = ((2 * (c - 672)) - 3040) / 10;
1190			data1 = 0;
1191		} else
1192			return -EINVAL;
1193
1194		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
 
 
 
 
 
 
 
 
 
1195	} else if ((c % 5) != 2 || c > 5435) {
1196		if (!(c % 20) && c >= 5120) {
1197			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1198			data2 = ath5k_hw_bitswap(3, 2);
1199		} else if (!(c % 10)) {
1200			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1201			data2 = ath5k_hw_bitswap(2, 2);
1202		} else if (!(c % 5)) {
1203			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1204			data2 = ath5k_hw_bitswap(1, 2);
1205		} else
1206			return -EINVAL;
1207	} else {
1208		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1209		data2 = ath5k_hw_bitswap(0, 2);
1210	}
1211
1212	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1213
1214	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1215	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1216
1217	return 0;
1218}
1219
1220/*
1221 * Set the channel on the RF2425
 
 
 
 
 
1222 */
1223static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
 
1224		struct ieee80211_channel *channel)
1225{
1226	u32 data, data0, data2;
1227	u16 c;
1228
1229	data = data0 = data2 = 0;
1230	c = channel->center_freq;
1231
1232	if (c < 4800) {
1233		data0 = ath5k_hw_bitswap((c - 2272), 8);
1234		data2 = 0;
1235	/* ? 5GHz ? */
1236	} else if ((c % 5) != 2 || c > 5435) {
1237		if (!(c % 20) && c < 5120)
1238			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1239		else if (!(c % 10))
1240			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1241		else if (!(c % 5))
1242			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1243		else
1244			return -EINVAL;
1245		data2 = ath5k_hw_bitswap(1, 2);
1246	} else {
1247		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1248		data2 = ath5k_hw_bitswap(0, 2);
1249	}
1250
1251	data = (data0 << 4) | data2 << 2 | 0x1001;
1252
1253	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1254	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1255
1256	return 0;
1257}
1258
1259/*
1260 * Set a channel on the radio chip
 
 
 
 
 
1261 */
1262static int ath5k_hw_channel(struct ath5k_hw *ah,
 
1263		struct ieee80211_channel *channel)
1264{
1265	int ret;
1266	/*
1267	 * Check bounds supported by the PHY (we don't care about regulatory
1268	 * restrictions at this point). Note: hw_value already has the band
1269	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1270	 * of the band by that */
1271	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1272		ATH5K_ERR(ah,
1273			"channel frequency (%u MHz) out of supported "
1274			"band range\n",
1275			channel->center_freq);
1276			return -EINVAL;
1277	}
1278
1279	/*
1280	 * Set the channel and wait
1281	 */
1282	switch (ah->ah_radio) {
1283	case AR5K_RF5110:
1284		ret = ath5k_hw_rf5110_channel(ah, channel);
1285		break;
1286	case AR5K_RF5111:
1287		ret = ath5k_hw_rf5111_channel(ah, channel);
1288		break;
1289	case AR5K_RF2317:
1290	case AR5K_RF2425:
1291		ret = ath5k_hw_rf2425_channel(ah, channel);
1292		break;
1293	default:
1294		ret = ath5k_hw_rf5112_channel(ah, channel);
1295		break;
1296	}
1297
1298	if (ret)
1299		return ret;
1300
1301	/* Set JAPAN setting for channel 14 */
1302	if (channel->center_freq == 2484) {
1303		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1304				AR5K_PHY_CCKTXCTL_JAPAN);
1305	} else {
1306		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1307				AR5K_PHY_CCKTXCTL_WORLD);
1308	}
1309
1310	ah->ah_current_channel = channel;
1311
1312	return 0;
1313}
1314
 
1315/*****************\
1316  PHY calibration
1317\*****************/
1318
1319static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320{
1321	s32 val;
1322
1323	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1324	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1325}
1326
1327void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
 
 
 
 
 
1328{
1329	int i;
1330
1331	ah->ah_nfcal_hist.index = 0;
1332	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1333		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1334}
1335
 
 
 
 
 
1336static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1337{
1338	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1339	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1340	hist->nfval[hist->index] = noise_floor;
1341}
1342
1343static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
 
 
 
 
 
1344{
1345	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1346	s16 tmp;
1347	int i, j;
1348
1349	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1350	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1351		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1352			if (sort[j] > sort[j - 1]) {
1353				tmp = sort[j];
1354				sort[j] = sort[j - 1];
1355				sort[j - 1] = tmp;
1356			}
1357		}
1358	}
1359	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1360		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1361			"cal %d:%d\n", i, sort[i]);
1362	}
1363	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1364}
1365
1366/*
1367 * When we tell the hardware to perform a noise floor calibration
1368 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1369 * sample-and-hold the minimum noise level seen at the antennas.
1370 * This value is then stored in a ring buffer of recently measured
1371 * noise floor values so we have a moving window of the last few
1372 * samples.
1373 *
1374 * The median of the values in the history is then loaded into the
1375 * hardware for its own use for RSSI and CCA measurements.
 
1376 */
1377void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
 
1378{
1379	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1380	u32 val;
1381	s16 nf, threshold;
1382	u8 ee_mode;
1383
1384	/* keep last value if calibration hasn't completed */
1385	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1386		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1387			"NF did not complete in calibration window\n");
1388
1389		return;
1390	}
1391
1392	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
 
 
1393
1394	/* completed NF calibration, test threshold */
1395	nf = ath5k_hw_read_measured_noise_floor(ah);
1396	threshold = ee->ee_noise_floor_thr[ee_mode];
1397
1398	if (nf > threshold) {
1399		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1400			"noise floor failure detected; "
1401			"read %d, threshold %d\n",
1402			nf, threshold);
1403
1404		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1405	}
1406
1407	ath5k_hw_update_nfcal_hist(ah, nf);
1408	nf = ath5k_hw_get_median_noise_floor(ah);
1409
1410	/* load noise floor (in .5 dBm) so the hardware will use it */
1411	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1412	val |= (nf * 2) & AR5K_PHY_NF_M;
1413	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1414
1415	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1416		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1417
1418	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1419		0, false);
1420
1421	/*
1422	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1423	 * so that we're not capped by the median we just loaded.
1424	 * This will be used as the initial value for the next noise
1425	 * floor calibration.
1426	 */
1427	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1428	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1429	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1430		AR5K_PHY_AGCCTL_NF_EN |
1431		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1432		AR5K_PHY_AGCCTL_NF);
1433
1434	ah->ah_noise_floor = nf;
1435
 
 
1436	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1437		"noise floor calibrated: %d\n", nf);
1438}
1439
1440/*
1441 * Perform a PHY calibration on RF5110
1442 * -Fix BPSK/QAM Constellation (I/Q correction)
 
 
 
1443 */
1444static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
 
1445		struct ieee80211_channel *channel)
1446{
1447	u32 phy_sig, phy_agc, phy_sat, beacon;
1448	int ret;
1449
 
 
 
1450	/*
1451	 * Disable beacons and RX/TX queues, wait
1452	 */
1453	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1454		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1455	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1456	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1457
1458	mdelay(2);
1459
1460	/*
1461	 * Set the channel (with AGC turned off)
1462	 */
1463	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1464	udelay(10);
1465	ret = ath5k_hw_channel(ah, channel);
1466
1467	/*
1468	 * Activate PHY and wait
1469	 */
1470	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1471	mdelay(1);
1472
1473	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474
1475	if (ret)
1476		return ret;
1477
1478	/*
1479	 * Calibrate the radio chip
1480	 */
1481
1482	/* Remember normal state */
1483	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1484	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1485	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1486
1487	/* Update radio registers */
1488	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1489		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1490
1491	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1492			AR5K_PHY_AGCCOARSE_LO)) |
1493		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1494		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1495
1496	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1497			AR5K_PHY_ADCSAT_THR)) |
1498		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1499		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1500
1501	udelay(20);
1502
1503	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1504	udelay(10);
1505	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1506	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1507
1508	mdelay(1);
1509
1510	/*
1511	 * Enable calibration and wait until completion
1512	 */
1513	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1514
1515	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1516			AR5K_PHY_AGCCTL_CAL, 0, false);
1517
1518	/* Reset to normal state */
1519	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1520	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1521	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1522
1523	if (ret) {
1524		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1525				channel->center_freq);
1526		return ret;
1527	}
1528
1529	/*
1530	 * Re-enable RX/TX and beacons
1531	 */
1532	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1533		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1534	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1535
1536	return 0;
1537}
1538
1539/*
1540 * Perform I/Q calibration on RF5111/5112 and newer chips
 
1541 */
1542static int
1543ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1544{
1545	u32 i_pwr, q_pwr;
1546	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1547	int i;
1548
1549	if (!ah->ah_calibration ||
1550		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1551		return 0;
 
 
 
 
 
1552
1553	/* Calibration has finished, get the results and re-run */
1554	/* work around empty results which can apparently happen on 5212 */
 
 
1555	for (i = 0; i <= 10; i++) {
1556		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1557		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1558		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1559		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1560			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1561		if (i_pwr && q_pwr)
1562			break;
1563	}
1564
1565	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1566
1567	if (ah->ah_version == AR5K_AR5211)
1568		q_coffd = q_pwr >> 6;
1569	else
1570		q_coffd = q_pwr >> 7;
1571
1572	/* protect against divide by 0 and loss of sign bits */
 
 
1573	if (i_coffd == 0 || q_coffd < 2)
1574		return 0;
 
 
1575
1576	i_coff = (-iq_corr) / i_coffd;
1577	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1578
1579	if (ah->ah_version == AR5K_AR5211)
1580		q_coff = (i_pwr / q_coffd) - 64;
1581	else
1582		q_coff = (i_pwr / q_coffd) - 128;
1583	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1584
1585	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1586			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1587			i_coff, q_coff, i_coffd, q_coffd);
1588
1589	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1590	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1591	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1592	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1593
1594	/* Re-enable calibration -if we don't we'll commit
1595	 * the same values again and again */
1596	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1597			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1598	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1599
1600	return 0;
1601}
1602
1603/*
1604 * Perform a PHY calibration
 
 
 
 
 
 
1605 */
1606int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
 
1607		struct ieee80211_channel *channel)
1608{
1609	int ret;
1610
1611	if (ah->ah_radio == AR5K_RF5110)
1612		return ath5k_hw_rf5110_calibrate(ah, channel);
1613
1614	ret = ath5k_hw_rf511x_iq_calibrate(ah);
 
 
 
 
1615
1616	if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1617	    (channel->hw_value & CHANNEL_OFDM))
 
 
 
 
 
 
 
 
 
1618		ath5k_hw_request_rfgain_probe(ah);
1619
 
 
 
 
1620	return ret;
1621}
1622
1623
1624/***************************\
1625* Spur mitigation functions *
1626\***************************/
1627
 
 
 
 
 
 
 
 
 
 
1628static void
1629ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1630				struct ieee80211_channel *channel)
1631{
1632	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1633	u32 mag_mask[4] = {0, 0, 0, 0};
1634	u32 pilot_mask[2] = {0, 0};
1635	/* Note: fbin values are scaled up by 2 */
1636	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1637	s32 spur_delta_phase, spur_freq_sigma_delta;
1638	s32 spur_offset, num_symbols_x16;
1639	u8 num_symbol_offsets, i, freq_band;
1640
1641	/* Convert current frequency to fbin value (the same way channels
1642	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1643	 * up by 2 so we can compare it later */
1644	if (channel->hw_value & CHANNEL_2GHZ) {
1645		chan_fbin = (channel->center_freq - 2300) * 10;
1646		freq_band = AR5K_EEPROM_BAND_2GHZ;
1647	} else {
1648		chan_fbin = (channel->center_freq - 4900) * 10;
1649		freq_band = AR5K_EEPROM_BAND_5GHZ;
1650	}
1651
1652	/* Check if any spur_chan_fbin from EEPROM is
1653	 * within our current channel's spur detection range */
1654	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1655	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1656	/* XXX: Half/Quarter channels ?*/
1657	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1658		spur_detection_window *= 2;
1659
1660	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1661		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1662
1663		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1664		 * so it's zero if we got nothing from EEPROM */
1665		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1666			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1667			break;
1668		}
1669
1670		if ((chan_fbin - spur_detection_window <=
1671		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1672		(chan_fbin + spur_detection_window >=
1673		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1674			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1675			break;
1676		}
1677	}
1678
1679	/* We need to enable spur filter for this channel */
1680	if (spur_chan_fbin) {
1681		spur_offset = spur_chan_fbin - chan_fbin;
1682		/*
1683		 * Calculate deltas:
1684		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1685		 * spur_delta_phase -> spur_offset / chip_freq << 11
1686		 * Note: Both values have 100Hz resolution
1687		 */
1688		switch (ah->ah_bwmode) {
1689		case AR5K_BWMODE_40MHZ:
1690			/* Both sample_freq and chip_freq are 80MHz */
1691			spur_delta_phase = (spur_offset << 16) / 25;
1692			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1693			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1694			break;
1695		case AR5K_BWMODE_10MHZ:
1696			/* Both sample_freq and chip_freq are 20MHz (?) */
1697			spur_delta_phase = (spur_offset << 18) / 25;
1698			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1699			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
 
1700		case AR5K_BWMODE_5MHZ:
1701			/* Both sample_freq and chip_freq are 10MHz (?) */
1702			spur_delta_phase = (spur_offset << 19) / 25;
1703			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1704			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
 
1705		default:
1706			if (channel->hw_value == CHANNEL_A) {
1707				/* Both sample_freq and chip_freq are 40MHz */
1708				spur_delta_phase = (spur_offset << 17) / 25;
1709				spur_freq_sigma_delta =
1710						(spur_delta_phase >> 10);
1711				symbol_width =
1712					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1713			} else {
1714				/* sample_freq -> 40MHz chip_freq -> 44MHz
1715				 * (for b compatibility) */
1716				spur_delta_phase = (spur_offset << 17) / 25;
1717				spur_freq_sigma_delta =
1718						(spur_offset << 8) / 55;
1719				symbol_width =
1720					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1721			}
1722			break;
1723		}
1724
1725		/* Calculate pilot and magnitude masks */
1726
1727		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1728		 * and divide by symbol_width to find how many symbols we have
1729		 * Note: number of symbols is scaled up by 16 */
1730		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1731
1732		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1733		if (!(num_symbols_x16 & 0xF))
1734			/* _X_ */
1735			num_symbol_offsets = 3;
1736		else
1737			/* _xx_ */
1738			num_symbol_offsets = 4;
1739
1740		for (i = 0; i < num_symbol_offsets; i++) {
1741
1742			/* Calculate pilot mask */
1743			s32 curr_sym_off =
1744				(num_symbols_x16 / 16) + i + 25;
1745
1746			/* Pilot magnitude mask seems to be a way to
1747			 * declare the boundaries for our detection
1748			 * window or something, it's 2 for the middle
1749			 * value(s) where the symbol is expected to be
1750			 * and 1 on the boundary values */
1751			u8 plt_mag_map =
1752				(i == 0 || i == (num_symbol_offsets - 1))
1753								? 1 : 2;
1754
1755			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1756				if (curr_sym_off <= 25)
1757					pilot_mask[0] |= 1 << curr_sym_off;
1758				else if (curr_sym_off >= 27)
1759					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1760			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1761				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1762
1763			/* Calculate magnitude mask (for viterbi decoder) */
1764			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1765				mag_mask[0] |=
1766					plt_mag_map << (curr_sym_off + 1) * 2;
1767			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1768				mag_mask[1] |=
1769					plt_mag_map << (curr_sym_off - 15) * 2;
1770			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1771				mag_mask[2] |=
1772					plt_mag_map << (curr_sym_off - 31) * 2;
1773			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1774				mag_mask[3] |=
1775					plt_mag_map << (curr_sym_off - 47) * 2;
1776
1777		}
1778
1779		/* Write settings on hw to enable spur filter */
1780		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1781					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1782		/* XXX: Self correlator also ? */
1783		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1784					AR5K_PHY_IQ_PILOT_MASK_EN |
1785					AR5K_PHY_IQ_CHAN_MASK_EN |
1786					AR5K_PHY_IQ_SPUR_FILT_EN);
1787
1788		/* Set delta phase and freq sigma delta */
1789		ath5k_hw_reg_write(ah,
1790				AR5K_REG_SM(spur_delta_phase,
1791					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1792				AR5K_REG_SM(spur_freq_sigma_delta,
1793				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1794				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1795				AR5K_PHY_TIMING_11);
1796
1797		/* Write pilot masks */
1798		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1799		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1800					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1801					pilot_mask[1]);
1802
1803		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1804		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1805					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1806					pilot_mask[1]);
1807
1808		/* Write magnitude masks */
1809		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1810		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1811		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1812		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1813					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1814					mag_mask[3]);
1815
1816		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1817		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1818		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1819		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1820					AR5K_PHY_BIN_MASK2_4_MASK_4,
1821					mag_mask[3]);
1822
1823	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1824	AR5K_PHY_IQ_SPUR_FILT_EN) {
1825		/* Clean up spur mitigation settings and disable filter */
1826		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1827					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1828		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1829					AR5K_PHY_IQ_PILOT_MASK_EN |
1830					AR5K_PHY_IQ_CHAN_MASK_EN |
1831					AR5K_PHY_IQ_SPUR_FILT_EN);
1832		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1833
1834		/* Clear pilot masks */
1835		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1836		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1837					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1838					0);
1839
1840		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1841		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1842					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1843					0);
1844
1845		/* Clear magnitude masks */
1846		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1847		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1848		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1849		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1850					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1851					0);
1852
1853		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1854		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1855		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1856		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1857					AR5K_PHY_BIN_MASK2_4_MASK_4,
1858					0);
1859	}
1860}
1861
1862
1863/*****************\
1864* Antenna control *
1865\*****************/
1866
1867static void /*TODO:Boundary check*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1869{
1870	if (ah->ah_version != AR5K_AR5210)
1871		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1872}
1873
1874/*
1875 * Enable/disable fast rx antenna diversity
 
 
 
1876 */
1877static void
1878ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1879{
1880	switch (ee_mode) {
1881	case AR5K_EEPROM_MODE_11G:
1882		/* XXX: This is set to
1883		 * disabled on initvals !!! */
1884	case AR5K_EEPROM_MODE_11A:
1885		if (enable)
1886			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1887					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1888		else
1889			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1890					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1891		break;
1892	case AR5K_EEPROM_MODE_11B:
1893		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1894					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1895		break;
1896	default:
1897		return;
1898	}
1899
1900	if (enable) {
1901		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1902				AR5K_PHY_RESTART_DIV_GC, 4);
1903
1904		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1905					AR5K_PHY_FAST_ANT_DIV_EN);
1906	} else {
1907		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1908				AR5K_PHY_RESTART_DIV_GC, 0);
1909
1910		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1911					AR5K_PHY_FAST_ANT_DIV_EN);
1912	}
1913}
1914
 
 
 
 
 
 
 
 
1915void
1916ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1917{
1918	u8 ant0, ant1;
1919
1920	/*
1921	 * In case a fixed antenna was set as default
1922	 * use the same switch table twice.
1923	 */
1924	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1925		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1926	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1927		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1928	else {
1929		ant0 = AR5K_ANT_SWTABLE_A;
1930		ant1 = AR5K_ANT_SWTABLE_B;
1931	}
1932
1933	/* Set antenna idle switch table */
1934	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1935			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1936			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1937			AR5K_PHY_ANT_CTL_TXRX_EN));
1938
1939	/* Set antenna switch tables */
1940	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1941		AR5K_PHY_ANT_SWITCH_TABLE_0);
1942	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1943		AR5K_PHY_ANT_SWITCH_TABLE_1);
1944}
1945
1946/*
1947 * Set antenna operating mode
 
 
1948 */
1949void
1950ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1951{
1952	struct ieee80211_channel *channel = ah->ah_current_channel;
1953	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1954	bool use_def_for_sg;
1955	int ee_mode;
1956	u8 def_ant, tx_ant;
1957	u32 sta_id1 = 0;
1958
1959	/* if channel is not initialized yet we can't set the antennas
1960	 * so just store the mode. it will be set on the next reset */
1961	if (channel == NULL) {
1962		ah->ah_ant_mode = ant_mode;
1963		return;
1964	}
1965
1966	def_ant = ah->ah_def_ant;
1967
1968	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1969	if (ee_mode < 0) {
1970		ATH5K_ERR(ah,
1971			"invalid channel: %d\n", channel->center_freq);
1972		return;
1973	}
1974
1975	switch (ant_mode) {
1976	case AR5K_ANTMODE_DEFAULT:
1977		tx_ant = 0;
1978		use_def_for_tx = false;
1979		update_def_on_tx = false;
1980		use_def_for_rts = false;
1981		use_def_for_sg = false;
1982		fast_div = true;
1983		break;
1984	case AR5K_ANTMODE_FIXED_A:
1985		def_ant = 1;
1986		tx_ant = 1;
1987		use_def_for_tx = true;
1988		update_def_on_tx = false;
1989		use_def_for_rts = true;
1990		use_def_for_sg = true;
1991		fast_div = false;
1992		break;
1993	case AR5K_ANTMODE_FIXED_B:
1994		def_ant = 2;
1995		tx_ant = 2;
1996		use_def_for_tx = true;
1997		update_def_on_tx = false;
1998		use_def_for_rts = true;
1999		use_def_for_sg = true;
2000		fast_div = false;
2001		break;
2002	case AR5K_ANTMODE_SINGLE_AP:
2003		def_ant = 1;	/* updated on tx */
2004		tx_ant = 0;
2005		use_def_for_tx = true;
2006		update_def_on_tx = true;
2007		use_def_for_rts = true;
2008		use_def_for_sg = true;
2009		fast_div = true;
2010		break;
2011	case AR5K_ANTMODE_SECTOR_AP:
2012		tx_ant = 1;	/* variable */
2013		use_def_for_tx = false;
2014		update_def_on_tx = false;
2015		use_def_for_rts = true;
2016		use_def_for_sg = false;
2017		fast_div = false;
2018		break;
2019	case AR5K_ANTMODE_SECTOR_STA:
2020		tx_ant = 1;	/* variable */
2021		use_def_for_tx = true;
2022		update_def_on_tx = false;
2023		use_def_for_rts = true;
2024		use_def_for_sg = false;
2025		fast_div = true;
2026		break;
2027	case AR5K_ANTMODE_DEBUG:
2028		def_ant = 1;
2029		tx_ant = 2;
2030		use_def_for_tx = false;
2031		update_def_on_tx = false;
2032		use_def_for_rts = false;
2033		use_def_for_sg = false;
2034		fast_div = false;
2035		break;
2036	default:
2037		return;
2038	}
2039
2040	ah->ah_tx_ant = tx_ant;
2041	ah->ah_ant_mode = ant_mode;
2042	ah->ah_def_ant = def_ant;
2043
2044	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2045	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2046	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2047	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2048
2049	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2050
2051	if (sta_id1)
2052		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2053
2054	ath5k_hw_set_antenna_switch(ah, ee_mode);
2055	/* Note: set diversity before default antenna
2056	 * because it won't work correctly */
2057	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2058	ath5k_hw_set_def_antenna(ah, def_ant);
2059}
2060
2061
2062/****************\
2063* TX power setup *
2064\****************/
2065
2066/*
2067 * Helper functions
2068 */
2069
2070/*
2071 * Do linear interpolation between two given (x, y) points
 
 
 
 
 
2072 */
2073static s16
2074ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2075					s16 y_left, s16 y_right)
2076{
2077	s16 ratio, result;
2078
2079	/* Avoid divide by zero and skip interpolation
2080	 * if we have the same point */
2081	if ((x_left == x_right) || (y_left == y_right))
2082		return y_left;
2083
2084	/*
2085	 * Since we use ints and not fps, we need to scale up in
2086	 * order to get a sane ratio value (or else we 'll eg. get
2087	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2088	 * to have some accuracy both for 0.5 and 0.25 steps.
2089	 */
2090	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2091
2092	/* Now scale down to be in range */
2093	result = y_left + (ratio * (target - x_left) / 100);
2094
2095	return result;
2096}
2097
2098/*
2099 * Find vertical boundary (min pwr) for the linear PCDAC curve.
 
 
 
 
 
2100 *
2101 * Since we have the top of the curve and we draw the line below
2102 * until we reach 1 (1 pcdac step) we need to know which point
2103 * (x value) that is so that we don't go below y axis and have negative
2104 * pcdac values when creating the curve, or fill the table with zeroes.
2105 */
2106static s16
2107ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2108				const s16 *pwrL, const s16 *pwrR)
2109{
2110	s8 tmp;
2111	s16 min_pwrL, min_pwrR;
2112	s16 pwr_i;
2113
2114	/* Some vendors write the same pcdac value twice !!! */
2115	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2116		return max(pwrL[0], pwrR[0]);
2117
2118	if (pwrL[0] == pwrL[1])
2119		min_pwrL = pwrL[0];
2120	else {
2121		pwr_i = pwrL[0];
2122		do {
2123			pwr_i--;
2124			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2125							pwrL[0], pwrL[1],
2126							stepL[0], stepL[1]);
2127		} while (tmp > 1);
2128
2129		min_pwrL = pwr_i;
2130	}
2131
2132	if (pwrR[0] == pwrR[1])
2133		min_pwrR = pwrR[0];
2134	else {
2135		pwr_i = pwrR[0];
2136		do {
2137			pwr_i--;
2138			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2139							pwrR[0], pwrR[1],
2140							stepR[0], stepR[1]);
2141		} while (tmp > 1);
2142
2143		min_pwrR = pwr_i;
2144	}
2145
2146	/* Keep the right boundary so that it works for both curves */
2147	return max(min_pwrL, min_pwrR);
2148}
2149
2150/*
 
 
 
 
 
 
 
 
 
2151 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2152 * Power to PCDAC curve.
2153 *
2154 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2155 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2156 * PCDAC/PDADC step for each curve is 64 but we can write more than
2157 * one curves on hw so we can go up to 128 (which is the max step we
2158 * can write on the final table).
2159 *
2160 * We write y values (PCDAC/PDADC steps) on hw.
2161 */
2162static void
2163ath5k_create_power_curve(s16 pmin, s16 pmax,
2164			const s16 *pwr, const u8 *vpd,
2165			u8 num_points,
2166			u8 *vpd_table, u8 type)
2167{
2168	u8 idx[2] = { 0, 1 };
2169	s16 pwr_i = 2 * pmin;
2170	int i;
2171
2172	if (num_points < 2)
2173		return;
2174
2175	/* We want the whole line, so adjust boundaries
2176	 * to cover the entire power range. Note that
2177	 * power values are already 0.25dB so no need
2178	 * to multiply pwr_i by 2 */
2179	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2180		pwr_i = pmin;
2181		pmin = 0;
2182		pmax = 63;
2183	}
2184
2185	/* Find surrounding turning points (TPs)
2186	 * and interpolate between them */
2187	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2188	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2189
2190		/* We passed the right TP, move to the next set of TPs
2191		 * if we pass the last TP, extrapolate above using the last
2192		 * two TPs for ratio */
2193		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2194			idx[0]++;
2195			idx[1]++;
2196		}
2197
2198		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2199						pwr[idx[0]], pwr[idx[1]],
2200						vpd[idx[0]], vpd[idx[1]]);
2201
2202		/* Increase by 0.5dB
2203		 * (0.25 dB units) */
2204		pwr_i += 2;
2205	}
2206}
2207
2208/*
 
 
 
 
 
 
 
2209 * Get the surrounding per-channel power calibration piers
2210 * for a given frequency so that we can interpolate between
2211 * them and come up with an appropriate dataset for our current
2212 * channel.
2213 */
2214static void
2215ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2216			struct ieee80211_channel *channel,
2217			struct ath5k_chan_pcal_info **pcinfo_l,
2218			struct ath5k_chan_pcal_info **pcinfo_r)
2219{
2220	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2221	struct ath5k_chan_pcal_info *pcinfo;
2222	u8 idx_l, idx_r;
2223	u8 mode, max, i;
2224	u32 target = channel->center_freq;
2225
2226	idx_l = 0;
2227	idx_r = 0;
2228
2229	if (!(channel->hw_value & CHANNEL_OFDM)) {
 
 
 
 
 
2230		pcinfo = ee->ee_pwr_cal_b;
2231		mode = AR5K_EEPROM_MODE_11B;
2232	} else if (channel->hw_value & CHANNEL_2GHZ) {
 
 
2233		pcinfo = ee->ee_pwr_cal_g;
2234		mode = AR5K_EEPROM_MODE_11G;
2235	} else {
2236		pcinfo = ee->ee_pwr_cal_a;
2237		mode = AR5K_EEPROM_MODE_11A;
2238	}
2239	max = ee->ee_n_piers[mode] - 1;
2240
2241	/* Frequency is below our calibrated
2242	 * range. Use the lowest power curve
2243	 * we have */
2244	if (target < pcinfo[0].freq) {
2245		idx_l = idx_r = 0;
2246		goto done;
2247	}
2248
2249	/* Frequency is above our calibrated
2250	 * range. Use the highest power curve
2251	 * we have */
2252	if (target > pcinfo[max].freq) {
2253		idx_l = idx_r = max;
2254		goto done;
2255	}
2256
2257	/* Frequency is inside our calibrated
2258	 * channel range. Pick the surrounding
2259	 * calibration piers so that we can
2260	 * interpolate */
2261	for (i = 0; i <= max; i++) {
2262
2263		/* Frequency matches one of our calibration
2264		 * piers, no need to interpolate, just use
2265		 * that calibration pier */
2266		if (pcinfo[i].freq == target) {
2267			idx_l = idx_r = i;
2268			goto done;
2269		}
2270
2271		/* We found a calibration pier that's above
2272		 * frequency, use this pier and the previous
2273		 * one to interpolate */
2274		if (target < pcinfo[i].freq) {
2275			idx_r = i;
2276			idx_l = idx_r - 1;
2277			goto done;
2278		}
2279	}
2280
2281done:
2282	*pcinfo_l = &pcinfo[idx_l];
2283	*pcinfo_r = &pcinfo[idx_r];
2284}
2285
2286/*
 
 
 
 
 
 
2287 * Get the surrounding per-rate power calibration data
2288 * for a given frequency and interpolate between power
2289 * values to set max target power supported by hw for
2290 * each rate.
2291 */
2292static void
2293ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2294			struct ieee80211_channel *channel,
2295			struct ath5k_rate_pcal_info *rates)
2296{
2297	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2298	struct ath5k_rate_pcal_info *rpinfo;
2299	u8 idx_l, idx_r;
2300	u8 mode, max, i;
2301	u32 target = channel->center_freq;
2302
2303	idx_l = 0;
2304	idx_r = 0;
2305
2306	if (!(channel->hw_value & CHANNEL_OFDM)) {
 
 
 
 
 
2307		rpinfo = ee->ee_rate_tpwr_b;
2308		mode = AR5K_EEPROM_MODE_11B;
2309	} else if (channel->hw_value & CHANNEL_2GHZ) {
 
 
2310		rpinfo = ee->ee_rate_tpwr_g;
2311		mode = AR5K_EEPROM_MODE_11G;
2312	} else {
2313		rpinfo = ee->ee_rate_tpwr_a;
2314		mode = AR5K_EEPROM_MODE_11A;
2315	}
2316	max = ee->ee_rate_target_pwr_num[mode] - 1;
2317
2318	/* Get the surrounding calibration
2319	 * piers - same as above */
2320	if (target < rpinfo[0].freq) {
2321		idx_l = idx_r = 0;
2322		goto done;
2323	}
2324
2325	if (target > rpinfo[max].freq) {
2326		idx_l = idx_r = max;
2327		goto done;
2328	}
2329
2330	for (i = 0; i <= max; i++) {
2331
2332		if (rpinfo[i].freq == target) {
2333			idx_l = idx_r = i;
2334			goto done;
2335		}
2336
2337		if (target < rpinfo[i].freq) {
2338			idx_r = i;
2339			idx_l = idx_r - 1;
2340			goto done;
2341		}
2342	}
2343
2344done:
2345	/* Now interpolate power value, based on the frequency */
2346	rates->freq = target;
2347
2348	rates->target_power_6to24 =
2349		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2350					rpinfo[idx_r].freq,
2351					rpinfo[idx_l].target_power_6to24,
2352					rpinfo[idx_r].target_power_6to24);
2353
2354	rates->target_power_36 =
2355		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2356					rpinfo[idx_r].freq,
2357					rpinfo[idx_l].target_power_36,
2358					rpinfo[idx_r].target_power_36);
2359
2360	rates->target_power_48 =
2361		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2362					rpinfo[idx_r].freq,
2363					rpinfo[idx_l].target_power_48,
2364					rpinfo[idx_r].target_power_48);
2365
2366	rates->target_power_54 =
2367		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2368					rpinfo[idx_r].freq,
2369					rpinfo[idx_l].target_power_54,
2370					rpinfo[idx_r].target_power_54);
2371}
2372
2373/*
 
 
 
 
2374 * Get the max edge power for this channel if
2375 * we have such data from EEPROM's Conformance Test
2376 * Limits (CTL), and limit max power if needed.
2377 */
2378static void
2379ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2380			struct ieee80211_channel *channel)
2381{
2382	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2383	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2384	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2385	u8 *ctl_val = ee->ee_ctl;
2386	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2387	s16 edge_pwr = 0;
2388	u8 rep_idx;
2389	u8 i, ctl_mode;
2390	u8 ctl_idx = 0xFF;
2391	u32 target = channel->center_freq;
2392
2393	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2394
2395	switch (channel->hw_value & CHANNEL_MODES) {
2396	case CHANNEL_A:
2397		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2398			ctl_mode |= AR5K_CTL_TURBO;
2399		else
2400			ctl_mode |= AR5K_CTL_11A;
2401		break;
2402	case CHANNEL_G:
2403		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2404			ctl_mode |= AR5K_CTL_TURBOG;
2405		else
2406			ctl_mode |= AR5K_CTL_11G;
2407		break;
2408	case CHANNEL_B:
2409		ctl_mode |= AR5K_CTL_11B;
2410		break;
2411	case CHANNEL_XR:
2412		/* Fall through */
2413	default:
2414		return;
2415	}
2416
2417	for (i = 0; i < ee->ee_ctls; i++) {
2418		if (ctl_val[i] == ctl_mode) {
2419			ctl_idx = i;
2420			break;
2421		}
2422	}
2423
2424	/* If we have a CTL dataset available grab it and find the
2425	 * edge power for our frequency */
2426	if (ctl_idx == 0xFF)
2427		return;
2428
2429	/* Edge powers are sorted by frequency from lower
2430	 * to higher. Each CTL corresponds to 8 edge power
2431	 * measurements. */
2432	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2433
2434	/* Don't do boundaries check because we
2435	 * might have more that one bands defined
2436	 * for this mode */
2437
2438	/* Get the edge power that's closer to our
2439	 * frequency */
2440	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2441		rep_idx += i;
2442		if (target <= rep[rep_idx].freq)
2443			edge_pwr = (s16) rep[rep_idx].edge;
2444	}
2445
2446	if (edge_pwr)
2447		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2448}
2449
2450
2451/*
2452 * Power to PCDAC table functions
2453 */
2454
2455/*
2456 * Fill Power to PCDAC table on RF5111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457 *
2458 * No further processing is needed for RF5111, the only thing we have to
2459 * do is fill the values below and above calibration range since eeprom data
2460 * may not cover the entire PCDAC table.
2461 */
2462static void
2463ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2464							s16 *table_max)
2465{
2466	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2467	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2468	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2469	s16	min_pwr, max_pwr;
2470
2471	/* Get table boundaries */
2472	min_pwr = table_min[0];
2473	pcdac_0 = pcdac_tmp[0];
2474
2475	max_pwr = table_max[0];
2476	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2477
2478	/* Extrapolate below minimum using pcdac_0 */
2479	pcdac_i = 0;
2480	for (i = 0; i < min_pwr; i++)
2481		pcdac_out[pcdac_i++] = pcdac_0;
2482
2483	/* Copy values from pcdac_tmp */
2484	pwr_idx = min_pwr;
2485	for (i = 0; pwr_idx <= max_pwr &&
2486		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2487		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2488		pwr_idx++;
2489	}
2490
2491	/* Extrapolate above maximum */
2492	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2493		pcdac_out[pcdac_i++] = pcdac_n;
2494
2495}
2496
2497/*
2498 * Combine available XPD Curves and fill Linear Power to PCDAC table
2499 * on RF5112
 
 
 
2500 *
 
2501 * RFX112 can have up to 2 curves (one for low txpower range and one for
2502 * higher txpower range). We need to put them both on pcdac_out and place
2503 * them in the correct location. In case we only have one curve available
2504 * just fit it on pcdac_out (it's supposed to cover the entire range of
2505 * available pwr levels since it's always the higher power curve). Extrapolate
2506 * below and above final table if needed.
2507 */
2508static void
2509ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2510						s16 *table_max, u8 pdcurves)
2511{
2512	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2513	u8	*pcdac_low_pwr;
2514	u8	*pcdac_high_pwr;
2515	u8	*pcdac_tmp;
2516	u8	pwr;
2517	s16	max_pwr_idx;
2518	s16	min_pwr_idx;
2519	s16	mid_pwr_idx = 0;
2520	/* Edge flag turns on the 7nth bit on the PCDAC
2521	 * to declare the higher power curve (force values
2522	 * to be greater than 64). If we only have one curve
2523	 * we don't need to set this, if we have 2 curves and
2524	 * fill the table backwards this can also be used to
2525	 * switch from higher power curve to lower power curve */
2526	u8	edge_flag;
2527	int	i;
2528
2529	/* When we have only one curve available
2530	 * that's the higher power curve. If we have
2531	 * two curves the first is the high power curve
2532	 * and the next is the low power curve. */
2533	if (pdcurves > 1) {
2534		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2535		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2536		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2537		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2538
2539		/* If table size goes beyond 31.5dB, keep the
2540		 * upper 31.5dB range when setting tx power.
2541		 * Note: 126 = 31.5 dB in quarter dB steps */
2542		if (table_max[0] - table_min[1] > 126)
2543			min_pwr_idx = table_max[0] - 126;
2544		else
2545			min_pwr_idx = table_min[1];
2546
2547		/* Since we fill table backwards
2548		 * start from high power curve */
2549		pcdac_tmp = pcdac_high_pwr;
2550
2551		edge_flag = 0x40;
2552	} else {
2553		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2554		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2555		min_pwr_idx = table_min[0];
2556		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2557		pcdac_tmp = pcdac_high_pwr;
2558		edge_flag = 0;
2559	}
2560
2561	/* This is used when setting tx power*/
2562	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2563
2564	/* Fill Power to PCDAC table backwards */
2565	pwr = max_pwr_idx;
2566	for (i = 63; i >= 0; i--) {
2567		/* Entering lower power range, reset
2568		 * edge flag and set pcdac_tmp to lower
2569		 * power curve.*/
2570		if (edge_flag == 0x40 &&
2571		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2572			edge_flag = 0x00;
2573			pcdac_tmp = pcdac_low_pwr;
2574			pwr = mid_pwr_idx / 2;
2575		}
2576
2577		/* Don't go below 1, extrapolate below if we have
2578		 * already switched to the lower power curve -or
2579		 * we only have one curve and edge_flag is zero
2580		 * anyway */
2581		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2582			while (i >= 0) {
2583				pcdac_out[i] = pcdac_out[i + 1];
2584				i--;
2585			}
2586			break;
2587		}
2588
2589		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2590
2591		/* Extrapolate above if pcdac is greater than
2592		 * 126 -this can happen because we OR pcdac_out
2593		 * value with edge_flag on high power curve */
2594		if (pcdac_out[i] > 126)
2595			pcdac_out[i] = 126;
2596
2597		/* Decrease by a 0.5dB step */
2598		pwr--;
2599	}
2600}
2601
2602/* Write PCDAC values on hw */
 
 
 
2603static void
2604ath5k_write_pcdac_table(struct ath5k_hw *ah)
2605{
2606	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2607	int	i;
2608
2609	/*
2610	 * Write TX power values
2611	 */
2612	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2613		ath5k_hw_reg_write(ah,
2614			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2615			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2616			AR5K_PHY_PCDAC_TXPOWER(i));
2617	}
2618}
2619
2620
2621/*
2622 * Power to PDADC table functions
2623 */
2624
2625/*
2626 * Set the gain boundaries and create final Power to PDADC table
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627 *
 
2628 * We can have up to 4 pd curves, we need to do a similar process
2629 * as we do for RF5112. This time we don't have an edge_flag but we
2630 * set the gain boundaries on a separate register.
2631 */
2632static void
2633ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2634			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2635{
2636	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2637	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2638	u8 *pdadc_tmp;
2639	s16 pdadc_0;
2640	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2641	u8 pd_gain_overlap;
2642
2643	/* Note: Register value is initialized on initvals
2644	 * there is no feedback from hw.
2645	 * XXX: What about pd_gain_overlap from EEPROM ? */
2646	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2647		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2648
2649	/* Create final PDADC table */
2650	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2651		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2652
2653		if (pdg == pdcurves - 1)
2654			/* 2 dB boundary stretch for last
2655			 * (higher power) curve */
2656			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2657		else
2658			/* Set gain boundary in the middle
2659			 * between this curve and the next one */
2660			gain_boundaries[pdg] =
2661				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2662
2663		/* Sanity check in case our 2 db stretch got out of
2664		 * range. */
2665		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2666			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2667
2668		/* For the first curve (lower power)
2669		 * start from 0 dB */
2670		if (pdg == 0)
2671			pdadc_0 = 0;
2672		else
2673			/* For the other curves use the gain overlap */
2674			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2675							pd_gain_overlap;
2676
2677		/* Force each power step to be at least 0.5 dB */
2678		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2679			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2680		else
2681			pwr_step = 1;
2682
2683		/* If pdadc_0 is negative, we need to extrapolate
2684		 * below this pdgain by a number of pwr_steps */
2685		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2686			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2687			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2688			pdadc_0++;
2689		}
2690
2691		/* Set last pwr level, using gain boundaries */
2692		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2693		/* Limit it to be inside pwr range */
2694		table_size = pwr_max[pdg] - pwr_min[pdg];
2695		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2696
2697		/* Fill pdadc_out table */
2698		while (pdadc_0 < max_idx && pdadc_i < 128)
2699			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2700
2701		/* Need to extrapolate above this pdgain? */
2702		if (pdadc_n <= max_idx)
2703			continue;
2704
2705		/* Force each power step to be at least 0.5 dB */
2706		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2707			pwr_step = pdadc_tmp[table_size - 1] -
2708						pdadc_tmp[table_size - 2];
2709		else
2710			pwr_step = 1;
2711
2712		/* Extrapolate above */
2713		while ((pdadc_0 < (s16) pdadc_n) &&
2714		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2715			s16 tmp = pdadc_tmp[table_size - 1] +
2716					(pdadc_0 - max_idx) * pwr_step;
2717			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2718			pdadc_0++;
2719		}
2720	}
2721
2722	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2723		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2724		pdg++;
2725	}
2726
2727	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2728		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2729		pdadc_i++;
2730	}
2731
2732	/* Set gain boundaries */
2733	ath5k_hw_reg_write(ah,
2734		AR5K_REG_SM(pd_gain_overlap,
2735			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2736		AR5K_REG_SM(gain_boundaries[0],
2737			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2738		AR5K_REG_SM(gain_boundaries[1],
2739			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2740		AR5K_REG_SM(gain_boundaries[2],
2741			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2742		AR5K_REG_SM(gain_boundaries[3],
2743			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2744		AR5K_PHY_TPC_RG5);
2745
2746	/* Used for setting rate power table */
2747	ah->ah_txpower.txp_min_idx = pwr_min[0];
2748
2749}
2750
2751/* Write PDADC values on hw */
 
 
 
 
2752static void
2753ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2754{
2755	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2756	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2757	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2758	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2759	u32 reg;
2760	u8 i;
2761
2762	/* Select the right pdgain curves */
2763
2764	/* Clear current settings */
2765	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2766	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2767		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2768		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2769		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2770
2771	/*
2772	 * Use pd_gains curve from eeprom
2773	 *
2774	 * This overrides the default setting from initvals
2775	 * in case some vendors (e.g. Zcomax) don't use the default
2776	 * curves. If we don't honor their settings we 'll get a
2777	 * 5dB (1 * gain overlap ?) drop.
2778	 */
2779	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2780
2781	switch (pdcurves) {
2782	case 3:
2783		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2784		/* Fall through */
2785	case 2:
2786		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2787		/* Fall through */
2788	case 1:
2789		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2790		break;
2791	}
2792	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2793
2794	/*
2795	 * Write TX power values
2796	 */
2797	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2798		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
2799		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
2800	}
2801}
2802
2803
2804/*
2805 * Common code for PCDAC/PDADC tables
2806 */
2807
2808/*
 
 
 
 
 
 
2809 * This is the main function that uses all of the above
2810 * to set PCDAC/PDADC table on hw for the current channel.
2811 * This table is used for tx power calibration on the baseband,
2812 * without it we get weird tx power levels and in some cases
2813 * distorted spectral mask
2814 */
2815static int
2816ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2817			struct ieee80211_channel *channel,
2818			u8 ee_mode, u8 type)
2819{
2820	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2821	struct ath5k_chan_pcal_info *pcinfo_L;
2822	struct ath5k_chan_pcal_info *pcinfo_R;
2823	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2824	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2825	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2826	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2827	u8 *tmpL;
2828	u8 *tmpR;
2829	u32 target = channel->center_freq;
2830	int pdg, i;
2831
2832	/* Get surrounding freq piers for this channel */
2833	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2834						&pcinfo_L,
2835						&pcinfo_R);
2836
2837	/* Loop over pd gain curves on
2838	 * surrounding freq piers by index */
2839	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2840
2841		/* Fill curves in reverse order
2842		 * from lower power (max gain)
2843		 * to higher power. Use curve -> idx
2844		 * backmapping we did on eeprom init */
2845		u8 idx = pdg_curve_to_idx[pdg];
2846
2847		/* Grab the needed curves by index */
2848		pdg_L = &pcinfo_L->pd_curves[idx];
2849		pdg_R = &pcinfo_R->pd_curves[idx];
2850
2851		/* Initialize the temp tables */
2852		tmpL = ah->ah_txpower.tmpL[pdg];
2853		tmpR = ah->ah_txpower.tmpR[pdg];
2854
2855		/* Set curve's x boundaries and create
2856		 * curves so that they cover the same
2857		 * range (if we don't do that one table
2858		 * will have values on some range and the
2859		 * other one won't have any so interpolation
2860		 * will fail) */
2861		table_min[pdg] = min(pdg_L->pd_pwr[0],
2862					pdg_R->pd_pwr[0]) / 2;
2863
2864		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2865				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2866
2867		/* Now create the curves on surrounding channels
2868		 * and interpolate if needed to get the final
2869		 * curve for this gain on this channel */
2870		switch (type) {
2871		case AR5K_PWRTABLE_LINEAR_PCDAC:
2872			/* Override min/max so that we don't loose
2873			 * accuracy (don't divide by 2) */
2874			table_min[pdg] = min(pdg_L->pd_pwr[0],
2875						pdg_R->pd_pwr[0]);
2876
2877			table_max[pdg] =
2878				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2879					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2880
2881			/* Override minimum so that we don't get
2882			 * out of bounds while extrapolating
2883			 * below. Don't do this when we have 2
2884			 * curves and we are on the high power curve
2885			 * because table_min is ok in this case */
2886			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2887
2888				table_min[pdg] =
2889					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2890								pdg_R->pd_step,
2891								pdg_L->pd_pwr,
2892								pdg_R->pd_pwr);
2893
2894				/* Don't go too low because we will
2895				 * miss the upper part of the curve.
2896				 * Note: 126 = 31.5dB (max power supported)
2897				 * in 0.25dB units */
2898				if (table_max[pdg] - table_min[pdg] > 126)
2899					table_min[pdg] = table_max[pdg] - 126;
2900			}
2901
2902			/* Fall through */
2903		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2904		case AR5K_PWRTABLE_PWR_TO_PDADC:
2905
2906			ath5k_create_power_curve(table_min[pdg],
2907						table_max[pdg],
2908						pdg_L->pd_pwr,
2909						pdg_L->pd_step,
2910						pdg_L->pd_points, tmpL, type);
2911
2912			/* We are in a calibration
2913			 * pier, no need to interpolate
2914			 * between freq piers */
2915			if (pcinfo_L == pcinfo_R)
2916				continue;
2917
2918			ath5k_create_power_curve(table_min[pdg],
2919						table_max[pdg],
2920						pdg_R->pd_pwr,
2921						pdg_R->pd_step,
2922						pdg_R->pd_points, tmpR, type);
2923			break;
2924		default:
2925			return -EINVAL;
2926		}
2927
2928		/* Interpolate between curves
2929		 * of surrounding freq piers to
2930		 * get the final curve for this
2931		 * pd gain. Re-use tmpL for interpolation
2932		 * output */
2933		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2934		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2935			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2936							(s16) pcinfo_L->freq,
2937							(s16) pcinfo_R->freq,
2938							(s16) tmpL[i],
2939							(s16) tmpR[i]);
2940		}
2941	}
2942
2943	/* Now we have a set of curves for this
2944	 * channel on tmpL (x range is table_max - table_min
2945	 * and y values are tmpL[pdg][]) sorted in the same
2946	 * order as EEPROM (because we've used the backmapping).
2947	 * So for RF5112 it's from higher power to lower power
2948	 * and for RF2413 it's from lower power to higher power.
2949	 * For RF5111 we only have one curve. */
2950
2951	/* Fill min and max power levels for this
2952	 * channel by interpolating the values on
2953	 * surrounding channels to complete the dataset */
2954	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2955					(s16) pcinfo_L->freq,
2956					(s16) pcinfo_R->freq,
2957					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2958
2959	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2960					(s16) pcinfo_L->freq,
2961					(s16) pcinfo_R->freq,
2962					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2963
2964	/* Fill PCDAC/PDADC table */
2965	switch (type) {
2966	case AR5K_PWRTABLE_LINEAR_PCDAC:
2967		/* For RF5112 we can have one or two curves
2968		 * and each curve covers a certain power lvl
2969		 * range so we need to do some more processing */
2970		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2971						ee->ee_pd_gains[ee_mode]);
2972
2973		/* Set txp.offset so that we can
2974		 * match max power value with max
2975		 * table index */
2976		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2977		break;
2978	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2979		/* We are done for RF5111 since it has only
2980		 * one curve, just fit the curve on the table */
2981		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2982
2983		/* No rate powertable adjustment for RF5111 */
2984		ah->ah_txpower.txp_min_idx = 0;
2985		ah->ah_txpower.txp_offset = 0;
2986		break;
2987	case AR5K_PWRTABLE_PWR_TO_PDADC:
2988		/* Set PDADC boundaries and fill
2989		 * final PDADC table */
2990		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2991						ee->ee_pd_gains[ee_mode]);
2992
2993		/* Set txp.offset, note that table_min
2994		 * can be negative */
2995		ah->ah_txpower.txp_offset = table_min[0];
2996		break;
2997	default:
2998		return -EINVAL;
2999	}
3000
3001	ah->ah_txpower.txp_setup = true;
3002
3003	return 0;
3004}
3005
3006/* Write power table for current channel to hw */
 
 
 
 
 
3007static void
3008ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3009{
3010	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3011		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3012	else
3013		ath5k_write_pcdac_table(ah);
3014}
3015
3016/*
3017 * Per-rate tx power setting
 
3018 *
3019 * This is the code that sets the desired tx power (below
3020 * maximum) on hw for each rate (we also have TPC that sets
3021 * power per packet). We do that by providing an index on the
3022 * PCDAC/PDADC table we set up.
3023 */
3024
3025/*
3026 * Set rate power table
3027 *
3028 * For now we only limit txpower based on maximum tx power
3029 * supported by hw (what's inside rate_info). We need to limit
3030 * this even more, based on regulatory domain etc.
 
 
 
3031 *
3032 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3033 * and is indexed as follows:
3034 * rates[0] - rates[7] -> OFDM rates
3035 * rates[8] - rates[14] -> CCK rates
3036 * rates[15] -> XR rates (they all have the same power)
3037 */
 
 
 
 
 
 
 
 
3038static void
3039ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3040			struct ath5k_rate_pcal_info *rate_info,
3041			u8 ee_mode)
3042{
3043	unsigned int i;
3044	u16 *rates;
 
3045
3046	/* max_pwr is power level we got from driver/user in 0.5dB
3047	 * units, switch to 0.25dB units so we can compare */
3048	max_pwr *= 2;
3049	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3050
3051	/* apply rate limits */
3052	rates = ah->ah_txpower.txp_rates_power_table;
3053
3054	/* OFDM rates 6 to 24Mb/s */
3055	for (i = 0; i < 5; i++)
3056		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3057
3058	/* Rest OFDM rates */
3059	rates[5] = min(rates[0], rate_info->target_power_36);
3060	rates[6] = min(rates[0], rate_info->target_power_48);
3061	rates[7] = min(rates[0], rate_info->target_power_54);
3062
3063	/* CCK rates */
3064	/* 1L */
3065	rates[8] = min(rates[0], rate_info->target_power_6to24);
3066	/* 2L */
3067	rates[9] = min(rates[0], rate_info->target_power_36);
3068	/* 2S */
3069	rates[10] = min(rates[0], rate_info->target_power_36);
3070	/* 5L */
3071	rates[11] = min(rates[0], rate_info->target_power_48);
3072	/* 5S */
3073	rates[12] = min(rates[0], rate_info->target_power_48);
3074	/* 11L */
3075	rates[13] = min(rates[0], rate_info->target_power_54);
3076	/* 11S */
3077	rates[14] = min(rates[0], rate_info->target_power_54);
3078
3079	/* XR rates */
3080	rates[15] = min(rates[0], rate_info->target_power_6to24);
3081
3082	/* CCK rates have different peak to average ratio
3083	 * so we have to tweak their power so that gainf
3084	 * correction works ok. For this we use OFDM to
3085	 * CCK delta from eeprom */
3086	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3087	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3088		for (i = 8; i <= 15; i++)
3089			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	/* Now that we have all rates setup use table offset to
3092	 * match the power range set by user with the power indices
3093	 * on PCDAC/PDADC table */
3094	for (i = 0; i < 16; i++) {
3095		rates[i] += ah->ah_txpower.txp_offset;
3096		/* Don't get out of bounds */
3097		if (rates[i] > 63)
3098			rates[i] = 63;
 
 
 
3099	}
3100
3101	/* Min/max in 0.25dB units */
3102	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3103	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3104	ah->ah_txpower.txp_ofdm = rates[7];
3105}
3106
3107
3108/*
3109 * Set transmission power
 
 
 
 
 
 
3110 */
3111static int
3112ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3113		 u8 txpower)
3114{
3115	struct ath5k_rate_pcal_info rate_info;
3116	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3117	int ee_mode;
3118	u8 type;
3119	int ret;
3120
3121	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3122		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3123		return -EINVAL;
3124	}
3125
3126	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3127	if (ee_mode < 0) {
3128		ATH5K_ERR(ah,
3129			"invalid channel: %d\n", channel->center_freq);
3130		return -EINVAL;
3131	}
3132
3133	/* Initialize TX power table */
3134	switch (ah->ah_radio) {
3135	case AR5K_RF5110:
3136		/* TODO */
3137		return 0;
3138	case AR5K_RF5111:
3139		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3140		break;
3141	case AR5K_RF5112:
3142		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3143		break;
3144	case AR5K_RF2413:
3145	case AR5K_RF5413:
3146	case AR5K_RF2316:
3147	case AR5K_RF2317:
3148	case AR5K_RF2425:
3149		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3150		break;
3151	default:
3152		return -EINVAL;
3153	}
3154
3155	/*
3156	 * If we don't change channel/mode skip tx powertable calculation
3157	 * and use the cached one.
3158	 */
3159	if (!ah->ah_txpower.txp_setup ||
3160	    (channel->hw_value != curr_channel->hw_value) ||
3161	    (channel->center_freq != curr_channel->center_freq)) {
3162		/* Reset TX power values */
 
 
 
3163		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
 
 
3164		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3165
 
 
3166		/* Calculate the powertable */
3167		ret = ath5k_setup_channel_powertable(ah, channel,
3168							ee_mode, type);
3169		if (ret)
3170			return ret;
3171	}
3172
3173	/* Write table on hw */
3174	ath5k_write_channel_powertable(ah, ee_mode, type);
3175
3176	/* Limit max power if we have a CTL available */
3177	ath5k_get_max_ctl_power(ah, channel);
3178
3179	/* FIXME: Antenna reduction stuff */
3180
3181	/* FIXME: Limit power on turbo modes */
3182
3183	/* FIXME: TPC scale reduction */
3184
3185	/* Get surrounding channels for per-rate power table
3186	 * calibration */
3187	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3188
3189	/* Setup rate power table */
3190	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3191
3192	/* Write rate power table on hw */
3193	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3194		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3195		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3196
3197	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3198		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3199		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3200
3201	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3202		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3203		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3204
3205	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3206		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3207		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3208
3209	/* FIXME: TPC support */
3210	if (ah->ah_txpower.txp_tpc) {
3211		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3212			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3213
3214		ath5k_hw_reg_write(ah,
3215			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3216			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3217			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3218			AR5K_TPC);
3219	} else {
3220		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3221			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3222	}
3223
3224	return 0;
3225}
3226
3227int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
 
 
 
 
 
 
 
 
 
3228{
3229	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3230		"changing txpower to %d\n", txpower);
3231
3232	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3233}
3234
 
3235/*************\
3236 Init function
3237\*************/
3238
3239int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240		      u8 mode, bool fast)
3241{
3242	struct ieee80211_channel *curr_channel;
3243	int ret, i;
3244	u32 phy_tst1;
3245	ret = 0;
3246
3247	/*
3248	 * Sanity check for fast flag
3249	 * Don't try fast channel change when changing modulation
3250	 * mode/band. We check for chip compatibility on
3251	 * ath5k_hw_reset.
3252	 */
3253	curr_channel = ah->ah_current_channel;
3254	if (fast && (channel->hw_value != curr_channel->hw_value))
3255		return -EINVAL;
3256
3257	/*
3258	 * On fast channel change we only set the synth parameters
3259	 * while PHY is running, enable calibration and skip the rest.
3260	 */
3261	if (fast) {
3262		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3263				    AR5K_PHY_RFBUS_REQ_REQUEST);
3264		for (i = 0; i < 100; i++) {
3265			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3266				break;
3267			udelay(5);
3268		}
3269		/* Failed */
3270		if (i >= 100)
3271			return -EIO;
3272
3273		/* Set channel and wait for synth */
3274		ret = ath5k_hw_channel(ah, channel);
3275		if (ret)
3276			return ret;
3277
3278		ath5k_hw_wait_for_synth(ah, channel);
3279	}
3280
3281	/*
3282	 * Set TX power
3283	 *
3284	 * Note: We need to do that before we set
3285	 * RF buffer settings on 5211/5212+ so that we
3286	 * properly set curve indices.
3287	 */
3288	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3289			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
 
3290	if (ret)
3291		return ret;
3292
3293	/* Write OFDM timings on 5212*/
3294	if (ah->ah_version == AR5K_AR5212 &&
3295		channel->hw_value & CHANNEL_OFDM) {
3296
3297		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3298		if (ret)
3299			return ret;
3300
3301		/* Spur info is available only from EEPROM versions
3302		 * greater than 5.3, but the EEPROM routines will use
3303		 * static values for older versions */
3304		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3305			ath5k_hw_set_spur_mitigation_filter(ah,
3306							    channel);
3307	}
3308
3309	/* If we used fast channel switching
3310	 * we are done, release RF bus and
3311	 * fire up NF calibration.
3312	 *
3313	 * Note: Only NF calibration due to
3314	 * channel change, not AGC calibration
3315	 * since AGC is still running !
3316	 */
3317	if (fast) {
3318		/*
3319		 * Release RF Bus grant
3320		 */
3321		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3322				    AR5K_PHY_RFBUS_REQ_REQUEST);
3323
3324		/*
3325		 * Start NF calibration
3326		 */
3327		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3328					AR5K_PHY_AGCCTL_NF);
3329
3330		return ret;
3331	}
3332
3333	/*
3334	 * For 5210 we do all initialization using
3335	 * initvals, so we don't have to modify
3336	 * any settings (5210 also only supports
3337	 * a/aturbo modes)
3338	 */
3339	if (ah->ah_version != AR5K_AR5210) {
3340
3341		/*
3342		 * Write initial RF gain settings
3343		 * This should work for both 5111/5112
3344		 */
3345		ret = ath5k_hw_rfgain_init(ah, channel->band);
3346		if (ret)
3347			return ret;
3348
3349		mdelay(1);
3350
3351		/*
3352		 * Write RF buffer
3353		 */
3354		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3355		if (ret)
3356			return ret;
3357
3358		/*Enable/disable 802.11b mode on 5111
3359		(enable 2111 frequency converter + CCK)*/
3360		if (ah->ah_radio == AR5K_RF5111) {
3361			if (mode == AR5K_MODE_11B)
3362				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3363				    AR5K_TXCFG_B_MODE);
3364			else
3365				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3366				    AR5K_TXCFG_B_MODE);
3367		}
3368
3369	} else if (ah->ah_version == AR5K_AR5210) {
3370		mdelay(1);
3371		/* Disable phy and wait */
3372		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3373		mdelay(1);
3374	}
3375
3376	/* Set channel on PHY */
3377	ret = ath5k_hw_channel(ah, channel);
3378	if (ret)
3379		return ret;
3380
3381	/*
3382	 * Enable the PHY and wait until completion
3383	 * This includes BaseBand and Synthesizer
3384	 * activation.
3385	 */
3386	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3387
3388	ath5k_hw_wait_for_synth(ah, channel);
3389
3390	/*
3391	 * Perform ADC test to see if baseband is ready
3392	 * Set tx hold and check adc test register
3393	 */
3394	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3395	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3396	for (i = 0; i <= 20; i++) {
3397		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3398			break;
3399		udelay(200);
3400	}
3401	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3402
3403	/*
3404	 * Start automatic gain control calibration
3405	 *
3406	 * During AGC calibration RX path is re-routed to
3407	 * a power detector so we don't receive anything.
3408	 *
3409	 * This method is used to calibrate some static offsets
3410	 * used together with on-the fly I/Q calibration (the
3411	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3412	 * interrupt rx path.
3413	 *
3414	 * While rx path is re-routed to the power detector we also
3415	 * start a noise floor calibration to measure the
3416	 * card's noise floor (the noise we measure when we are not
3417	 * transmitting or receiving anything).
3418	 *
3419	 * If we are in a noisy environment, AGC calibration may time
3420	 * out and/or noise floor calibration might timeout.
3421	 */
3422	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3423				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3424
3425	/* At the same time start I/Q calibration for QAM constellation
3426	 * -no need for CCK- */
3427	ah->ah_calibration = false;
3428	if (!(mode == AR5K_MODE_11B)) {
3429		ah->ah_calibration = true;
3430		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3431				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3432		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3433				AR5K_PHY_IQ_RUN);
3434	}
3435
3436	/* Wait for gain calibration to finish (we check for I/Q calibration
3437	 * during ath5k_phy_calibrate) */
3438	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3439			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3440		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3441			channel->center_freq);
3442	}
3443
3444	/* Restore antenna mode */
3445	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3446
3447	return ret;
3448}
v6.2
   1/*
 
 
   2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6 *
   7 * Permission to use, copy, modify, and distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 *
  19 */
  20
  21/***********************\
  22* PHY related functions *
  23\***********************/
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/delay.h>
  28#include <linux/slab.h>
  29#include <asm/unaligned.h>
  30
  31#include "ath5k.h"
  32#include "reg.h"
 
  33#include "rfbuffer.h"
  34#include "rfgain.h"
  35#include "../regd.h"
  36
  37
  38/**
  39 * DOC: PHY related functions
  40 *
  41 * Here we handle the low-level functions related to baseband
  42 * and analog frontend (RF) parts. This is by far the most complex
  43 * part of the hw code so make sure you know what you are doing.
  44 *
  45 * Here is a list of what this is all about:
  46 *
  47 * - Channel setting/switching
  48 *
  49 * - Automatic Gain Control (AGC) calibration
  50 *
  51 * - Noise Floor calibration
  52 *
  53 * - I/Q imbalance calibration (QAM correction)
  54 *
  55 * - Calibration due to thermal changes (gain_F)
  56 *
  57 * - Spur noise mitigation
  58 *
  59 * - RF/PHY initialization for the various operating modes and bwmodes
  60 *
  61 * - Antenna control
  62 *
  63 * - TX power control per channel/rate/packet type
  64 *
  65 * Also have in mind we never got documentation for most of these
  66 * functions, what we have comes mostly from Atheros's code, reverse
  67 * engineering and patent docs/presentations etc.
  68 */
  69
  70
  71/******************\
  72* Helper functions *
  73\******************/
  74
  75/**
  76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
  77 * @ah: The &struct ath5k_hw
  78 * @band: One of enum nl80211_band
  79 *
  80 * Returns the revision number of a 2GHz, 5GHz or single chip
  81 * radio.
  82 */
  83u16
  84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
  85{
  86	unsigned int i;
  87	u32 srev;
  88	u16 ret;
  89
  90	/*
  91	 * Set the radio chip access register
  92	 */
  93	switch (band) {
  94	case NL80211_BAND_2GHZ:
  95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  96		break;
  97	case NL80211_BAND_5GHZ:
  98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  99		break;
 100	default:
 101		return 0;
 102	}
 103
 104	usleep_range(2000, 2500);
 105
 106	/* ...wait until PHY is ready and read the selected radio revision */
 107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 108
 109	for (i = 0; i < 8; i++)
 110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 111
 112	if (ah->ah_version == AR5K_AR5210) {
 113		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 115	} else {
 116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 118				((srev & 0x0f) << 4), 8);
 119	}
 120
 121	/* Reset to the 5GHz mode */
 122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 123
 124	return ret;
 125}
 126
 127/**
 128 * ath5k_channel_ok() - Check if a channel is supported by the hw
 129 * @ah: The &struct ath5k_hw
 130 * @channel: The &struct ieee80211_channel
 131 *
 132 * Note: We don't do any regulatory domain checks here, it's just
 133 * a sanity check.
 134 */
 135bool
 136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 137{
 138	u16 freq = channel->center_freq;
 139
 140	/* Check if the channel is in our supported range */
 141	if (channel->band == NL80211_BAND_2GHZ) {
 142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 144			return true;
 145	} else if (channel->band == NL80211_BAND_5GHZ)
 146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 148			return true;
 149
 150	return false;
 151}
 152
 153/**
 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 155 * @ah: The &struct ath5k_hw
 156 * @channel: The &struct ieee80211_channel
 157 */
 158bool
 159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 160				struct ieee80211_channel *channel)
 161{
 162	u8 refclk_freq;
 163
 164	if ((ah->ah_radio == AR5K_RF5112) ||
 165	(ah->ah_radio == AR5K_RF5413) ||
 166	(ah->ah_radio == AR5K_RF2413) ||
 167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 168		refclk_freq = 40;
 169	else
 170		refclk_freq = 32;
 171
 172	if ((channel->center_freq % refclk_freq != 0) &&
 173	((channel->center_freq % refclk_freq < 10) ||
 174	(channel->center_freq % refclk_freq > 22)))
 175		return true;
 176	else
 177		return false;
 178}
 179
 180/**
 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 182 * @ah: The &struct ath5k_hw
 183 * @rf_regs: The struct ath5k_rf_reg
 184 * @val: New value
 185 * @reg_id: RF register ID
 186 * @set: Indicate we need to swap data
 187 *
 188 * This is an internal function used to modify RF Banks before
 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 190 * infos.
 191 */
 192static unsigned int
 193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 194					u32 val, u8 reg_id, bool set)
 195{
 196	const struct ath5k_rf_reg *rfreg = NULL;
 197	u8 offset, bank, num_bits, col, position;
 198	u16 entry;
 199	u32 mask, data, last_bit, bits_shifted, first_bit;
 200	u32 *rfb;
 201	s32 bits_left;
 202	int i;
 203
 204	data = 0;
 205	rfb = ah->ah_rf_banks;
 206
 207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 208		if (rf_regs[i].index == reg_id) {
 209			rfreg = &rf_regs[i];
 210			break;
 211		}
 212	}
 213
 214	if (rfb == NULL || rfreg == NULL) {
 215		ATH5K_PRINTF("Rf register not found!\n");
 216		/* should not happen */
 217		return 0;
 218	}
 219
 220	bank = rfreg->bank;
 221	num_bits = rfreg->field.len;
 222	first_bit = rfreg->field.pos;
 223	col = rfreg->field.col;
 224
 225	/* first_bit is an offset from bank's
 226	 * start. Since we have all banks on
 227	 * the same array, we use this offset
 228	 * to mark each bank's start */
 229	offset = ah->ah_offset[bank];
 230
 231	/* Boundary check */
 232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 234		return 0;
 235	}
 236
 237	entry = ((first_bit - 1) / 8) + offset;
 238	position = (first_bit - 1) % 8;
 239
 240	if (set)
 241		data = ath5k_hw_bitswap(val, num_bits);
 242
 243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 244	     position = 0, entry++) {
 245
 246		last_bit = (position + bits_left > 8) ? 8 :
 247					position + bits_left;
 248
 249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 250								(col * 8);
 251
 252		if (set) {
 253			rfb[entry] &= ~mask;
 254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 255			data >>= (8 - position);
 256		} else {
 257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 258				<< bits_shifted;
 259			bits_shifted += last_bit - position;
 260		}
 261
 262		bits_left -= 8 - position;
 263	}
 264
 265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 266
 267	return data;
 268}
 269
 270/**
 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 
 272 * @ah: the &struct ath5k_hw
 273 * @channel: the currently set channel upon reset
 274 *
 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 277 *
 278 * Since delta slope is floating point we split it on its exponent and
 279 * mantissa and provide these values on hw.
 280 *
 281 * For more infos i think this patent is related
 282 * "http://www.freepatentsonline.com/7184495.html"
 283 */
 284static inline int
 285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 286				struct ieee80211_channel *channel)
 287{
 288	/* Get exponent and mantissa and set it */
 289	u32 coef_scaled, coef_exp, coef_man,
 290		ds_coef_exp, ds_coef_man, clock;
 291
 292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 293		(channel->hw_value == AR5K_MODE_11B));
 294
 295	/* Get coefficient
 296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 297	 * we scale coef by shifting clock value by 24 for
 298	 * better precision since we use integers */
 299	switch (ah->ah_bwmode) {
 300	case AR5K_BWMODE_40MHZ:
 301		clock = 40 * 2;
 302		break;
 303	case AR5K_BWMODE_10MHZ:
 304		clock = 40 / 2;
 305		break;
 306	case AR5K_BWMODE_5MHZ:
 307		clock = 40 / 4;
 308		break;
 309	default:
 310		clock = 40;
 311		break;
 312	}
 313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 314
 315	/* Get exponent
 316	 * ALGO: coef_exp = 14 - highest set bit position */
 317	coef_exp = ilog2(coef_scaled);
 318
 319	/* Doesn't make sense if it's zero*/
 320	if (!coef_scaled || !coef_exp)
 321		return -EINVAL;
 322
 323	/* Note: we've shifted coef_scaled by 24 */
 324	coef_exp = 14 - (coef_exp - 24);
 325
 326
 327	/* Get mantissa (significant digits)
 328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 329	coef_man = coef_scaled +
 330		(1 << (24 - coef_exp - 1));
 331
 332	/* Calculate delta slope coefficient exponent
 333	 * and mantissa (remove scaling) and set them on hw */
 334	ds_coef_man = coef_man >> (24 - coef_exp);
 335	ds_coef_exp = coef_exp - 16;
 336
 337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 341
 342	return 0;
 343}
 344
 345/**
 346 * ath5k_hw_phy_disable() - Disable PHY
 347 * @ah: The &struct ath5k_hw
 348 */
 349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 350{
 351	/*Just a try M.F.*/
 352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 353
 354	return 0;
 355}
 356
 357/**
 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 359 * @ah: The &struct ath5k_hw
 360 * @channel: The &struct ieee80211_channel
 361 */
 362static void
 363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 364			struct ieee80211_channel *channel)
 365{
 366	/*
 367	 * On 5211+ read activation -> rx delay
 368	 * and use it (100ns steps).
 369	 */
 370	if (ah->ah_version != AR5K_AR5210) {
 371		u32 delay;
 372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 373			AR5K_PHY_RX_DELAY_M;
 374		delay = (channel->hw_value == AR5K_MODE_11B) ?
 375			((delay << 2) / 22) : (delay / 10);
 376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 377			delay = delay << 1;
 378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 379			delay = delay << 2;
 380		/* XXX: /2 on turbo ? Let's be safe
 381		 * for now */
 382		usleep_range(100 + delay, 100 + (2 * delay));
 383	} else {
 384		usleep_range(1000, 1500);
 385	}
 386}
 387
 388
 389/**********************\
 390* RF Gain optimization *
 391\**********************/
 392
 393/**
 394 * DOC: RF Gain optimization
 395 *
 396 * This code is used to optimize RF gain on different environments
 397 * (temperature mostly) based on feedback from a power detector.
 398 *
 399 * It's only used on RF5111 and RF5112, later RF chips seem to have
 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 401 * no gain optimization ladder-.
 402 *
 403 * For more infos check out this patent doc
 404 * "http://www.freepatentsonline.com/7400691.html"
 405 *
 406 * This paper describes power drops as seen on the receiver due to
 407 * probe packets
 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 409 * %20of%20Power%20Control.pdf"
 410 *
 411 * And this is the MadWiFi bug entry related to the above
 412 * "http://madwifi-project.org/ticket/1659"
 413 * with various measurements and diagrams
 
 
 
 414 */
 415
 416/**
 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 418 * @ah: The &struct ath5k_hw
 419 */
 420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 421{
 422	/* Initialize the gain optimization values */
 423	switch (ah->ah_radio) {
 424	case AR5K_RF5111:
 425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 426		ah->ah_gain.g_low = 20;
 427		ah->ah_gain.g_high = 35;
 428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 429		break;
 430	case AR5K_RF5112:
 431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 432		ah->ah_gain.g_low = 20;
 433		ah->ah_gain.g_high = 85;
 434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 435		break;
 436	default:
 437		return -EINVAL;
 438	}
 439
 440	return 0;
 441}
 442
 443/**
 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 445 * @ah: The &struct ath5k_hw
 446 *
 447 * Schedules a gain probe check on the next transmitted packet.
 448 * That means our next packet is going to be sent with lower
 449 * tx power and a Peak to Average Power Detector (PAPD) will try
 450 * to measure the gain.
 451 *
 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 453 * just after we enable the probe so that we don't mess with
 454 * standard traffic.
 
 455 */
 456static void
 457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 458{
 459
 460	/* Skip if gain calibration is inactive or
 461	 * we already handle a probe request */
 462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 463		return;
 464
 465	/* Send the packet with 2dB below max power as
 466	 * patent doc suggest */
 467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 470
 471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 472
 473}
 474
 475/**
 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 477 * @ah: The &struct ath5k_hw
 478 *
 479 * Calculate Gain_F measurement correction
 480 * based on the current step for RF5112 rev. 2
 481 */
 482static u32
 483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 484{
 485	u32 mix, step;
 
 486	const struct ath5k_gain_opt *go;
 487	const struct ath5k_gain_opt_step *g_step;
 488	const struct ath5k_rf_reg *rf_regs;
 489
 490	/* Only RF5112 Rev. 2 supports it */
 491	if ((ah->ah_radio != AR5K_RF5112) ||
 492	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 493		return 0;
 494
 495	go = &rfgain_opt_5112;
 496	rf_regs = rf_regs_5112a;
 497	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 498
 499	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 500
 501	if (ah->ah_rf_banks == NULL)
 502		return 0;
 503
 
 504	ah->ah_gain.g_f_corr = 0;
 505
 506	/* No VGA (Variable Gain Amplifier) override, skip */
 507	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 508		return 0;
 509
 510	/* Mix gain stepping */
 511	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 512
 513	/* Mix gain override */
 514	mix = g_step->gos_param[0];
 515
 516	switch (mix) {
 517	case 3:
 518		ah->ah_gain.g_f_corr = step * 2;
 519		break;
 520	case 2:
 521		ah->ah_gain.g_f_corr = (step - 5) * 2;
 522		break;
 523	case 1:
 524		ah->ah_gain.g_f_corr = step;
 525		break;
 526	default:
 527		ah->ah_gain.g_f_corr = 0;
 528		break;
 529	}
 530
 531	return ah->ah_gain.g_f_corr;
 532}
 533
 534/**
 535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 536 * @ah: The &struct ath5k_hw
 537 *
 538 * Check if current gain_F measurement is in the range of our
 539 * power detector windows. If we get a measurement outside range
 540 * we know it's not accurate (detectors can't measure anything outside
 541 * their detection window) so we must ignore it.
 542 *
 543 * Returns true if readback was O.K. or false on failure
 544 */
 545static bool
 546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 547{
 548	const struct ath5k_rf_reg *rf_regs;
 549	u32 step, mix_ovr, level[4];
 
 550
 551	if (ah->ah_rf_banks == NULL)
 552		return false;
 553
 
 
 554	if (ah->ah_radio == AR5K_RF5111) {
 555
 556		rf_regs = rf_regs_5111;
 557		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 558
 559		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 560			false);
 561
 562		level[0] = 0;
 563		level[1] = (step == 63) ? 50 : step + 4;
 564		level[2] = (step != 63) ? 64 : level[0];
 565		level[3] = level[2] + 50;
 566
 567		ah->ah_gain.g_high = level[3] -
 568			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 569		ah->ah_gain.g_low = level[0] +
 570			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 571	} else {
 572
 573		rf_regs = rf_regs_5112;
 574		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 575
 576		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 577			false);
 578
 579		level[0] = level[2] = 0;
 580
 581		if (mix_ovr == 1) {
 582			level[1] = level[3] = 83;
 583		} else {
 584			level[1] = level[3] = 107;
 585			ah->ah_gain.g_high = 55;
 586		}
 587	}
 588
 589	return (ah->ah_gain.g_current >= level[0] &&
 590			ah->ah_gain.g_current <= level[1]) ||
 591		(ah->ah_gain.g_current >= level[2] &&
 592			ah->ah_gain.g_current <= level[3]);
 593}
 594
 595/**
 596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 597 * @ah: The &struct ath5k_hw
 598 *
 599 * Choose the right target gain based on current gain
 600 * and RF gain optimization ladder
 601 */
 602static s8
 603ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 604{
 605	const struct ath5k_gain_opt *go;
 606	const struct ath5k_gain_opt_step *g_step;
 607	int ret = 0;
 608
 609	switch (ah->ah_radio) {
 610	case AR5K_RF5111:
 611		go = &rfgain_opt_5111;
 612		break;
 613	case AR5K_RF5112:
 614		go = &rfgain_opt_5112;
 615		break;
 616	default:
 617		return 0;
 618	}
 619
 620	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 621
 622	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 623
 624		/* Reached maximum */
 625		if (ah->ah_gain.g_step_idx == 0)
 626			return -1;
 627
 628		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 629				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 630				ah->ah_gain.g_step_idx > 0;
 631				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 632			ah->ah_gain.g_target -= 2 *
 633			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 634			    g_step->gos_gain);
 635
 636		ret = 1;
 637		goto done;
 638	}
 639
 640	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 641
 642		/* Reached minimum */
 643		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 644			return -2;
 645
 646		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 647				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 648				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 649				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 650			ah->ah_gain.g_target -= 2 *
 651			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 652			    g_step->gos_gain);
 653
 654		ret = 2;
 655		goto done;
 656	}
 657
 658done:
 659	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 660		"ret %d, gain step %u, current gain %u, target gain %u\n",
 661		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 662		ah->ah_gain.g_target);
 663
 664	return ret;
 665}
 666
 667/**
 668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 669 * @ah: The &struct ath5k_hw
 670 *
 671 * Main callback for thermal RF gain calibration engine
 672 * Check for a new gain reading and schedule an adjustment
 673 * if needed.
 674 *
 675 * Returns one of enum ath5k_rfgain codes
 676 */
 677enum ath5k_rfgain
 678ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 679{
 680	u32 data, type;
 681	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 682
 683	if (ah->ah_rf_banks == NULL ||
 684	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 685		return AR5K_RFGAIN_INACTIVE;
 686
 687	/* No check requested, either engine is inactive
 688	 * or an adjustment is already requested */
 689	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 690		goto done;
 691
 692	/* Read the PAPD (Peak to Average Power Detector)
 693	 * register */
 694	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 695
 696	/* No probe is scheduled, read gain_F measurement */
 697	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 698		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 699		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 700
 701		/* If tx packet is CCK correct the gain_F measurement
 702		 * by cck ofdm gain delta */
 703		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 704			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 705				ah->ah_gain.g_current +=
 706					ee->ee_cck_ofdm_gain_delta;
 707			else
 708				ah->ah_gain.g_current +=
 709					AR5K_GAIN_CCK_PROBE_CORR;
 710		}
 711
 712		/* Further correct gain_F measurement for
 713		 * RF5112A radios */
 714		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 715			ath5k_hw_rf_gainf_corr(ah);
 716			ah->ah_gain.g_current =
 717				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 718				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 719				0;
 720		}
 721
 722		/* Check if measurement is ok and if we need
 723		 * to adjust gain, schedule a gain adjustment,
 724		 * else switch back to the active state */
 725		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 726		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 727		ath5k_hw_rf_gainf_adjust(ah)) {
 728			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 729		} else {
 730			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 731		}
 732	}
 733
 734done:
 735	return ah->ah_gain.g_state;
 736}
 737
 738/**
 739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 740 * @ah: The &struct ath5k_hw
 741 * @band: One of enum nl80211_band
 742 *
 743 * Write initial RF gain table to set the RF sensitivity.
 744 *
 745 * NOTE: This one works on all RF chips and has nothing to do
 746 * with Gain_F calibration
 747 */
 748static int
 749ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
 750{
 751	const struct ath5k_ini_rfgain *ath5k_rfg;
 752	unsigned int i, size, index;
 753
 754	switch (ah->ah_radio) {
 755	case AR5K_RF5111:
 756		ath5k_rfg = rfgain_5111;
 757		size = ARRAY_SIZE(rfgain_5111);
 758		break;
 759	case AR5K_RF5112:
 760		ath5k_rfg = rfgain_5112;
 761		size = ARRAY_SIZE(rfgain_5112);
 762		break;
 763	case AR5K_RF2413:
 764		ath5k_rfg = rfgain_2413;
 765		size = ARRAY_SIZE(rfgain_2413);
 766		break;
 767	case AR5K_RF2316:
 768		ath5k_rfg = rfgain_2316;
 769		size = ARRAY_SIZE(rfgain_2316);
 770		break;
 771	case AR5K_RF5413:
 772		ath5k_rfg = rfgain_5413;
 773		size = ARRAY_SIZE(rfgain_5413);
 774		break;
 775	case AR5K_RF2317:
 776	case AR5K_RF2425:
 777		ath5k_rfg = rfgain_2425;
 778		size = ARRAY_SIZE(rfgain_2425);
 779		break;
 780	default:
 781		return -EINVAL;
 782	}
 783
 784	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
 785
 786	for (i = 0; i < size; i++) {
 787		AR5K_REG_WAIT(i);
 788		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 789			(u32)ath5k_rfg[i].rfg_register);
 790	}
 791
 792	return 0;
 793}
 794
 795
 
 796/********************\
 797* RF Registers setup *
 798\********************/
 799
 800/**
 801 * ath5k_hw_rfregs_init() - Initialize RF register settings
 802 * @ah: The &struct ath5k_hw
 803 * @channel: The &struct ieee80211_channel
 804 * @mode: One of enum ath5k_driver_mode
 805 *
 806 * Setup RF registers by writing RF buffer on hw. For
 807 * more infos on this, check out rfbuffer.h
 808 */
 809static int
 810ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 811			struct ieee80211_channel *channel,
 812			unsigned int mode)
 813{
 814	const struct ath5k_rf_reg *rf_regs;
 815	const struct ath5k_ini_rfbuffer *ini_rfb;
 816	const struct ath5k_gain_opt *go = NULL;
 817	const struct ath5k_gain_opt_step *g_step;
 818	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 819	u8 ee_mode = 0;
 820	u32 *rfb;
 821	int i, obdb = -1, bank = -1;
 822
 823	switch (ah->ah_radio) {
 824	case AR5K_RF5111:
 825		rf_regs = rf_regs_5111;
 826		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 827		ini_rfb = rfb_5111;
 828		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 829		go = &rfgain_opt_5111;
 830		break;
 831	case AR5K_RF5112:
 832		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 833			rf_regs = rf_regs_5112a;
 834			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 835			ini_rfb = rfb_5112a;
 836			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 837		} else {
 838			rf_regs = rf_regs_5112;
 839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 840			ini_rfb = rfb_5112;
 841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 842		}
 843		go = &rfgain_opt_5112;
 844		break;
 845	case AR5K_RF2413:
 846		rf_regs = rf_regs_2413;
 847		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 848		ini_rfb = rfb_2413;
 849		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 850		break;
 851	case AR5K_RF2316:
 852		rf_regs = rf_regs_2316;
 853		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 854		ini_rfb = rfb_2316;
 855		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 856		break;
 857	case AR5K_RF5413:
 858		rf_regs = rf_regs_5413;
 859		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 860		ini_rfb = rfb_5413;
 861		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 862		break;
 863	case AR5K_RF2317:
 864		rf_regs = rf_regs_2425;
 865		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 866		ini_rfb = rfb_2317;
 867		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 868		break;
 869	case AR5K_RF2425:
 870		rf_regs = rf_regs_2425;
 871		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 872		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 873			ini_rfb = rfb_2425;
 874			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 875		} else {
 876			ini_rfb = rfb_2417;
 877			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 878		}
 879		break;
 880	default:
 881		return -EINVAL;
 882	}
 883
 884	/* If it's the first time we set RF buffer, allocate
 885	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 886	 * we set above */
 887	if (ah->ah_rf_banks == NULL) {
 888		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
 889								sizeof(u32),
 890								GFP_KERNEL);
 891		if (ah->ah_rf_banks == NULL) {
 892			ATH5K_ERR(ah, "out of memory\n");
 893			return -ENOMEM;
 894		}
 895	}
 896
 897	/* Copy values to modify them */
 898	rfb = ah->ah_rf_banks;
 899
 900	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 901		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 902			ATH5K_ERR(ah, "invalid bank\n");
 903			return -EINVAL;
 904		}
 905
 906		/* Bank changed, write down the offset */
 907		if (bank != ini_rfb[i].rfb_bank) {
 908			bank = ini_rfb[i].rfb_bank;
 909			ah->ah_offset[bank] = i;
 910		}
 911
 912		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 913	}
 914
 915	/* Set Output and Driver bias current (OB/DB) */
 916	if (channel->band == NL80211_BAND_2GHZ) {
 917
 918		if (channel->hw_value == AR5K_MODE_11B)
 919			ee_mode = AR5K_EEPROM_MODE_11B;
 920		else
 921			ee_mode = AR5K_EEPROM_MODE_11G;
 922
 923		/* For RF511X/RF211X combination we
 924		 * use b_OB and b_DB parameters stored
 925		 * in eeprom on ee->ee_ob[ee_mode][0]
 926		 *
 927		 * For all other chips we use OB/DB for 2GHz
 928		 * stored in the b/g modal section just like
 929		 * 802.11a on ee->ee_ob[ee_mode][1] */
 930		if ((ah->ah_radio == AR5K_RF5111) ||
 931		(ah->ah_radio == AR5K_RF5112))
 932			obdb = 0;
 933		else
 934			obdb = 1;
 935
 936		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 937						AR5K_RF_OB_2GHZ, true);
 938
 939		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 940						AR5K_RF_DB_2GHZ, true);
 941
 942	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 943	} else if ((channel->band == NL80211_BAND_5GHZ) ||
 944			(ah->ah_radio == AR5K_RF5111)) {
 945
 946		/* For 11a, Turbo and XR we need to choose
 947		 * OB/DB based on frequency range */
 948		ee_mode = AR5K_EEPROM_MODE_11A;
 949		obdb =	 channel->center_freq >= 5725 ? 3 :
 950			(channel->center_freq >= 5500 ? 2 :
 951			(channel->center_freq >= 5260 ? 1 :
 952			 (channel->center_freq > 4000 ? 0 : -1)));
 953
 954		if (obdb < 0)
 955			return -EINVAL;
 956
 957		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 958						AR5K_RF_OB_5GHZ, true);
 959
 960		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 961						AR5K_RF_DB_5GHZ, true);
 962	}
 963
 964	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 965
 966	/* Set turbo mode (N/A on RF5413) */
 967	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 968	(ah->ah_radio != AR5K_RF5413))
 969		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 970
 971	/* Bank Modifications (chip-specific) */
 972	if (ah->ah_radio == AR5K_RF5111) {
 973
 974		/* Set gain_F settings according to current step */
 975		if (channel->hw_value != AR5K_MODE_11B) {
 976
 977			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 978					AR5K_PHY_FRAME_CTL_TX_CLIP,
 979					g_step->gos_param[0]);
 980
 981			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 982							AR5K_RF_PWD_90, true);
 983
 984			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 985							AR5K_RF_PWD_84, true);
 986
 987			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 988						AR5K_RF_RFGAIN_SEL, true);
 989
 990			/* We programmed gain_F parameters, switch back
 991			 * to active state */
 992			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 993
 994		}
 995
 996		/* Bank 6/7 setup */
 997
 998		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 999						AR5K_RF_PWD_XPD, true);
1000
1001		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002						AR5K_RF_XPD_GAIN, true);
1003
1004		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005						AR5K_RF_GAIN_I, true);
1006
1007		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008						AR5K_RF_PLO_SEL, true);
1009
1010		/* Tweak power detectors for half/quarter rate support */
1011		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013			u8 wait_i;
1014
1015			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016						AR5K_RF_WAIT_S, true);
1017
1018			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019							0x1f : 0x10;
1020
1021			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022						AR5K_RF_WAIT_I, true);
1023			ath5k_hw_rfb_op(ah, rf_regs, 3,
1024						AR5K_RF_MAX_TIME, true);
1025
1026		}
1027	}
1028
1029	if (ah->ah_radio == AR5K_RF5112) {
1030
1031		/* Set gain_F settings according to current step */
1032		if (channel->hw_value != AR5K_MODE_11B) {
1033
1034			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035						AR5K_RF_MIXGAIN_OVR, true);
1036
1037			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038						AR5K_RF_PWD_138, true);
1039
1040			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041						AR5K_RF_PWD_137, true);
1042
1043			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044						AR5K_RF_PWD_136, true);
1045
1046			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047						AR5K_RF_PWD_132, true);
1048
1049			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050						AR5K_RF_PWD_131, true);
1051
1052			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053						AR5K_RF_PWD_130, true);
1054
1055			/* We programmed gain_F parameters, switch back
1056			 * to active state */
1057			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058		}
1059
1060		/* Bank 6/7 setup */
1061
1062		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063						AR5K_RF_XPD_SEL, true);
1064
1065		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066			/* Rev. 1 supports only one xpd */
1067			ath5k_hw_rfb_op(ah, rf_regs,
1068						ee->ee_x_gain[ee_mode],
1069						AR5K_RF_XPD_GAIN, true);
1070
1071		} else {
1072			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073			if (ee->ee_pd_gains[ee_mode] > 1) {
1074				ath5k_hw_rfb_op(ah, rf_regs,
1075						pdg_curve_to_idx[0],
1076						AR5K_RF_PD_GAIN_LO, true);
1077				ath5k_hw_rfb_op(ah, rf_regs,
1078						pdg_curve_to_idx[1],
1079						AR5K_RF_PD_GAIN_HI, true);
1080			} else {
1081				ath5k_hw_rfb_op(ah, rf_regs,
1082						pdg_curve_to_idx[0],
1083						AR5K_RF_PD_GAIN_LO, true);
1084				ath5k_hw_rfb_op(ah, rf_regs,
1085						pdg_curve_to_idx[0],
1086						AR5K_RF_PD_GAIN_HI, true);
1087			}
1088
1089			/* Lower synth voltage on Rev 2 */
1090			if (ah->ah_radio == AR5K_RF5112 &&
1091			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092				ath5k_hw_rfb_op(ah, rf_regs, 2,
1093						AR5K_RF_HIGH_VC_CP, true);
1094
1095				ath5k_hw_rfb_op(ah, rf_regs, 2,
1096						AR5K_RF_MID_VC_CP, true);
1097
1098				ath5k_hw_rfb_op(ah, rf_regs, 2,
1099						AR5K_RF_LOW_VC_CP, true);
1100
1101				ath5k_hw_rfb_op(ah, rf_regs, 2,
1102						AR5K_RF_PUSH_UP, true);
1103			}
1104
1105			/* Decrease power consumption on 5213+ BaseBand */
1106			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107				ath5k_hw_rfb_op(ah, rf_regs, 1,
1108						AR5K_RF_PAD2GND, true);
1109
1110				ath5k_hw_rfb_op(ah, rf_regs, 1,
1111						AR5K_RF_XB2_LVL, true);
1112
1113				ath5k_hw_rfb_op(ah, rf_regs, 1,
1114						AR5K_RF_XB5_LVL, true);
1115
1116				ath5k_hw_rfb_op(ah, rf_regs, 1,
1117						AR5K_RF_PWD_167, true);
1118
1119				ath5k_hw_rfb_op(ah, rf_regs, 1,
1120						AR5K_RF_PWD_166, true);
1121			}
1122		}
1123
1124		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125						AR5K_RF_GAIN_I, true);
1126
1127		/* Tweak power detector for half/quarter rates */
1128		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130			u8 pd_delay;
1131
1132			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133							0xf : 0x8;
1134
1135			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136						AR5K_RF_PD_PERIOD_A, true);
1137			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138						AR5K_RF_PD_DELAY_A, true);
1139
1140		}
1141	}
1142
1143	if (ah->ah_radio == AR5K_RF5413 &&
1144	channel->band == NL80211_BAND_2GHZ) {
1145
1146		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147									true);
1148
1149		/* Set optimum value for early revisions (on pci-e chips) */
1150		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151		ah->ah_mac_srev < AR5K_SREV_AR5413)
1152			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153						AR5K_RF_PWD_ICLOBUF_2G, true);
1154
1155	}
1156
1157	/* Write RF banks on hw */
1158	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159		AR5K_REG_WAIT(i);
1160		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161	}
1162
1163	return 0;
1164}
1165
1166
1167/**************************\
1168  PHY/RF channel functions
1169\**************************/
1170
1171/**
1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173 * @channel: The &struct ieee80211_channel
1174 *
1175 * Map channel frequency to IEEE channel number and convert it
1176 * to an internal channel value used by the RF5110 chipset.
1177 */
1178static u32
1179ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180{
1181	u32 athchan;
1182
 
 
 
 
 
 
1183	athchan = (ath5k_hw_bitswap(
1184			(ieee80211_frequency_to_channel(
1185				channel->center_freq) - 24) / 2, 5)
1186				<< 1) | (1 << 6) | 0x1;
1187	return athchan;
1188}
1189
1190/**
1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192 * @ah: The &struct ath5k_hw
1193 * @channel: The &struct ieee80211_channel
1194 */
1195static int
1196ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197		struct ieee80211_channel *channel)
1198{
1199	u32 data;
1200
1201	/*
1202	 * Set the channel and wait
1203	 */
1204	data = ath5k_hw_rf5110_chan2athchan(channel);
1205	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207	usleep_range(1000, 1500);
1208
1209	return 0;
1210}
1211
1212/**
1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214 * @ieee: IEEE channel number
1215 * @athchan: The &struct ath5k_athchan_2ghz
1216 *
1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218 * we need to add some offsets and extra flags to the data values we pass
1219 * on to the PHY. So for every 2GHz channel this function gets called
1220 * to do the conversion.
1221 */
1222static int
1223ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224		struct ath5k_athchan_2ghz *athchan)
1225{
1226	int channel;
1227
1228	/* Cast this value to catch negative channel numbers (>= -19) */
1229	channel = (int)ieee;
1230
1231	/*
1232	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1233	 */
1234	if (channel <= 13) {
1235		athchan->a2_athchan = 115 + channel;
1236		athchan->a2_flags = 0x46;
1237	} else if (channel == 14) {
1238		athchan->a2_athchan = 124;
1239		athchan->a2_flags = 0x44;
1240	} else if (channel >= 15 && channel <= 26) {
1241		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242		athchan->a2_flags = 0x46;
1243	} else
1244		return -EINVAL;
1245
1246	return 0;
1247}
1248
1249/**
1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251 * @ah: The &struct ath5k_hw
1252 * @channel: The &struct ieee80211_channel
1253 */
1254static int
1255ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256		struct ieee80211_channel *channel)
1257{
1258	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259	unsigned int ath5k_channel =
1260		ieee80211_frequency_to_channel(channel->center_freq);
1261	u32 data0, data1, clock;
1262	int ret;
1263
1264	/*
1265	 * Set the channel on the RF5111 radio
1266	 */
1267	data0 = data1 = 0;
1268
1269	if (channel->band == NL80211_BAND_2GHZ) {
1270		/* Map 2GHz channel to 5GHz Atheros channel ID */
1271		ret = ath5k_hw_rf5111_chan2athchan(
1272			ieee80211_frequency_to_channel(channel->center_freq),
1273			&ath5k_channel_2ghz);
1274		if (ret)
1275			return ret;
1276
1277		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279		    << 5) | (1 << 4);
1280	}
1281
1282	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283		clock = 1;
1284		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285			(clock << 1) | (1 << 10) | 1;
1286	} else {
1287		clock = 0;
1288		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289			<< 2) | (clock << 1) | (1 << 10) | 1;
1290	}
1291
1292	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293			AR5K_RF_BUFFER);
1294	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295			AR5K_RF_BUFFER_CONTROL_3);
1296
1297	return 0;
1298}
1299
1300/**
1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302 * @ah: The &struct ath5k_hw
1303 * @channel: The &struct ieee80211_channel
1304 *
1305 * On RF5112/2112 and newer we don't need to do any conversion.
1306 * We pass the frequency value after a few modifications to the
1307 * chip directly.
1308 *
1309 * NOTE: Make sure channel frequency given is within our range or else
1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311 */
1312static int
1313ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314		struct ieee80211_channel *channel)
1315{
1316	u32 data, data0, data1, data2;
1317	u16 c;
1318
1319	data = data0 = data1 = data2 = 0;
1320	c = channel->center_freq;
1321
1322	/* My guess based on code:
1323	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325	 * (3040/2). data0 is used to set the PLL divider and data1
1326	 * selects synth mode. */
1327	if (c < 4800) {
1328		/* Channel 14 and all frequencies with 2Hz spacing
1329		 * below/above (non-standard channels) */
1330		if (!((c - 2224) % 5)) {
1331			/* Same as (c - 2224) / 5 */
1332			data0 = ((2 * (c - 704)) - 3040) / 10;
1333			data1 = 1;
1334		/* Channel 1 and all frequencies with 5Hz spacing
1335		 * below/above (standard channels without channel 14) */
1336		} else if (!((c - 2192) % 5)) {
1337			/* Same as (c - 2192) / 5 */
1338			data0 = ((2 * (c - 672)) - 3040) / 10;
1339			data1 = 0;
1340		} else
1341			return -EINVAL;
1342
1343		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344	/* This is more complex, we have a single synthesizer with
1345	 * 4 reference clock settings (?) based on frequency spacing
1346	 * and set using data2. LO is at 4800Hz and data0 is again used
1347	 * to set some divider.
1348	 *
1349	 * NOTE: There is an old atheros presentation at Stanford
1350	 * that mentions a method called dual direct conversion
1351	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1352	 * have here, or an updated version. */
1353	} else if ((c % 5) != 2 || c > 5435) {
1354		if (!(c % 20) && c >= 5120) {
1355			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356			data2 = ath5k_hw_bitswap(3, 2);
1357		} else if (!(c % 10)) {
1358			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359			data2 = ath5k_hw_bitswap(2, 2);
1360		} else if (!(c % 5)) {
1361			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362			data2 = ath5k_hw_bitswap(1, 2);
1363		} else
1364			return -EINVAL;
1365	} else {
1366		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367		data2 = ath5k_hw_bitswap(0, 2);
1368	}
1369
1370	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371
1372	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374
1375	return 0;
1376}
1377
1378/**
1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380 * @ah: The &struct ath5k_hw
1381 * @channel: The &struct ieee80211_channel
1382 *
1383 * AR2425/2417 have a different 2GHz RF so code changes
1384 * a little bit from RF5112.
1385 */
1386static int
1387ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388		struct ieee80211_channel *channel)
1389{
1390	u32 data, data0, data2;
1391	u16 c;
1392
1393	data = data0 = data2 = 0;
1394	c = channel->center_freq;
1395
1396	if (c < 4800) {
1397		data0 = ath5k_hw_bitswap((c - 2272), 8);
1398		data2 = 0;
1399	/* ? 5GHz ? */
1400	} else if ((c % 5) != 2 || c > 5435) {
1401		if (!(c % 20) && c < 5120)
1402			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403		else if (!(c % 10))
1404			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405		else if (!(c % 5))
1406			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407		else
1408			return -EINVAL;
1409		data2 = ath5k_hw_bitswap(1, 2);
1410	} else {
1411		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412		data2 = ath5k_hw_bitswap(0, 2);
1413	}
1414
1415	data = (data0 << 4) | data2 << 2 | 0x1001;
1416
1417	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419
1420	return 0;
1421}
1422
1423/**
1424 * ath5k_hw_channel() - Set a channel on the radio chip
1425 * @ah: The &struct ath5k_hw
1426 * @channel: The &struct ieee80211_channel
1427 *
1428 * This is the main function called to set a channel on the
1429 * radio chip based on the radio chip version.
1430 */
1431static int
1432ath5k_hw_channel(struct ath5k_hw *ah,
1433		struct ieee80211_channel *channel)
1434{
1435	int ret;
1436	/*
1437	 * Check bounds supported by the PHY (we don't care about regulatory
1438	 * restrictions at this point).
1439	 */
1440	if (!ath5k_channel_ok(ah, channel)) {
 
1441		ATH5K_ERR(ah,
1442			"channel frequency (%u MHz) out of supported "
1443			"band range\n",
1444			channel->center_freq);
1445		return -EINVAL;
1446	}
1447
1448	/*
1449	 * Set the channel and wait
1450	 */
1451	switch (ah->ah_radio) {
1452	case AR5K_RF5110:
1453		ret = ath5k_hw_rf5110_channel(ah, channel);
1454		break;
1455	case AR5K_RF5111:
1456		ret = ath5k_hw_rf5111_channel(ah, channel);
1457		break;
1458	case AR5K_RF2317:
1459	case AR5K_RF2425:
1460		ret = ath5k_hw_rf2425_channel(ah, channel);
1461		break;
1462	default:
1463		ret = ath5k_hw_rf5112_channel(ah, channel);
1464		break;
1465	}
1466
1467	if (ret)
1468		return ret;
1469
1470	/* Set JAPAN setting for channel 14 */
1471	if (channel->center_freq == 2484) {
1472		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473				AR5K_PHY_CCKTXCTL_JAPAN);
1474	} else {
1475		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476				AR5K_PHY_CCKTXCTL_WORLD);
1477	}
1478
1479	ah->ah_current_channel = channel;
1480
1481	return 0;
1482}
1483
1484
1485/*****************\
1486  PHY calibration
1487\*****************/
1488
1489/**
1490 * DOC: PHY Calibration routines
1491 *
1492 * Noise floor calibration: When we tell the hardware to
1493 * perform a noise floor calibration by setting the
1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495 * sample-and-hold the minimum noise level seen at the antennas.
1496 * This value is then stored in a ring buffer of recently measured
1497 * noise floor values so we have a moving window of the last few
1498 * samples. The median of the values in the history is then loaded
1499 * into the hardware for its own use for RSSI and CCA measurements.
1500 * This type of calibration doesn't interfere with traffic.
1501 *
1502 * AGC calibration: When we tell the hardware to perform
1503 * an AGC (Automatic Gain Control) calibration by setting the
1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505 * a calibration on the DC offsets of ADCs. During this period
1506 * rx/tx gets disabled so we have to deal with it on the driver
1507 * part.
1508 *
1509 * I/Q calibration: When we tell the hardware to perform
1510 * an I/Q calibration, it tries to correct I/Q imbalance and
1511 * fix QAM constellation by sampling data from rxed frames.
1512 * It doesn't interfere with traffic.
1513 *
1514 * For more infos on AGC and I/Q calibration check out patent doc
1515 * #03/094463.
1516 */
1517
1518/**
1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520 * @ah: The &struct ath5k_hw
1521 */
1522static s32
1523ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524{
1525	s32 val;
1526
1527	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529}
1530
1531/**
1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533 * @ah: The &struct ath5k_hw
1534 */
1535void
1536ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537{
1538	int i;
1539
1540	ah->ah_nfcal_hist.index = 0;
1541	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543}
1544
1545/**
1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547 * @ah: The &struct ath5k_hw
1548 * @noise_floor: The NF we got from hw
1549 */
1550static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551{
1552	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554	hist->nfval[hist->index] = noise_floor;
1555}
1556
1557/**
1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559 * @ah: The &struct ath5k_hw
1560 */
1561static s16
1562ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563{
1564	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565	s16 tmp;
1566	int i, j;
1567
1568	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571			if (sort[j] > sort[j - 1]) {
1572				tmp = sort[j];
1573				sort[j] = sort[j - 1];
1574				sort[j - 1] = tmp;
1575			}
1576		}
1577	}
1578	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580			"cal %d:%d\n", i, sort[i]);
1581	}
1582	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583}
1584
1585/**
1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
1587 * @ah: The &struct ath5k_hw
 
 
 
 
1588 *
1589 * This is the main function we call to perform a NF calibration,
1590 * it reads NF from hardware, calculates the median and updates
1591 * NF on hw.
1592 */
1593void
1594ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595{
1596	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597	u32 val;
1598	s16 nf, threshold;
1599	u8 ee_mode;
1600
1601	/* keep last value if calibration hasn't completed */
1602	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604			"NF did not complete in calibration window\n");
1605
1606		return;
1607	}
1608
1609	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610
1611	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612
1613	/* completed NF calibration, test threshold */
1614	nf = ath5k_hw_read_measured_noise_floor(ah);
1615	threshold = ee->ee_noise_floor_thr[ee_mode];
1616
1617	if (nf > threshold) {
1618		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619			"noise floor failure detected; "
1620			"read %d, threshold %d\n",
1621			nf, threshold);
1622
1623		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624	}
1625
1626	ath5k_hw_update_nfcal_hist(ah, nf);
1627	nf = ath5k_hw_get_median_noise_floor(ah);
1628
1629	/* load noise floor (in .5 dBm) so the hardware will use it */
1630	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631	val |= (nf * 2) & AR5K_PHY_NF_M;
1632	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633
1634	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636
1637	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638		0, false);
1639
1640	/*
1641	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642	 * so that we're not capped by the median we just loaded.
1643	 * This will be used as the initial value for the next noise
1644	 * floor calibration.
1645	 */
1646	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649		AR5K_PHY_AGCCTL_NF_EN |
1650		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651		AR5K_PHY_AGCCTL_NF);
1652
1653	ah->ah_noise_floor = nf;
1654
1655	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656
1657	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658		"noise floor calibrated: %d\n", nf);
1659}
1660
1661/**
1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663 * @ah: The &struct ath5k_hw
1664 * @channel: The &struct ieee80211_channel
1665 *
1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667 */
1668static int
1669ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670		struct ieee80211_channel *channel)
1671{
1672	u32 phy_sig, phy_agc, phy_sat, beacon;
1673	int ret;
1674
1675	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676		return 0;
1677
1678	/*
1679	 * Disable beacons and RX/TX queues, wait
1680	 */
1681	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685
1686	usleep_range(2000, 2500);
1687
1688	/*
1689	 * Set the channel (with AGC turned off)
1690	 */
1691	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692	udelay(10);
1693	ret = ath5k_hw_channel(ah, channel);
1694
1695	/*
1696	 * Activate PHY and wait
1697	 */
1698	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699	usleep_range(1000, 1500);
1700
1701	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702
1703	if (ret)
1704		return ret;
1705
1706	/*
1707	 * Calibrate the radio chip
1708	 */
1709
1710	/* Remember normal state */
1711	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714
1715	/* Update radio registers */
1716	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718
1719	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720			AR5K_PHY_AGCCOARSE_LO)) |
1721		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723
1724	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725			AR5K_PHY_ADCSAT_THR)) |
1726		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728
1729	udelay(20);
1730
1731	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732	udelay(10);
1733	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735
1736	usleep_range(1000, 1500);
1737
1738	/*
1739	 * Enable calibration and wait until completion
1740	 */
1741	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742
1743	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744			AR5K_PHY_AGCCTL_CAL, 0, false);
1745
1746	/* Reset to normal state */
1747	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750
1751	if (ret) {
1752		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753				channel->center_freq);
1754		return ret;
1755	}
1756
1757	/*
1758	 * Re-enable RX/TX and beacons
1759	 */
1760	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763
1764	return 0;
1765}
1766
1767/**
1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769 * @ah: The &struct ath5k_hw
1770 */
1771static int
1772ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773{
1774	u32 i_pwr, q_pwr;
1775	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776	int i;
1777
1778	/* Skip if I/Q calibration is not needed or if it's still running */
1779	if (!ah->ah_iq_cal_needed)
1780		return -EINVAL;
1781	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783				"I/Q calibration still running");
1784		return -EBUSY;
1785	}
1786
1787	/* Calibration has finished, get the results and re-run */
1788
1789	/* Work around for empty results which can apparently happen on 5212:
1790	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1791	for (i = 0; i <= 10; i++) {
1792		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797		if (i_pwr && q_pwr)
1798			break;
1799	}
1800
1801	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802
1803	if (ah->ah_version == AR5K_AR5211)
1804		q_coffd = q_pwr >> 6;
1805	else
1806		q_coffd = q_pwr >> 7;
1807
1808	/* In case i_coffd became zero, cancel calibration
1809	 * not only it's too small, it'll also result a divide
1810	 * by zero later on. */
1811	if (i_coffd == 0 || q_coffd < 2)
1812		return -ECANCELED;
1813
1814	/* Protect against loss of sign bits */
1815
1816	i_coff = (-iq_corr) / i_coffd;
1817	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818
1819	if (ah->ah_version == AR5K_AR5211)
1820		q_coff = (i_pwr / q_coffd) - 64;
1821	else
1822		q_coff = (i_pwr / q_coffd) - 128;
1823	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824
1825	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827			i_coff, q_coff, i_coffd, q_coffd);
1828
1829	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1830	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833
1834	/* Re-enable calibration -if we don't we'll commit
1835	 * the same values again and again */
1836	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839
1840	return 0;
1841}
1842
1843/**
1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845 * @ah: The &struct ath5k_hw
1846 * @channel: The &struct ieee80211_channel
1847 *
1848 * The main function we call from above to perform
1849 * a short or full PHY calibration based on RF chip
1850 * and current channel
1851 */
1852int
1853ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854		struct ieee80211_channel *channel)
1855{
1856	int ret;
1857
1858	if (ah->ah_radio == AR5K_RF5110)
1859		return ath5k_hw_rf5110_calibrate(ah, channel);
1860
1861	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862	if (ret) {
1863		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864			"No I/Q correction performed (%uMHz)\n",
1865			channel->center_freq);
1866
1867		/* Happens all the time if there is not much
1868		 * traffic, consider it normal behaviour. */
1869		ret = 0;
1870	}
1871
1872	/* On full calibration request a PAPD probe for
1873	 * gainf calibration if needed */
1874	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875	    (ah->ah_radio == AR5K_RF5111 ||
1876	     ah->ah_radio == AR5K_RF5112) &&
1877	    channel->hw_value != AR5K_MODE_11B)
1878		ath5k_hw_request_rfgain_probe(ah);
1879
1880	/* Update noise floor */
1881	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882		ath5k_hw_update_noise_floor(ah);
1883
1884	return ret;
1885}
1886
1887
1888/***************************\
1889* Spur mitigation functions *
1890\***************************/
1891
1892/**
1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894 * @ah: The &struct ath5k_hw
1895 * @channel: The &struct ieee80211_channel
1896 *
1897 * This function gets called during PHY initialization to
1898 * configure the spur filter for the given channel. Spur is noise
1899 * generated due to "reflection" effects, for more information on this
1900 * method check out patent US7643810
1901 */
1902static void
1903ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904				struct ieee80211_channel *channel)
1905{
1906	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907	u32 mag_mask[4] = {0, 0, 0, 0};
1908	u32 pilot_mask[2] = {0, 0};
1909	/* Note: fbin values are scaled up by 2 */
1910	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911	s32 spur_delta_phase, spur_freq_sigma_delta;
1912	s32 spur_offset, num_symbols_x16;
1913	u8 num_symbol_offsets, i, freq_band;
1914
1915	/* Convert current frequency to fbin value (the same way channels
1916	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917	 * up by 2 so we can compare it later */
1918	if (channel->band == NL80211_BAND_2GHZ) {
1919		chan_fbin = (channel->center_freq - 2300) * 10;
1920		freq_band = AR5K_EEPROM_BAND_2GHZ;
1921	} else {
1922		chan_fbin = (channel->center_freq - 4900) * 10;
1923		freq_band = AR5K_EEPROM_BAND_5GHZ;
1924	}
1925
1926	/* Check if any spur_chan_fbin from EEPROM is
1927	 * within our current channel's spur detection range */
1928	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930	/* XXX: Half/Quarter channels ?*/
1931	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932		spur_detection_window *= 2;
1933
1934	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936
1937		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938		 * so it's zero if we got nothing from EEPROM */
1939		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941			break;
1942		}
1943
1944		if ((chan_fbin - spur_detection_window <=
1945		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946		(chan_fbin + spur_detection_window >=
1947		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949			break;
1950		}
1951	}
1952
1953	/* We need to enable spur filter for this channel */
1954	if (spur_chan_fbin) {
1955		spur_offset = spur_chan_fbin - chan_fbin;
1956		/*
1957		 * Calculate deltas:
1958		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959		 * spur_delta_phase -> spur_offset / chip_freq << 11
1960		 * Note: Both values have 100Hz resolution
1961		 */
1962		switch (ah->ah_bwmode) {
1963		case AR5K_BWMODE_40MHZ:
1964			/* Both sample_freq and chip_freq are 80MHz */
1965			spur_delta_phase = (spur_offset << 16) / 25;
1966			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968			break;
1969		case AR5K_BWMODE_10MHZ:
1970			/* Both sample_freq and chip_freq are 20MHz (?) */
1971			spur_delta_phase = (spur_offset << 18) / 25;
1972			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974			break;
1975		case AR5K_BWMODE_5MHZ:
1976			/* Both sample_freq and chip_freq are 10MHz (?) */
1977			spur_delta_phase = (spur_offset << 19) / 25;
1978			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980			break;
1981		default:
1982			if (channel->band == NL80211_BAND_5GHZ) {
1983				/* Both sample_freq and chip_freq are 40MHz */
1984				spur_delta_phase = (spur_offset << 17) / 25;
1985				spur_freq_sigma_delta =
1986						(spur_delta_phase >> 10);
1987				symbol_width =
1988					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989			} else {
1990				/* sample_freq -> 40MHz chip_freq -> 44MHz
1991				 * (for b compatibility) */
1992				spur_delta_phase = (spur_offset << 17) / 25;
1993				spur_freq_sigma_delta =
1994						(spur_offset << 8) / 55;
1995				symbol_width =
1996					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997			}
1998			break;
1999		}
2000
2001		/* Calculate pilot and magnitude masks */
2002
2003		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004		 * and divide by symbol_width to find how many symbols we have
2005		 * Note: number of symbols is scaled up by 16 */
2006		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007
2008		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009		if (!(num_symbols_x16 & 0xF))
2010			/* _X_ */
2011			num_symbol_offsets = 3;
2012		else
2013			/* _xx_ */
2014			num_symbol_offsets = 4;
2015
2016		for (i = 0; i < num_symbol_offsets; i++) {
2017
2018			/* Calculate pilot mask */
2019			s32 curr_sym_off =
2020				(num_symbols_x16 / 16) + i + 25;
2021
2022			/* Pilot magnitude mask seems to be a way to
2023			 * declare the boundaries for our detection
2024			 * window or something, it's 2 for the middle
2025			 * value(s) where the symbol is expected to be
2026			 * and 1 on the boundary values */
2027			u8 plt_mag_map =
2028				(i == 0 || i == (num_symbol_offsets - 1))
2029								? 1 : 2;
2030
2031			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032				if (curr_sym_off <= 25)
2033					pilot_mask[0] |= 1 << curr_sym_off;
2034				else if (curr_sym_off >= 27)
2035					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038
2039			/* Calculate magnitude mask (for viterbi decoder) */
2040			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041				mag_mask[0] |=
2042					plt_mag_map << (curr_sym_off + 1) * 2;
2043			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044				mag_mask[1] |=
2045					plt_mag_map << (curr_sym_off - 15) * 2;
2046			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047				mag_mask[2] |=
2048					plt_mag_map << (curr_sym_off - 31) * 2;
2049			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050				mag_mask[3] |=
2051					plt_mag_map << (curr_sym_off - 47) * 2;
2052
2053		}
2054
2055		/* Write settings on hw to enable spur filter */
2056		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058		/* XXX: Self correlator also ? */
2059		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060					AR5K_PHY_IQ_PILOT_MASK_EN |
2061					AR5K_PHY_IQ_CHAN_MASK_EN |
2062					AR5K_PHY_IQ_SPUR_FILT_EN);
2063
2064		/* Set delta phase and freq sigma delta */
2065		ath5k_hw_reg_write(ah,
2066				AR5K_REG_SM(spur_delta_phase,
2067					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068				AR5K_REG_SM(spur_freq_sigma_delta,
2069				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071				AR5K_PHY_TIMING_11);
2072
2073		/* Write pilot masks */
2074		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077					pilot_mask[1]);
2078
2079		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082					pilot_mask[1]);
2083
2084		/* Write magnitude masks */
2085		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090					mag_mask[3]);
2091
2092		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096					AR5K_PHY_BIN_MASK2_4_MASK_4,
2097					mag_mask[3]);
2098
2099	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100	AR5K_PHY_IQ_SPUR_FILT_EN) {
2101		/* Clean up spur mitigation settings and disable filter */
2102		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105					AR5K_PHY_IQ_PILOT_MASK_EN |
2106					AR5K_PHY_IQ_CHAN_MASK_EN |
2107					AR5K_PHY_IQ_SPUR_FILT_EN);
2108		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109
2110		/* Clear pilot masks */
2111		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114					0);
2115
2116		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119					0);
2120
2121		/* Clear magnitude masks */
2122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127					0);
2128
2129		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133					AR5K_PHY_BIN_MASK2_4_MASK_4,
2134					0);
2135	}
2136}
2137
2138
2139/*****************\
2140* Antenna control *
2141\*****************/
2142
2143/**
2144 * DOC: Antenna control
2145 *
2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150 *
2151 * We can have a single antenna for RX and multiple antennas for TX.
2152 * RX antenna is our "default" antenna (usually antenna 1) set on
2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154 * (0 for automatic selection, 1 - 14 antenna number).
2155 *
2156 * We can let hw do all the work doing fast antenna diversity for both
2157 * tx and rx or we can do things manually. Here are the options we have
2158 * (all are bits of STA_ID1 register):
2159 *
2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161 * control descriptor, use the default antenna to transmit or else use the last
2162 * antenna on which we received an ACK.
2163 *
2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165 * the antenna on which we got the ACK for that frame.
2166 *
2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168 * one on the TX descriptor.
2169 *
2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
2172 *
2173 * Using the above we support the following scenarios:
2174 *
2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176 *
2177 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2178 *
2179 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2180 *
2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182 *
2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184 *
2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186 *
2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188 *
2189 * Also note that when setting antenna to F on tx descriptor card inverts
2190 * current tx antenna.
2191 */
2192
2193/**
2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195 * @ah: The &struct ath5k_hw
2196 * @ant: Antenna number
2197 */
2198static void
2199ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200{
2201	if (ah->ah_version != AR5K_AR5210)
2202		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203}
2204
2205/**
2206 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207 * @ah: The &struct ath5k_hw
2208 * @ee_mode: One of enum ath5k_driver_mode
2209 * @enable: True to enable, false to disable
2210 */
2211static void
2212ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213{
2214	switch (ee_mode) {
2215	case AR5K_EEPROM_MODE_11G:
2216		/* XXX: This is set to
2217		 * disabled on initvals !!! */
2218	case AR5K_EEPROM_MODE_11A:
2219		if (enable)
2220			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222		else
2223			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225		break;
2226	case AR5K_EEPROM_MODE_11B:
2227		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229		break;
2230	default:
2231		return;
2232	}
2233
2234	if (enable) {
2235		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236				AR5K_PHY_RESTART_DIV_GC, 4);
2237
2238		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239					AR5K_PHY_FAST_ANT_DIV_EN);
2240	} else {
2241		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242				AR5K_PHY_RESTART_DIV_GC, 0);
2243
2244		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245					AR5K_PHY_FAST_ANT_DIV_EN);
2246	}
2247}
2248
2249/**
2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251 * @ah: The &struct ath5k_hw
2252 * @ee_mode: One of enum ath5k_driver_mode
2253 *
2254 * Switch table comes from EEPROM and includes information on controlling
2255 * the 2 antenna RX attenuators
2256 */
2257void
2258ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259{
2260	u8 ant0, ant1;
2261
2262	/*
2263	 * In case a fixed antenna was set as default
2264	 * use the same switch table twice.
2265	 */
2266	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270	else {
2271		ant0 = AR5K_ANT_SWTABLE_A;
2272		ant1 = AR5K_ANT_SWTABLE_B;
2273	}
2274
2275	/* Set antenna idle switch table */
2276	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279			AR5K_PHY_ANT_CTL_TXRX_EN));
2280
2281	/* Set antenna switch tables */
2282	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283		AR5K_PHY_ANT_SWITCH_TABLE_0);
2284	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285		AR5K_PHY_ANT_SWITCH_TABLE_1);
2286}
2287
2288/**
2289 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290 * @ah: The &struct ath5k_hw
2291 * @ant_mode: One of enum ath5k_ant_mode
2292 */
2293void
2294ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295{
2296	struct ieee80211_channel *channel = ah->ah_current_channel;
2297	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298	bool use_def_for_sg;
2299	int ee_mode;
2300	u8 def_ant, tx_ant;
2301	u32 sta_id1 = 0;
2302
2303	/* if channel is not initialized yet we can't set the antennas
2304	 * so just store the mode. it will be set on the next reset */
2305	if (channel == NULL) {
2306		ah->ah_ant_mode = ant_mode;
2307		return;
2308	}
2309
2310	def_ant = ah->ah_def_ant;
2311
2312	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 
 
 
 
 
2313
2314	switch (ant_mode) {
2315	case AR5K_ANTMODE_DEFAULT:
2316		tx_ant = 0;
2317		use_def_for_tx = false;
2318		update_def_on_tx = false;
2319		use_def_for_rts = false;
2320		use_def_for_sg = false;
2321		fast_div = true;
2322		break;
2323	case AR5K_ANTMODE_FIXED_A:
2324		def_ant = 1;
2325		tx_ant = 1;
2326		use_def_for_tx = true;
2327		update_def_on_tx = false;
2328		use_def_for_rts = true;
2329		use_def_for_sg = true;
2330		fast_div = false;
2331		break;
2332	case AR5K_ANTMODE_FIXED_B:
2333		def_ant = 2;
2334		tx_ant = 2;
2335		use_def_for_tx = true;
2336		update_def_on_tx = false;
2337		use_def_for_rts = true;
2338		use_def_for_sg = true;
2339		fast_div = false;
2340		break;
2341	case AR5K_ANTMODE_SINGLE_AP:
2342		def_ant = 1;	/* updated on tx */
2343		tx_ant = 0;
2344		use_def_for_tx = true;
2345		update_def_on_tx = true;
2346		use_def_for_rts = true;
2347		use_def_for_sg = true;
2348		fast_div = true;
2349		break;
2350	case AR5K_ANTMODE_SECTOR_AP:
2351		tx_ant = 1;	/* variable */
2352		use_def_for_tx = false;
2353		update_def_on_tx = false;
2354		use_def_for_rts = true;
2355		use_def_for_sg = false;
2356		fast_div = false;
2357		break;
2358	case AR5K_ANTMODE_SECTOR_STA:
2359		tx_ant = 1;	/* variable */
2360		use_def_for_tx = true;
2361		update_def_on_tx = false;
2362		use_def_for_rts = true;
2363		use_def_for_sg = false;
2364		fast_div = true;
2365		break;
2366	case AR5K_ANTMODE_DEBUG:
2367		def_ant = 1;
2368		tx_ant = 2;
2369		use_def_for_tx = false;
2370		update_def_on_tx = false;
2371		use_def_for_rts = false;
2372		use_def_for_sg = false;
2373		fast_div = false;
2374		break;
2375	default:
2376		return;
2377	}
2378
2379	ah->ah_tx_ant = tx_ant;
2380	ah->ah_ant_mode = ant_mode;
2381	ah->ah_def_ant = def_ant;
2382
2383	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387
2388	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389
2390	if (sta_id1)
2391		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392
2393	ath5k_hw_set_antenna_switch(ah, ee_mode);
2394	/* Note: set diversity before default antenna
2395	 * because it won't work correctly */
2396	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397	ath5k_hw_set_def_antenna(ah, def_ant);
2398}
2399
2400
2401/****************\
2402* TX power setup *
2403\****************/
2404
2405/*
2406 * Helper functions
2407 */
2408
2409/**
2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411 * @target: X value of the middle point
2412 * @x_left: X value of the left point
2413 * @x_right: X value of the right point
2414 * @y_left: Y value of the left point
2415 * @y_right: Y value of the right point
2416 */
2417static s16
2418ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419					s16 y_left, s16 y_right)
2420{
2421	s16 ratio, result;
2422
2423	/* Avoid divide by zero and skip interpolation
2424	 * if we have the same point */
2425	if ((x_left == x_right) || (y_left == y_right))
2426		return y_left;
2427
2428	/*
2429	 * Since we use ints and not fps, we need to scale up in
2430	 * order to get a sane ratio value (or else we 'll eg. get
2431	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432	 * to have some accuracy both for 0.5 and 0.25 steps.
2433	 */
2434	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435
2436	/* Now scale down to be in range */
2437	result = y_left + (ratio * (target - x_left) / 100);
2438
2439	return result;
2440}
2441
2442/**
2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444 * linear PCDAC curve
2445 * @stepL: Left array with y values (pcdac steps)
2446 * @stepR: Right array with y values (pcdac steps)
2447 * @pwrL: Left array with x values (power steps)
2448 * @pwrR: Right array with x values (power steps)
2449 *
2450 * Since we have the top of the curve and we draw the line below
2451 * until we reach 1 (1 pcdac step) we need to know which point
2452 * (x value) that is so that we don't go below x axis and have negative
2453 * pcdac values when creating the curve, or fill the table with zeros.
2454 */
2455static s16
2456ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457				const s16 *pwrL, const s16 *pwrR)
2458{
2459	s8 tmp;
2460	s16 min_pwrL, min_pwrR;
2461	s16 pwr_i;
2462
2463	/* Some vendors write the same pcdac value twice !!! */
2464	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465		return max(pwrL[0], pwrR[0]);
2466
2467	if (pwrL[0] == pwrL[1])
2468		min_pwrL = pwrL[0];
2469	else {
2470		pwr_i = pwrL[0];
2471		do {
2472			pwr_i--;
2473			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474							pwrL[0], pwrL[1],
2475							stepL[0], stepL[1]);
2476		} while (tmp > 1);
2477
2478		min_pwrL = pwr_i;
2479	}
2480
2481	if (pwrR[0] == pwrR[1])
2482		min_pwrR = pwrR[0];
2483	else {
2484		pwr_i = pwrR[0];
2485		do {
2486			pwr_i--;
2487			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488							pwrR[0], pwrR[1],
2489							stepR[0], stepR[1]);
2490		} while (tmp > 1);
2491
2492		min_pwrR = pwr_i;
2493	}
2494
2495	/* Keep the right boundary so that it works for both curves */
2496	return max(min_pwrL, min_pwrR);
2497}
2498
2499/**
2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501 * @pmin: Minimum power value (xmin)
2502 * @pmax: Maximum power value (xmax)
2503 * @pwr: Array of power steps (x values)
2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505 * @num_points: Number of provided points
2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
2508 *
2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510 * Power to PCDAC curve.
2511 *
2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
2515 * one curves on hw so we can go up to 128 (which is the max step we
2516 * can write on the final table).
2517 *
2518 * We write y values (PCDAC/PDADC steps) on hw.
2519 */
2520static void
2521ath5k_create_power_curve(s16 pmin, s16 pmax,
2522			const s16 *pwr, const u8 *vpd,
2523			u8 num_points,
2524			u8 *vpd_table, u8 type)
2525{
2526	u8 idx[2] = { 0, 1 };
2527	s16 pwr_i = 2 * pmin;
2528	int i;
2529
2530	if (num_points < 2)
2531		return;
2532
2533	/* We want the whole line, so adjust boundaries
2534	 * to cover the entire power range. Note that
2535	 * power values are already 0.25dB so no need
2536	 * to multiply pwr_i by 2 */
2537	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538		pwr_i = pmin;
2539		pmin = 0;
2540		pmax = 63;
2541	}
2542
2543	/* Find surrounding turning points (TPs)
2544	 * and interpolate between them */
2545	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547
2548		/* We passed the right TP, move to the next set of TPs
2549		 * if we pass the last TP, extrapolate above using the last
2550		 * two TPs for ratio */
2551		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552			idx[0]++;
2553			idx[1]++;
2554		}
2555
2556		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557						pwr[idx[0]], pwr[idx[1]],
2558						vpd[idx[0]], vpd[idx[1]]);
2559
2560		/* Increase by 0.5dB
2561		 * (0.25 dB units) */
2562		pwr_i += 2;
2563	}
2564}
2565
2566/**
2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568 * for a given channel.
2569 * @ah: The &struct ath5k_hw
2570 * @channel: The &struct ieee80211_channel
2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573 *
2574 * Get the surrounding per-channel power calibration piers
2575 * for a given frequency so that we can interpolate between
2576 * them and come up with an appropriate dataset for our current
2577 * channel.
2578 */
2579static void
2580ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581			struct ieee80211_channel *channel,
2582			struct ath5k_chan_pcal_info **pcinfo_l,
2583			struct ath5k_chan_pcal_info **pcinfo_r)
2584{
2585	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586	struct ath5k_chan_pcal_info *pcinfo;
2587	u8 idx_l, idx_r;
2588	u8 mode, max, i;
2589	u32 target = channel->center_freq;
2590
2591	idx_l = 0;
2592	idx_r = 0;
2593
2594	switch (channel->hw_value) {
2595	case AR5K_EEPROM_MODE_11A:
2596		pcinfo = ee->ee_pwr_cal_a;
2597		mode = AR5K_EEPROM_MODE_11A;
2598		break;
2599	case AR5K_EEPROM_MODE_11B:
2600		pcinfo = ee->ee_pwr_cal_b;
2601		mode = AR5K_EEPROM_MODE_11B;
2602		break;
2603	case AR5K_EEPROM_MODE_11G:
2604	default:
2605		pcinfo = ee->ee_pwr_cal_g;
2606		mode = AR5K_EEPROM_MODE_11G;
2607		break;
 
 
2608	}
2609	max = ee->ee_n_piers[mode] - 1;
2610
2611	/* Frequency is below our calibrated
2612	 * range. Use the lowest power curve
2613	 * we have */
2614	if (target < pcinfo[0].freq) {
2615		idx_l = idx_r = 0;
2616		goto done;
2617	}
2618
2619	/* Frequency is above our calibrated
2620	 * range. Use the highest power curve
2621	 * we have */
2622	if (target > pcinfo[max].freq) {
2623		idx_l = idx_r = max;
2624		goto done;
2625	}
2626
2627	/* Frequency is inside our calibrated
2628	 * channel range. Pick the surrounding
2629	 * calibration piers so that we can
2630	 * interpolate */
2631	for (i = 0; i <= max; i++) {
2632
2633		/* Frequency matches one of our calibration
2634		 * piers, no need to interpolate, just use
2635		 * that calibration pier */
2636		if (pcinfo[i].freq == target) {
2637			idx_l = idx_r = i;
2638			goto done;
2639		}
2640
2641		/* We found a calibration pier that's above
2642		 * frequency, use this pier and the previous
2643		 * one to interpolate */
2644		if (target < pcinfo[i].freq) {
2645			idx_r = i;
2646			idx_l = idx_r - 1;
2647			goto done;
2648		}
2649	}
2650
2651done:
2652	*pcinfo_l = &pcinfo[idx_l];
2653	*pcinfo_r = &pcinfo[idx_r];
2654}
2655
2656/**
2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658 * calibration data
2659 * @ah: The &struct ath5k_hw *ah,
2660 * @channel: The &struct ieee80211_channel
2661 * @rates: The &struct ath5k_rate_pcal_info to fill
2662 *
2663 * Get the surrounding per-rate power calibration data
2664 * for a given frequency and interpolate between power
2665 * values to set max target power supported by hw for
2666 * each rate on this frequency.
2667 */
2668static void
2669ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670			struct ieee80211_channel *channel,
2671			struct ath5k_rate_pcal_info *rates)
2672{
2673	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674	struct ath5k_rate_pcal_info *rpinfo;
2675	u8 idx_l, idx_r;
2676	u8 mode, max, i;
2677	u32 target = channel->center_freq;
2678
2679	idx_l = 0;
2680	idx_r = 0;
2681
2682	switch (channel->hw_value) {
2683	case AR5K_MODE_11A:
2684		rpinfo = ee->ee_rate_tpwr_a;
2685		mode = AR5K_EEPROM_MODE_11A;
2686		break;
2687	case AR5K_MODE_11B:
2688		rpinfo = ee->ee_rate_tpwr_b;
2689		mode = AR5K_EEPROM_MODE_11B;
2690		break;
2691	case AR5K_MODE_11G:
2692	default:
2693		rpinfo = ee->ee_rate_tpwr_g;
2694		mode = AR5K_EEPROM_MODE_11G;
2695		break;
 
 
2696	}
2697	max = ee->ee_rate_target_pwr_num[mode] - 1;
2698
2699	/* Get the surrounding calibration
2700	 * piers - same as above */
2701	if (target < rpinfo[0].freq) {
2702		idx_l = idx_r = 0;
2703		goto done;
2704	}
2705
2706	if (target > rpinfo[max].freq) {
2707		idx_l = idx_r = max;
2708		goto done;
2709	}
2710
2711	for (i = 0; i <= max; i++) {
2712
2713		if (rpinfo[i].freq == target) {
2714			idx_l = idx_r = i;
2715			goto done;
2716		}
2717
2718		if (target < rpinfo[i].freq) {
2719			idx_r = i;
2720			idx_l = idx_r - 1;
2721			goto done;
2722		}
2723	}
2724
2725done:
2726	/* Now interpolate power value, based on the frequency */
2727	rates->freq = target;
2728
2729	rates->target_power_6to24 =
2730		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731					rpinfo[idx_r].freq,
2732					rpinfo[idx_l].target_power_6to24,
2733					rpinfo[idx_r].target_power_6to24);
2734
2735	rates->target_power_36 =
2736		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737					rpinfo[idx_r].freq,
2738					rpinfo[idx_l].target_power_36,
2739					rpinfo[idx_r].target_power_36);
2740
2741	rates->target_power_48 =
2742		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743					rpinfo[idx_r].freq,
2744					rpinfo[idx_l].target_power_48,
2745					rpinfo[idx_r].target_power_48);
2746
2747	rates->target_power_54 =
2748		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749					rpinfo[idx_r].freq,
2750					rpinfo[idx_l].target_power_54,
2751					rpinfo[idx_r].target_power_54);
2752}
2753
2754/**
2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756 * @ah: the &struct ath5k_hw
2757 * @channel: The &struct ieee80211_channel
2758 *
2759 * Get the max edge power for this channel if
2760 * we have such data from EEPROM's Conformance Test
2761 * Limits (CTL), and limit max power if needed.
2762 */
2763static void
2764ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765			struct ieee80211_channel *channel)
2766{
2767	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770	u8 *ctl_val = ee->ee_ctl;
2771	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772	s16 edge_pwr = 0;
2773	u8 rep_idx;
2774	u8 i, ctl_mode;
2775	u8 ctl_idx = 0xFF;
2776	u32 target = channel->center_freq;
2777
2778	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779
2780	switch (channel->hw_value) {
2781	case AR5K_MODE_11A:
2782		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783			ctl_mode |= AR5K_CTL_TURBO;
2784		else
2785			ctl_mode |= AR5K_CTL_11A;
2786		break;
2787	case AR5K_MODE_11G:
2788		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789			ctl_mode |= AR5K_CTL_TURBOG;
2790		else
2791			ctl_mode |= AR5K_CTL_11G;
2792		break;
2793	case AR5K_MODE_11B:
2794		ctl_mode |= AR5K_CTL_11B;
2795		break;
 
 
2796	default:
2797		return;
2798	}
2799
2800	for (i = 0; i < ee->ee_ctls; i++) {
2801		if (ctl_val[i] == ctl_mode) {
2802			ctl_idx = i;
2803			break;
2804		}
2805	}
2806
2807	/* If we have a CTL dataset available grab it and find the
2808	 * edge power for our frequency */
2809	if (ctl_idx == 0xFF)
2810		return;
2811
2812	/* Edge powers are sorted by frequency from lower
2813	 * to higher. Each CTL corresponds to 8 edge power
2814	 * measurements. */
2815	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816
2817	/* Don't do boundaries check because we
2818	 * might have more that one bands defined
2819	 * for this mode */
2820
2821	/* Get the edge power that's closer to our
2822	 * frequency */
2823	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824		rep_idx += i;
2825		if (target <= rep[rep_idx].freq)
2826			edge_pwr = (s16) rep[rep_idx].edge;
2827	}
2828
2829	if (edge_pwr)
2830		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831}
2832
2833
2834/*
2835 * Power to PCDAC table functions
2836 */
2837
2838/**
2839 * DOC: Power to PCDAC table functions
2840 *
2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
2842 * for each calibrated channel. Each curve has 0,5dB Power steps
2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844 * exponential function. To recreate the curve we read 11 points
2845 * from eeprom (eeprom.c) and interpolate here.
2846 *
2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850 * power steps on x axis and PCDAC steps on y axis and looks like a
2851 * linear function. To recreate the curve and pass the power values
2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854 * and interpolate here.
2855 *
2856 * For a given channel we get the calibrated points (piers) for it or
2857 * -if we don't have calibration data for this specific channel- from the
2858 * available surrounding channels we have calibration data for, after we do a
2859 * linear interpolation between them. Then since we have our calibrated points
2860 * for this channel, we do again a linear interpolation between them to get the
2861 * whole curve.
2862 *
2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864 */
2865
2866/**
2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868 * @ah: The &struct ath5k_hw
2869 * @table_min: Minimum power (x min)
2870 * @table_max: Maximum power (x max)
2871 *
2872 * No further processing is needed for RF5111, the only thing we have to
2873 * do is fill the values below and above calibration range since eeprom data
2874 * may not cover the entire PCDAC table.
2875 */
2876static void
2877ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878							s16 *table_max)
2879{
2880	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2881	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2882	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883	s16	min_pwr, max_pwr;
2884
2885	/* Get table boundaries */
2886	min_pwr = table_min[0];
2887	pcdac_0 = pcdac_tmp[0];
2888
2889	max_pwr = table_max[0];
2890	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891
2892	/* Extrapolate below minimum using pcdac_0 */
2893	pcdac_i = 0;
2894	for (i = 0; i < min_pwr; i++)
2895		pcdac_out[pcdac_i++] = pcdac_0;
2896
2897	/* Copy values from pcdac_tmp */
2898	pwr_idx = min_pwr;
2899	for (i = 0; pwr_idx <= max_pwr &&
2900		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902		pwr_idx++;
2903	}
2904
2905	/* Extrapolate above maximum */
2906	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907		pcdac_out[pcdac_i++] = pcdac_n;
2908
2909}
2910
2911/**
2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913 * @ah: The &struct ath5k_hw
2914 * @table_min: Minimum power (x min)
2915 * @table_max: Maximum power (x max)
2916 * @pdcurves: Number of pd curves
2917 *
2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
2920 * higher txpower range). We need to put them both on pcdac_out and place
2921 * them in the correct location. In case we only have one curve available
2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
2923 * available pwr levels since it's always the higher power curve). Extrapolate
2924 * below and above final table if needed.
2925 */
2926static void
2927ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928						s16 *table_max, u8 pdcurves)
2929{
2930	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2931	u8	*pcdac_low_pwr;
2932	u8	*pcdac_high_pwr;
2933	u8	*pcdac_tmp;
2934	u8	pwr;
2935	s16	max_pwr_idx;
2936	s16	min_pwr_idx;
2937	s16	mid_pwr_idx = 0;
2938	/* Edge flag turns on the 7nth bit on the PCDAC
2939	 * to declare the higher power curve (force values
2940	 * to be greater than 64). If we only have one curve
2941	 * we don't need to set this, if we have 2 curves and
2942	 * fill the table backwards this can also be used to
2943	 * switch from higher power curve to lower power curve */
2944	u8	edge_flag;
2945	int	i;
2946
2947	/* When we have only one curve available
2948	 * that's the higher power curve. If we have
2949	 * two curves the first is the high power curve
2950	 * and the next is the low power curve. */
2951	if (pdcurves > 1) {
2952		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956
2957		/* If table size goes beyond 31.5dB, keep the
2958		 * upper 31.5dB range when setting tx power.
2959		 * Note: 126 = 31.5 dB in quarter dB steps */
2960		if (table_max[0] - table_min[1] > 126)
2961			min_pwr_idx = table_max[0] - 126;
2962		else
2963			min_pwr_idx = table_min[1];
2964
2965		/* Since we fill table backwards
2966		 * start from high power curve */
2967		pcdac_tmp = pcdac_high_pwr;
2968
2969		edge_flag = 0x40;
2970	} else {
2971		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973		min_pwr_idx = table_min[0];
2974		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975		pcdac_tmp = pcdac_high_pwr;
2976		edge_flag = 0;
2977	}
2978
2979	/* This is used when setting tx power*/
2980	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981
2982	/* Fill Power to PCDAC table backwards */
2983	pwr = max_pwr_idx;
2984	for (i = 63; i >= 0; i--) {
2985		/* Entering lower power range, reset
2986		 * edge flag and set pcdac_tmp to lower
2987		 * power curve.*/
2988		if (edge_flag == 0x40 &&
2989		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990			edge_flag = 0x00;
2991			pcdac_tmp = pcdac_low_pwr;
2992			pwr = mid_pwr_idx / 2;
2993		}
2994
2995		/* Don't go below 1, extrapolate below if we have
2996		 * already switched to the lower power curve -or
2997		 * we only have one curve and edge_flag is zero
2998		 * anyway */
2999		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000			while (i >= 0) {
3001				pcdac_out[i] = pcdac_out[i + 1];
3002				i--;
3003			}
3004			break;
3005		}
3006
3007		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008
3009		/* Extrapolate above if pcdac is greater than
3010		 * 126 -this can happen because we OR pcdac_out
3011		 * value with edge_flag on high power curve */
3012		if (pcdac_out[i] > 126)
3013			pcdac_out[i] = 126;
3014
3015		/* Decrease by a 0.5dB step */
3016		pwr--;
3017	}
3018}
3019
3020/**
3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022 * @ah: The &struct ath5k_hw
3023 */
3024static void
3025ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026{
3027	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3028	int	i;
3029
3030	/*
3031	 * Write TX power values
3032	 */
3033	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034		ath5k_hw_reg_write(ah,
3035			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037			AR5K_PHY_PCDAC_TXPOWER(i));
3038	}
3039}
3040
3041
3042/*
3043 * Power to PDADC table functions
3044 */
3045
3046/**
3047 * DOC: Power to PDADC table functions
3048 *
3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052 * PDADC steps on y axis and looks like an exponential function like the
3053 * RF5111 curve.
3054 *
3055 * To recreate the curves we read the points from eeprom (eeprom.c)
3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
3057 * curves are used (like RF5112) but vendors have the opportunity to include
3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
3059 * point for better accuracy like RF5112.
3060 *
3061 * The process is similar to what we do above for RF5111/5112
3062 */
3063
3064/**
3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066 * @ah: The &struct ath5k_hw
3067 * @pwr_min: Minimum power (x min)
3068 * @pwr_max: Maximum power (x max)
3069 * @pdcurves: Number of available curves
3070 *
3071 * Combine the various pd curves and create the final Power to PDADC table
3072 * We can have up to 4 pd curves, we need to do a similar process
3073 * as we do for RF5112. This time we don't have an edge_flag but we
3074 * set the gain boundaries on a separate register.
3075 */
3076static void
3077ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079{
3080	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082	u8 *pdadc_tmp;
3083	s16 pdadc_0;
3084	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085	u8 pd_gain_overlap;
3086
3087	/* Note: Register value is initialized on initvals
3088	 * there is no feedback from hw.
3089	 * XXX: What about pd_gain_overlap from EEPROM ? */
3090	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092
3093	/* Create final PDADC table */
3094	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096
3097		if (pdg == pdcurves - 1)
3098			/* 2 dB boundary stretch for last
3099			 * (higher power) curve */
3100			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101		else
3102			/* Set gain boundary in the middle
3103			 * between this curve and the next one */
3104			gain_boundaries[pdg] =
3105				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106
3107		/* Sanity check in case our 2 db stretch got out of
3108		 * range. */
3109		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111
3112		/* For the first curve (lower power)
3113		 * start from 0 dB */
3114		if (pdg == 0)
3115			pdadc_0 = 0;
3116		else
3117			/* For the other curves use the gain overlap */
3118			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119							pd_gain_overlap;
3120
3121		/* Force each power step to be at least 0.5 dB */
3122		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124		else
3125			pwr_step = 1;
3126
3127		/* If pdadc_0 is negative, we need to extrapolate
3128		 * below this pdgain by a number of pwr_steps */
3129		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132			pdadc_0++;
3133		}
3134
3135		/* Set last pwr level, using gain boundaries */
3136		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137		/* Limit it to be inside pwr range */
3138		table_size = pwr_max[pdg] - pwr_min[pdg];
3139		max_idx = min(pdadc_n, table_size);
3140
3141		/* Fill pdadc_out table */
3142		while (pdadc_0 < max_idx && pdadc_i < 128)
3143			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144
3145		/* Need to extrapolate above this pdgain? */
3146		if (pdadc_n <= max_idx)
3147			continue;
3148
3149		/* Force each power step to be at least 0.5 dB */
3150		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151			pwr_step = pdadc_tmp[table_size - 1] -
3152						pdadc_tmp[table_size - 2];
3153		else
3154			pwr_step = 1;
3155
3156		/* Extrapolate above */
3157		while ((pdadc_0 < (s16) pdadc_n) &&
3158		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159			s16 tmp = pdadc_tmp[table_size - 1] +
3160					(pdadc_0 - max_idx) * pwr_step;
3161			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162			pdadc_0++;
3163		}
3164	}
3165
3166	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168		pdg++;
3169	}
3170
3171	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173		pdadc_i++;
3174	}
3175
3176	/* Set gain boundaries */
3177	ath5k_hw_reg_write(ah,
3178		AR5K_REG_SM(pd_gain_overlap,
3179			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180		AR5K_REG_SM(gain_boundaries[0],
3181			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182		AR5K_REG_SM(gain_boundaries[1],
3183			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184		AR5K_REG_SM(gain_boundaries[2],
3185			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186		AR5K_REG_SM(gain_boundaries[3],
3187			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188		AR5K_PHY_TPC_RG5);
3189
3190	/* Used for setting rate power table */
3191	ah->ah_txpower.txp_min_idx = pwr_min[0];
3192
3193}
3194
3195/**
3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197 * @ah: The &struct ath5k_hw
3198 * @ee_mode: One of enum ath5k_driver_mode
3199 */
3200static void
3201ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202{
3203	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207	u32 reg;
3208	u8 i;
3209
3210	/* Select the right pdgain curves */
3211
3212	/* Clear current settings */
3213	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218
3219	/*
3220	 * Use pd_gains curve from eeprom
3221	 *
3222	 * This overrides the default setting from initvals
3223	 * in case some vendors (e.g. Zcomax) don't use the default
3224	 * curves. If we don't honor their settings we 'll get a
3225	 * 5dB (1 * gain overlap ?) drop.
3226	 */
3227	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228
3229	switch (pdcurves) {
3230	case 3:
3231		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232		fallthrough;
3233	case 2:
3234		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235		fallthrough;
3236	case 1:
3237		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238		break;
3239	}
3240	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241
3242	/*
3243	 * Write TX power values
3244	 */
3245	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248	}
3249}
3250
3251
3252/*
3253 * Common code for PCDAC/PDADC tables
3254 */
3255
3256/**
3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
3258 * @ah: The &struct ath5k_hw
3259 * @channel: The &struct ieee80211_channel
3260 * @ee_mode: One of enum ath5k_driver_mode
3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
3262 *
3263 * This is the main function that uses all of the above
3264 * to set PCDAC/PDADC table on hw for the current channel.
3265 * This table is used for tx power calibration on the baseband,
3266 * without it we get weird tx power levels and in some cases
3267 * distorted spectral mask
3268 */
3269static int
3270ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271			struct ieee80211_channel *channel,
3272			u8 ee_mode, u8 type)
3273{
3274	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275	struct ath5k_chan_pcal_info *pcinfo_L;
3276	struct ath5k_chan_pcal_info *pcinfo_R;
3277	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281	u8 *tmpL;
3282	u8 *tmpR;
3283	u32 target = channel->center_freq;
3284	int pdg, i;
3285
3286	/* Get surrounding freq piers for this channel */
3287	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288						&pcinfo_L,
3289						&pcinfo_R);
3290
3291	/* Loop over pd gain curves on
3292	 * surrounding freq piers by index */
3293	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294
3295		/* Fill curves in reverse order
3296		 * from lower power (max gain)
3297		 * to higher power. Use curve -> idx
3298		 * backmapping we did on eeprom init */
3299		u8 idx = pdg_curve_to_idx[pdg];
3300
3301		/* Grab the needed curves by index */
3302		pdg_L = &pcinfo_L->pd_curves[idx];
3303		pdg_R = &pcinfo_R->pd_curves[idx];
3304
3305		/* Initialize the temp tables */
3306		tmpL = ah->ah_txpower.tmpL[pdg];
3307		tmpR = ah->ah_txpower.tmpR[pdg];
3308
3309		/* Set curve's x boundaries and create
3310		 * curves so that they cover the same
3311		 * range (if we don't do that one table
3312		 * will have values on some range and the
3313		 * other one won't have any so interpolation
3314		 * will fail) */
3315		table_min[pdg] = min(pdg_L->pd_pwr[0],
3316					pdg_R->pd_pwr[0]) / 2;
3317
3318		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320
3321		/* Now create the curves on surrounding channels
3322		 * and interpolate if needed to get the final
3323		 * curve for this gain on this channel */
3324		switch (type) {
3325		case AR5K_PWRTABLE_LINEAR_PCDAC:
3326			/* Override min/max so that we don't loose
3327			 * accuracy (don't divide by 2) */
3328			table_min[pdg] = min(pdg_L->pd_pwr[0],
3329						pdg_R->pd_pwr[0]);
3330
3331			table_max[pdg] =
3332				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334
3335			/* Override minimum so that we don't get
3336			 * out of bounds while extrapolating
3337			 * below. Don't do this when we have 2
3338			 * curves and we are on the high power curve
3339			 * because table_min is ok in this case */
3340			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341
3342				table_min[pdg] =
3343					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344								pdg_R->pd_step,
3345								pdg_L->pd_pwr,
3346								pdg_R->pd_pwr);
3347
3348				/* Don't go too low because we will
3349				 * miss the upper part of the curve.
3350				 * Note: 126 = 31.5dB (max power supported)
3351				 * in 0.25dB units */
3352				if (table_max[pdg] - table_min[pdg] > 126)
3353					table_min[pdg] = table_max[pdg] - 126;
3354			}
3355
3356			fallthrough;
3357		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358		case AR5K_PWRTABLE_PWR_TO_PDADC:
3359
3360			ath5k_create_power_curve(table_min[pdg],
3361						table_max[pdg],
3362						pdg_L->pd_pwr,
3363						pdg_L->pd_step,
3364						pdg_L->pd_points, tmpL, type);
3365
3366			/* We are in a calibration
3367			 * pier, no need to interpolate
3368			 * between freq piers */
3369			if (pcinfo_L == pcinfo_R)
3370				continue;
3371
3372			ath5k_create_power_curve(table_min[pdg],
3373						table_max[pdg],
3374						pdg_R->pd_pwr,
3375						pdg_R->pd_step,
3376						pdg_R->pd_points, tmpR, type);
3377			break;
3378		default:
3379			return -EINVAL;
3380		}
3381
3382		/* Interpolate between curves
3383		 * of surrounding freq piers to
3384		 * get the final curve for this
3385		 * pd gain. Re-use tmpL for interpolation
3386		 * output */
3387		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390							(s16) pcinfo_L->freq,
3391							(s16) pcinfo_R->freq,
3392							(s16) tmpL[i],
3393							(s16) tmpR[i]);
3394		}
3395	}
3396
3397	/* Now we have a set of curves for this
3398	 * channel on tmpL (x range is table_max - table_min
3399	 * and y values are tmpL[pdg][]) sorted in the same
3400	 * order as EEPROM (because we've used the backmapping).
3401	 * So for RF5112 it's from higher power to lower power
3402	 * and for RF2413 it's from lower power to higher power.
3403	 * For RF5111 we only have one curve. */
3404
3405	/* Fill min and max power levels for this
3406	 * channel by interpolating the values on
3407	 * surrounding channels to complete the dataset */
3408	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409					(s16) pcinfo_L->freq,
3410					(s16) pcinfo_R->freq,
3411					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412
3413	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414					(s16) pcinfo_L->freq,
3415					(s16) pcinfo_R->freq,
3416					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417
3418	/* Fill PCDAC/PDADC table */
3419	switch (type) {
3420	case AR5K_PWRTABLE_LINEAR_PCDAC:
3421		/* For RF5112 we can have one or two curves
3422		 * and each curve covers a certain power lvl
3423		 * range so we need to do some more processing */
3424		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425						ee->ee_pd_gains[ee_mode]);
3426
3427		/* Set txp.offset so that we can
3428		 * match max power value with max
3429		 * table index */
3430		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431		break;
3432	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433		/* We are done for RF5111 since it has only
3434		 * one curve, just fit the curve on the table */
3435		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436
3437		/* No rate powertable adjustment for RF5111 */
3438		ah->ah_txpower.txp_min_idx = 0;
3439		ah->ah_txpower.txp_offset = 0;
3440		break;
3441	case AR5K_PWRTABLE_PWR_TO_PDADC:
3442		/* Set PDADC boundaries and fill
3443		 * final PDADC table */
3444		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445						ee->ee_pd_gains[ee_mode]);
3446
3447		/* Set txp.offset, note that table_min
3448		 * can be negative */
3449		ah->ah_txpower.txp_offset = table_min[0];
3450		break;
3451	default:
3452		return -EINVAL;
3453	}
3454
3455	ah->ah_txpower.txp_setup = true;
3456
3457	return 0;
3458}
3459
3460/**
3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462 * @ah: The &struct ath5k_hw
3463 * @ee_mode: One of enum ath5k_driver_mode
3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
3465 */
3466static void
3467ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468{
3469	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471	else
3472		ath5k_write_pcdac_table(ah);
3473}
3474
3475
3476/**
3477 * DOC: Per-rate tx power setting
3478 *
3479 * This is the code that sets the desired tx power limit (below
3480 * maximum) on hw for each rate (we also have TPC that sets
3481 * power per packet type). We do that by providing an index on the
3482 * PCDAC/PDADC table we set up above, for each rate.
 
 
 
 
3483 *
3484 * For now we only limit txpower based on maximum tx power
3485 * supported by hw (what's inside rate_info) + conformance test
3486 * limits. We need to limit this even more, based on regulatory domain
3487 * etc to be safe. Normally this is done from above so we don't care
3488 * here, all we care is that the tx power we set will be O.K.
3489 * for the hw (e.g. won't create noise on PA etc).
3490 *
3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492 * x values) and is indexed as follows:
3493 * rates[0] - rates[7] -> OFDM rates
3494 * rates[8] - rates[14] -> CCK rates
3495 * rates[15] -> XR rates (they all have the same power)
3496 */
3497
3498/**
3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500 * @ah: The &struct ath5k_hw
3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503 * @ee_mode: One of enum ath5k_driver_mode
3504 */
3505static void
3506ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507			struct ath5k_rate_pcal_info *rate_info,
3508			u8 ee_mode)
3509{
3510	unsigned int i;
3511	u16 *rates;
3512	s16 rate_idx_scaled = 0;
3513
3514	/* max_pwr is power level we got from driver/user in 0.5dB
3515	 * units, switch to 0.25dB units so we can compare */
3516	max_pwr *= 2;
3517	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518
3519	/* apply rate limits */
3520	rates = ah->ah_txpower.txp_rates_power_table;
3521
3522	/* OFDM rates 6 to 24Mb/s */
3523	for (i = 0; i < 5; i++)
3524		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525
3526	/* Rest OFDM rates */
3527	rates[5] = min(rates[0], rate_info->target_power_36);
3528	rates[6] = min(rates[0], rate_info->target_power_48);
3529	rates[7] = min(rates[0], rate_info->target_power_54);
3530
3531	/* CCK rates */
3532	/* 1L */
3533	rates[8] = min(rates[0], rate_info->target_power_6to24);
3534	/* 2L */
3535	rates[9] = min(rates[0], rate_info->target_power_36);
3536	/* 2S */
3537	rates[10] = min(rates[0], rate_info->target_power_36);
3538	/* 5L */
3539	rates[11] = min(rates[0], rate_info->target_power_48);
3540	/* 5S */
3541	rates[12] = min(rates[0], rate_info->target_power_48);
3542	/* 11L */
3543	rates[13] = min(rates[0], rate_info->target_power_54);
3544	/* 11S */
3545	rates[14] = min(rates[0], rate_info->target_power_54);
3546
3547	/* XR rates */
3548	rates[15] = min(rates[0], rate_info->target_power_6to24);
3549
3550	/* CCK rates have different peak to average ratio
3551	 * so we have to tweak their power so that gainf
3552	 * correction works ok. For this we use OFDM to
3553	 * CCK delta from eeprom */
3554	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556		for (i = 8; i <= 15; i++)
3557			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558
3559	/* Save min/max and current tx power for this channel
3560	 * in 0.25dB units.
3561	 *
3562	 * Note: We use rates[0] for current tx power because
3563	 * it covers most of the rates, in most cases. It's our
3564	 * tx power limit and what the user expects to see. */
3565	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567
3568	/* Set max txpower for correct OFDM operation on all rates
3569	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3570	 * gain probe and it's in 0.5dB units */
3571	ah->ah_txpower.txp_ofdm = rates[7];
3572
3573	/* Now that we have all rates setup use table offset to
3574	 * match the power range set by user with the power indices
3575	 * on PCDAC/PDADC table */
3576	for (i = 0; i < 16; i++) {
3577		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578		/* Don't get out of bounds */
3579		if (rate_idx_scaled > 63)
3580			rate_idx_scaled = 63;
3581		if (rate_idx_scaled < 0)
3582			rate_idx_scaled = 0;
3583		rates[i] = rate_idx_scaled;
3584	}
 
 
 
 
 
3585}
3586
3587
3588/**
3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590 * @ah: The &struct ath5k_hw
3591 * @channel: The &struct ieee80211_channel
3592 * @txpower: Requested tx power in 0.5dB steps
3593 *
3594 * Combines all of the above to set the requested tx power limit
3595 * on hw.
3596 */
3597static int
3598ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599		 u8 txpower)
3600{
3601	struct ath5k_rate_pcal_info rate_info;
3602	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603	int ee_mode;
3604	u8 type;
3605	int ret;
3606
3607	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609		return -EINVAL;
3610	}
3611
3612	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 
 
 
 
 
3613
3614	/* Initialize TX power table */
3615	switch (ah->ah_radio) {
3616	case AR5K_RF5110:
3617		/* TODO */
3618		return 0;
3619	case AR5K_RF5111:
3620		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621		break;
3622	case AR5K_RF5112:
3623		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624		break;
3625	case AR5K_RF2413:
3626	case AR5K_RF5413:
3627	case AR5K_RF2316:
3628	case AR5K_RF2317:
3629	case AR5K_RF2425:
3630		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631		break;
3632	default:
3633		return -EINVAL;
3634	}
3635
3636	/*
3637	 * If we don't change channel/mode skip tx powertable calculation
3638	 * and use the cached one.
3639	 */
3640	if (!ah->ah_txpower.txp_setup ||
3641	    (channel->hw_value != curr_channel->hw_value) ||
3642	    (channel->center_freq != curr_channel->center_freq)) {
3643		/* Reset TX power values but preserve requested
3644		 * tx power from above */
3645		int requested_txpower = ah->ah_txpower.txp_requested;
3646
3647		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648
3649		/* Restore TPC setting and requested tx power */
3650		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651
3652		ah->ah_txpower.txp_requested = requested_txpower;
3653
3654		/* Calculate the powertable */
3655		ret = ath5k_setup_channel_powertable(ah, channel,
3656							ee_mode, type);
3657		if (ret)
3658			return ret;
3659	}
3660
3661	/* Write table on hw */
3662	ath5k_write_channel_powertable(ah, ee_mode, type);
3663
3664	/* Limit max power if we have a CTL available */
3665	ath5k_get_max_ctl_power(ah, channel);
3666
3667	/* FIXME: Antenna reduction stuff */
3668
3669	/* FIXME: Limit power on turbo modes */
3670
3671	/* FIXME: TPC scale reduction */
3672
3673	/* Get surrounding channels for per-rate power table
3674	 * calibration */
3675	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676
3677	/* Setup rate power table */
3678	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679
3680	/* Write rate power table on hw */
3681	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684
3685	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688
3689	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692
3693	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696
3697	/* FIXME: TPC support */
3698	if (ah->ah_txpower.txp_tpc) {
3699		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701
3702		ath5k_hw_reg_write(ah,
3703			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706			AR5K_TPC);
3707	} else {
3708		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709			AR5K_PHY_TXPOWER_RATE_MAX);
3710	}
3711
3712	return 0;
3713}
3714
3715/**
3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717 * @ah: The &struct ath5k_hw
3718 * @txpower: The requested tx power limit in 0.5dB steps
3719 *
3720 * This function provides access to ath5k_hw_txpower to the driver in
3721 * case user or an application changes it while PHY is running.
3722 */
3723int
3724ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725{
3726	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727		"changing txpower to %d\n", txpower);
3728
3729	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730}
3731
3732
3733/*************\
3734 Init function
3735\*************/
3736
3737/**
3738 * ath5k_hw_phy_init() - Initialize PHY
3739 * @ah: The &struct ath5k_hw
3740 * @channel: The @struct ieee80211_channel
3741 * @mode: One of enum ath5k_driver_mode
3742 * @fast: Try a fast channel switch instead
3743 *
3744 * This is the main function used during reset to initialize PHY
3745 * or do a fast channel change if possible.
3746 *
3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748 * warm reset state !
3749 */
3750int
3751ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752		      u8 mode, bool fast)
3753{
3754	struct ieee80211_channel *curr_channel;
3755	int ret, i;
3756	u32 phy_tst1;
3757	ret = 0;
3758
3759	/*
3760	 * Sanity check for fast flag
3761	 * Don't try fast channel change when changing modulation
3762	 * mode/band. We check for chip compatibility on
3763	 * ath5k_hw_reset.
3764	 */
3765	curr_channel = ah->ah_current_channel;
3766	if (fast && (channel->hw_value != curr_channel->hw_value))
3767		return -EINVAL;
3768
3769	/*
3770	 * On fast channel change we only set the synth parameters
3771	 * while PHY is running, enable calibration and skip the rest.
3772	 */
3773	if (fast) {
3774		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775				    AR5K_PHY_RFBUS_REQ_REQUEST);
3776		for (i = 0; i < 100; i++) {
3777			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778				break;
3779			udelay(5);
3780		}
3781		/* Failed */
3782		if (i >= 100)
3783			return -EIO;
3784
3785		/* Set channel and wait for synth */
3786		ret = ath5k_hw_channel(ah, channel);
3787		if (ret)
3788			return ret;
3789
3790		ath5k_hw_wait_for_synth(ah, channel);
3791	}
3792
3793	/*
3794	 * Set TX power
3795	 *
3796	 * Note: We need to do that before we set
3797	 * RF buffer settings on 5211/5212+ so that we
3798	 * properly set curve indices.
3799	 */
3800	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801					ah->ah_txpower.txp_requested * 2 :
3802					AR5K_TUNE_MAX_TXPOWER);
3803	if (ret)
3804		return ret;
3805
3806	/* Write OFDM timings on 5212*/
3807	if (ah->ah_version == AR5K_AR5212 &&
3808		channel->hw_value != AR5K_MODE_11B) {
3809
3810		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811		if (ret)
3812			return ret;
3813
3814		/* Spur info is available only from EEPROM versions
3815		 * greater than 5.3, but the EEPROM routines will use
3816		 * static values for older versions */
3817		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818			ath5k_hw_set_spur_mitigation_filter(ah,
3819							    channel);
3820	}
3821
3822	/* If we used fast channel switching
3823	 * we are done, release RF bus and
3824	 * fire up NF calibration.
3825	 *
3826	 * Note: Only NF calibration due to
3827	 * channel change, not AGC calibration
3828	 * since AGC is still running !
3829	 */
3830	if (fast) {
3831		/*
3832		 * Release RF Bus grant
3833		 */
3834		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835				    AR5K_PHY_RFBUS_REQ_REQUEST);
3836
3837		/*
3838		 * Start NF calibration
3839		 */
3840		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841					AR5K_PHY_AGCCTL_NF);
3842
3843		return ret;
3844	}
3845
3846	/*
3847	 * For 5210 we do all initialization using
3848	 * initvals, so we don't have to modify
3849	 * any settings (5210 also only supports
3850	 * a/aturbo modes)
3851	 */
3852	if (ah->ah_version != AR5K_AR5210) {
3853
3854		/*
3855		 * Write initial RF gain settings
3856		 * This should work for both 5111/5112
3857		 */
3858		ret = ath5k_hw_rfgain_init(ah, channel->band);
3859		if (ret)
3860			return ret;
3861
3862		usleep_range(1000, 1500);
3863
3864		/*
3865		 * Write RF buffer
3866		 */
3867		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868		if (ret)
3869			return ret;
3870
3871		/*Enable/disable 802.11b mode on 5111
3872		(enable 2111 frequency converter + CCK)*/
3873		if (ah->ah_radio == AR5K_RF5111) {
3874			if (mode == AR5K_MODE_11B)
3875				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876				    AR5K_TXCFG_B_MODE);
3877			else
3878				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879				    AR5K_TXCFG_B_MODE);
3880		}
3881
3882	} else if (ah->ah_version == AR5K_AR5210) {
3883		usleep_range(1000, 1500);
3884		/* Disable phy and wait */
3885		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886		usleep_range(1000, 1500);
3887	}
3888
3889	/* Set channel on PHY */
3890	ret = ath5k_hw_channel(ah, channel);
3891	if (ret)
3892		return ret;
3893
3894	/*
3895	 * Enable the PHY and wait until completion
3896	 * This includes BaseBand and Synthesizer
3897	 * activation.
3898	 */
3899	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900
3901	ath5k_hw_wait_for_synth(ah, channel);
3902
3903	/*
3904	 * Perform ADC test to see if baseband is ready
3905	 * Set tx hold and check adc test register
3906	 */
3907	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909	for (i = 0; i <= 20; i++) {
3910		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911			break;
3912		usleep_range(200, 250);
3913	}
3914	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915
3916	/*
3917	 * Start automatic gain control calibration
3918	 *
3919	 * During AGC calibration RX path is re-routed to
3920	 * a power detector so we don't receive anything.
3921	 *
3922	 * This method is used to calibrate some static offsets
3923	 * used together with on-the fly I/Q calibration (the
3924	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3925	 * interrupt rx path.
3926	 *
3927	 * While rx path is re-routed to the power detector we also
3928	 * start a noise floor calibration to measure the
3929	 * card's noise floor (the noise we measure when we are not
3930	 * transmitting or receiving anything).
3931	 *
3932	 * If we are in a noisy environment, AGC calibration may time
3933	 * out and/or noise floor calibration might timeout.
3934	 */
3935	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937
3938	/* At the same time start I/Q calibration for QAM constellation
3939	 * -no need for CCK- */
3940	ah->ah_iq_cal_needed = false;
3941	if (!(mode == AR5K_MODE_11B)) {
3942		ah->ah_iq_cal_needed = true;
3943		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946				AR5K_PHY_IQ_RUN);
3947	}
3948
3949	/* Wait for gain calibration to finish (we check for I/Q calibration
3950	 * during ath5k_phy_calibrate) */
3951	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954			channel->center_freq);
3955	}
3956
3957	/* Restore antenna mode */
3958	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959
3960	return ret;
3961}