Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.1
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
 
 
  43#include <linux/module.h>
  44#include <linux/delay.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/hardirq.h>
  47#include <linux/if.h>
  48#include <linux/io.h>
  49#include <linux/netdevice.h>
  50#include <linux/cache.h>
  51#include <linux/ethtool.h>
  52#include <linux/uaccess.h>
  53#include <linux/slab.h>
  54#include <linux/etherdevice.h>
 
  55
 
  56#include <net/ieee80211_radiotap.h>
  57
  58#include <asm/unaligned.h>
  59
 
  60#include "base.h"
  61#include "reg.h"
  62#include "debug.h"
  63#include "ani.h"
 
 
  64
  65#define CREATE_TRACE_POINTS
  66#include "trace.h"
  67
  68int ath5k_modparam_nohwcrypt;
  69module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  70MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  71
  72static int modparam_all_channels;
  73module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
  74MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
  75
  76static int modparam_fastchanswitch;
  77module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
  78MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  79
 
 
 
 
 
  80
  81/* Module info */
  82MODULE_AUTHOR("Jiri Slaby");
  83MODULE_AUTHOR("Nick Kossifidis");
  84MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  85MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  86MODULE_LICENSE("Dual BSD/GPL");
  87
  88static int ath5k_init(struct ieee80211_hw *hw);
  89static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  90								bool skip_pcu);
  91
  92/* Known SREVs */
  93static const struct ath5k_srev_name srev_names[] = {
  94#ifdef CONFIG_ATHEROS_AR231X
  95	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
  96	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
  97	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
  98	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
  99	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
 100	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
 101	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
 102#else
 103	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
 104	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
 105	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
 106	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
 107	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
 108	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
 109	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
 110	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
 111	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
 112	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
 113	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
 114	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
 115	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
 116	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
 117	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
 118	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
 119	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
 120	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
 121#endif
 122	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
 123	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
 124	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
 125	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
 126	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
 127	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
 128	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
 129	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
 130	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
 131	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
 132	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
 133	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
 134	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
 135	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
 136	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
 137#ifdef CONFIG_ATHEROS_AR231X
 138	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
 139	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
 140#endif
 141	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
 142};
 143
 144static const struct ieee80211_rate ath5k_rates[] = {
 145	{ .bitrate = 10,
 146	  .hw_value = ATH5K_RATE_CODE_1M, },
 147	{ .bitrate = 20,
 148	  .hw_value = ATH5K_RATE_CODE_2M,
 149	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 150	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 151	{ .bitrate = 55,
 152	  .hw_value = ATH5K_RATE_CODE_5_5M,
 153	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 154	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 155	{ .bitrate = 110,
 156	  .hw_value = ATH5K_RATE_CODE_11M,
 157	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 158	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 159	{ .bitrate = 60,
 160	  .hw_value = ATH5K_RATE_CODE_6M,
 161	  .flags = 0 },
 
 162	{ .bitrate = 90,
 163	  .hw_value = ATH5K_RATE_CODE_9M,
 164	  .flags = 0 },
 
 165	{ .bitrate = 120,
 166	  .hw_value = ATH5K_RATE_CODE_12M,
 167	  .flags = 0 },
 
 168	{ .bitrate = 180,
 169	  .hw_value = ATH5K_RATE_CODE_18M,
 170	  .flags = 0 },
 
 171	{ .bitrate = 240,
 172	  .hw_value = ATH5K_RATE_CODE_24M,
 173	  .flags = 0 },
 
 174	{ .bitrate = 360,
 175	  .hw_value = ATH5K_RATE_CODE_36M,
 176	  .flags = 0 },
 
 177	{ .bitrate = 480,
 178	  .hw_value = ATH5K_RATE_CODE_48M,
 179	  .flags = 0 },
 
 180	{ .bitrate = 540,
 181	  .hw_value = ATH5K_RATE_CODE_54M,
 182	  .flags = 0 },
 183	/* XR missing */
 184};
 185
 186static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 187{
 188	u64 tsf = ath5k_hw_get_tsf64(ah);
 189
 190	if ((tsf & 0x7fff) < rstamp)
 191		tsf -= 0x8000;
 192
 193	return (tsf & ~0x7fff) | rstamp;
 194}
 195
 196const char *
 197ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 198{
 199	const char *name = "xxxxx";
 200	unsigned int i;
 201
 202	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 203		if (srev_names[i].sr_type != type)
 204			continue;
 205
 206		if ((val & 0xf0) == srev_names[i].sr_val)
 207			name = srev_names[i].sr_name;
 208
 209		if ((val & 0xff) == srev_names[i].sr_val) {
 210			name = srev_names[i].sr_name;
 211			break;
 212		}
 213	}
 214
 215	return name;
 216}
 217static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 218{
 219	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 220	return ath5k_hw_reg_read(ah, reg_offset);
 221}
 222
 223static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 224{
 225	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 226	ath5k_hw_reg_write(ah, val, reg_offset);
 227}
 228
 229static const struct ath_ops ath5k_common_ops = {
 230	.read = ath5k_ioread32,
 231	.write = ath5k_iowrite32,
 232};
 233
 234/***********************\
 235* Driver Initialization *
 236\***********************/
 237
 238static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
 
 239{
 240	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 241	struct ath5k_hw *ah = hw->priv;
 242	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 243
 244	return ath_reg_notifier_apply(wiphy, request, regulatory);
 245}
 246
 247/********************\
 248* Channel/mode setup *
 249\********************/
 250
 251/*
 252 * Returns true for the channel numbers used without all_channels modparam.
 253 */
 
 
 
 
 
 
 
 254static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 255{
 256	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
 257		return true;
 258
 259	return	/* UNII 1,2 */
 260		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 261		/* midband */
 262		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 263		/* UNII-3 */
 264		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 265		/* 802.11j 5.030-5.080 GHz (20MHz) */
 266		(chan == 8 || chan == 12 || chan == 16) ||
 267		/* 802.11j 4.9GHz (20MHz) */
 268		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
 269}
 
 270
 271static unsigned int
 272ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 273		unsigned int mode, unsigned int max)
 274{
 275	unsigned int count, size, chfreq, freq, ch;
 276	enum ieee80211_band band;
 277
 278	switch (mode) {
 279	case AR5K_MODE_11A:
 280		/* 1..220, but 2GHz frequencies are filtered by check_channel */
 281		size = 220;
 282		chfreq = CHANNEL_5GHZ;
 283		band = IEEE80211_BAND_5GHZ;
 284		break;
 285	case AR5K_MODE_11B:
 286	case AR5K_MODE_11G:
 287		size = 26;
 288		chfreq = CHANNEL_2GHZ;
 289		band = IEEE80211_BAND_2GHZ;
 290		break;
 291	default:
 292		ATH5K_WARN(ah, "bad mode, not copying channels\n");
 293		return 0;
 294	}
 295
 296	count = 0;
 297	for (ch = 1; ch <= size && count < max; ch++) {
 298		freq = ieee80211_channel_to_frequency(ch, band);
 299
 300		if (freq == 0) /* mapping failed - not a standard channel */
 301			continue;
 302
 
 
 
 
 
 303		/* Check if channel is supported by the chipset */
 304		if (!ath5k_channel_ok(ah, freq, chfreq))
 305			continue;
 306
 307		if (!modparam_all_channels &&
 308		    !ath5k_is_standard_channel(ch, band))
 309			continue;
 310
 311		/* Write channel info and increment counter */
 312		channels[count].center_freq = freq;
 313		channels[count].band = band;
 314		switch (mode) {
 315		case AR5K_MODE_11A:
 316		case AR5K_MODE_11G:
 317			channels[count].hw_value = chfreq | CHANNEL_OFDM;
 318			break;
 319		case AR5K_MODE_11B:
 320			channels[count].hw_value = CHANNEL_B;
 321		}
 322
 323		count++;
 324	}
 325
 326	return count;
 327}
 328
 329static void
 330ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 331{
 332	u8 i;
 333
 334	for (i = 0; i < AR5K_MAX_RATES; i++)
 335		ah->rate_idx[b->band][i] = -1;
 336
 337	for (i = 0; i < b->n_bitrates; i++) {
 338		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 339		if (b->bitrates[i].hw_value_short)
 340			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 341	}
 342}
 343
 344static int
 345ath5k_setup_bands(struct ieee80211_hw *hw)
 346{
 347	struct ath5k_hw *ah = hw->priv;
 348	struct ieee80211_supported_band *sband;
 349	int max_c, count_c = 0;
 350	int i;
 351
 352	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
 353	max_c = ARRAY_SIZE(ah->channels);
 354
 355	/* 2GHz band */
 356	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
 357	sband->band = IEEE80211_BAND_2GHZ;
 358	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
 359
 360	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 361		/* G mode */
 362		memcpy(sband->bitrates, &ath5k_rates[0],
 363		       sizeof(struct ieee80211_rate) * 12);
 364		sband->n_bitrates = 12;
 365
 366		sband->channels = ah->channels;
 367		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 368					AR5K_MODE_11G, max_c);
 369
 370		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 371		count_c = sband->n_channels;
 372		max_c -= count_c;
 373	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 374		/* B mode */
 375		memcpy(sband->bitrates, &ath5k_rates[0],
 376		       sizeof(struct ieee80211_rate) * 4);
 377		sband->n_bitrates = 4;
 378
 379		/* 5211 only supports B rates and uses 4bit rate codes
 380		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 381		 * fix them up here:
 382		 */
 383		if (ah->ah_version == AR5K_AR5211) {
 384			for (i = 0; i < 4; i++) {
 385				sband->bitrates[i].hw_value =
 386					sband->bitrates[i].hw_value & 0xF;
 387				sband->bitrates[i].hw_value_short =
 388					sband->bitrates[i].hw_value_short & 0xF;
 389			}
 390		}
 391
 392		sband->channels = ah->channels;
 393		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 394					AR5K_MODE_11B, max_c);
 395
 396		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 397		count_c = sband->n_channels;
 398		max_c -= count_c;
 399	}
 400	ath5k_setup_rate_idx(ah, sband);
 401
 402	/* 5GHz band, A mode */
 403	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 404		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
 405		sband->band = IEEE80211_BAND_5GHZ;
 406		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
 407
 408		memcpy(sband->bitrates, &ath5k_rates[4],
 409		       sizeof(struct ieee80211_rate) * 8);
 410		sband->n_bitrates = 8;
 411
 412		sband->channels = &ah->channels[count_c];
 413		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 414					AR5K_MODE_11A, max_c);
 415
 416		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
 417	}
 418	ath5k_setup_rate_idx(ah, sband);
 419
 420	ath5k_debug_dump_bands(ah);
 421
 422	return 0;
 423}
 424
 425/*
 426 * Set/change channels. We always reset the chip.
 427 * To accomplish this we must first cleanup any pending DMA,
 428 * then restart stuff after a la  ath5k_init.
 429 *
 430 * Called with ah->lock.
 431 */
 432int
 433ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
 434{
 435	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 436		  "channel set, resetting (%u -> %u MHz)\n",
 437		  ah->curchan->center_freq, chan->center_freq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439	/*
 440	 * To switch channels clear any pending DMA operations;
 441	 * wait long enough for the RX fifo to drain, reset the
 442	 * hardware at the new frequency, and then re-enable
 443	 * the relevant bits of the h/w.
 444	 */
 445	return ath5k_reset(ah, chan, true);
 446}
 447
 448void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 449{
 450	struct ath5k_vif_iter_data *iter_data = data;
 451	int i;
 452	struct ath5k_vif *avf = (void *)vif->drv_priv;
 453
 454	if (iter_data->hw_macaddr)
 455		for (i = 0; i < ETH_ALEN; i++)
 456			iter_data->mask[i] &=
 457				~(iter_data->hw_macaddr[i] ^ mac[i]);
 458
 459	if (!iter_data->found_active) {
 460		iter_data->found_active = true;
 461		memcpy(iter_data->active_mac, mac, ETH_ALEN);
 462	}
 463
 464	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 465		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
 466			iter_data->need_set_hw_addr = false;
 467
 468	if (!iter_data->any_assoc) {
 469		if (avf->assoc)
 470			iter_data->any_assoc = true;
 471	}
 472
 473	/* Calculate combined mode - when APs are active, operate in AP mode.
 474	 * Otherwise use the mode of the new interface. This can currently
 475	 * only deal with combinations of APs and STAs. Only one ad-hoc
 476	 * interfaces is allowed.
 477	 */
 478	if (avf->opmode == NL80211_IFTYPE_AP)
 479		iter_data->opmode = NL80211_IFTYPE_AP;
 480	else {
 481		if (avf->opmode == NL80211_IFTYPE_STATION)
 482			iter_data->n_stas++;
 483		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 484			iter_data->opmode = avf->opmode;
 485	}
 486}
 487
 488void
 489ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 490				   struct ieee80211_vif *vif)
 491{
 492	struct ath_common *common = ath5k_hw_common(ah);
 493	struct ath5k_vif_iter_data iter_data;
 494	u32 rfilt;
 495
 496	/*
 497	 * Use the hardware MAC address as reference, the hardware uses it
 498	 * together with the BSSID mask when matching addresses.
 499	 */
 500	iter_data.hw_macaddr = common->macaddr;
 501	memset(&iter_data.mask, 0xff, ETH_ALEN);
 502	iter_data.found_active = false;
 503	iter_data.need_set_hw_addr = true;
 504	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 505	iter_data.n_stas = 0;
 506
 507	if (vif)
 508		ath5k_vif_iter(&iter_data, vif->addr, vif);
 509
 510	/* Get list of all active MAC addresses */
 511	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
 512						   &iter_data);
 
 513	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 514
 515	ah->opmode = iter_data.opmode;
 516	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 517		/* Nothing active, default to station mode */
 518		ah->opmode = NL80211_IFTYPE_STATION;
 519
 520	ath5k_hw_set_opmode(ah, ah->opmode);
 521	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 522		  ah->opmode, ath_opmode_to_string(ah->opmode));
 523
 524	if (iter_data.need_set_hw_addr && iter_data.found_active)
 525		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 526
 527	if (ath5k_hw_hasbssidmask(ah))
 528		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 529
 530	/* Set up RX Filter */
 531	if (iter_data.n_stas > 1) {
 532		/* If you have multiple STA interfaces connected to
 533		 * different APs, ARPs are not received (most of the time?)
 534		 * Enabling PROMISC appears to fix that problem.
 535		 */
 536		ah->filter_flags |= AR5K_RX_FILTER_PROM;
 537	}
 538
 539	rfilt = ah->filter_flags;
 540	ath5k_hw_set_rx_filter(ah, rfilt);
 541	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 542}
 543
 544static inline int
 545ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 546{
 547	int rix;
 548
 549	/* return base rate on errors */
 550	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 551			"hw_rix out of bounds: %x\n", hw_rix))
 552		return 0;
 553
 554	rix = ah->rate_idx[ah->curchan->band][hw_rix];
 555	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 556		rix = 0;
 557
 558	return rix;
 559}
 560
 561/***************\
 562* Buffers setup *
 563\***************/
 564
 565static
 566struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 567{
 568	struct ath_common *common = ath5k_hw_common(ah);
 569	struct sk_buff *skb;
 570
 571	/*
 572	 * Allocate buffer with headroom_needed space for the
 573	 * fake physical layer header at the start.
 574	 */
 575	skb = ath_rxbuf_alloc(common,
 576			      common->rx_bufsize,
 577			      GFP_ATOMIC);
 578
 579	if (!skb) {
 580		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 581				common->rx_bufsize);
 582		return NULL;
 583	}
 584
 585	*skb_addr = dma_map_single(ah->dev,
 586				   skb->data, common->rx_bufsize,
 587				   DMA_FROM_DEVICE);
 588
 589	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 590		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 591		dev_kfree_skb(skb);
 592		return NULL;
 593	}
 594	return skb;
 595}
 596
 597static int
 598ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 599{
 600	struct sk_buff *skb = bf->skb;
 601	struct ath5k_desc *ds;
 602	int ret;
 603
 604	if (!skb) {
 605		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 606		if (!skb)
 607			return -ENOMEM;
 608		bf->skb = skb;
 609	}
 610
 611	/*
 612	 * Setup descriptors.  For receive we always terminate
 613	 * the descriptor list with a self-linked entry so we'll
 614	 * not get overrun under high load (as can happen with a
 615	 * 5212 when ANI processing enables PHY error frames).
 616	 *
 617	 * To ensure the last descriptor is self-linked we create
 618	 * each descriptor as self-linked and add it to the end.  As
 619	 * each additional descriptor is added the previous self-linked
 620	 * entry is "fixed" naturally.  This should be safe even
 621	 * if DMA is happening.  When processing RX interrupts we
 622	 * never remove/process the last, self-linked, entry on the
 623	 * descriptor list.  This ensures the hardware always has
 624	 * someplace to write a new frame.
 625	 */
 626	ds = bf->desc;
 627	ds->ds_link = bf->daddr;	/* link to self */
 628	ds->ds_data = bf->skbaddr;
 629	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 630	if (ret) {
 631		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 632		return ret;
 633	}
 634
 635	if (ah->rxlink != NULL)
 636		*ah->rxlink = bf->daddr;
 637	ah->rxlink = &ds->ds_link;
 638	return 0;
 639}
 640
 641static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 642{
 643	struct ieee80211_hdr *hdr;
 644	enum ath5k_pkt_type htype;
 645	__le16 fc;
 646
 647	hdr = (struct ieee80211_hdr *)skb->data;
 648	fc = hdr->frame_control;
 649
 650	if (ieee80211_is_beacon(fc))
 651		htype = AR5K_PKT_TYPE_BEACON;
 652	else if (ieee80211_is_probe_resp(fc))
 653		htype = AR5K_PKT_TYPE_PROBE_RESP;
 654	else if (ieee80211_is_atim(fc))
 655		htype = AR5K_PKT_TYPE_ATIM;
 656	else if (ieee80211_is_pspoll(fc))
 657		htype = AR5K_PKT_TYPE_PSPOLL;
 658	else
 659		htype = AR5K_PKT_TYPE_NORMAL;
 660
 661	return htype;
 662}
 663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664static int
 665ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 666		  struct ath5k_txq *txq, int padsize)
 
 667{
 668	struct ath5k_desc *ds = bf->desc;
 669	struct sk_buff *skb = bf->skb;
 670	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 671	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 672	struct ieee80211_rate *rate;
 673	unsigned int mrr_rate[3], mrr_tries[3];
 674	int i, ret;
 675	u16 hw_rate;
 676	u16 cts_rate = 0;
 677	u16 duration = 0;
 678	u8 rc_flags;
 679
 680	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 681
 682	/* XXX endianness */
 683	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 684			DMA_TO_DEVICE);
 685
 686	rate = ieee80211_get_tx_rate(ah->hw, info);
 
 
 
 
 
 
 
 687	if (!rate) {
 688		ret = -EINVAL;
 689		goto err_unmap;
 690	}
 691
 692	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 693		flags |= AR5K_TXDESC_NOACK;
 694
 695	rc_flags = info->control.rates[0].flags;
 696	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 697		rate->hw_value_short : rate->hw_value;
 698
 699	pktlen = skb->len;
 700
 701	/* FIXME: If we are in g mode and rate is a CCK rate
 702	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 703	 * from tx power (value is in dB units already) */
 704	if (info->control.hw_key) {
 705		keyidx = info->control.hw_key->hw_key_idx;
 706		pktlen += info->control.hw_key->icv_len;
 707	}
 708	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 709		flags |= AR5K_TXDESC_RTSENA;
 710		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 711		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 712			info->control.vif, pktlen, info));
 713	}
 714	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 715		flags |= AR5K_TXDESC_CTSENA;
 716		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 717		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 718			info->control.vif, pktlen, info));
 719	}
 
 720	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 721		ieee80211_get_hdrlen_from_skb(skb), padsize,
 722		get_hw_packet_type(skb),
 723		(ah->power_level * 2),
 724		hw_rate,
 725		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
 726		cts_rate, duration);
 727	if (ret)
 728		goto err_unmap;
 729
 730	memset(mrr_rate, 0, sizeof(mrr_rate));
 731	memset(mrr_tries, 0, sizeof(mrr_tries));
 732	for (i = 0; i < 3; i++) {
 733		rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
 734		if (!rate)
 735			break;
 736
 737		mrr_rate[i] = rate->hw_value;
 738		mrr_tries[i] = info->control.rates[i + 1].count;
 739	}
 
 
 
 
 
 
 740
 741	ath5k_hw_setup_mrr_tx_desc(ah, ds,
 742		mrr_rate[0], mrr_tries[0],
 743		mrr_rate[1], mrr_tries[1],
 744		mrr_rate[2], mrr_tries[2]);
 
 745
 746	ds->ds_link = 0;
 747	ds->ds_data = bf->skbaddr;
 748
 749	spin_lock_bh(&txq->lock);
 750	list_add_tail(&bf->list, &txq->q);
 751	txq->txq_len++;
 752	if (txq->link == NULL) /* is this first packet? */
 753		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 754	else /* no, so only link it */
 755		*txq->link = bf->daddr;
 756
 757	txq->link = &ds->ds_link;
 758	ath5k_hw_start_tx_dma(ah, txq->qnum);
 759	mmiowb();
 760	spin_unlock_bh(&txq->lock);
 761
 762	return 0;
 763err_unmap:
 764	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 765	return ret;
 766}
 767
 768/*******************\
 769* Descriptors setup *
 770\*******************/
 771
 772static int
 773ath5k_desc_alloc(struct ath5k_hw *ah)
 774{
 775	struct ath5k_desc *ds;
 776	struct ath5k_buf *bf;
 777	dma_addr_t da;
 778	unsigned int i;
 779	int ret;
 780
 781	/* allocate descriptors */
 782	ah->desc_len = sizeof(struct ath5k_desc) *
 783			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 784
 785	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 786				&ah->desc_daddr, GFP_KERNEL);
 787	if (ah->desc == NULL) {
 788		ATH5K_ERR(ah, "can't allocate descriptors\n");
 789		ret = -ENOMEM;
 790		goto err;
 791	}
 792	ds = ah->desc;
 793	da = ah->desc_daddr;
 794	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 795		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 796
 797	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 798			sizeof(struct ath5k_buf), GFP_KERNEL);
 799	if (bf == NULL) {
 800		ATH5K_ERR(ah, "can't allocate bufptr\n");
 801		ret = -ENOMEM;
 802		goto err_free;
 803	}
 804	ah->bufptr = bf;
 805
 806	INIT_LIST_HEAD(&ah->rxbuf);
 807	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 808		bf->desc = ds;
 809		bf->daddr = da;
 810		list_add_tail(&bf->list, &ah->rxbuf);
 811	}
 812
 813	INIT_LIST_HEAD(&ah->txbuf);
 814	ah->txbuf_len = ATH_TXBUF;
 815	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 816		bf->desc = ds;
 817		bf->daddr = da;
 818		list_add_tail(&bf->list, &ah->txbuf);
 819	}
 820
 821	/* beacon buffers */
 822	INIT_LIST_HEAD(&ah->bcbuf);
 823	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 824		bf->desc = ds;
 825		bf->daddr = da;
 826		list_add_tail(&bf->list, &ah->bcbuf);
 827	}
 828
 829	return 0;
 830err_free:
 831	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 832err:
 833	ah->desc = NULL;
 834	return ret;
 835}
 836
 837void
 838ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 839{
 840	BUG_ON(!bf);
 841	if (!bf->skb)
 842		return;
 843	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 844			DMA_TO_DEVICE);
 845	dev_kfree_skb_any(bf->skb);
 846	bf->skb = NULL;
 847	bf->skbaddr = 0;
 848	bf->desc->ds_data = 0;
 849}
 850
 851void
 852ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 853{
 854	struct ath_common *common = ath5k_hw_common(ah);
 855
 856	BUG_ON(!bf);
 857	if (!bf->skb)
 858		return;
 859	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 860			DMA_FROM_DEVICE);
 861	dev_kfree_skb_any(bf->skb);
 862	bf->skb = NULL;
 863	bf->skbaddr = 0;
 864	bf->desc->ds_data = 0;
 865}
 866
 867static void
 868ath5k_desc_free(struct ath5k_hw *ah)
 869{
 870	struct ath5k_buf *bf;
 871
 872	list_for_each_entry(bf, &ah->txbuf, list)
 873		ath5k_txbuf_free_skb(ah, bf);
 874	list_for_each_entry(bf, &ah->rxbuf, list)
 875		ath5k_rxbuf_free_skb(ah, bf);
 876	list_for_each_entry(bf, &ah->bcbuf, list)
 877		ath5k_txbuf_free_skb(ah, bf);
 878
 879	/* Free memory associated with all descriptors */
 880	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 881	ah->desc = NULL;
 882	ah->desc_daddr = 0;
 883
 884	kfree(ah->bufptr);
 885	ah->bufptr = NULL;
 886}
 887
 888
 889/**************\
 890* Queues setup *
 891\**************/
 892
 893static struct ath5k_txq *
 894ath5k_txq_setup(struct ath5k_hw *ah,
 895		int qtype, int subtype)
 896{
 897	struct ath5k_txq *txq;
 898	struct ath5k_txq_info qi = {
 899		.tqi_subtype = subtype,
 900		/* XXX: default values not correct for B and XR channels,
 901		 * but who cares? */
 902		.tqi_aifs = AR5K_TUNE_AIFS,
 903		.tqi_cw_min = AR5K_TUNE_CWMIN,
 904		.tqi_cw_max = AR5K_TUNE_CWMAX
 905	};
 906	int qnum;
 907
 908	/*
 909	 * Enable interrupts only for EOL and DESC conditions.
 910	 * We mark tx descriptors to receive a DESC interrupt
 911	 * when a tx queue gets deep; otherwise we wait for the
 912	 * EOL to reap descriptors.  Note that this is done to
 913	 * reduce interrupt load and this only defers reaping
 914	 * descriptors, never transmitting frames.  Aside from
 915	 * reducing interrupts this also permits more concurrency.
 916	 * The only potential downside is if the tx queue backs
 917	 * up in which case the top half of the kernel may backup
 918	 * due to a lack of tx descriptors.
 919	 */
 920	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
 921				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
 922	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
 923	if (qnum < 0) {
 924		/*
 925		 * NB: don't print a message, this happens
 926		 * normally on parts with too few tx queues
 927		 */
 928		return ERR_PTR(qnum);
 929	}
 930	if (qnum >= ARRAY_SIZE(ah->txqs)) {
 931		ATH5K_ERR(ah, "hw qnum %u out of range, max %tu!\n",
 932			qnum, ARRAY_SIZE(ah->txqs));
 933		ath5k_hw_release_tx_queue(ah, qnum);
 934		return ERR_PTR(-EINVAL);
 935	}
 936	txq = &ah->txqs[qnum];
 937	if (!txq->setup) {
 938		txq->qnum = qnum;
 939		txq->link = NULL;
 940		INIT_LIST_HEAD(&txq->q);
 941		spin_lock_init(&txq->lock);
 942		txq->setup = true;
 943		txq->txq_len = 0;
 944		txq->txq_max = ATH5K_TXQ_LEN_MAX;
 945		txq->txq_poll_mark = false;
 946		txq->txq_stuck = 0;
 947	}
 948	return &ah->txqs[qnum];
 949}
 950
 951static int
 952ath5k_beaconq_setup(struct ath5k_hw *ah)
 953{
 954	struct ath5k_txq_info qi = {
 955		/* XXX: default values not correct for B and XR channels,
 956		 * but who cares? */
 957		.tqi_aifs = AR5K_TUNE_AIFS,
 958		.tqi_cw_min = AR5K_TUNE_CWMIN,
 959		.tqi_cw_max = AR5K_TUNE_CWMAX,
 960		/* NB: for dynamic turbo, don't enable any other interrupts */
 961		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
 962	};
 963
 964	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
 965}
 966
 967static int
 968ath5k_beaconq_config(struct ath5k_hw *ah)
 969{
 970	struct ath5k_txq_info qi;
 971	int ret;
 972
 973	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
 974	if (ret)
 975		goto err;
 976
 977	if (ah->opmode == NL80211_IFTYPE_AP ||
 978	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
 979		/*
 980		 * Always burst out beacon and CAB traffic
 981		 * (aifs = cwmin = cwmax = 0)
 982		 */
 983		qi.tqi_aifs = 0;
 984		qi.tqi_cw_min = 0;
 985		qi.tqi_cw_max = 0;
 986	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
 987		/*
 988		 * Adhoc mode; backoff between 0 and (2 * cw_min).
 989		 */
 990		qi.tqi_aifs = 0;
 991		qi.tqi_cw_min = 0;
 992		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
 993	}
 994
 995	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
 996		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
 997		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
 998
 999	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1000	if (ret) {
1001		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1002			"hardware queue!\n", __func__);
1003		goto err;
1004	}
1005	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1006	if (ret)
1007		goto err;
1008
1009	/* reconfigure cabq with ready time to 80% of beacon_interval */
1010	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1011	if (ret)
1012		goto err;
1013
1014	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1015	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1016	if (ret)
1017		goto err;
1018
1019	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1020err:
1021	return ret;
1022}
1023
1024/**
1025 * ath5k_drain_tx_buffs - Empty tx buffers
1026 *
1027 * @ah The &struct ath5k_hw
1028 *
1029 * Empty tx buffers from all queues in preparation
1030 * of a reset or during shutdown.
1031 *
1032 * NB:	this assumes output has been stopped and
1033 *	we do not need to block ath5k_tx_tasklet
1034 */
1035static void
1036ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1037{
1038	struct ath5k_txq *txq;
1039	struct ath5k_buf *bf, *bf0;
1040	int i;
1041
1042	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1043		if (ah->txqs[i].setup) {
1044			txq = &ah->txqs[i];
1045			spin_lock_bh(&txq->lock);
1046			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1047				ath5k_debug_printtxbuf(ah, bf);
1048
1049				ath5k_txbuf_free_skb(ah, bf);
1050
1051				spin_lock_bh(&ah->txbuflock);
1052				list_move_tail(&bf->list, &ah->txbuf);
1053				ah->txbuf_len++;
1054				txq->txq_len--;
1055				spin_unlock_bh(&ah->txbuflock);
1056			}
1057			txq->link = NULL;
1058			txq->txq_poll_mark = false;
1059			spin_unlock_bh(&txq->lock);
1060		}
1061	}
1062}
1063
1064static void
1065ath5k_txq_release(struct ath5k_hw *ah)
1066{
1067	struct ath5k_txq *txq = ah->txqs;
1068	unsigned int i;
1069
1070	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1071		if (txq->setup) {
1072			ath5k_hw_release_tx_queue(ah, txq->qnum);
1073			txq->setup = false;
1074		}
1075}
1076
1077
1078/*************\
1079* RX Handling *
1080\*************/
1081
1082/*
1083 * Enable the receive h/w following a reset.
1084 */
1085static int
1086ath5k_rx_start(struct ath5k_hw *ah)
1087{
1088	struct ath_common *common = ath5k_hw_common(ah);
1089	struct ath5k_buf *bf;
1090	int ret;
1091
1092	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1093
1094	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1095		  common->cachelsz, common->rx_bufsize);
1096
1097	spin_lock_bh(&ah->rxbuflock);
1098	ah->rxlink = NULL;
1099	list_for_each_entry(bf, &ah->rxbuf, list) {
1100		ret = ath5k_rxbuf_setup(ah, bf);
1101		if (ret != 0) {
1102			spin_unlock_bh(&ah->rxbuflock);
1103			goto err;
1104		}
1105	}
1106	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1107	ath5k_hw_set_rxdp(ah, bf->daddr);
1108	spin_unlock_bh(&ah->rxbuflock);
1109
1110	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1111	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1112	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1113
1114	return 0;
1115err:
1116	return ret;
1117}
1118
1119/*
1120 * Disable the receive logic on PCU (DRU)
1121 * In preparation for a shutdown.
1122 *
1123 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1124 * does.
1125 */
1126static void
1127ath5k_rx_stop(struct ath5k_hw *ah)
1128{
1129
1130	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1131	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1132
1133	ath5k_debug_printrxbuffs(ah);
1134}
1135
1136static unsigned int
1137ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1138		   struct ath5k_rx_status *rs)
1139{
1140	struct ath_common *common = ath5k_hw_common(ah);
1141	struct ieee80211_hdr *hdr = (void *)skb->data;
1142	unsigned int keyix, hlen;
1143
1144	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1145			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1146		return RX_FLAG_DECRYPTED;
1147
1148	/* Apparently when a default key is used to decrypt the packet
1149	   the hw does not set the index used to decrypt.  In such cases
1150	   get the index from the packet. */
1151	hlen = ieee80211_hdrlen(hdr->frame_control);
1152	if (ieee80211_has_protected(hdr->frame_control) &&
1153	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1154	    skb->len >= hlen + 4) {
1155		keyix = skb->data[hlen + 3] >> 6;
1156
1157		if (test_bit(keyix, common->keymap))
1158			return RX_FLAG_DECRYPTED;
1159	}
1160
1161	return 0;
1162}
1163
1164
1165static void
1166ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1167		     struct ieee80211_rx_status *rxs)
1168{
1169	struct ath_common *common = ath5k_hw_common(ah);
1170	u64 tsf, bc_tstamp;
1171	u32 hw_tu;
1172	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1173
1174	if (ieee80211_is_beacon(mgmt->frame_control) &&
1175	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1176	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1177		/*
1178		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1179		 * have updated the local TSF. We have to work around various
1180		 * hardware bugs, though...
1181		 */
1182		tsf = ath5k_hw_get_tsf64(ah);
1183		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1184		hw_tu = TSF_TO_TU(tsf);
1185
1186		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1187			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1188			(unsigned long long)bc_tstamp,
1189			(unsigned long long)rxs->mactime,
1190			(unsigned long long)(rxs->mactime - bc_tstamp),
1191			(unsigned long long)tsf);
1192
1193		/*
1194		 * Sometimes the HW will give us a wrong tstamp in the rx
1195		 * status, causing the timestamp extension to go wrong.
1196		 * (This seems to happen especially with beacon frames bigger
1197		 * than 78 byte (incl. FCS))
1198		 * But we know that the receive timestamp must be later than the
1199		 * timestamp of the beacon since HW must have synced to that.
1200		 *
1201		 * NOTE: here we assume mactime to be after the frame was
1202		 * received, not like mac80211 which defines it at the start.
1203		 */
1204		if (bc_tstamp > rxs->mactime) {
1205			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1206				"fixing mactime from %llx to %llx\n",
1207				(unsigned long long)rxs->mactime,
1208				(unsigned long long)tsf);
1209			rxs->mactime = tsf;
1210		}
1211
1212		/*
1213		 * Local TSF might have moved higher than our beacon timers,
1214		 * in that case we have to update them to continue sending
1215		 * beacons. This also takes care of synchronizing beacon sending
1216		 * times with other stations.
1217		 */
1218		if (hw_tu >= ah->nexttbtt)
1219			ath5k_beacon_update_timers(ah, bc_tstamp);
1220
1221		/* Check if the beacon timers are still correct, because a TSF
1222		 * update might have created a window between them - for a
1223		 * longer description see the comment of this function: */
1224		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1225			ath5k_beacon_update_timers(ah, bc_tstamp);
1226			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1227				"fixed beacon timers after beacon receive\n");
1228		}
1229	}
1230}
1231
1232static void
1233ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1234{
1235	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1236	struct ath_common *common = ath5k_hw_common(ah);
1237
1238	/* only beacons from our BSSID */
1239	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1240	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1241		return;
1242
1243	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1244
1245	/* in IBSS mode we should keep RSSI statistics per neighbour */
1246	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1247}
1248
1249/*
1250 * Compute padding position. skb must contain an IEEE 802.11 frame
1251 */
1252static int ath5k_common_padpos(struct sk_buff *skb)
1253{
1254	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1255	__le16 frame_control = hdr->frame_control;
1256	int padpos = 24;
1257
1258	if (ieee80211_has_a4(frame_control))
1259		padpos += ETH_ALEN;
1260
1261	if (ieee80211_is_data_qos(frame_control))
1262		padpos += IEEE80211_QOS_CTL_LEN;
1263
1264	return padpos;
1265}
1266
1267/*
1268 * This function expects an 802.11 frame and returns the number of
1269 * bytes added, or -1 if we don't have enough header room.
1270 */
1271static int ath5k_add_padding(struct sk_buff *skb)
1272{
1273	int padpos = ath5k_common_padpos(skb);
1274	int padsize = padpos & 3;
1275
1276	if (padsize && skb->len > padpos) {
1277
1278		if (skb_headroom(skb) < padsize)
1279			return -1;
1280
1281		skb_push(skb, padsize);
1282		memmove(skb->data, skb->data + padsize, padpos);
1283		return padsize;
1284	}
1285
1286	return 0;
1287}
1288
1289/*
1290 * The MAC header is padded to have 32-bit boundary if the
1291 * packet payload is non-zero. The general calculation for
1292 * padsize would take into account odd header lengths:
1293 * padsize = 4 - (hdrlen & 3); however, since only
1294 * even-length headers are used, padding can only be 0 or 2
1295 * bytes and we can optimize this a bit.  We must not try to
1296 * remove padding from short control frames that do not have a
1297 * payload.
1298 *
1299 * This function expects an 802.11 frame and returns the number of
1300 * bytes removed.
1301 */
1302static int ath5k_remove_padding(struct sk_buff *skb)
1303{
1304	int padpos = ath5k_common_padpos(skb);
1305	int padsize = padpos & 3;
1306
1307	if (padsize && skb->len >= padpos + padsize) {
1308		memmove(skb->data + padsize, skb->data, padpos);
1309		skb_pull(skb, padsize);
1310		return padsize;
1311	}
1312
1313	return 0;
1314}
1315
1316static void
1317ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1318		    struct ath5k_rx_status *rs)
1319{
1320	struct ieee80211_rx_status *rxs;
 
1321
1322	ath5k_remove_padding(skb);
1323
1324	rxs = IEEE80211_SKB_RXCB(skb);
1325
1326	rxs->flag = 0;
1327	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1328		rxs->flag |= RX_FLAG_MMIC_ERROR;
1329
1330	/*
1331	 * always extend the mac timestamp, since this information is
1332	 * also needed for proper IBSS merging.
1333	 *
1334	 * XXX: it might be too late to do it here, since rs_tstamp is
1335	 * 15bit only. that means TSF extension has to be done within
1336	 * 32768usec (about 32ms). it might be necessary to move this to
1337	 * the interrupt handler, like it is done in madwifi.
1338	 *
1339	 * Unfortunately we don't know when the hardware takes the rx
1340	 * timestamp (beginning of phy frame, data frame, end of rx?).
1341	 * The only thing we know is that it is hardware specific...
1342	 * On AR5213 it seems the rx timestamp is at the end of the
1343	 * frame, but I'm not sure.
1344	 *
1345	 * NOTE: mac80211 defines mactime at the beginning of the first
1346	 * data symbol. Since we don't have any time references it's
1347	 * impossible to comply to that. This affects IBSS merge only
1348	 * right now, so it's not too bad...
1349	 */
1350	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1351	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1352
1353	rxs->freq = ah->curchan->center_freq;
1354	rxs->band = ah->curchan->band;
1355
1356	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1357
1358	rxs->antenna = rs->rs_antenna;
1359
1360	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1361		ah->stats.antenna_rx[rs->rs_antenna]++;
1362	else
1363		ah->stats.antenna_rx[0]++; /* invalid */
1364
1365	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1366	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
 
 
 
 
 
 
 
 
 
 
1367
1368	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1369	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1370		rxs->flag |= RX_FLAG_SHORTPRE;
1371
1372	trace_ath5k_rx(ah, skb);
1373
1374	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
 
1375
1376	/* check beacons in IBSS mode */
1377	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1378		ath5k_check_ibss_tsf(ah, skb, rxs);
 
1379
1380	ieee80211_rx(ah->hw, skb);
1381}
1382
1383/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1384 *
1385 * Check if we want to further process this frame or not. Also update
1386 * statistics. Return true if we want this frame, false if not.
1387 */
1388static bool
1389ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1390{
1391	ah->stats.rx_all_count++;
1392	ah->stats.rx_bytes_count += rs->rs_datalen;
1393
1394	if (unlikely(rs->rs_status)) {
1395		if (rs->rs_status & AR5K_RXERR_CRC)
1396			ah->stats.rxerr_crc++;
1397		if (rs->rs_status & AR5K_RXERR_FIFO)
1398			ah->stats.rxerr_fifo++;
1399		if (rs->rs_status & AR5K_RXERR_PHY) {
1400			ah->stats.rxerr_phy++;
1401			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1402				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1403			return false;
1404		}
1405		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1406			/*
1407			 * Decrypt error.  If the error occurred
1408			 * because there was no hardware key, then
1409			 * let the frame through so the upper layers
1410			 * can process it.  This is necessary for 5210
1411			 * parts which have no way to setup a ``clear''
1412			 * key cache entry.
1413			 *
1414			 * XXX do key cache faulting
1415			 */
1416			ah->stats.rxerr_decrypt++;
1417			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1418			    !(rs->rs_status & AR5K_RXERR_CRC))
1419				return true;
1420		}
1421		if (rs->rs_status & AR5K_RXERR_MIC) {
1422			ah->stats.rxerr_mic++;
1423			return true;
1424		}
1425
1426		/* reject any frames with non-crypto errors */
1427		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1428			return false;
1429	}
1430
1431	if (unlikely(rs->rs_more)) {
1432		ah->stats.rxerr_jumbo++;
1433		return false;
1434	}
1435	return true;
1436}
1437
1438static void
1439ath5k_set_current_imask(struct ath5k_hw *ah)
1440{
1441	enum ath5k_int imask;
1442	unsigned long flags;
1443
1444	spin_lock_irqsave(&ah->irqlock, flags);
1445	imask = ah->imask;
1446	if (ah->rx_pending)
1447		imask &= ~AR5K_INT_RX_ALL;
1448	if (ah->tx_pending)
1449		imask &= ~AR5K_INT_TX_ALL;
1450	ath5k_hw_set_imr(ah, imask);
1451	spin_unlock_irqrestore(&ah->irqlock, flags);
1452}
1453
1454static void
1455ath5k_tasklet_rx(unsigned long data)
1456{
1457	struct ath5k_rx_status rs = {};
1458	struct sk_buff *skb, *next_skb;
1459	dma_addr_t next_skb_addr;
1460	struct ath5k_hw *ah = (void *)data;
1461	struct ath_common *common = ath5k_hw_common(ah);
1462	struct ath5k_buf *bf;
1463	struct ath5k_desc *ds;
1464	int ret;
1465
1466	spin_lock(&ah->rxbuflock);
1467	if (list_empty(&ah->rxbuf)) {
1468		ATH5K_WARN(ah, "empty rx buf pool\n");
1469		goto unlock;
1470	}
1471	do {
1472		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1473		BUG_ON(bf->skb == NULL);
1474		skb = bf->skb;
1475		ds = bf->desc;
1476
1477		/* bail if HW is still using self-linked descriptor */
1478		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1479			break;
1480
1481		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1482		if (unlikely(ret == -EINPROGRESS))
1483			break;
1484		else if (unlikely(ret)) {
1485			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1486			ah->stats.rxerr_proc++;
1487			break;
1488		}
1489
1490		if (ath5k_receive_frame_ok(ah, &rs)) {
1491			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1492
1493			/*
1494			 * If we can't replace bf->skb with a new skb under
1495			 * memory pressure, just skip this packet
1496			 */
1497			if (!next_skb)
1498				goto next;
1499
1500			dma_unmap_single(ah->dev, bf->skbaddr,
1501					 common->rx_bufsize,
1502					 DMA_FROM_DEVICE);
1503
1504			skb_put(skb, rs.rs_datalen);
1505
1506			ath5k_receive_frame(ah, skb, &rs);
1507
1508			bf->skb = next_skb;
1509			bf->skbaddr = next_skb_addr;
1510		}
1511next:
1512		list_move_tail(&bf->list, &ah->rxbuf);
1513	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1514unlock:
1515	spin_unlock(&ah->rxbuflock);
1516	ah->rx_pending = false;
1517	ath5k_set_current_imask(ah);
1518}
1519
1520
1521/*************\
1522* TX Handling *
1523\*************/
1524
1525void
1526ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1527	       struct ath5k_txq *txq)
1528{
1529	struct ath5k_hw *ah = hw->priv;
1530	struct ath5k_buf *bf;
1531	unsigned long flags;
1532	int padsize;
1533
1534	trace_ath5k_tx(ah, skb, txq);
1535
1536	/*
1537	 * The hardware expects the header padded to 4 byte boundaries.
1538	 * If this is not the case, we add the padding after the header.
1539	 */
1540	padsize = ath5k_add_padding(skb);
1541	if (padsize < 0) {
1542		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1543			  " headroom to pad");
1544		goto drop_packet;
1545	}
1546
1547	if (txq->txq_len >= txq->txq_max &&
1548	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1549		ieee80211_stop_queue(hw, txq->qnum);
1550
1551	spin_lock_irqsave(&ah->txbuflock, flags);
1552	if (list_empty(&ah->txbuf)) {
1553		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1554		spin_unlock_irqrestore(&ah->txbuflock, flags);
1555		ieee80211_stop_queues(hw);
1556		goto drop_packet;
1557	}
1558	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1559	list_del(&bf->list);
1560	ah->txbuf_len--;
1561	if (list_empty(&ah->txbuf))
1562		ieee80211_stop_queues(hw);
1563	spin_unlock_irqrestore(&ah->txbuflock, flags);
1564
1565	bf->skb = skb;
1566
1567	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1568		bf->skb = NULL;
1569		spin_lock_irqsave(&ah->txbuflock, flags);
1570		list_add_tail(&bf->list, &ah->txbuf);
1571		ah->txbuf_len++;
1572		spin_unlock_irqrestore(&ah->txbuflock, flags);
1573		goto drop_packet;
1574	}
1575	return;
1576
1577drop_packet:
1578	dev_kfree_skb_any(skb);
1579}
1580
1581static void
1582ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1583			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
 
1584{
1585	struct ieee80211_tx_info *info;
1586	u8 tries[3];
1587	int i;
 
1588
1589	ah->stats.tx_all_count++;
1590	ah->stats.tx_bytes_count += skb->len;
1591	info = IEEE80211_SKB_CB(skb);
1592
 
 
 
1593	tries[0] = info->status.rates[0].count;
1594	tries[1] = info->status.rates[1].count;
1595	tries[2] = info->status.rates[2].count;
1596
1597	ieee80211_tx_info_clear_status(info);
1598
1599	for (i = 0; i < ts->ts_final_idx; i++) {
1600		struct ieee80211_tx_rate *r =
1601			&info->status.rates[i];
1602
1603		r->count = tries[i];
1604	}
1605
1606	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1607	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1608
1609	if (unlikely(ts->ts_status)) {
1610		ah->stats.ack_fail++;
1611		if (ts->ts_status & AR5K_TXERR_FILT) {
1612			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1613			ah->stats.txerr_filt++;
1614		}
1615		if (ts->ts_status & AR5K_TXERR_XRETRY)
1616			ah->stats.txerr_retry++;
1617		if (ts->ts_status & AR5K_TXERR_FIFO)
1618			ah->stats.txerr_fifo++;
1619	} else {
1620		info->flags |= IEEE80211_TX_STAT_ACK;
1621		info->status.ack_signal = ts->ts_rssi;
1622
1623		/* count the successful attempt as well */
1624		info->status.rates[ts->ts_final_idx].count++;
1625	}
1626
1627	/*
1628	* Remove MAC header padding before giving the frame
1629	* back to mac80211.
1630	*/
1631	ath5k_remove_padding(skb);
1632
1633	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1634		ah->stats.antenna_tx[ts->ts_antenna]++;
1635	else
1636		ah->stats.antenna_tx[0]++; /* invalid */
1637
1638	trace_ath5k_tx_complete(ah, skb, txq, ts);
1639	ieee80211_tx_status(ah->hw, skb);
1640}
1641
1642static void
1643ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1644{
1645	struct ath5k_tx_status ts = {};
1646	struct ath5k_buf *bf, *bf0;
1647	struct ath5k_desc *ds;
1648	struct sk_buff *skb;
1649	int ret;
1650
1651	spin_lock(&txq->lock);
1652	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1653
1654		txq->txq_poll_mark = false;
1655
1656		/* skb might already have been processed last time. */
1657		if (bf->skb != NULL) {
1658			ds = bf->desc;
1659
1660			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1661			if (unlikely(ret == -EINPROGRESS))
1662				break;
1663			else if (unlikely(ret)) {
1664				ATH5K_ERR(ah,
1665					"error %d while processing "
1666					"queue %u\n", ret, txq->qnum);
1667				break;
1668			}
1669
1670			skb = bf->skb;
1671			bf->skb = NULL;
1672
1673			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1674					DMA_TO_DEVICE);
1675			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1676		}
1677
1678		/*
1679		 * It's possible that the hardware can say the buffer is
1680		 * completed when it hasn't yet loaded the ds_link from
1681		 * host memory and moved on.
1682		 * Always keep the last descriptor to avoid HW races...
1683		 */
1684		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1685			spin_lock(&ah->txbuflock);
1686			list_move_tail(&bf->list, &ah->txbuf);
1687			ah->txbuf_len++;
1688			txq->txq_len--;
1689			spin_unlock(&ah->txbuflock);
1690		}
1691	}
1692	spin_unlock(&txq->lock);
1693	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1694		ieee80211_wake_queue(ah->hw, txq->qnum);
1695}
1696
1697static void
1698ath5k_tasklet_tx(unsigned long data)
1699{
1700	int i;
1701	struct ath5k_hw *ah = (void *)data;
1702
1703	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1704		if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i)))
1705			ath5k_tx_processq(ah, &ah->txqs[i]);
1706
1707	ah->tx_pending = false;
1708	ath5k_set_current_imask(ah);
1709}
1710
1711
1712/*****************\
1713* Beacon handling *
1714\*****************/
1715
1716/*
1717 * Setup the beacon frame for transmit.
1718 */
1719static int
1720ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1721{
1722	struct sk_buff *skb = bf->skb;
1723	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1724	struct ath5k_desc *ds;
1725	int ret = 0;
1726	u8 antenna;
1727	u32 flags;
1728	const int padsize = 0;
1729
1730	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1731			DMA_TO_DEVICE);
1732	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1733			"skbaddr %llx\n", skb, skb->data, skb->len,
1734			(unsigned long long)bf->skbaddr);
1735
1736	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1737		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1738		dev_kfree_skb_any(skb);
1739		bf->skb = NULL;
1740		return -EIO;
1741	}
1742
1743	ds = bf->desc;
1744	antenna = ah->ah_tx_ant;
1745
1746	flags = AR5K_TXDESC_NOACK;
1747	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1748		ds->ds_link = bf->daddr;	/* self-linked */
1749		flags |= AR5K_TXDESC_VEOL;
1750	} else
1751		ds->ds_link = 0;
1752
1753	/*
1754	 * If we use multiple antennas on AP and use
1755	 * the Sectored AP scenario, switch antenna every
1756	 * 4 beacons to make sure everybody hears our AP.
1757	 * When a client tries to associate, hw will keep
1758	 * track of the tx antenna to be used for this client
1759	 * automatically, based on ACKed packets.
1760	 *
1761	 * Note: AP still listens and transmits RTS on the
1762	 * default antenna which is supposed to be an omni.
1763	 *
1764	 * Note2: On sectored scenarios it's possible to have
1765	 * multiple antennas (1 omni -- the default -- and 14
1766	 * sectors), so if we choose to actually support this
1767	 * mode, we need to allow the user to set how many antennas
1768	 * we have and tweak the code below to send beacons
1769	 * on all of them.
1770	 */
1771	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1772		antenna = ah->bsent & 4 ? 2 : 1;
1773
1774
1775	/* FIXME: If we are in g mode and rate is a CCK rate
1776	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1777	 * from tx power (value is in dB units already) */
1778	ds->ds_data = bf->skbaddr;
1779	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1780			ieee80211_get_hdrlen_from_skb(skb), padsize,
1781			AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
 
1782			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1783			1, AR5K_TXKEYIX_INVALID,
1784			antenna, flags, 0, 0);
1785	if (ret)
1786		goto err_unmap;
1787
1788	return 0;
1789err_unmap:
1790	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1791	return ret;
1792}
1793
1794/*
1795 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1796 * this is called only once at config_bss time, for AP we do it every
1797 * SWBA interrupt so that the TIM will reflect buffered frames.
1798 *
1799 * Called with the beacon lock.
1800 */
1801int
1802ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1803{
1804	int ret;
1805	struct ath5k_hw *ah = hw->priv;
1806	struct ath5k_vif *avf = (void *)vif->drv_priv;
1807	struct sk_buff *skb;
1808
1809	if (WARN_ON(!vif)) {
1810		ret = -EINVAL;
1811		goto out;
1812	}
1813
1814	skb = ieee80211_beacon_get(hw, vif);
1815
1816	if (!skb) {
1817		ret = -ENOMEM;
1818		goto out;
1819	}
1820
 
1821	ath5k_txbuf_free_skb(ah, avf->bbuf);
1822	avf->bbuf->skb = skb;
1823	ret = ath5k_beacon_setup(ah, avf->bbuf);
1824out:
1825	return ret;
1826}
1827
1828/*
1829 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1830 * frame contents are done as needed and the slot time is
1831 * also adjusted based on current state.
1832 *
1833 * This is called from software irq context (beacontq tasklets)
1834 * or user context from ath5k_beacon_config.
1835 */
1836static void
1837ath5k_beacon_send(struct ath5k_hw *ah)
1838{
1839	struct ieee80211_vif *vif;
1840	struct ath5k_vif *avf;
1841	struct ath5k_buf *bf;
1842	struct sk_buff *skb;
1843	int err;
1844
1845	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1846
1847	/*
1848	 * Check if the previous beacon has gone out.  If
1849	 * not, don't don't try to post another: skip this
1850	 * period and wait for the next.  Missed beacons
1851	 * indicate a problem and should not occur.  If we
1852	 * miss too many consecutive beacons reset the device.
1853	 */
1854	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1855		ah->bmisscount++;
1856		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1857			"missed %u consecutive beacons\n", ah->bmisscount);
1858		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1859			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1860				"stuck beacon time (%u missed)\n",
1861				ah->bmisscount);
1862			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1863				  "stuck beacon, resetting\n");
1864			ieee80211_queue_work(ah->hw, &ah->reset_work);
1865		}
1866		return;
1867	}
1868	if (unlikely(ah->bmisscount != 0)) {
1869		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1870			"resume beacon xmit after %u misses\n",
1871			ah->bmisscount);
1872		ah->bmisscount = 0;
1873	}
1874
1875	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) ||
 
1876			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1877		u64 tsf = ath5k_hw_get_tsf64(ah);
1878		u32 tsftu = TSF_TO_TU(tsf);
1879		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1880		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1881		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1882			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1883			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1884	} else /* only one interface */
1885		vif = ah->bslot[0];
1886
1887	if (!vif)
1888		return;
1889
1890	avf = (void *)vif->drv_priv;
1891	bf = avf->bbuf;
1892
1893	/*
1894	 * Stop any current dma and put the new frame on the queue.
1895	 * This should never fail since we check above that no frames
1896	 * are still pending on the queue.
1897	 */
1898	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1899		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1900		/* NB: hw still stops DMA, so proceed */
1901	}
1902
1903	/* refresh the beacon for AP or MESH mode */
1904	if (ah->opmode == NL80211_IFTYPE_AP ||
1905	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1906		err = ath5k_beacon_update(ah->hw, vif);
1907		if (err)
1908			return;
1909	}
1910
1911	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1912		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1913		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1914		return;
1915	}
1916
1917	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1918
1919	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1920	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1921	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1922		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1923
1924	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1925	while (skb) {
1926		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1927
1928		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1929			break;
1930
1931		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1932	}
1933
1934	ah->bsent++;
1935}
1936
1937/**
1938 * ath5k_beacon_update_timers - update beacon timers
1939 *
1940 * @ah: struct ath5k_hw pointer we are operating on
1941 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1942 *          beacon timer update based on the current HW TSF.
1943 *
1944 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1945 * of a received beacon or the current local hardware TSF and write it to the
1946 * beacon timer registers.
1947 *
1948 * This is called in a variety of situations, e.g. when a beacon is received,
1949 * when a TSF update has been detected, but also when an new IBSS is created or
1950 * when we otherwise know we have to update the timers, but we keep it in this
1951 * function to have it all together in one place.
1952 */
1953void
1954ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1955{
1956	u32 nexttbtt, intval, hw_tu, bc_tu;
1957	u64 hw_tsf;
1958
1959	intval = ah->bintval & AR5K_BEACON_PERIOD;
1960	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) {
 
1961		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1962		if (intval < 15)
1963			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1964				   intval);
1965	}
1966	if (WARN_ON(!intval))
1967		return;
1968
1969	/* beacon TSF converted to TU */
1970	bc_tu = TSF_TO_TU(bc_tsf);
1971
1972	/* current TSF converted to TU */
1973	hw_tsf = ath5k_hw_get_tsf64(ah);
1974	hw_tu = TSF_TO_TU(hw_tsf);
1975
1976#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1977	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1978	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1979	 * configuration we need to make sure it is bigger than that. */
1980
1981	if (bc_tsf == -1) {
1982		/*
1983		 * no beacons received, called internally.
1984		 * just need to refresh timers based on HW TSF.
1985		 */
1986		nexttbtt = roundup(hw_tu + FUDGE, intval);
1987	} else if (bc_tsf == 0) {
1988		/*
1989		 * no beacon received, probably called by ath5k_reset_tsf().
1990		 * reset TSF to start with 0.
1991		 */
1992		nexttbtt = intval;
1993		intval |= AR5K_BEACON_RESET_TSF;
1994	} else if (bc_tsf > hw_tsf) {
1995		/*
1996		 * beacon received, SW merge happened but HW TSF not yet updated.
1997		 * not possible to reconfigure timers yet, but next time we
1998		 * receive a beacon with the same BSSID, the hardware will
1999		 * automatically update the TSF and then we need to reconfigure
2000		 * the timers.
2001		 */
2002		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2003			"need to wait for HW TSF sync\n");
2004		return;
2005	} else {
2006		/*
2007		 * most important case for beacon synchronization between STA.
2008		 *
2009		 * beacon received and HW TSF has been already updated by HW.
2010		 * update next TBTT based on the TSF of the beacon, but make
2011		 * sure it is ahead of our local TSF timer.
2012		 */
2013		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2014	}
2015#undef FUDGE
2016
2017	ah->nexttbtt = nexttbtt;
2018
2019	intval |= AR5K_BEACON_ENA;
2020	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2021
2022	/*
2023	 * debugging output last in order to preserve the time critical aspect
2024	 * of this function
2025	 */
2026	if (bc_tsf == -1)
2027		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2028			"reconfigured timers based on HW TSF\n");
2029	else if (bc_tsf == 0)
2030		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2031			"reset HW TSF and timers\n");
2032	else
2033		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2034			"updated timers based on beacon TSF\n");
2035
2036	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2037			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2038			  (unsigned long long) bc_tsf,
2039			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2040	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2041		intval & AR5K_BEACON_PERIOD,
2042		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2043		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2044}
2045
2046/**
2047 * ath5k_beacon_config - Configure the beacon queues and interrupts
2048 *
2049 * @ah: struct ath5k_hw pointer we are operating on
2050 *
2051 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2052 * interrupts to detect TSF updates only.
2053 */
2054void
2055ath5k_beacon_config(struct ath5k_hw *ah)
2056{
2057	unsigned long flags;
2058
2059	spin_lock_irqsave(&ah->block, flags);
2060	ah->bmisscount = 0;
2061	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2062
2063	if (ah->enable_beacon) {
2064		/*
2065		 * In IBSS mode we use a self-linked tx descriptor and let the
2066		 * hardware send the beacons automatically. We have to load it
2067		 * only once here.
2068		 * We use the SWBA interrupt only to keep track of the beacon
2069		 * timers in order to detect automatic TSF updates.
2070		 */
2071		ath5k_beaconq_config(ah);
2072
2073		ah->imask |= AR5K_INT_SWBA;
2074
2075		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2076			if (ath5k_hw_hasveol(ah))
2077				ath5k_beacon_send(ah);
2078		} else
2079			ath5k_beacon_update_timers(ah, -1);
2080	} else {
2081		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2082	}
2083
2084	ath5k_hw_set_imr(ah, ah->imask);
2085	mmiowb();
2086	spin_unlock_irqrestore(&ah->block, flags);
2087}
2088
2089static void ath5k_tasklet_beacon(unsigned long data)
2090{
2091	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2092
2093	/*
2094	 * Software beacon alert--time to send a beacon.
2095	 *
2096	 * In IBSS mode we use this interrupt just to
2097	 * keep track of the next TBTT (target beacon
2098	 * transmission time) in order to detect whether
2099	 * automatic TSF updates happened.
2100	 */
2101	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2102		/* XXX: only if VEOL supported */
2103		u64 tsf = ath5k_hw_get_tsf64(ah);
2104		ah->nexttbtt += ah->bintval;
2105		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2106				"SWBA nexttbtt: %x hw_tu: %x "
2107				"TSF: %llx\n",
2108				ah->nexttbtt,
2109				TSF_TO_TU(tsf),
2110				(unsigned long long) tsf);
2111	} else {
2112		spin_lock(&ah->block);
2113		ath5k_beacon_send(ah);
2114		spin_unlock(&ah->block);
2115	}
2116}
2117
2118
2119/********************\
2120* Interrupt handling *
2121\********************/
2122
2123static void
2124ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2125{
2126	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2127	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2128		/* run ANI only when full calibration is not active */
 
 
 
2129		ah->ah_cal_next_ani = jiffies +
2130			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2131		tasklet_schedule(&ah->ani_tasklet);
2132
2133	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2134		ah->ah_cal_next_full = jiffies +
2135			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2136		tasklet_schedule(&ah->calib);
 
 
 
 
 
 
 
 
 
 
2137	}
2138	/* we could use SWI to generate enough interrupts to meet our
2139	 * calibration interval requirements, if necessary:
2140	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2141}
2142
2143static void
2144ath5k_schedule_rx(struct ath5k_hw *ah)
2145{
2146	ah->rx_pending = true;
2147	tasklet_schedule(&ah->rxtq);
2148}
2149
2150static void
2151ath5k_schedule_tx(struct ath5k_hw *ah)
2152{
2153	ah->tx_pending = true;
2154	tasklet_schedule(&ah->txtq);
2155}
2156
2157static irqreturn_t
2158ath5k_intr(int irq, void *dev_id)
2159{
2160	struct ath5k_hw *ah = dev_id;
2161	enum ath5k_int status;
2162	unsigned int counter = 1000;
2163
 
 
 
 
 
 
 
 
 
 
 
2164	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2165		((ath5k_get_bus_type(ah) != ATH_AHB) &&
2166				!ath5k_hw_is_intr_pending(ah))))
2167		return IRQ_NONE;
2168
 
2169	do {
2170		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
 
2171		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2172				status, ah->imask);
 
 
 
 
 
 
 
 
2173		if (unlikely(status & AR5K_INT_FATAL)) {
2174			/*
2175			 * Fatal errors are unrecoverable.
2176			 * Typically these are caused by DMA errors.
2177			 */
2178			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2179				  "fatal int, resetting\n");
2180			ieee80211_queue_work(ah->hw, &ah->reset_work);
 
 
 
 
 
 
 
 
2181		} else if (unlikely(status & AR5K_INT_RXORN)) {
 
2182			/*
2183			 * Receive buffers are full. Either the bus is busy or
2184			 * the CPU is not fast enough to process all received
2185			 * frames.
2186			 * Older chipsets need a reset to come out of this
2187			 * condition, but we treat it as RX for newer chips.
2188			 * We don't know exactly which versions need a reset -
2189			 * this guess is copied from the HAL.
2190			 */
2191			ah->stats.rxorn_intr++;
 
2192			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2193				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2194					  "rx overrun, resetting\n");
2195				ieee80211_queue_work(ah->hw, &ah->reset_work);
2196			} else
2197				ath5k_schedule_rx(ah);
 
2198		} else {
 
 
2199			if (status & AR5K_INT_SWBA)
2200				tasklet_hi_schedule(&ah->beacontq);
2201
2202			if (status & AR5K_INT_RXEOL) {
2203				/*
2204				* NB: the hardware should re-read the link when
2205				*     RXE bit is written, but it doesn't work at
2206				*     least on older hardware revs.
2207				*/
 
 
2208				ah->stats.rxeol_intr++;
2209			}
2210			if (status & AR5K_INT_TXURN) {
2211				/* bump tx trigger level */
 
2212				ath5k_hw_update_tx_triglevel(ah, true);
2213			}
 
2214			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2215				ath5k_schedule_rx(ah);
2216			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2217					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
 
 
 
 
2218				ath5k_schedule_tx(ah);
2219			if (status & AR5K_INT_BMISS) {
2220				/* TODO */
2221			}
 
 
 
2222			if (status & AR5K_INT_MIB) {
2223				ah->stats.mib_intr++;
2224				ath5k_hw_update_mib_counters(ah);
2225				ath5k_ani_mib_intr(ah);
2226			}
 
 
2227			if (status & AR5K_INT_GPIO)
2228				tasklet_schedule(&ah->rf_kill.toggleq);
2229
2230		}
2231
2232		if (ath5k_get_bus_type(ah) == ATH_AHB)
2233			break;
2234
2235	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2236
 
 
 
 
 
 
2237	if (ah->rx_pending || ah->tx_pending)
2238		ath5k_set_current_imask(ah);
2239
2240	if (unlikely(!counter))
2241		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2242
 
2243	ath5k_intr_calibration_poll(ah);
2244
2245	return IRQ_HANDLED;
2246}
2247
2248/*
2249 * Periodically recalibrate the PHY to account
2250 * for temperature/environment changes.
2251 */
2252static void
2253ath5k_tasklet_calibrate(unsigned long data)
2254{
2255	struct ath5k_hw *ah = (void *)data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256
2257	/* Only full calibration for now */
2258	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2259
2260	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2261		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2262		ah->curchan->hw_value);
2263
2264	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2265		/*
2266		 * Rfgain is out of bounds, reset the chip
2267		 * to load new gain values.
2268		 */
2269		ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2270		ieee80211_queue_work(ah->hw, &ah->reset_work);
2271	}
2272	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2273		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2274			ieee80211_frequency_to_channel(
2275				ah->curchan->center_freq));
2276
2277	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2278	 * doesn't.
2279	 * TODO: We should stop TX here, so that it doesn't interfere.
2280	 * Note that stopping the queues is not enough to stop TX! */
2281	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2282		ah->ah_cal_next_nf = jiffies +
2283			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2284		ath5k_hw_update_noise_floor(ah);
2285	}
2286
2287	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2288}
2289
2290
2291static void
2292ath5k_tasklet_ani(unsigned long data)
2293{
2294	struct ath5k_hw *ah = (void *)data;
2295
2296	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2297	ath5k_ani_calibration(ah);
2298	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2299}
2300
2301
2302static void
2303ath5k_tx_complete_poll_work(struct work_struct *work)
2304{
2305	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2306			tx_complete_work.work);
2307	struct ath5k_txq *txq;
2308	int i;
2309	bool needreset = false;
2310
 
 
 
2311	mutex_lock(&ah->lock);
2312
2313	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2314		if (ah->txqs[i].setup) {
2315			txq = &ah->txqs[i];
2316			spin_lock_bh(&txq->lock);
2317			if (txq->txq_len > 1) {
2318				if (txq->txq_poll_mark) {
2319					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2320						  "TX queue stuck %d\n",
2321						  txq->qnum);
2322					needreset = true;
2323					txq->txq_stuck++;
2324					spin_unlock_bh(&txq->lock);
2325					break;
2326				} else {
2327					txq->txq_poll_mark = true;
2328				}
2329			}
2330			spin_unlock_bh(&txq->lock);
2331		}
2332	}
2333
2334	if (needreset) {
2335		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2336			  "TX queues stuck, resetting\n");
2337		ath5k_reset(ah, NULL, true);
2338	}
2339
2340	mutex_unlock(&ah->lock);
2341
2342	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2343		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2344}
2345
2346
2347/*************************\
2348* Initialization routines *
2349\*************************/
2350
2351int __devinit
2352ath5k_init_softc(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353{
2354	struct ieee80211_hw *hw = ah->hw;
2355	struct ath_common *common;
2356	int ret;
2357	int csz;
2358
2359	/* Initialize driver private data */
2360	SET_IEEE80211_DEV(hw, ah->dev);
2361	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2362			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2363			IEEE80211_HW_SIGNAL_DBM |
2364			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
 
 
2365
2366	hw->wiphy->interface_modes =
2367		BIT(NL80211_IFTYPE_AP) |
2368		BIT(NL80211_IFTYPE_STATION) |
2369		BIT(NL80211_IFTYPE_ADHOC) |
2370		BIT(NL80211_IFTYPE_MESH_POINT);
2371
 
 
 
 
 
 
 
 
2372	/* both antennas can be configured as RX or TX */
2373	hw->wiphy->available_antennas_tx = 0x3;
2374	hw->wiphy->available_antennas_rx = 0x3;
2375
2376	hw->extra_tx_headroom = 2;
2377	hw->channel_change_time = 5000;
2378
2379	/*
2380	 * Mark the device as detached to avoid processing
2381	 * interrupts until setup is complete.
2382	 */
2383	__set_bit(ATH_STAT_INVALID, ah->status);
2384
2385	ah->opmode = NL80211_IFTYPE_STATION;
2386	ah->bintval = 1000;
2387	mutex_init(&ah->lock);
2388	spin_lock_init(&ah->rxbuflock);
2389	spin_lock_init(&ah->txbuflock);
2390	spin_lock_init(&ah->block);
2391	spin_lock_init(&ah->irqlock);
2392
2393	/* Setup interrupt handler */
2394	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2395	if (ret) {
2396		ATH5K_ERR(ah, "request_irq failed\n");
2397		goto err;
2398	}
2399
2400	common = ath5k_hw_common(ah);
2401	common->ops = &ath5k_common_ops;
2402	common->bus_ops = bus_ops;
2403	common->ah = ah;
2404	common->hw = hw;
2405	common->priv = ah;
2406	common->clockrate = 40;
2407
2408	/*
2409	 * Cache line size is used to size and align various
2410	 * structures used to communicate with the hardware.
2411	 */
2412	ath5k_read_cachesize(common, &csz);
2413	common->cachelsz = csz << 2; /* convert to bytes */
2414
2415	spin_lock_init(&common->cc_lock);
2416
2417	/* Initialize device */
2418	ret = ath5k_hw_init(ah);
2419	if (ret)
2420		goto err_irq;
2421
2422	/* set up multi-rate retry capabilities */
2423	if (ah->ah_version == AR5K_AR5212) {
2424		hw->max_rates = 4;
2425		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2426					 AR5K_INIT_RETRY_LONG);
2427	}
2428
2429	hw->vif_data_size = sizeof(struct ath5k_vif);
2430
2431	/* Finish private driver data initialization */
2432	ret = ath5k_init(hw);
2433	if (ret)
2434		goto err_ah;
2435
2436	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2437			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2438					ah->ah_mac_srev,
2439					ah->ah_phy_revision);
2440
2441	if (!ah->ah_single_chip) {
2442		/* Single chip radio (!RF5111) */
2443		if (ah->ah_radio_5ghz_revision &&
2444			!ah->ah_radio_2ghz_revision) {
2445			/* No 5GHz support -> report 2GHz radio */
2446			if (!test_bit(AR5K_MODE_11A,
2447				ah->ah_capabilities.cap_mode)) {
2448				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2449					ath5k_chip_name(AR5K_VERSION_RAD,
2450						ah->ah_radio_5ghz_revision),
2451						ah->ah_radio_5ghz_revision);
2452			/* No 2GHz support (5110 and some
2453			 * 5GHz only cards) -> report 5GHz radio */
2454			} else if (!test_bit(AR5K_MODE_11B,
2455				ah->ah_capabilities.cap_mode)) {
2456				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2457					ath5k_chip_name(AR5K_VERSION_RAD,
2458						ah->ah_radio_5ghz_revision),
2459						ah->ah_radio_5ghz_revision);
2460			/* Multiband radio */
2461			} else {
2462				ATH5K_INFO(ah, "RF%s multiband radio found"
2463					" (0x%x)\n",
2464					ath5k_chip_name(AR5K_VERSION_RAD,
2465						ah->ah_radio_5ghz_revision),
2466						ah->ah_radio_5ghz_revision);
2467			}
2468		}
2469		/* Multi chip radio (RF5111 - RF2111) ->
2470		 * report both 2GHz/5GHz radios */
2471		else if (ah->ah_radio_5ghz_revision &&
2472				ah->ah_radio_2ghz_revision) {
2473			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2474				ath5k_chip_name(AR5K_VERSION_RAD,
2475					ah->ah_radio_5ghz_revision),
2476					ah->ah_radio_5ghz_revision);
2477			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2478				ath5k_chip_name(AR5K_VERSION_RAD,
2479					ah->ah_radio_2ghz_revision),
2480					ah->ah_radio_2ghz_revision);
2481		}
2482	}
2483
2484	ath5k_debug_init_device(ah);
2485
2486	/* ready to process interrupts */
2487	__clear_bit(ATH_STAT_INVALID, ah->status);
2488
2489	return 0;
2490err_ah:
2491	ath5k_hw_deinit(ah);
2492err_irq:
2493	free_irq(ah->irq, ah);
2494err:
2495	return ret;
2496}
2497
2498static int
2499ath5k_stop_locked(struct ath5k_hw *ah)
2500{
2501
2502	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2503			test_bit(ATH_STAT_INVALID, ah->status));
2504
2505	/*
2506	 * Shutdown the hardware and driver:
2507	 *    stop output from above
2508	 *    disable interrupts
2509	 *    turn off timers
2510	 *    turn off the radio
2511	 *    clear transmit machinery
2512	 *    clear receive machinery
2513	 *    drain and release tx queues
2514	 *    reclaim beacon resources
2515	 *    power down hardware
2516	 *
2517	 * Note that some of this work is not possible if the
2518	 * hardware is gone (invalid).
2519	 */
2520	ieee80211_stop_queues(ah->hw);
2521
2522	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2523		ath5k_led_off(ah);
2524		ath5k_hw_set_imr(ah, 0);
2525		synchronize_irq(ah->irq);
2526		ath5k_rx_stop(ah);
2527		ath5k_hw_dma_stop(ah);
2528		ath5k_drain_tx_buffs(ah);
2529		ath5k_hw_phy_disable(ah);
2530	}
2531
2532	return 0;
2533}
2534
2535int ath5k_start(struct ieee80211_hw *hw)
2536{
2537	struct ath5k_hw *ah = hw->priv;
2538	struct ath_common *common = ath5k_hw_common(ah);
2539	int ret, i;
2540
2541	mutex_lock(&ah->lock);
2542
2543	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2544
2545	/*
2546	 * Stop anything previously setup.  This is safe
2547	 * no matter this is the first time through or not.
2548	 */
2549	ath5k_stop_locked(ah);
2550
2551	/*
2552	 * The basic interface to setting the hardware in a good
2553	 * state is ``reset''.  On return the hardware is known to
2554	 * be powered up and with interrupts disabled.  This must
2555	 * be followed by initialization of the appropriate bits
2556	 * and then setup of the interrupt mask.
2557	 */
2558	ah->curchan = ah->hw->conf.channel;
2559	ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2560		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2561		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
 
 
 
 
 
 
2562
2563	ret = ath5k_reset(ah, NULL, false);
2564	if (ret)
2565		goto done;
2566
2567	ath5k_rfkill_hw_start(ah);
 
2568
2569	/*
2570	 * Reset the key cache since some parts do not reset the
2571	 * contents on initial power up or resume from suspend.
2572	 */
2573	for (i = 0; i < common->keymax; i++)
2574		ath_hw_keyreset(common, (u16) i);
2575
2576	/* Use higher rates for acks instead of base
2577	 * rate */
2578	ah->ah_ack_bitrate_high = true;
2579
2580	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2581		ah->bslot[i] = NULL;
2582
2583	ret = 0;
2584done:
2585	mmiowb();
2586	mutex_unlock(&ah->lock);
2587
 
2588	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2589			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2590
2591	return ret;
2592}
2593
2594static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2595{
2596	ah->rx_pending = false;
2597	ah->tx_pending = false;
2598	tasklet_kill(&ah->rxtq);
2599	tasklet_kill(&ah->txtq);
2600	tasklet_kill(&ah->calib);
2601	tasklet_kill(&ah->beacontq);
2602	tasklet_kill(&ah->ani_tasklet);
2603}
2604
2605/*
2606 * Stop the device, grabbing the top-level lock to protect
2607 * against concurrent entry through ath5k_init (which can happen
2608 * if another thread does a system call and the thread doing the
2609 * stop is preempted).
2610 */
2611void ath5k_stop(struct ieee80211_hw *hw)
2612{
2613	struct ath5k_hw *ah = hw->priv;
2614	int ret;
2615
2616	mutex_lock(&ah->lock);
2617	ret = ath5k_stop_locked(ah);
2618	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2619		/*
2620		 * Don't set the card in full sleep mode!
2621		 *
2622		 * a) When the device is in this state it must be carefully
2623		 * woken up or references to registers in the PCI clock
2624		 * domain may freeze the bus (and system).  This varies
2625		 * by chip and is mostly an issue with newer parts
2626		 * (madwifi sources mentioned srev >= 0x78) that go to
2627		 * sleep more quickly.
2628		 *
2629		 * b) On older chips full sleep results a weird behaviour
2630		 * during wakeup. I tested various cards with srev < 0x78
2631		 * and they don't wake up after module reload, a second
2632		 * module reload is needed to bring the card up again.
2633		 *
2634		 * Until we figure out what's going on don't enable
2635		 * full chip reset on any chip (this is what Legacy HAL
2636		 * and Sam's HAL do anyway). Instead Perform a full reset
2637		 * on the device (same as initial state after attach) and
2638		 * leave it idle (keep MAC/BB on warm reset) */
2639		ret = ath5k_hw_on_hold(ah);
2640
2641		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2642				"putting device to sleep\n");
2643	}
2644
2645	mmiowb();
2646	mutex_unlock(&ah->lock);
2647
2648	ath5k_stop_tasklets(ah);
2649
 
2650	cancel_delayed_work_sync(&ah->tx_complete_work);
2651
2652	ath5k_rfkill_hw_stop(ah);
 
2653}
2654
2655/*
2656 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2657 * and change to the given channel.
2658 *
2659 * This should be called with ah->lock.
2660 */
2661static int
2662ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2663							bool skip_pcu)
2664{
2665	struct ath_common *common = ath5k_hw_common(ah);
2666	int ret, ani_mode;
2667	bool fast;
2668
2669	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2670
2671	ath5k_hw_set_imr(ah, 0);
2672	synchronize_irq(ah->irq);
2673	ath5k_stop_tasklets(ah);
2674
2675	/* Save ani mode and disable ANI during
2676	 * reset. If we don't we might get false
2677	 * PHY error interrupts. */
2678	ani_mode = ah->ani_state.ani_mode;
2679	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2680
2681	/* We are going to empty hw queues
2682	 * so we should also free any remaining
2683	 * tx buffers */
2684	ath5k_drain_tx_buffs(ah);
2685	if (chan)
2686		ah->curchan = chan;
2687
2688	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2689
2690	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2691	if (ret) {
2692		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2693		goto err;
2694	}
2695
2696	ret = ath5k_rx_start(ah);
2697	if (ret) {
2698		ATH5K_ERR(ah, "can't start recv logic\n");
2699		goto err;
2700	}
2701
2702	ath5k_ani_init(ah, ani_mode);
2703
2704	ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100);
2705	ah->ah_cal_next_ani = jiffies;
2706	ah->ah_cal_next_nf = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2708
2709	/* clear survey data and cycle counters */
2710	memset(&ah->survey, 0, sizeof(ah->survey));
2711	spin_lock_bh(&common->cc_lock);
2712	ath_hw_cycle_counters_update(common);
2713	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2714	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2715	spin_unlock_bh(&common->cc_lock);
2716
2717	/*
2718	 * Change channels and update the h/w rate map if we're switching;
2719	 * e.g. 11a to 11b/g.
2720	 *
2721	 * We may be doing a reset in response to an ioctl that changes the
2722	 * channel so update any state that might change as a result.
2723	 *
2724	 * XXX needed?
2725	 */
2726/*	ath5k_chan_change(ah, c); */
2727
2728	ath5k_beacon_config(ah);
2729	/* intrs are enabled by ath5k_beacon_config */
2730
2731	ieee80211_wake_queues(ah->hw);
2732
2733	return 0;
2734err:
2735	return ret;
2736}
2737
2738static void ath5k_reset_work(struct work_struct *work)
2739{
2740	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2741		reset_work);
2742
2743	mutex_lock(&ah->lock);
2744	ath5k_reset(ah, NULL, true);
2745	mutex_unlock(&ah->lock);
2746}
2747
2748static int __devinit
2749ath5k_init(struct ieee80211_hw *hw)
2750{
2751
2752	struct ath5k_hw *ah = hw->priv;
2753	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2754	struct ath5k_txq *txq;
2755	u8 mac[ETH_ALEN] = {};
2756	int ret;
2757
2758
2759	/*
2760	 * Check if the MAC has multi-rate retry support.
2761	 * We do this by trying to setup a fake extended
2762	 * descriptor.  MACs that don't have support will
2763	 * return false w/o doing anything.  MACs that do
2764	 * support it will return true w/o doing anything.
2765	 */
2766	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2767
2768	if (ret < 0)
2769		goto err;
2770	if (ret > 0)
2771		__set_bit(ATH_STAT_MRRETRY, ah->status);
2772
2773	/*
2774	 * Collect the channel list.  The 802.11 layer
2775	 * is responsible for filtering this list based
2776	 * on settings like the phy mode and regulatory
2777	 * domain restrictions.
2778	 */
2779	ret = ath5k_setup_bands(hw);
2780	if (ret) {
2781		ATH5K_ERR(ah, "can't get channels\n");
2782		goto err;
2783	}
2784
2785	/*
2786	 * Allocate tx+rx descriptors and populate the lists.
2787	 */
2788	ret = ath5k_desc_alloc(ah);
2789	if (ret) {
2790		ATH5K_ERR(ah, "can't allocate descriptors\n");
2791		goto err;
2792	}
2793
2794	/*
2795	 * Allocate hardware transmit queues: one queue for
2796	 * beacon frames and one data queue for each QoS
2797	 * priority.  Note that hw functions handle resetting
2798	 * these queues at the needed time.
2799	 */
2800	ret = ath5k_beaconq_setup(ah);
2801	if (ret < 0) {
2802		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2803		goto err_desc;
2804	}
2805	ah->bhalq = ret;
2806	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2807	if (IS_ERR(ah->cabq)) {
2808		ATH5K_ERR(ah, "can't setup cab queue\n");
2809		ret = PTR_ERR(ah->cabq);
2810		goto err_bhal;
2811	}
2812
2813	/* 5211 and 5212 usually support 10 queues but we better rely on the
2814	 * capability information */
2815	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2816		/* This order matches mac80211's queue priority, so we can
2817		* directly use the mac80211 queue number without any mapping */
2818		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2819		if (IS_ERR(txq)) {
2820			ATH5K_ERR(ah, "can't setup xmit queue\n");
2821			ret = PTR_ERR(txq);
2822			goto err_queues;
2823		}
2824		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2825		if (IS_ERR(txq)) {
2826			ATH5K_ERR(ah, "can't setup xmit queue\n");
2827			ret = PTR_ERR(txq);
2828			goto err_queues;
2829		}
2830		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2831		if (IS_ERR(txq)) {
2832			ATH5K_ERR(ah, "can't setup xmit queue\n");
2833			ret = PTR_ERR(txq);
2834			goto err_queues;
2835		}
2836		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2837		if (IS_ERR(txq)) {
2838			ATH5K_ERR(ah, "can't setup xmit queue\n");
2839			ret = PTR_ERR(txq);
2840			goto err_queues;
2841		}
2842		hw->queues = 4;
2843	} else {
2844		/* older hardware (5210) can only support one data queue */
2845		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2846		if (IS_ERR(txq)) {
2847			ATH5K_ERR(ah, "can't setup xmit queue\n");
2848			ret = PTR_ERR(txq);
2849			goto err_queues;
2850		}
2851		hw->queues = 1;
2852	}
2853
2854	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2855	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2856	tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah);
2857	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2858	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2859
2860	INIT_WORK(&ah->reset_work, ath5k_reset_work);
 
2861	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2862
2863	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2864	if (ret) {
2865		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2866		goto err_queues;
2867	}
2868
2869	SET_IEEE80211_PERM_ADDR(hw, mac);
2870	memcpy(&ah->lladdr, mac, ETH_ALEN);
2871	/* All MAC address bits matter for ACKs */
2872	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2873
2874	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2875	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2876	if (ret) {
2877		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2878		goto err_queues;
2879	}
2880
2881	ret = ieee80211_register_hw(hw);
2882	if (ret) {
2883		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2884		goto err_queues;
2885	}
2886
2887	if (!ath_is_world_regd(regulatory))
2888		regulatory_hint(hw->wiphy, regulatory->alpha2);
2889
2890	ath5k_init_leds(ah);
2891
2892	ath5k_sysfs_register(ah);
2893
2894	return 0;
2895err_queues:
2896	ath5k_txq_release(ah);
2897err_bhal:
2898	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2899err_desc:
2900	ath5k_desc_free(ah);
2901err:
2902	return ret;
2903}
2904
2905void
2906ath5k_deinit_softc(struct ath5k_hw *ah)
2907{
2908	struct ieee80211_hw *hw = ah->hw;
2909
2910	/*
2911	 * NB: the order of these is important:
2912	 * o call the 802.11 layer before detaching ath5k_hw to
2913	 *   ensure callbacks into the driver to delete global
2914	 *   key cache entries can be handled
2915	 * o reclaim the tx queue data structures after calling
2916	 *   the 802.11 layer as we'll get called back to reclaim
2917	 *   node state and potentially want to use them
2918	 * o to cleanup the tx queues the hal is called, so detach
2919	 *   it last
2920	 * XXX: ??? detach ath5k_hw ???
2921	 * Other than that, it's straightforward...
2922	 */
2923	ieee80211_unregister_hw(hw);
2924	ath5k_desc_free(ah);
2925	ath5k_txq_release(ah);
2926	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2927	ath5k_unregister_leds(ah);
2928
2929	ath5k_sysfs_unregister(ah);
2930	/*
2931	 * NB: can't reclaim these until after ieee80211_ifdetach
2932	 * returns because we'll get called back to reclaim node
2933	 * state and potentially want to use them.
2934	 */
2935	ath5k_hw_deinit(ah);
2936	free_irq(ah->irq, ah);
2937}
2938
2939bool
2940ath5k_any_vif_assoc(struct ath5k_hw *ah)
2941{
2942	struct ath5k_vif_iter_data iter_data;
2943	iter_data.hw_macaddr = NULL;
2944	iter_data.any_assoc = false;
2945	iter_data.need_set_hw_addr = false;
2946	iter_data.found_active = true;
2947
2948	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
2949						   &iter_data);
 
2950	return iter_data.any_assoc;
2951}
2952
2953void
2954ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2955{
2956	struct ath5k_hw *ah = hw->priv;
2957	u32 rfilt;
2958	rfilt = ath5k_hw_get_rx_filter(ah);
2959	if (enable)
2960		rfilt |= AR5K_RX_FILTER_BEACON;
2961	else
2962		rfilt &= ~AR5K_RX_FILTER_BEACON;
2963	ath5k_hw_set_rx_filter(ah, rfilt);
2964	ah->filter_flags = rfilt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2965}
v3.15
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
  43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44
  45#include <linux/module.h>
  46#include <linux/delay.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/hardirq.h>
  49#include <linux/if.h>
  50#include <linux/io.h>
  51#include <linux/netdevice.h>
  52#include <linux/cache.h>
  53#include <linux/ethtool.h>
  54#include <linux/uaccess.h>
  55#include <linux/slab.h>
  56#include <linux/etherdevice.h>
  57#include <linux/nl80211.h>
  58
  59#include <net/cfg80211.h>
  60#include <net/ieee80211_radiotap.h>
  61
  62#include <asm/unaligned.h>
  63
  64#include <net/mac80211.h>
  65#include "base.h"
  66#include "reg.h"
  67#include "debug.h"
  68#include "ani.h"
  69#include "ath5k.h"
  70#include "../regd.h"
  71
  72#define CREATE_TRACE_POINTS
  73#include "trace.h"
  74
  75bool ath5k_modparam_nohwcrypt;
  76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  78
  79static bool modparam_fastchanswitch;
 
 
 
 
  80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
  81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  82
  83static bool ath5k_modparam_no_hw_rfkill_switch;
  84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  85								bool, S_IRUGO);
  86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  87
  88
  89/* Module info */
  90MODULE_AUTHOR("Jiri Slaby");
  91MODULE_AUTHOR("Nick Kossifidis");
  92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  94MODULE_LICENSE("Dual BSD/GPL");
  95
  96static int ath5k_init(struct ieee80211_hw *hw);
  97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  98								bool skip_pcu);
  99
 100/* Known SREVs */
 101static const struct ath5k_srev_name srev_names[] = {
 102#ifdef CONFIG_ATHEROS_AR231X
 103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
 104	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
 105	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
 106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
 107	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
 108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
 109	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
 110#else
 111	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
 112	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
 113	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
 114	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
 115	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
 116	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
 117	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
 118	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
 119	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
 120	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
 121	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
 122	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
 123	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
 124	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
 125	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
 126	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
 127	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
 128	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
 129#endif
 130	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
 131	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
 132	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
 133	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
 134	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
 135	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
 136	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
 137	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
 138	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
 139	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
 140	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
 141	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
 142	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
 143	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
 144	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
 145#ifdef CONFIG_ATHEROS_AR231X
 146	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
 147	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
 148#endif
 149	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
 150};
 151
 152static const struct ieee80211_rate ath5k_rates[] = {
 153	{ .bitrate = 10,
 154	  .hw_value = ATH5K_RATE_CODE_1M, },
 155	{ .bitrate = 20,
 156	  .hw_value = ATH5K_RATE_CODE_2M,
 157	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 158	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 159	{ .bitrate = 55,
 160	  .hw_value = ATH5K_RATE_CODE_5_5M,
 161	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 162	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 163	{ .bitrate = 110,
 164	  .hw_value = ATH5K_RATE_CODE_11M,
 165	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 166	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 167	{ .bitrate = 60,
 168	  .hw_value = ATH5K_RATE_CODE_6M,
 169	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 170		   IEEE80211_RATE_SUPPORTS_10MHZ },
 171	{ .bitrate = 90,
 172	  .hw_value = ATH5K_RATE_CODE_9M,
 173	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 174		   IEEE80211_RATE_SUPPORTS_10MHZ },
 175	{ .bitrate = 120,
 176	  .hw_value = ATH5K_RATE_CODE_12M,
 177	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 178		   IEEE80211_RATE_SUPPORTS_10MHZ },
 179	{ .bitrate = 180,
 180	  .hw_value = ATH5K_RATE_CODE_18M,
 181	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 182		   IEEE80211_RATE_SUPPORTS_10MHZ },
 183	{ .bitrate = 240,
 184	  .hw_value = ATH5K_RATE_CODE_24M,
 185	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 186		   IEEE80211_RATE_SUPPORTS_10MHZ },
 187	{ .bitrate = 360,
 188	  .hw_value = ATH5K_RATE_CODE_36M,
 189	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 190		   IEEE80211_RATE_SUPPORTS_10MHZ },
 191	{ .bitrate = 480,
 192	  .hw_value = ATH5K_RATE_CODE_48M,
 193	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 194		   IEEE80211_RATE_SUPPORTS_10MHZ },
 195	{ .bitrate = 540,
 196	  .hw_value = ATH5K_RATE_CODE_54M,
 197	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 198		   IEEE80211_RATE_SUPPORTS_10MHZ },
 199};
 200
 201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 202{
 203	u64 tsf = ath5k_hw_get_tsf64(ah);
 204
 205	if ((tsf & 0x7fff) < rstamp)
 206		tsf -= 0x8000;
 207
 208	return (tsf & ~0x7fff) | rstamp;
 209}
 210
 211const char *
 212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 213{
 214	const char *name = "xxxxx";
 215	unsigned int i;
 216
 217	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 218		if (srev_names[i].sr_type != type)
 219			continue;
 220
 221		if ((val & 0xf0) == srev_names[i].sr_val)
 222			name = srev_names[i].sr_name;
 223
 224		if ((val & 0xff) == srev_names[i].sr_val) {
 225			name = srev_names[i].sr_name;
 226			break;
 227		}
 228	}
 229
 230	return name;
 231}
 232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 233{
 234	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 235	return ath5k_hw_reg_read(ah, reg_offset);
 236}
 237
 238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 239{
 240	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 241	ath5k_hw_reg_write(ah, val, reg_offset);
 242}
 243
 244static const struct ath_ops ath5k_common_ops = {
 245	.read = ath5k_ioread32,
 246	.write = ath5k_iowrite32,
 247};
 248
 249/***********************\
 250* Driver Initialization *
 251\***********************/
 252
 253static void ath5k_reg_notifier(struct wiphy *wiphy,
 254			       struct regulatory_request *request)
 255{
 256	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 257	struct ath5k_hw *ah = hw->priv;
 258	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 259
 260	ath_reg_notifier_apply(wiphy, request, regulatory);
 261}
 262
 263/********************\
 264* Channel/mode setup *
 265\********************/
 266
 267/*
 268 * Returns true for the channel numbers used.
 269 */
 270#ifdef CONFIG_ATH5K_TEST_CHANNELS
 271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 272{
 273	return true;
 274}
 275
 276#else
 277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 278{
 279	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
 280		return true;
 281
 282	return	/* UNII 1,2 */
 283		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 284		/* midband */
 285		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 286		/* UNII-3 */
 287		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 288		/* 802.11j 5.030-5.080 GHz (20MHz) */
 289		(chan == 8 || chan == 12 || chan == 16) ||
 290		/* 802.11j 4.9GHz (20MHz) */
 291		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
 292}
 293#endif
 294
 295static unsigned int
 296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 297		unsigned int mode, unsigned int max)
 298{
 299	unsigned int count, size, freq, ch;
 300	enum ieee80211_band band;
 301
 302	switch (mode) {
 303	case AR5K_MODE_11A:
 304		/* 1..220, but 2GHz frequencies are filtered by check_channel */
 305		size = 220;
 
 306		band = IEEE80211_BAND_5GHZ;
 307		break;
 308	case AR5K_MODE_11B:
 309	case AR5K_MODE_11G:
 310		size = 26;
 
 311		band = IEEE80211_BAND_2GHZ;
 312		break;
 313	default:
 314		ATH5K_WARN(ah, "bad mode, not copying channels\n");
 315		return 0;
 316	}
 317
 318	count = 0;
 319	for (ch = 1; ch <= size && count < max; ch++) {
 320		freq = ieee80211_channel_to_frequency(ch, band);
 321
 322		if (freq == 0) /* mapping failed - not a standard channel */
 323			continue;
 324
 325		/* Write channel info, needed for ath5k_channel_ok() */
 326		channels[count].center_freq = freq;
 327		channels[count].band = band;
 328		channels[count].hw_value = mode;
 329
 330		/* Check if channel is supported by the chipset */
 331		if (!ath5k_channel_ok(ah, &channels[count]))
 332			continue;
 333
 334		if (!ath5k_is_standard_channel(ch, band))
 
 335			continue;
 336
 
 
 
 
 
 
 
 
 
 
 
 
 337		count++;
 338	}
 339
 340	return count;
 341}
 342
 343static void
 344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 345{
 346	u8 i;
 347
 348	for (i = 0; i < AR5K_MAX_RATES; i++)
 349		ah->rate_idx[b->band][i] = -1;
 350
 351	for (i = 0; i < b->n_bitrates; i++) {
 352		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 353		if (b->bitrates[i].hw_value_short)
 354			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 355	}
 356}
 357
 358static int
 359ath5k_setup_bands(struct ieee80211_hw *hw)
 360{
 361	struct ath5k_hw *ah = hw->priv;
 362	struct ieee80211_supported_band *sband;
 363	int max_c, count_c = 0;
 364	int i;
 365
 366	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
 367	max_c = ARRAY_SIZE(ah->channels);
 368
 369	/* 2GHz band */
 370	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
 371	sband->band = IEEE80211_BAND_2GHZ;
 372	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
 373
 374	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 375		/* G mode */
 376		memcpy(sband->bitrates, &ath5k_rates[0],
 377		       sizeof(struct ieee80211_rate) * 12);
 378		sband->n_bitrates = 12;
 379
 380		sband->channels = ah->channels;
 381		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 382					AR5K_MODE_11G, max_c);
 383
 384		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 385		count_c = sband->n_channels;
 386		max_c -= count_c;
 387	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 388		/* B mode */
 389		memcpy(sband->bitrates, &ath5k_rates[0],
 390		       sizeof(struct ieee80211_rate) * 4);
 391		sband->n_bitrates = 4;
 392
 393		/* 5211 only supports B rates and uses 4bit rate codes
 394		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 395		 * fix them up here:
 396		 */
 397		if (ah->ah_version == AR5K_AR5211) {
 398			for (i = 0; i < 4; i++) {
 399				sband->bitrates[i].hw_value =
 400					sband->bitrates[i].hw_value & 0xF;
 401				sband->bitrates[i].hw_value_short =
 402					sband->bitrates[i].hw_value_short & 0xF;
 403			}
 404		}
 405
 406		sband->channels = ah->channels;
 407		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 408					AR5K_MODE_11B, max_c);
 409
 410		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 411		count_c = sband->n_channels;
 412		max_c -= count_c;
 413	}
 414	ath5k_setup_rate_idx(ah, sband);
 415
 416	/* 5GHz band, A mode */
 417	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 418		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
 419		sband->band = IEEE80211_BAND_5GHZ;
 420		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
 421
 422		memcpy(sband->bitrates, &ath5k_rates[4],
 423		       sizeof(struct ieee80211_rate) * 8);
 424		sband->n_bitrates = 8;
 425
 426		sband->channels = &ah->channels[count_c];
 427		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 428					AR5K_MODE_11A, max_c);
 429
 430		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
 431	}
 432	ath5k_setup_rate_idx(ah, sband);
 433
 434	ath5k_debug_dump_bands(ah);
 435
 436	return 0;
 437}
 438
 439/*
 440 * Set/change channels. We always reset the chip.
 441 * To accomplish this we must first cleanup any pending DMA,
 442 * then restart stuff after a la  ath5k_init.
 443 *
 444 * Called with ah->lock.
 445 */
 446int
 447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
 448{
 449	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 450		  "channel set, resetting (%u -> %u MHz)\n",
 451		  ah->curchan->center_freq, chandef->chan->center_freq);
 452
 453	switch (chandef->width) {
 454	case NL80211_CHAN_WIDTH_20:
 455	case NL80211_CHAN_WIDTH_20_NOHT:
 456		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
 457		break;
 458	case NL80211_CHAN_WIDTH_5:
 459		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
 460		break;
 461	case NL80211_CHAN_WIDTH_10:
 462		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
 463		break;
 464	default:
 465		WARN_ON(1);
 466		return -EINVAL;
 467	}
 468
 469	/*
 470	 * To switch channels clear any pending DMA operations;
 471	 * wait long enough for the RX fifo to drain, reset the
 472	 * hardware at the new frequency, and then re-enable
 473	 * the relevant bits of the h/w.
 474	 */
 475	return ath5k_reset(ah, chandef->chan, true);
 476}
 477
 478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 479{
 480	struct ath5k_vif_iter_data *iter_data = data;
 481	int i;
 482	struct ath5k_vif *avf = (void *)vif->drv_priv;
 483
 484	if (iter_data->hw_macaddr)
 485		for (i = 0; i < ETH_ALEN; i++)
 486			iter_data->mask[i] &=
 487				~(iter_data->hw_macaddr[i] ^ mac[i]);
 488
 489	if (!iter_data->found_active) {
 490		iter_data->found_active = true;
 491		memcpy(iter_data->active_mac, mac, ETH_ALEN);
 492	}
 493
 494	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 495		if (ether_addr_equal(iter_data->hw_macaddr, mac))
 496			iter_data->need_set_hw_addr = false;
 497
 498	if (!iter_data->any_assoc) {
 499		if (avf->assoc)
 500			iter_data->any_assoc = true;
 501	}
 502
 503	/* Calculate combined mode - when APs are active, operate in AP mode.
 504	 * Otherwise use the mode of the new interface. This can currently
 505	 * only deal with combinations of APs and STAs. Only one ad-hoc
 506	 * interfaces is allowed.
 507	 */
 508	if (avf->opmode == NL80211_IFTYPE_AP)
 509		iter_data->opmode = NL80211_IFTYPE_AP;
 510	else {
 511		if (avf->opmode == NL80211_IFTYPE_STATION)
 512			iter_data->n_stas++;
 513		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 514			iter_data->opmode = avf->opmode;
 515	}
 516}
 517
 518void
 519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 520				   struct ieee80211_vif *vif)
 521{
 522	struct ath_common *common = ath5k_hw_common(ah);
 523	struct ath5k_vif_iter_data iter_data;
 524	u32 rfilt;
 525
 526	/*
 527	 * Use the hardware MAC address as reference, the hardware uses it
 528	 * together with the BSSID mask when matching addresses.
 529	 */
 530	iter_data.hw_macaddr = common->macaddr;
 531	memset(&iter_data.mask, 0xff, ETH_ALEN);
 532	iter_data.found_active = false;
 533	iter_data.need_set_hw_addr = true;
 534	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 535	iter_data.n_stas = 0;
 536
 537	if (vif)
 538		ath5k_vif_iter(&iter_data, vif->addr, vif);
 539
 540	/* Get list of all active MAC addresses */
 541	ieee80211_iterate_active_interfaces_atomic(
 542		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 543		ath5k_vif_iter, &iter_data);
 544	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 545
 546	ah->opmode = iter_data.opmode;
 547	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 548		/* Nothing active, default to station mode */
 549		ah->opmode = NL80211_IFTYPE_STATION;
 550
 551	ath5k_hw_set_opmode(ah, ah->opmode);
 552	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 553		  ah->opmode, ath_opmode_to_string(ah->opmode));
 554
 555	if (iter_data.need_set_hw_addr && iter_data.found_active)
 556		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 557
 558	if (ath5k_hw_hasbssidmask(ah))
 559		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 560
 561	/* Set up RX Filter */
 562	if (iter_data.n_stas > 1) {
 563		/* If you have multiple STA interfaces connected to
 564		 * different APs, ARPs are not received (most of the time?)
 565		 * Enabling PROMISC appears to fix that problem.
 566		 */
 567		ah->filter_flags |= AR5K_RX_FILTER_PROM;
 568	}
 569
 570	rfilt = ah->filter_flags;
 571	ath5k_hw_set_rx_filter(ah, rfilt);
 572	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 573}
 574
 575static inline int
 576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 577{
 578	int rix;
 579
 580	/* return base rate on errors */
 581	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 582			"hw_rix out of bounds: %x\n", hw_rix))
 583		return 0;
 584
 585	rix = ah->rate_idx[ah->curchan->band][hw_rix];
 586	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 587		rix = 0;
 588
 589	return rix;
 590}
 591
 592/***************\
 593* Buffers setup *
 594\***************/
 595
 596static
 597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 598{
 599	struct ath_common *common = ath5k_hw_common(ah);
 600	struct sk_buff *skb;
 601
 602	/*
 603	 * Allocate buffer with headroom_needed space for the
 604	 * fake physical layer header at the start.
 605	 */
 606	skb = ath_rxbuf_alloc(common,
 607			      common->rx_bufsize,
 608			      GFP_ATOMIC);
 609
 610	if (!skb) {
 611		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 612				common->rx_bufsize);
 613		return NULL;
 614	}
 615
 616	*skb_addr = dma_map_single(ah->dev,
 617				   skb->data, common->rx_bufsize,
 618				   DMA_FROM_DEVICE);
 619
 620	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 621		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 622		dev_kfree_skb(skb);
 623		return NULL;
 624	}
 625	return skb;
 626}
 627
 628static int
 629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 630{
 631	struct sk_buff *skb = bf->skb;
 632	struct ath5k_desc *ds;
 633	int ret;
 634
 635	if (!skb) {
 636		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 637		if (!skb)
 638			return -ENOMEM;
 639		bf->skb = skb;
 640	}
 641
 642	/*
 643	 * Setup descriptors.  For receive we always terminate
 644	 * the descriptor list with a self-linked entry so we'll
 645	 * not get overrun under high load (as can happen with a
 646	 * 5212 when ANI processing enables PHY error frames).
 647	 *
 648	 * To ensure the last descriptor is self-linked we create
 649	 * each descriptor as self-linked and add it to the end.  As
 650	 * each additional descriptor is added the previous self-linked
 651	 * entry is "fixed" naturally.  This should be safe even
 652	 * if DMA is happening.  When processing RX interrupts we
 653	 * never remove/process the last, self-linked, entry on the
 654	 * descriptor list.  This ensures the hardware always has
 655	 * someplace to write a new frame.
 656	 */
 657	ds = bf->desc;
 658	ds->ds_link = bf->daddr;	/* link to self */
 659	ds->ds_data = bf->skbaddr;
 660	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 661	if (ret) {
 662		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 663		return ret;
 664	}
 665
 666	if (ah->rxlink != NULL)
 667		*ah->rxlink = bf->daddr;
 668	ah->rxlink = &ds->ds_link;
 669	return 0;
 670}
 671
 672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 673{
 674	struct ieee80211_hdr *hdr;
 675	enum ath5k_pkt_type htype;
 676	__le16 fc;
 677
 678	hdr = (struct ieee80211_hdr *)skb->data;
 679	fc = hdr->frame_control;
 680
 681	if (ieee80211_is_beacon(fc))
 682		htype = AR5K_PKT_TYPE_BEACON;
 683	else if (ieee80211_is_probe_resp(fc))
 684		htype = AR5K_PKT_TYPE_PROBE_RESP;
 685	else if (ieee80211_is_atim(fc))
 686		htype = AR5K_PKT_TYPE_ATIM;
 687	else if (ieee80211_is_pspoll(fc))
 688		htype = AR5K_PKT_TYPE_PSPOLL;
 689	else
 690		htype = AR5K_PKT_TYPE_NORMAL;
 691
 692	return htype;
 693}
 694
 695static struct ieee80211_rate *
 696ath5k_get_rate(const struct ieee80211_hw *hw,
 697	       const struct ieee80211_tx_info *info,
 698	       struct ath5k_buf *bf, int idx)
 699{
 700	/*
 701	* convert a ieee80211_tx_rate RC-table entry to
 702	* the respective ieee80211_rate struct
 703	*/
 704	if (bf->rates[idx].idx < 0) {
 705		return NULL;
 706	}
 707
 708	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
 709}
 710
 711static u16
 712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
 713			const struct ieee80211_tx_info *info,
 714			struct ath5k_buf *bf, int idx)
 715{
 716	struct ieee80211_rate *rate;
 717	u16 hw_rate;
 718	u8 rc_flags;
 719
 720	rate = ath5k_get_rate(hw, info, bf, idx);
 721	if (!rate)
 722		return 0;
 723
 724	rc_flags = bf->rates[idx].flags;
 725	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 726		   rate->hw_value_short : rate->hw_value;
 727
 728	return hw_rate;
 729}
 730
 731static int
 732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 733		  struct ath5k_txq *txq, int padsize,
 734		  struct ieee80211_tx_control *control)
 735{
 736	struct ath5k_desc *ds = bf->desc;
 737	struct sk_buff *skb = bf->skb;
 738	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 739	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 740	struct ieee80211_rate *rate;
 741	unsigned int mrr_rate[3], mrr_tries[3];
 742	int i, ret;
 743	u16 hw_rate;
 744	u16 cts_rate = 0;
 745	u16 duration = 0;
 746	u8 rc_flags;
 747
 748	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 749
 750	/* XXX endianness */
 751	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 752			DMA_TO_DEVICE);
 753
 754	if (dma_mapping_error(ah->dev, bf->skbaddr))
 755		return -ENOSPC;
 756
 757	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
 758			       ARRAY_SIZE(bf->rates));
 759
 760	rate = ath5k_get_rate(ah->hw, info, bf, 0);
 761
 762	if (!rate) {
 763		ret = -EINVAL;
 764		goto err_unmap;
 765	}
 766
 767	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 768		flags |= AR5K_TXDESC_NOACK;
 769
 770	rc_flags = info->control.rates[0].flags;
 771
 772	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
 773
 774	pktlen = skb->len;
 775
 776	/* FIXME: If we are in g mode and rate is a CCK rate
 777	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 778	 * from tx power (value is in dB units already) */
 779	if (info->control.hw_key) {
 780		keyidx = info->control.hw_key->hw_key_idx;
 781		pktlen += info->control.hw_key->icv_len;
 782	}
 783	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 784		flags |= AR5K_TXDESC_RTSENA;
 785		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 786		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 787			info->control.vif, pktlen, info));
 788	}
 789	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 790		flags |= AR5K_TXDESC_CTSENA;
 791		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 792		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 793			info->control.vif, pktlen, info));
 794	}
 795
 796	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 797		ieee80211_get_hdrlen_from_skb(skb), padsize,
 798		get_hw_packet_type(skb),
 799		(ah->ah_txpower.txp_requested * 2),
 800		hw_rate,
 801		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
 802		cts_rate, duration);
 803	if (ret)
 804		goto err_unmap;
 805
 806	/* Set up MRR descriptor */
 807	if (ah->ah_capabilities.cap_has_mrr_support) {
 808		memset(mrr_rate, 0, sizeof(mrr_rate));
 809		memset(mrr_tries, 0, sizeof(mrr_tries));
 
 
 810
 811		for (i = 0; i < 3; i++) {
 812
 813			rate = ath5k_get_rate(ah->hw, info, bf, i);
 814			if (!rate)
 815				break;
 816
 817			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
 818			mrr_tries[i] = bf->rates[i].count;
 819		}
 820
 821		ath5k_hw_setup_mrr_tx_desc(ah, ds,
 822			mrr_rate[0], mrr_tries[0],
 823			mrr_rate[1], mrr_tries[1],
 824			mrr_rate[2], mrr_tries[2]);
 825	}
 826
 827	ds->ds_link = 0;
 828	ds->ds_data = bf->skbaddr;
 829
 830	spin_lock_bh(&txq->lock);
 831	list_add_tail(&bf->list, &txq->q);
 832	txq->txq_len++;
 833	if (txq->link == NULL) /* is this first packet? */
 834		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 835	else /* no, so only link it */
 836		*txq->link = bf->daddr;
 837
 838	txq->link = &ds->ds_link;
 839	ath5k_hw_start_tx_dma(ah, txq->qnum);
 840	mmiowb();
 841	spin_unlock_bh(&txq->lock);
 842
 843	return 0;
 844err_unmap:
 845	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 846	return ret;
 847}
 848
 849/*******************\
 850* Descriptors setup *
 851\*******************/
 852
 853static int
 854ath5k_desc_alloc(struct ath5k_hw *ah)
 855{
 856	struct ath5k_desc *ds;
 857	struct ath5k_buf *bf;
 858	dma_addr_t da;
 859	unsigned int i;
 860	int ret;
 861
 862	/* allocate descriptors */
 863	ah->desc_len = sizeof(struct ath5k_desc) *
 864			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 865
 866	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 867				&ah->desc_daddr, GFP_KERNEL);
 868	if (ah->desc == NULL) {
 869		ATH5K_ERR(ah, "can't allocate descriptors\n");
 870		ret = -ENOMEM;
 871		goto err;
 872	}
 873	ds = ah->desc;
 874	da = ah->desc_daddr;
 875	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 876		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 877
 878	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 879			sizeof(struct ath5k_buf), GFP_KERNEL);
 880	if (bf == NULL) {
 881		ATH5K_ERR(ah, "can't allocate bufptr\n");
 882		ret = -ENOMEM;
 883		goto err_free;
 884	}
 885	ah->bufptr = bf;
 886
 887	INIT_LIST_HEAD(&ah->rxbuf);
 888	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 889		bf->desc = ds;
 890		bf->daddr = da;
 891		list_add_tail(&bf->list, &ah->rxbuf);
 892	}
 893
 894	INIT_LIST_HEAD(&ah->txbuf);
 895	ah->txbuf_len = ATH_TXBUF;
 896	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 897		bf->desc = ds;
 898		bf->daddr = da;
 899		list_add_tail(&bf->list, &ah->txbuf);
 900	}
 901
 902	/* beacon buffers */
 903	INIT_LIST_HEAD(&ah->bcbuf);
 904	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 905		bf->desc = ds;
 906		bf->daddr = da;
 907		list_add_tail(&bf->list, &ah->bcbuf);
 908	}
 909
 910	return 0;
 911err_free:
 912	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 913err:
 914	ah->desc = NULL;
 915	return ret;
 916}
 917
 918void
 919ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 920{
 921	BUG_ON(!bf);
 922	if (!bf->skb)
 923		return;
 924	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 925			DMA_TO_DEVICE);
 926	ieee80211_free_txskb(ah->hw, bf->skb);
 927	bf->skb = NULL;
 928	bf->skbaddr = 0;
 929	bf->desc->ds_data = 0;
 930}
 931
 932void
 933ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 934{
 935	struct ath_common *common = ath5k_hw_common(ah);
 936
 937	BUG_ON(!bf);
 938	if (!bf->skb)
 939		return;
 940	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 941			DMA_FROM_DEVICE);
 942	dev_kfree_skb_any(bf->skb);
 943	bf->skb = NULL;
 944	bf->skbaddr = 0;
 945	bf->desc->ds_data = 0;
 946}
 947
 948static void
 949ath5k_desc_free(struct ath5k_hw *ah)
 950{
 951	struct ath5k_buf *bf;
 952
 953	list_for_each_entry(bf, &ah->txbuf, list)
 954		ath5k_txbuf_free_skb(ah, bf);
 955	list_for_each_entry(bf, &ah->rxbuf, list)
 956		ath5k_rxbuf_free_skb(ah, bf);
 957	list_for_each_entry(bf, &ah->bcbuf, list)
 958		ath5k_txbuf_free_skb(ah, bf);
 959
 960	/* Free memory associated with all descriptors */
 961	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 962	ah->desc = NULL;
 963	ah->desc_daddr = 0;
 964
 965	kfree(ah->bufptr);
 966	ah->bufptr = NULL;
 967}
 968
 969
 970/**************\
 971* Queues setup *
 972\**************/
 973
 974static struct ath5k_txq *
 975ath5k_txq_setup(struct ath5k_hw *ah,
 976		int qtype, int subtype)
 977{
 978	struct ath5k_txq *txq;
 979	struct ath5k_txq_info qi = {
 980		.tqi_subtype = subtype,
 981		/* XXX: default values not correct for B and XR channels,
 982		 * but who cares? */
 983		.tqi_aifs = AR5K_TUNE_AIFS,
 984		.tqi_cw_min = AR5K_TUNE_CWMIN,
 985		.tqi_cw_max = AR5K_TUNE_CWMAX
 986	};
 987	int qnum;
 988
 989	/*
 990	 * Enable interrupts only for EOL and DESC conditions.
 991	 * We mark tx descriptors to receive a DESC interrupt
 992	 * when a tx queue gets deep; otherwise we wait for the
 993	 * EOL to reap descriptors.  Note that this is done to
 994	 * reduce interrupt load and this only defers reaping
 995	 * descriptors, never transmitting frames.  Aside from
 996	 * reducing interrupts this also permits more concurrency.
 997	 * The only potential downside is if the tx queue backs
 998	 * up in which case the top half of the kernel may backup
 999	 * due to a lack of tx descriptors.
1000	 */
1001	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004	if (qnum < 0) {
1005		/*
1006		 * NB: don't print a message, this happens
1007		 * normally on parts with too few tx queues
1008		 */
1009		return ERR_PTR(qnum);
1010	}
 
 
 
 
 
 
1011	txq = &ah->txqs[qnum];
1012	if (!txq->setup) {
1013		txq->qnum = qnum;
1014		txq->link = NULL;
1015		INIT_LIST_HEAD(&txq->q);
1016		spin_lock_init(&txq->lock);
1017		txq->setup = true;
1018		txq->txq_len = 0;
1019		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020		txq->txq_poll_mark = false;
1021		txq->txq_stuck = 0;
1022	}
1023	return &ah->txqs[qnum];
1024}
1025
1026static int
1027ath5k_beaconq_setup(struct ath5k_hw *ah)
1028{
1029	struct ath5k_txq_info qi = {
1030		/* XXX: default values not correct for B and XR channels,
1031		 * but who cares? */
1032		.tqi_aifs = AR5K_TUNE_AIFS,
1033		.tqi_cw_min = AR5K_TUNE_CWMIN,
1034		.tqi_cw_max = AR5K_TUNE_CWMAX,
1035		/* NB: for dynamic turbo, don't enable any other interrupts */
1036		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037	};
1038
1039	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1040}
1041
1042static int
1043ath5k_beaconq_config(struct ath5k_hw *ah)
1044{
1045	struct ath5k_txq_info qi;
1046	int ret;
1047
1048	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049	if (ret)
1050		goto err;
1051
1052	if (ah->opmode == NL80211_IFTYPE_AP ||
1053	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1054		/*
1055		 * Always burst out beacon and CAB traffic
1056		 * (aifs = cwmin = cwmax = 0)
1057		 */
1058		qi.tqi_aifs = 0;
1059		qi.tqi_cw_min = 0;
1060		qi.tqi_cw_max = 0;
1061	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1062		/*
1063		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064		 */
1065		qi.tqi_aifs = 0;
1066		qi.tqi_cw_min = 0;
1067		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1068	}
1069
1070	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1073
1074	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075	if (ret) {
1076		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077			"hardware queue!\n", __func__);
1078		goto err;
1079	}
1080	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081	if (ret)
1082		goto err;
1083
1084	/* reconfigure cabq with ready time to 80% of beacon_interval */
1085	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086	if (ret)
1087		goto err;
1088
1089	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091	if (ret)
1092		goto err;
1093
1094	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095err:
1096	return ret;
1097}
1098
1099/**
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1101 *
1102 * @ah The &struct ath5k_hw
1103 *
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1106 *
1107 * NB:	this assumes output has been stopped and
1108 *	we do not need to block ath5k_tx_tasklet
1109 */
1110static void
1111ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1112{
1113	struct ath5k_txq *txq;
1114	struct ath5k_buf *bf, *bf0;
1115	int i;
1116
1117	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118		if (ah->txqs[i].setup) {
1119			txq = &ah->txqs[i];
1120			spin_lock_bh(&txq->lock);
1121			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122				ath5k_debug_printtxbuf(ah, bf);
1123
1124				ath5k_txbuf_free_skb(ah, bf);
1125
1126				spin_lock(&ah->txbuflock);
1127				list_move_tail(&bf->list, &ah->txbuf);
1128				ah->txbuf_len++;
1129				txq->txq_len--;
1130				spin_unlock(&ah->txbuflock);
1131			}
1132			txq->link = NULL;
1133			txq->txq_poll_mark = false;
1134			spin_unlock_bh(&txq->lock);
1135		}
1136	}
1137}
1138
1139static void
1140ath5k_txq_release(struct ath5k_hw *ah)
1141{
1142	struct ath5k_txq *txq = ah->txqs;
1143	unsigned int i;
1144
1145	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146		if (txq->setup) {
1147			ath5k_hw_release_tx_queue(ah, txq->qnum);
1148			txq->setup = false;
1149		}
1150}
1151
1152
1153/*************\
1154* RX Handling *
1155\*************/
1156
1157/*
1158 * Enable the receive h/w following a reset.
1159 */
1160static int
1161ath5k_rx_start(struct ath5k_hw *ah)
1162{
1163	struct ath_common *common = ath5k_hw_common(ah);
1164	struct ath5k_buf *bf;
1165	int ret;
1166
1167	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1168
1169	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170		  common->cachelsz, common->rx_bufsize);
1171
1172	spin_lock_bh(&ah->rxbuflock);
1173	ah->rxlink = NULL;
1174	list_for_each_entry(bf, &ah->rxbuf, list) {
1175		ret = ath5k_rxbuf_setup(ah, bf);
1176		if (ret != 0) {
1177			spin_unlock_bh(&ah->rxbuflock);
1178			goto err;
1179		}
1180	}
1181	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182	ath5k_hw_set_rxdp(ah, bf->daddr);
1183	spin_unlock_bh(&ah->rxbuflock);
1184
1185	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1186	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1188
1189	return 0;
1190err:
1191	return ret;
1192}
1193
1194/*
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1197 *
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
1200 */
1201static void
1202ath5k_rx_stop(struct ath5k_hw *ah)
1203{
1204
1205	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1206	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1207
1208	ath5k_debug_printrxbuffs(ah);
1209}
1210
1211static unsigned int
1212ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213		   struct ath5k_rx_status *rs)
1214{
1215	struct ath_common *common = ath5k_hw_common(ah);
1216	struct ieee80211_hdr *hdr = (void *)skb->data;
1217	unsigned int keyix, hlen;
1218
1219	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221		return RX_FLAG_DECRYPTED;
1222
1223	/* Apparently when a default key is used to decrypt the packet
1224	   the hw does not set the index used to decrypt.  In such cases
1225	   get the index from the packet. */
1226	hlen = ieee80211_hdrlen(hdr->frame_control);
1227	if (ieee80211_has_protected(hdr->frame_control) &&
1228	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229	    skb->len >= hlen + 4) {
1230		keyix = skb->data[hlen + 3] >> 6;
1231
1232		if (test_bit(keyix, common->keymap))
1233			return RX_FLAG_DECRYPTED;
1234	}
1235
1236	return 0;
1237}
1238
1239
1240static void
1241ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242		     struct ieee80211_rx_status *rxs)
1243{
 
1244	u64 tsf, bc_tstamp;
1245	u32 hw_tu;
1246	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247
1248	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
 
 
1249		/*
1250		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251		 * have updated the local TSF. We have to work around various
1252		 * hardware bugs, though...
1253		 */
1254		tsf = ath5k_hw_get_tsf64(ah);
1255		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256		hw_tu = TSF_TO_TU(tsf);
1257
1258		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260			(unsigned long long)bc_tstamp,
1261			(unsigned long long)rxs->mactime,
1262			(unsigned long long)(rxs->mactime - bc_tstamp),
1263			(unsigned long long)tsf);
1264
1265		/*
1266		 * Sometimes the HW will give us a wrong tstamp in the rx
1267		 * status, causing the timestamp extension to go wrong.
1268		 * (This seems to happen especially with beacon frames bigger
1269		 * than 78 byte (incl. FCS))
1270		 * But we know that the receive timestamp must be later than the
1271		 * timestamp of the beacon since HW must have synced to that.
1272		 *
1273		 * NOTE: here we assume mactime to be after the frame was
1274		 * received, not like mac80211 which defines it at the start.
1275		 */
1276		if (bc_tstamp > rxs->mactime) {
1277			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278				"fixing mactime from %llx to %llx\n",
1279				(unsigned long long)rxs->mactime,
1280				(unsigned long long)tsf);
1281			rxs->mactime = tsf;
1282		}
1283
1284		/*
1285		 * Local TSF might have moved higher than our beacon timers,
1286		 * in that case we have to update them to continue sending
1287		 * beacons. This also takes care of synchronizing beacon sending
1288		 * times with other stations.
1289		 */
1290		if (hw_tu >= ah->nexttbtt)
1291			ath5k_beacon_update_timers(ah, bc_tstamp);
1292
1293		/* Check if the beacon timers are still correct, because a TSF
1294		 * update might have created a window between them - for a
1295		 * longer description see the comment of this function: */
1296		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297			ath5k_beacon_update_timers(ah, bc_tstamp);
1298			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299				"fixed beacon timers after beacon receive\n");
1300		}
1301	}
1302}
1303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304/*
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1306 */
1307static int ath5k_common_padpos(struct sk_buff *skb)
1308{
1309	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310	__le16 frame_control = hdr->frame_control;
1311	int padpos = 24;
1312
1313	if (ieee80211_has_a4(frame_control))
1314		padpos += ETH_ALEN;
1315
1316	if (ieee80211_is_data_qos(frame_control))
1317		padpos += IEEE80211_QOS_CTL_LEN;
1318
1319	return padpos;
1320}
1321
1322/*
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1325 */
1326static int ath5k_add_padding(struct sk_buff *skb)
1327{
1328	int padpos = ath5k_common_padpos(skb);
1329	int padsize = padpos & 3;
1330
1331	if (padsize && skb->len > padpos) {
1332
1333		if (skb_headroom(skb) < padsize)
1334			return -1;
1335
1336		skb_push(skb, padsize);
1337		memmove(skb->data, skb->data + padsize, padpos);
1338		return padsize;
1339	}
1340
1341	return 0;
1342}
1343
1344/*
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit.  We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1353 *
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1356 */
1357static int ath5k_remove_padding(struct sk_buff *skb)
1358{
1359	int padpos = ath5k_common_padpos(skb);
1360	int padsize = padpos & 3;
1361
1362	if (padsize && skb->len >= padpos + padsize) {
1363		memmove(skb->data + padsize, skb->data, padpos);
1364		skb_pull(skb, padsize);
1365		return padsize;
1366	}
1367
1368	return 0;
1369}
1370
1371static void
1372ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373		    struct ath5k_rx_status *rs)
1374{
1375	struct ieee80211_rx_status *rxs;
1376	struct ath_common *common = ath5k_hw_common(ah);
1377
1378	ath5k_remove_padding(skb);
1379
1380	rxs = IEEE80211_SKB_RXCB(skb);
1381
1382	rxs->flag = 0;
1383	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384		rxs->flag |= RX_FLAG_MMIC_ERROR;
1385
1386	/*
1387	 * always extend the mac timestamp, since this information is
1388	 * also needed for proper IBSS merging.
1389	 *
1390	 * XXX: it might be too late to do it here, since rs_tstamp is
1391	 * 15bit only. that means TSF extension has to be done within
1392	 * 32768usec (about 32ms). it might be necessary to move this to
1393	 * the interrupt handler, like it is done in madwifi.
 
 
 
 
 
 
 
 
 
 
 
1394	 */
1395	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1396	rxs->flag |= RX_FLAG_MACTIME_END;
1397
1398	rxs->freq = ah->curchan->center_freq;
1399	rxs->band = ah->curchan->band;
1400
1401	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1402
1403	rxs->antenna = rs->rs_antenna;
1404
1405	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1406		ah->stats.antenna_rx[rs->rs_antenna]++;
1407	else
1408		ah->stats.antenna_rx[0]++; /* invalid */
1409
1410	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1411	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1412	switch (ah->ah_bwmode) {
1413	case AR5K_BWMODE_5MHZ:
1414		rxs->flag |= RX_FLAG_5MHZ;
1415		break;
1416	case AR5K_BWMODE_10MHZ:
1417		rxs->flag |= RX_FLAG_10MHZ;
1418		break;
1419	default:
1420		break;
1421	}
1422
1423	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1424	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1425		rxs->flag |= RX_FLAG_SHORTPRE;
1426
1427	trace_ath5k_rx(ah, skb);
1428
1429	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1430		ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1431
1432		/* check beacons in IBSS mode */
1433		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1434			ath5k_check_ibss_tsf(ah, skb, rxs);
1435	}
1436
1437	ieee80211_rx(ah->hw, skb);
1438}
1439
1440/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1441 *
1442 * Check if we want to further process this frame or not. Also update
1443 * statistics. Return true if we want this frame, false if not.
1444 */
1445static bool
1446ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1447{
1448	ah->stats.rx_all_count++;
1449	ah->stats.rx_bytes_count += rs->rs_datalen;
1450
1451	if (unlikely(rs->rs_status)) {
1452		if (rs->rs_status & AR5K_RXERR_CRC)
1453			ah->stats.rxerr_crc++;
1454		if (rs->rs_status & AR5K_RXERR_FIFO)
1455			ah->stats.rxerr_fifo++;
1456		if (rs->rs_status & AR5K_RXERR_PHY) {
1457			ah->stats.rxerr_phy++;
1458			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1459				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1460			return false;
1461		}
1462		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1463			/*
1464			 * Decrypt error.  If the error occurred
1465			 * because there was no hardware key, then
1466			 * let the frame through so the upper layers
1467			 * can process it.  This is necessary for 5210
1468			 * parts which have no way to setup a ``clear''
1469			 * key cache entry.
1470			 *
1471			 * XXX do key cache faulting
1472			 */
1473			ah->stats.rxerr_decrypt++;
1474			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1475			    !(rs->rs_status & AR5K_RXERR_CRC))
1476				return true;
1477		}
1478		if (rs->rs_status & AR5K_RXERR_MIC) {
1479			ah->stats.rxerr_mic++;
1480			return true;
1481		}
1482
1483		/* reject any frames with non-crypto errors */
1484		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1485			return false;
1486	}
1487
1488	if (unlikely(rs->rs_more)) {
1489		ah->stats.rxerr_jumbo++;
1490		return false;
1491	}
1492	return true;
1493}
1494
1495static void
1496ath5k_set_current_imask(struct ath5k_hw *ah)
1497{
1498	enum ath5k_int imask;
1499	unsigned long flags;
1500
1501	spin_lock_irqsave(&ah->irqlock, flags);
1502	imask = ah->imask;
1503	if (ah->rx_pending)
1504		imask &= ~AR5K_INT_RX_ALL;
1505	if (ah->tx_pending)
1506		imask &= ~AR5K_INT_TX_ALL;
1507	ath5k_hw_set_imr(ah, imask);
1508	spin_unlock_irqrestore(&ah->irqlock, flags);
1509}
1510
1511static void
1512ath5k_tasklet_rx(unsigned long data)
1513{
1514	struct ath5k_rx_status rs = {};
1515	struct sk_buff *skb, *next_skb;
1516	dma_addr_t next_skb_addr;
1517	struct ath5k_hw *ah = (void *)data;
1518	struct ath_common *common = ath5k_hw_common(ah);
1519	struct ath5k_buf *bf;
1520	struct ath5k_desc *ds;
1521	int ret;
1522
1523	spin_lock(&ah->rxbuflock);
1524	if (list_empty(&ah->rxbuf)) {
1525		ATH5K_WARN(ah, "empty rx buf pool\n");
1526		goto unlock;
1527	}
1528	do {
1529		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1530		BUG_ON(bf->skb == NULL);
1531		skb = bf->skb;
1532		ds = bf->desc;
1533
1534		/* bail if HW is still using self-linked descriptor */
1535		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1536			break;
1537
1538		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1539		if (unlikely(ret == -EINPROGRESS))
1540			break;
1541		else if (unlikely(ret)) {
1542			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1543			ah->stats.rxerr_proc++;
1544			break;
1545		}
1546
1547		if (ath5k_receive_frame_ok(ah, &rs)) {
1548			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1549
1550			/*
1551			 * If we can't replace bf->skb with a new skb under
1552			 * memory pressure, just skip this packet
1553			 */
1554			if (!next_skb)
1555				goto next;
1556
1557			dma_unmap_single(ah->dev, bf->skbaddr,
1558					 common->rx_bufsize,
1559					 DMA_FROM_DEVICE);
1560
1561			skb_put(skb, rs.rs_datalen);
1562
1563			ath5k_receive_frame(ah, skb, &rs);
1564
1565			bf->skb = next_skb;
1566			bf->skbaddr = next_skb_addr;
1567		}
1568next:
1569		list_move_tail(&bf->list, &ah->rxbuf);
1570	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1571unlock:
1572	spin_unlock(&ah->rxbuflock);
1573	ah->rx_pending = false;
1574	ath5k_set_current_imask(ah);
1575}
1576
1577
1578/*************\
1579* TX Handling *
1580\*************/
1581
1582void
1583ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1584	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1585{
1586	struct ath5k_hw *ah = hw->priv;
1587	struct ath5k_buf *bf;
1588	unsigned long flags;
1589	int padsize;
1590
1591	trace_ath5k_tx(ah, skb, txq);
1592
1593	/*
1594	 * The hardware expects the header padded to 4 byte boundaries.
1595	 * If this is not the case, we add the padding after the header.
1596	 */
1597	padsize = ath5k_add_padding(skb);
1598	if (padsize < 0) {
1599		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1600			  " headroom to pad");
1601		goto drop_packet;
1602	}
1603
1604	if (txq->txq_len >= txq->txq_max &&
1605	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1606		ieee80211_stop_queue(hw, txq->qnum);
1607
1608	spin_lock_irqsave(&ah->txbuflock, flags);
1609	if (list_empty(&ah->txbuf)) {
1610		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1611		spin_unlock_irqrestore(&ah->txbuflock, flags);
1612		ieee80211_stop_queues(hw);
1613		goto drop_packet;
1614	}
1615	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1616	list_del(&bf->list);
1617	ah->txbuf_len--;
1618	if (list_empty(&ah->txbuf))
1619		ieee80211_stop_queues(hw);
1620	spin_unlock_irqrestore(&ah->txbuflock, flags);
1621
1622	bf->skb = skb;
1623
1624	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1625		bf->skb = NULL;
1626		spin_lock_irqsave(&ah->txbuflock, flags);
1627		list_add_tail(&bf->list, &ah->txbuf);
1628		ah->txbuf_len++;
1629		spin_unlock_irqrestore(&ah->txbuflock, flags);
1630		goto drop_packet;
1631	}
1632	return;
1633
1634drop_packet:
1635	ieee80211_free_txskb(hw, skb);
1636}
1637
1638static void
1639ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1640			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1641			 struct ath5k_buf *bf)
1642{
1643	struct ieee80211_tx_info *info;
1644	u8 tries[3];
1645	int i;
1646	int size = 0;
1647
1648	ah->stats.tx_all_count++;
1649	ah->stats.tx_bytes_count += skb->len;
1650	info = IEEE80211_SKB_CB(skb);
1651
1652	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1653	memcpy(info->status.rates, bf->rates, size);
1654
1655	tries[0] = info->status.rates[0].count;
1656	tries[1] = info->status.rates[1].count;
1657	tries[2] = info->status.rates[2].count;
1658
1659	ieee80211_tx_info_clear_status(info);
1660
1661	for (i = 0; i < ts->ts_final_idx; i++) {
1662		struct ieee80211_tx_rate *r =
1663			&info->status.rates[i];
1664
1665		r->count = tries[i];
1666	}
1667
1668	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1669	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1670
1671	if (unlikely(ts->ts_status)) {
1672		ah->stats.ack_fail++;
1673		if (ts->ts_status & AR5K_TXERR_FILT) {
1674			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1675			ah->stats.txerr_filt++;
1676		}
1677		if (ts->ts_status & AR5K_TXERR_XRETRY)
1678			ah->stats.txerr_retry++;
1679		if (ts->ts_status & AR5K_TXERR_FIFO)
1680			ah->stats.txerr_fifo++;
1681	} else {
1682		info->flags |= IEEE80211_TX_STAT_ACK;
1683		info->status.ack_signal = ts->ts_rssi;
1684
1685		/* count the successful attempt as well */
1686		info->status.rates[ts->ts_final_idx].count++;
1687	}
1688
1689	/*
1690	* Remove MAC header padding before giving the frame
1691	* back to mac80211.
1692	*/
1693	ath5k_remove_padding(skb);
1694
1695	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1696		ah->stats.antenna_tx[ts->ts_antenna]++;
1697	else
1698		ah->stats.antenna_tx[0]++; /* invalid */
1699
1700	trace_ath5k_tx_complete(ah, skb, txq, ts);
1701	ieee80211_tx_status(ah->hw, skb);
1702}
1703
1704static void
1705ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1706{
1707	struct ath5k_tx_status ts = {};
1708	struct ath5k_buf *bf, *bf0;
1709	struct ath5k_desc *ds;
1710	struct sk_buff *skb;
1711	int ret;
1712
1713	spin_lock(&txq->lock);
1714	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1715
1716		txq->txq_poll_mark = false;
1717
1718		/* skb might already have been processed last time. */
1719		if (bf->skb != NULL) {
1720			ds = bf->desc;
1721
1722			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1723			if (unlikely(ret == -EINPROGRESS))
1724				break;
1725			else if (unlikely(ret)) {
1726				ATH5K_ERR(ah,
1727					"error %d while processing "
1728					"queue %u\n", ret, txq->qnum);
1729				break;
1730			}
1731
1732			skb = bf->skb;
1733			bf->skb = NULL;
1734
1735			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1736					DMA_TO_DEVICE);
1737			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1738		}
1739
1740		/*
1741		 * It's possible that the hardware can say the buffer is
1742		 * completed when it hasn't yet loaded the ds_link from
1743		 * host memory and moved on.
1744		 * Always keep the last descriptor to avoid HW races...
1745		 */
1746		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1747			spin_lock(&ah->txbuflock);
1748			list_move_tail(&bf->list, &ah->txbuf);
1749			ah->txbuf_len++;
1750			txq->txq_len--;
1751			spin_unlock(&ah->txbuflock);
1752		}
1753	}
1754	spin_unlock(&txq->lock);
1755	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1756		ieee80211_wake_queue(ah->hw, txq->qnum);
1757}
1758
1759static void
1760ath5k_tasklet_tx(unsigned long data)
1761{
1762	int i;
1763	struct ath5k_hw *ah = (void *)data;
1764
1765	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1766		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1767			ath5k_tx_processq(ah, &ah->txqs[i]);
1768
1769	ah->tx_pending = false;
1770	ath5k_set_current_imask(ah);
1771}
1772
1773
1774/*****************\
1775* Beacon handling *
1776\*****************/
1777
1778/*
1779 * Setup the beacon frame for transmit.
1780 */
1781static int
1782ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1783{
1784	struct sk_buff *skb = bf->skb;
1785	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1786	struct ath5k_desc *ds;
1787	int ret = 0;
1788	u8 antenna;
1789	u32 flags;
1790	const int padsize = 0;
1791
1792	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1793			DMA_TO_DEVICE);
1794	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1795			"skbaddr %llx\n", skb, skb->data, skb->len,
1796			(unsigned long long)bf->skbaddr);
1797
1798	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1799		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1800		dev_kfree_skb_any(skb);
1801		bf->skb = NULL;
1802		return -EIO;
1803	}
1804
1805	ds = bf->desc;
1806	antenna = ah->ah_tx_ant;
1807
1808	flags = AR5K_TXDESC_NOACK;
1809	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1810		ds->ds_link = bf->daddr;	/* self-linked */
1811		flags |= AR5K_TXDESC_VEOL;
1812	} else
1813		ds->ds_link = 0;
1814
1815	/*
1816	 * If we use multiple antennas on AP and use
1817	 * the Sectored AP scenario, switch antenna every
1818	 * 4 beacons to make sure everybody hears our AP.
1819	 * When a client tries to associate, hw will keep
1820	 * track of the tx antenna to be used for this client
1821	 * automatically, based on ACKed packets.
1822	 *
1823	 * Note: AP still listens and transmits RTS on the
1824	 * default antenna which is supposed to be an omni.
1825	 *
1826	 * Note2: On sectored scenarios it's possible to have
1827	 * multiple antennas (1 omni -- the default -- and 14
1828	 * sectors), so if we choose to actually support this
1829	 * mode, we need to allow the user to set how many antennas
1830	 * we have and tweak the code below to send beacons
1831	 * on all of them.
1832	 */
1833	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1834		antenna = ah->bsent & 4 ? 2 : 1;
1835
1836
1837	/* FIXME: If we are in g mode and rate is a CCK rate
1838	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1839	 * from tx power (value is in dB units already) */
1840	ds->ds_data = bf->skbaddr;
1841	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1842			ieee80211_get_hdrlen_from_skb(skb), padsize,
1843			AR5K_PKT_TYPE_BEACON,
1844			(ah->ah_txpower.txp_requested * 2),
1845			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1846			1, AR5K_TXKEYIX_INVALID,
1847			antenna, flags, 0, 0);
1848	if (ret)
1849		goto err_unmap;
1850
1851	return 0;
1852err_unmap:
1853	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1854	return ret;
1855}
1856
1857/*
1858 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1859 * this is called only once at config_bss time, for AP we do it every
1860 * SWBA interrupt so that the TIM will reflect buffered frames.
1861 *
1862 * Called with the beacon lock.
1863 */
1864int
1865ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1866{
1867	int ret;
1868	struct ath5k_hw *ah = hw->priv;
1869	struct ath5k_vif *avf;
1870	struct sk_buff *skb;
1871
1872	if (WARN_ON(!vif)) {
1873		ret = -EINVAL;
1874		goto out;
1875	}
1876
1877	skb = ieee80211_beacon_get(hw, vif);
1878
1879	if (!skb) {
1880		ret = -ENOMEM;
1881		goto out;
1882	}
1883
1884	avf = (void *)vif->drv_priv;
1885	ath5k_txbuf_free_skb(ah, avf->bbuf);
1886	avf->bbuf->skb = skb;
1887	ret = ath5k_beacon_setup(ah, avf->bbuf);
1888out:
1889	return ret;
1890}
1891
1892/*
1893 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1894 * frame contents are done as needed and the slot time is
1895 * also adjusted based on current state.
1896 *
1897 * This is called from software irq context (beacontq tasklets)
1898 * or user context from ath5k_beacon_config.
1899 */
1900static void
1901ath5k_beacon_send(struct ath5k_hw *ah)
1902{
1903	struct ieee80211_vif *vif;
1904	struct ath5k_vif *avf;
1905	struct ath5k_buf *bf;
1906	struct sk_buff *skb;
1907	int err;
1908
1909	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1910
1911	/*
1912	 * Check if the previous beacon has gone out.  If
1913	 * not, don't don't try to post another: skip this
1914	 * period and wait for the next.  Missed beacons
1915	 * indicate a problem and should not occur.  If we
1916	 * miss too many consecutive beacons reset the device.
1917	 */
1918	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1919		ah->bmisscount++;
1920		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1921			"missed %u consecutive beacons\n", ah->bmisscount);
1922		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1923			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1924				"stuck beacon time (%u missed)\n",
1925				ah->bmisscount);
1926			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1927				  "stuck beacon, resetting\n");
1928			ieee80211_queue_work(ah->hw, &ah->reset_work);
1929		}
1930		return;
1931	}
1932	if (unlikely(ah->bmisscount != 0)) {
1933		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1934			"resume beacon xmit after %u misses\n",
1935			ah->bmisscount);
1936		ah->bmisscount = 0;
1937	}
1938
1939	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1940			ah->num_mesh_vifs > 1) ||
1941			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1942		u64 tsf = ath5k_hw_get_tsf64(ah);
1943		u32 tsftu = TSF_TO_TU(tsf);
1944		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1945		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1946		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1947			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1948			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1949	} else /* only one interface */
1950		vif = ah->bslot[0];
1951
1952	if (!vif)
1953		return;
1954
1955	avf = (void *)vif->drv_priv;
1956	bf = avf->bbuf;
1957
1958	/*
1959	 * Stop any current dma and put the new frame on the queue.
1960	 * This should never fail since we check above that no frames
1961	 * are still pending on the queue.
1962	 */
1963	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1964		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1965		/* NB: hw still stops DMA, so proceed */
1966	}
1967
1968	/* refresh the beacon for AP or MESH mode */
1969	if (ah->opmode == NL80211_IFTYPE_AP ||
1970	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1971		err = ath5k_beacon_update(ah->hw, vif);
1972		if (err)
1973			return;
1974	}
1975
1976	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1977		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1978		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1979		return;
1980	}
1981
1982	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1983
1984	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1985	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1986	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1987		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1988
1989	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1990	while (skb) {
1991		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
1992
1993		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1994			break;
1995
1996		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1997	}
1998
1999	ah->bsent++;
2000}
2001
2002/**
2003 * ath5k_beacon_update_timers - update beacon timers
2004 *
2005 * @ah: struct ath5k_hw pointer we are operating on
2006 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2007 *          beacon timer update based on the current HW TSF.
2008 *
2009 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2010 * of a received beacon or the current local hardware TSF and write it to the
2011 * beacon timer registers.
2012 *
2013 * This is called in a variety of situations, e.g. when a beacon is received,
2014 * when a TSF update has been detected, but also when an new IBSS is created or
2015 * when we otherwise know we have to update the timers, but we keep it in this
2016 * function to have it all together in one place.
2017 */
2018void
2019ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2020{
2021	u32 nexttbtt, intval, hw_tu, bc_tu;
2022	u64 hw_tsf;
2023
2024	intval = ah->bintval & AR5K_BEACON_PERIOD;
2025	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2026		+ ah->num_mesh_vifs > 1) {
2027		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2028		if (intval < 15)
2029			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2030				   intval);
2031	}
2032	if (WARN_ON(!intval))
2033		return;
2034
2035	/* beacon TSF converted to TU */
2036	bc_tu = TSF_TO_TU(bc_tsf);
2037
2038	/* current TSF converted to TU */
2039	hw_tsf = ath5k_hw_get_tsf64(ah);
2040	hw_tu = TSF_TO_TU(hw_tsf);
2041
2042#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2043	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2044	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2045	 * configuration we need to make sure it is bigger than that. */
2046
2047	if (bc_tsf == -1) {
2048		/*
2049		 * no beacons received, called internally.
2050		 * just need to refresh timers based on HW TSF.
2051		 */
2052		nexttbtt = roundup(hw_tu + FUDGE, intval);
2053	} else if (bc_tsf == 0) {
2054		/*
2055		 * no beacon received, probably called by ath5k_reset_tsf().
2056		 * reset TSF to start with 0.
2057		 */
2058		nexttbtt = intval;
2059		intval |= AR5K_BEACON_RESET_TSF;
2060	} else if (bc_tsf > hw_tsf) {
2061		/*
2062		 * beacon received, SW merge happened but HW TSF not yet updated.
2063		 * not possible to reconfigure timers yet, but next time we
2064		 * receive a beacon with the same BSSID, the hardware will
2065		 * automatically update the TSF and then we need to reconfigure
2066		 * the timers.
2067		 */
2068		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2069			"need to wait for HW TSF sync\n");
2070		return;
2071	} else {
2072		/*
2073		 * most important case for beacon synchronization between STA.
2074		 *
2075		 * beacon received and HW TSF has been already updated by HW.
2076		 * update next TBTT based on the TSF of the beacon, but make
2077		 * sure it is ahead of our local TSF timer.
2078		 */
2079		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2080	}
2081#undef FUDGE
2082
2083	ah->nexttbtt = nexttbtt;
2084
2085	intval |= AR5K_BEACON_ENA;
2086	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2087
2088	/*
2089	 * debugging output last in order to preserve the time critical aspect
2090	 * of this function
2091	 */
2092	if (bc_tsf == -1)
2093		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2094			"reconfigured timers based on HW TSF\n");
2095	else if (bc_tsf == 0)
2096		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097			"reset HW TSF and timers\n");
2098	else
2099		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2100			"updated timers based on beacon TSF\n");
2101
2102	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2103			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2104			  (unsigned long long) bc_tsf,
2105			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2106	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2107		intval & AR5K_BEACON_PERIOD,
2108		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2109		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2110}
2111
2112/**
2113 * ath5k_beacon_config - Configure the beacon queues and interrupts
2114 *
2115 * @ah: struct ath5k_hw pointer we are operating on
2116 *
2117 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2118 * interrupts to detect TSF updates only.
2119 */
2120void
2121ath5k_beacon_config(struct ath5k_hw *ah)
2122{
2123	spin_lock_bh(&ah->block);
 
 
2124	ah->bmisscount = 0;
2125	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2126
2127	if (ah->enable_beacon) {
2128		/*
2129		 * In IBSS mode we use a self-linked tx descriptor and let the
2130		 * hardware send the beacons automatically. We have to load it
2131		 * only once here.
2132		 * We use the SWBA interrupt only to keep track of the beacon
2133		 * timers in order to detect automatic TSF updates.
2134		 */
2135		ath5k_beaconq_config(ah);
2136
2137		ah->imask |= AR5K_INT_SWBA;
2138
2139		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2140			if (ath5k_hw_hasveol(ah))
2141				ath5k_beacon_send(ah);
2142		} else
2143			ath5k_beacon_update_timers(ah, -1);
2144	} else {
2145		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2146	}
2147
2148	ath5k_hw_set_imr(ah, ah->imask);
2149	mmiowb();
2150	spin_unlock_bh(&ah->block);
2151}
2152
2153static void ath5k_tasklet_beacon(unsigned long data)
2154{
2155	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2156
2157	/*
2158	 * Software beacon alert--time to send a beacon.
2159	 *
2160	 * In IBSS mode we use this interrupt just to
2161	 * keep track of the next TBTT (target beacon
2162	 * transmission time) in order to detect whether
2163	 * automatic TSF updates happened.
2164	 */
2165	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2166		/* XXX: only if VEOL supported */
2167		u64 tsf = ath5k_hw_get_tsf64(ah);
2168		ah->nexttbtt += ah->bintval;
2169		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2170				"SWBA nexttbtt: %x hw_tu: %x "
2171				"TSF: %llx\n",
2172				ah->nexttbtt,
2173				TSF_TO_TU(tsf),
2174				(unsigned long long) tsf);
2175	} else {
2176		spin_lock(&ah->block);
2177		ath5k_beacon_send(ah);
2178		spin_unlock(&ah->block);
2179	}
2180}
2181
2182
2183/********************\
2184* Interrupt handling *
2185\********************/
2186
2187static void
2188ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2189{
2190	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2191	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2192	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2193
2194		/* Run ANI only when calibration is not active */
2195
2196		ah->ah_cal_next_ani = jiffies +
2197			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2198		tasklet_schedule(&ah->ani_tasklet);
2199
2200	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2201		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2202		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2203
2204		/* Run calibration only when another calibration
2205		 * is not running.
2206		 *
2207		 * Note: This is for both full/short calibration,
2208		 * if it's time for a full one, ath5k_calibrate_work will deal
2209		 * with it. */
2210
2211		ah->ah_cal_next_short = jiffies +
2212			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2213		ieee80211_queue_work(ah->hw, &ah->calib_work);
2214	}
2215	/* we could use SWI to generate enough interrupts to meet our
2216	 * calibration interval requirements, if necessary:
2217	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2218}
2219
2220static void
2221ath5k_schedule_rx(struct ath5k_hw *ah)
2222{
2223	ah->rx_pending = true;
2224	tasklet_schedule(&ah->rxtq);
2225}
2226
2227static void
2228ath5k_schedule_tx(struct ath5k_hw *ah)
2229{
2230	ah->tx_pending = true;
2231	tasklet_schedule(&ah->txtq);
2232}
2233
2234static irqreturn_t
2235ath5k_intr(int irq, void *dev_id)
2236{
2237	struct ath5k_hw *ah = dev_id;
2238	enum ath5k_int status;
2239	unsigned int counter = 1000;
2240
2241
2242	/*
2243	 * If hw is not ready (or detached) and we get an
2244	 * interrupt, or if we have no interrupts pending
2245	 * (that means it's not for us) skip it.
2246	 *
2247	 * NOTE: Group 0/1 PCI interface registers are not
2248	 * supported on WiSOCs, so we can't check for pending
2249	 * interrupts (ISR belongs to another register group
2250	 * so we are ok).
2251	 */
2252	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2253			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2254			!ath5k_hw_is_intr_pending(ah))))
2255		return IRQ_NONE;
2256
2257	/** Main loop **/
2258	do {
2259		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2260
2261		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2262				status, ah->imask);
2263
2264		/*
2265		 * Fatal hw error -> Log and reset
2266		 *
2267		 * Fatal errors are unrecoverable so we have to
2268		 * reset the card. These errors include bus and
2269		 * dma errors.
2270		 */
2271		if (unlikely(status & AR5K_INT_FATAL)) {
2272
 
 
 
2273			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2274				  "fatal int, resetting\n");
2275			ieee80211_queue_work(ah->hw, &ah->reset_work);
2276
2277		/*
2278		 * RX Overrun -> Count and reset if needed
2279		 *
2280		 * Receive buffers are full. Either the bus is busy or
2281		 * the CPU is not fast enough to process all received
2282		 * frames.
2283		 */
2284		} else if (unlikely(status & AR5K_INT_RXORN)) {
2285
2286			/*
 
 
 
2287			 * Older chipsets need a reset to come out of this
2288			 * condition, but we treat it as RX for newer chips.
2289			 * We don't know exactly which versions need a reset
2290			 * this guess is copied from the HAL.
2291			 */
2292			ah->stats.rxorn_intr++;
2293
2294			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2295				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2296					  "rx overrun, resetting\n");
2297				ieee80211_queue_work(ah->hw, &ah->reset_work);
2298			} else
2299				ath5k_schedule_rx(ah);
2300
2301		} else {
2302
2303			/* Software Beacon Alert -> Schedule beacon tasklet */
2304			if (status & AR5K_INT_SWBA)
2305				tasklet_hi_schedule(&ah->beacontq);
2306
2307			/*
2308			 * No more RX descriptors -> Just count
2309			 *
2310			 * NB: the hardware should re-read the link when
2311			 *     RXE bit is written, but it doesn't work at
2312			 *     least on older hardware revs.
2313			 */
2314			if (status & AR5K_INT_RXEOL)
2315				ah->stats.rxeol_intr++;
2316
2317
2318			/* TX Underrun -> Bump tx trigger level */
2319			if (status & AR5K_INT_TXURN)
2320				ath5k_hw_update_tx_triglevel(ah, true);
2321
2322			/* RX -> Schedule rx tasklet */
2323			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2324				ath5k_schedule_rx(ah);
2325
2326			/* TX -> Schedule tx tasklet */
2327			if (status & (AR5K_INT_TXOK
2328					| AR5K_INT_TXDESC
2329					| AR5K_INT_TXERR
2330					| AR5K_INT_TXEOL))
2331				ath5k_schedule_tx(ah);
2332
2333			/* Missed beacon -> TODO
2334			if (status & AR5K_INT_BMISS)
2335			*/
2336
2337			/* MIB event -> Update counters and notify ANI */
2338			if (status & AR5K_INT_MIB) {
2339				ah->stats.mib_intr++;
2340				ath5k_hw_update_mib_counters(ah);
2341				ath5k_ani_mib_intr(ah);
2342			}
2343
2344			/* GPIO -> Notify RFKill layer */
2345			if (status & AR5K_INT_GPIO)
2346				tasklet_schedule(&ah->rf_kill.toggleq);
2347
2348		}
2349
2350		if (ath5k_get_bus_type(ah) == ATH_AHB)
2351			break;
2352
2353	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2354
2355	/*
2356	 * Until we handle rx/tx interrupts mask them on IMR
2357	 *
2358	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2359	 * and unset after we 've handled the interrupts.
2360	 */
2361	if (ah->rx_pending || ah->tx_pending)
2362		ath5k_set_current_imask(ah);
2363
2364	if (unlikely(!counter))
2365		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2366
2367	/* Fire up calibration poll */
2368	ath5k_intr_calibration_poll(ah);
2369
2370	return IRQ_HANDLED;
2371}
2372
2373/*
2374 * Periodically recalibrate the PHY to account
2375 * for temperature/environment changes.
2376 */
2377static void
2378ath5k_calibrate_work(struct work_struct *work)
2379{
2380	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2381		calib_work);
2382
2383	/* Should we run a full calibration ? */
2384	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2385
2386		ah->ah_cal_next_full = jiffies +
2387			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2388		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2389
2390		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2391				"running full calibration\n");
2392
2393		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2394			/*
2395			 * Rfgain is out of bounds, reset the chip
2396			 * to load new gain values.
2397			 */
2398			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2399					"got new rfgain, resetting\n");
2400			ieee80211_queue_work(ah->hw, &ah->reset_work);
2401		}
2402	} else
2403		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2404
 
 
2405
2406	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2407		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2408		ah->curchan->hw_value);
2409
 
 
 
 
 
 
 
 
2410	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2411		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2412			ieee80211_frequency_to_channel(
2413				ah->curchan->center_freq));
2414
2415	/* Clear calibration flags */
2416	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2417		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2418	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2419		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
 
 
 
 
 
 
2420}
2421
2422
2423static void
2424ath5k_tasklet_ani(unsigned long data)
2425{
2426	struct ath5k_hw *ah = (void *)data;
2427
2428	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2429	ath5k_ani_calibration(ah);
2430	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2431}
2432
2433
2434static void
2435ath5k_tx_complete_poll_work(struct work_struct *work)
2436{
2437	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2438			tx_complete_work.work);
2439	struct ath5k_txq *txq;
2440	int i;
2441	bool needreset = false;
2442
2443	if (!test_bit(ATH_STAT_STARTED, ah->status))
2444		return;
2445
2446	mutex_lock(&ah->lock);
2447
2448	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2449		if (ah->txqs[i].setup) {
2450			txq = &ah->txqs[i];
2451			spin_lock_bh(&txq->lock);
2452			if (txq->txq_len > 1) {
2453				if (txq->txq_poll_mark) {
2454					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2455						  "TX queue stuck %d\n",
2456						  txq->qnum);
2457					needreset = true;
2458					txq->txq_stuck++;
2459					spin_unlock_bh(&txq->lock);
2460					break;
2461				} else {
2462					txq->txq_poll_mark = true;
2463				}
2464			}
2465			spin_unlock_bh(&txq->lock);
2466		}
2467	}
2468
2469	if (needreset) {
2470		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2471			  "TX queues stuck, resetting\n");
2472		ath5k_reset(ah, NULL, true);
2473	}
2474
2475	mutex_unlock(&ah->lock);
2476
2477	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2478		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2479}
2480
2481
2482/*************************\
2483* Initialization routines *
2484\*************************/
2485
2486static const struct ieee80211_iface_limit if_limits[] = {
2487	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2488	{ .max = 4,	.types =
2489#ifdef CONFIG_MAC80211_MESH
2490				 BIT(NL80211_IFTYPE_MESH_POINT) |
2491#endif
2492				 BIT(NL80211_IFTYPE_AP) },
2493};
2494
2495static const struct ieee80211_iface_combination if_comb = {
2496	.limits = if_limits,
2497	.n_limits = ARRAY_SIZE(if_limits),
2498	.max_interfaces = 2048,
2499	.num_different_channels = 1,
2500};
2501
2502int
2503ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2504{
2505	struct ieee80211_hw *hw = ah->hw;
2506	struct ath_common *common;
2507	int ret;
2508	int csz;
2509
2510	/* Initialize driver private data */
2511	SET_IEEE80211_DEV(hw, ah->dev);
2512	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2513			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2514			IEEE80211_HW_SIGNAL_DBM |
2515			IEEE80211_HW_MFP_CAPABLE |
2516			IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2517			IEEE80211_HW_SUPPORTS_RC_TABLE;
2518
2519	hw->wiphy->interface_modes =
2520		BIT(NL80211_IFTYPE_AP) |
2521		BIT(NL80211_IFTYPE_STATION) |
2522		BIT(NL80211_IFTYPE_ADHOC) |
2523		BIT(NL80211_IFTYPE_MESH_POINT);
2524
2525	hw->wiphy->iface_combinations = &if_comb;
2526	hw->wiphy->n_iface_combinations = 1;
2527
2528	/* SW support for IBSS_RSN is provided by mac80211 */
2529	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2530
2531	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2532
2533	/* both antennas can be configured as RX or TX */
2534	hw->wiphy->available_antennas_tx = 0x3;
2535	hw->wiphy->available_antennas_rx = 0x3;
2536
2537	hw->extra_tx_headroom = 2;
 
2538
2539	/*
2540	 * Mark the device as detached to avoid processing
2541	 * interrupts until setup is complete.
2542	 */
2543	__set_bit(ATH_STAT_INVALID, ah->status);
2544
2545	ah->opmode = NL80211_IFTYPE_STATION;
2546	ah->bintval = 1000;
2547	mutex_init(&ah->lock);
2548	spin_lock_init(&ah->rxbuflock);
2549	spin_lock_init(&ah->txbuflock);
2550	spin_lock_init(&ah->block);
2551	spin_lock_init(&ah->irqlock);
2552
2553	/* Setup interrupt handler */
2554	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2555	if (ret) {
2556		ATH5K_ERR(ah, "request_irq failed\n");
2557		goto err;
2558	}
2559
2560	common = ath5k_hw_common(ah);
2561	common->ops = &ath5k_common_ops;
2562	common->bus_ops = bus_ops;
2563	common->ah = ah;
2564	common->hw = hw;
2565	common->priv = ah;
2566	common->clockrate = 40;
2567
2568	/*
2569	 * Cache line size is used to size and align various
2570	 * structures used to communicate with the hardware.
2571	 */
2572	ath5k_read_cachesize(common, &csz);
2573	common->cachelsz = csz << 2; /* convert to bytes */
2574
2575	spin_lock_init(&common->cc_lock);
2576
2577	/* Initialize device */
2578	ret = ath5k_hw_init(ah);
2579	if (ret)
2580		goto err_irq;
2581
2582	/* Set up multi-rate retry capabilities */
2583	if (ah->ah_capabilities.cap_has_mrr_support) {
2584		hw->max_rates = 4;
2585		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2586					 AR5K_INIT_RETRY_LONG);
2587	}
2588
2589	hw->vif_data_size = sizeof(struct ath5k_vif);
2590
2591	/* Finish private driver data initialization */
2592	ret = ath5k_init(hw);
2593	if (ret)
2594		goto err_ah;
2595
2596	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2597			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2598					ah->ah_mac_srev,
2599					ah->ah_phy_revision);
2600
2601	if (!ah->ah_single_chip) {
2602		/* Single chip radio (!RF5111) */
2603		if (ah->ah_radio_5ghz_revision &&
2604			!ah->ah_radio_2ghz_revision) {
2605			/* No 5GHz support -> report 2GHz radio */
2606			if (!test_bit(AR5K_MODE_11A,
2607				ah->ah_capabilities.cap_mode)) {
2608				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2609					ath5k_chip_name(AR5K_VERSION_RAD,
2610						ah->ah_radio_5ghz_revision),
2611						ah->ah_radio_5ghz_revision);
2612			/* No 2GHz support (5110 and some
2613			 * 5GHz only cards) -> report 5GHz radio */
2614			} else if (!test_bit(AR5K_MODE_11B,
2615				ah->ah_capabilities.cap_mode)) {
2616				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2617					ath5k_chip_name(AR5K_VERSION_RAD,
2618						ah->ah_radio_5ghz_revision),
2619						ah->ah_radio_5ghz_revision);
2620			/* Multiband radio */
2621			} else {
2622				ATH5K_INFO(ah, "RF%s multiband radio found"
2623					" (0x%x)\n",
2624					ath5k_chip_name(AR5K_VERSION_RAD,
2625						ah->ah_radio_5ghz_revision),
2626						ah->ah_radio_5ghz_revision);
2627			}
2628		}
2629		/* Multi chip radio (RF5111 - RF2111) ->
2630		 * report both 2GHz/5GHz radios */
2631		else if (ah->ah_radio_5ghz_revision &&
2632				ah->ah_radio_2ghz_revision) {
2633			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2634				ath5k_chip_name(AR5K_VERSION_RAD,
2635					ah->ah_radio_5ghz_revision),
2636					ah->ah_radio_5ghz_revision);
2637			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2638				ath5k_chip_name(AR5K_VERSION_RAD,
2639					ah->ah_radio_2ghz_revision),
2640					ah->ah_radio_2ghz_revision);
2641		}
2642	}
2643
2644	ath5k_debug_init_device(ah);
2645
2646	/* ready to process interrupts */
2647	__clear_bit(ATH_STAT_INVALID, ah->status);
2648
2649	return 0;
2650err_ah:
2651	ath5k_hw_deinit(ah);
2652err_irq:
2653	free_irq(ah->irq, ah);
2654err:
2655	return ret;
2656}
2657
2658static int
2659ath5k_stop_locked(struct ath5k_hw *ah)
2660{
2661
2662	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2663			test_bit(ATH_STAT_INVALID, ah->status));
2664
2665	/*
2666	 * Shutdown the hardware and driver:
2667	 *    stop output from above
2668	 *    disable interrupts
2669	 *    turn off timers
2670	 *    turn off the radio
2671	 *    clear transmit machinery
2672	 *    clear receive machinery
2673	 *    drain and release tx queues
2674	 *    reclaim beacon resources
2675	 *    power down hardware
2676	 *
2677	 * Note that some of this work is not possible if the
2678	 * hardware is gone (invalid).
2679	 */
2680	ieee80211_stop_queues(ah->hw);
2681
2682	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2683		ath5k_led_off(ah);
2684		ath5k_hw_set_imr(ah, 0);
2685		synchronize_irq(ah->irq);
2686		ath5k_rx_stop(ah);
2687		ath5k_hw_dma_stop(ah);
2688		ath5k_drain_tx_buffs(ah);
2689		ath5k_hw_phy_disable(ah);
2690	}
2691
2692	return 0;
2693}
2694
2695int ath5k_start(struct ieee80211_hw *hw)
2696{
2697	struct ath5k_hw *ah = hw->priv;
2698	struct ath_common *common = ath5k_hw_common(ah);
2699	int ret, i;
2700
2701	mutex_lock(&ah->lock);
2702
2703	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2704
2705	/*
2706	 * Stop anything previously setup.  This is safe
2707	 * no matter this is the first time through or not.
2708	 */
2709	ath5k_stop_locked(ah);
2710
2711	/*
2712	 * The basic interface to setting the hardware in a good
2713	 * state is ``reset''.  On return the hardware is known to
2714	 * be powered up and with interrupts disabled.  This must
2715	 * be followed by initialization of the appropriate bits
2716	 * and then setup of the interrupt mask.
2717	 */
2718	ah->curchan = ah->hw->conf.chandef.chan;
2719	ah->imask = AR5K_INT_RXOK
2720		| AR5K_INT_RXERR
2721		| AR5K_INT_RXEOL
2722		| AR5K_INT_RXORN
2723		| AR5K_INT_TXDESC
2724		| AR5K_INT_TXEOL
2725		| AR5K_INT_FATAL
2726		| AR5K_INT_GLOBAL
2727		| AR5K_INT_MIB;
2728
2729	ret = ath5k_reset(ah, NULL, false);
2730	if (ret)
2731		goto done;
2732
2733	if (!ath5k_modparam_no_hw_rfkill_switch)
2734		ath5k_rfkill_hw_start(ah);
2735
2736	/*
2737	 * Reset the key cache since some parts do not reset the
2738	 * contents on initial power up or resume from suspend.
2739	 */
2740	for (i = 0; i < common->keymax; i++)
2741		ath_hw_keyreset(common, (u16) i);
2742
2743	/* Use higher rates for acks instead of base
2744	 * rate */
2745	ah->ah_ack_bitrate_high = true;
2746
2747	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2748		ah->bslot[i] = NULL;
2749
2750	ret = 0;
2751done:
2752	mmiowb();
2753	mutex_unlock(&ah->lock);
2754
2755	set_bit(ATH_STAT_STARTED, ah->status);
2756	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2757			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2758
2759	return ret;
2760}
2761
2762static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2763{
2764	ah->rx_pending = false;
2765	ah->tx_pending = false;
2766	tasklet_kill(&ah->rxtq);
2767	tasklet_kill(&ah->txtq);
 
2768	tasklet_kill(&ah->beacontq);
2769	tasklet_kill(&ah->ani_tasklet);
2770}
2771
2772/*
2773 * Stop the device, grabbing the top-level lock to protect
2774 * against concurrent entry through ath5k_init (which can happen
2775 * if another thread does a system call and the thread doing the
2776 * stop is preempted).
2777 */
2778void ath5k_stop(struct ieee80211_hw *hw)
2779{
2780	struct ath5k_hw *ah = hw->priv;
2781	int ret;
2782
2783	mutex_lock(&ah->lock);
2784	ret = ath5k_stop_locked(ah);
2785	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2786		/*
2787		 * Don't set the card in full sleep mode!
2788		 *
2789		 * a) When the device is in this state it must be carefully
2790		 * woken up or references to registers in the PCI clock
2791		 * domain may freeze the bus (and system).  This varies
2792		 * by chip and is mostly an issue with newer parts
2793		 * (madwifi sources mentioned srev >= 0x78) that go to
2794		 * sleep more quickly.
2795		 *
2796		 * b) On older chips full sleep results a weird behaviour
2797		 * during wakeup. I tested various cards with srev < 0x78
2798		 * and they don't wake up after module reload, a second
2799		 * module reload is needed to bring the card up again.
2800		 *
2801		 * Until we figure out what's going on don't enable
2802		 * full chip reset on any chip (this is what Legacy HAL
2803		 * and Sam's HAL do anyway). Instead Perform a full reset
2804		 * on the device (same as initial state after attach) and
2805		 * leave it idle (keep MAC/BB on warm reset) */
2806		ret = ath5k_hw_on_hold(ah);
2807
2808		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2809				"putting device to sleep\n");
2810	}
2811
2812	mmiowb();
2813	mutex_unlock(&ah->lock);
2814
2815	ath5k_stop_tasklets(ah);
2816
2817	clear_bit(ATH_STAT_STARTED, ah->status);
2818	cancel_delayed_work_sync(&ah->tx_complete_work);
2819
2820	if (!ath5k_modparam_no_hw_rfkill_switch)
2821		ath5k_rfkill_hw_stop(ah);
2822}
2823
2824/*
2825 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2826 * and change to the given channel.
2827 *
2828 * This should be called with ah->lock.
2829 */
2830static int
2831ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2832							bool skip_pcu)
2833{
2834	struct ath_common *common = ath5k_hw_common(ah);
2835	int ret, ani_mode;
2836	bool fast;
2837
2838	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2839
2840	ath5k_hw_set_imr(ah, 0);
2841	synchronize_irq(ah->irq);
2842	ath5k_stop_tasklets(ah);
2843
2844	/* Save ani mode and disable ANI during
2845	 * reset. If we don't we might get false
2846	 * PHY error interrupts. */
2847	ani_mode = ah->ani_state.ani_mode;
2848	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2849
2850	/* We are going to empty hw queues
2851	 * so we should also free any remaining
2852	 * tx buffers */
2853	ath5k_drain_tx_buffs(ah);
2854	if (chan)
2855		ah->curchan = chan;
2856
2857	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2858
2859	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2860	if (ret) {
2861		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2862		goto err;
2863	}
2864
2865	ret = ath5k_rx_start(ah);
2866	if (ret) {
2867		ATH5K_ERR(ah, "can't start recv logic\n");
2868		goto err;
2869	}
2870
2871	ath5k_ani_init(ah, ani_mode);
2872
2873	/*
2874	 * Set calibration intervals
2875	 *
2876	 * Note: We don't need to run calibration imediately
2877	 * since some initial calibration is done on reset
2878	 * even for fast channel switching. Also on scanning
2879	 * this will get set again and again and it won't get
2880	 * executed unless we connect somewhere and spend some
2881	 * time on the channel (that's what calibration needs
2882	 * anyway to be accurate).
2883	 */
2884	ah->ah_cal_next_full = jiffies +
2885		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2886	ah->ah_cal_next_ani = jiffies +
2887		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2888	ah->ah_cal_next_short = jiffies +
2889		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2890
2891	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2892
2893	/* clear survey data and cycle counters */
2894	memset(&ah->survey, 0, sizeof(ah->survey));
2895	spin_lock_bh(&common->cc_lock);
2896	ath_hw_cycle_counters_update(common);
2897	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2898	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2899	spin_unlock_bh(&common->cc_lock);
2900
2901	/*
2902	 * Change channels and update the h/w rate map if we're switching;
2903	 * e.g. 11a to 11b/g.
2904	 *
2905	 * We may be doing a reset in response to an ioctl that changes the
2906	 * channel so update any state that might change as a result.
2907	 *
2908	 * XXX needed?
2909	 */
2910/*	ath5k_chan_change(ah, c); */
2911
2912	ath5k_beacon_config(ah);
2913	/* intrs are enabled by ath5k_beacon_config */
2914
2915	ieee80211_wake_queues(ah->hw);
2916
2917	return 0;
2918err:
2919	return ret;
2920}
2921
2922static void ath5k_reset_work(struct work_struct *work)
2923{
2924	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2925		reset_work);
2926
2927	mutex_lock(&ah->lock);
2928	ath5k_reset(ah, NULL, true);
2929	mutex_unlock(&ah->lock);
2930}
2931
2932static int
2933ath5k_init(struct ieee80211_hw *hw)
2934{
2935
2936	struct ath5k_hw *ah = hw->priv;
2937	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2938	struct ath5k_txq *txq;
2939	u8 mac[ETH_ALEN] = {};
2940	int ret;
2941
2942
2943	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2944	 * Collect the channel list.  The 802.11 layer
2945	 * is responsible for filtering this list based
2946	 * on settings like the phy mode and regulatory
2947	 * domain restrictions.
2948	 */
2949	ret = ath5k_setup_bands(hw);
2950	if (ret) {
2951		ATH5K_ERR(ah, "can't get channels\n");
2952		goto err;
2953	}
2954
2955	/*
2956	 * Allocate tx+rx descriptors and populate the lists.
2957	 */
2958	ret = ath5k_desc_alloc(ah);
2959	if (ret) {
2960		ATH5K_ERR(ah, "can't allocate descriptors\n");
2961		goto err;
2962	}
2963
2964	/*
2965	 * Allocate hardware transmit queues: one queue for
2966	 * beacon frames and one data queue for each QoS
2967	 * priority.  Note that hw functions handle resetting
2968	 * these queues at the needed time.
2969	 */
2970	ret = ath5k_beaconq_setup(ah);
2971	if (ret < 0) {
2972		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2973		goto err_desc;
2974	}
2975	ah->bhalq = ret;
2976	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2977	if (IS_ERR(ah->cabq)) {
2978		ATH5K_ERR(ah, "can't setup cab queue\n");
2979		ret = PTR_ERR(ah->cabq);
2980		goto err_bhal;
2981	}
2982
2983	/* 5211 and 5212 usually support 10 queues but we better rely on the
2984	 * capability information */
2985	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2986		/* This order matches mac80211's queue priority, so we can
2987		* directly use the mac80211 queue number without any mapping */
2988		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2989		if (IS_ERR(txq)) {
2990			ATH5K_ERR(ah, "can't setup xmit queue\n");
2991			ret = PTR_ERR(txq);
2992			goto err_queues;
2993		}
2994		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2995		if (IS_ERR(txq)) {
2996			ATH5K_ERR(ah, "can't setup xmit queue\n");
2997			ret = PTR_ERR(txq);
2998			goto err_queues;
2999		}
3000		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3001		if (IS_ERR(txq)) {
3002			ATH5K_ERR(ah, "can't setup xmit queue\n");
3003			ret = PTR_ERR(txq);
3004			goto err_queues;
3005		}
3006		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3007		if (IS_ERR(txq)) {
3008			ATH5K_ERR(ah, "can't setup xmit queue\n");
3009			ret = PTR_ERR(txq);
3010			goto err_queues;
3011		}
3012		hw->queues = 4;
3013	} else {
3014		/* older hardware (5210) can only support one data queue */
3015		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3016		if (IS_ERR(txq)) {
3017			ATH5K_ERR(ah, "can't setup xmit queue\n");
3018			ret = PTR_ERR(txq);
3019			goto err_queues;
3020		}
3021		hw->queues = 1;
3022	}
3023
3024	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3025	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
 
3026	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3027	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3028
3029	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3030	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3031	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3032
3033	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3034	if (ret) {
3035		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3036		goto err_queues;
3037	}
3038
3039	SET_IEEE80211_PERM_ADDR(hw, mac);
 
3040	/* All MAC address bits matter for ACKs */
3041	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3042
3043	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3044	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3045	if (ret) {
3046		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3047		goto err_queues;
3048	}
3049
3050	ret = ieee80211_register_hw(hw);
3051	if (ret) {
3052		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3053		goto err_queues;
3054	}
3055
3056	if (!ath_is_world_regd(regulatory))
3057		regulatory_hint(hw->wiphy, regulatory->alpha2);
3058
3059	ath5k_init_leds(ah);
3060
3061	ath5k_sysfs_register(ah);
3062
3063	return 0;
3064err_queues:
3065	ath5k_txq_release(ah);
3066err_bhal:
3067	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3068err_desc:
3069	ath5k_desc_free(ah);
3070err:
3071	return ret;
3072}
3073
3074void
3075ath5k_deinit_ah(struct ath5k_hw *ah)
3076{
3077	struct ieee80211_hw *hw = ah->hw;
3078
3079	/*
3080	 * NB: the order of these is important:
3081	 * o call the 802.11 layer before detaching ath5k_hw to
3082	 *   ensure callbacks into the driver to delete global
3083	 *   key cache entries can be handled
3084	 * o reclaim the tx queue data structures after calling
3085	 *   the 802.11 layer as we'll get called back to reclaim
3086	 *   node state and potentially want to use them
3087	 * o to cleanup the tx queues the hal is called, so detach
3088	 *   it last
3089	 * XXX: ??? detach ath5k_hw ???
3090	 * Other than that, it's straightforward...
3091	 */
3092	ieee80211_unregister_hw(hw);
3093	ath5k_desc_free(ah);
3094	ath5k_txq_release(ah);
3095	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3096	ath5k_unregister_leds(ah);
3097
3098	ath5k_sysfs_unregister(ah);
3099	/*
3100	 * NB: can't reclaim these until after ieee80211_ifdetach
3101	 * returns because we'll get called back to reclaim node
3102	 * state and potentially want to use them.
3103	 */
3104	ath5k_hw_deinit(ah);
3105	free_irq(ah->irq, ah);
3106}
3107
3108bool
3109ath5k_any_vif_assoc(struct ath5k_hw *ah)
3110{
3111	struct ath5k_vif_iter_data iter_data;
3112	iter_data.hw_macaddr = NULL;
3113	iter_data.any_assoc = false;
3114	iter_data.need_set_hw_addr = false;
3115	iter_data.found_active = true;
3116
3117	ieee80211_iterate_active_interfaces_atomic(
3118		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3119		ath5k_vif_iter, &iter_data);
3120	return iter_data.any_assoc;
3121}
3122
3123void
3124ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3125{
3126	struct ath5k_hw *ah = hw->priv;
3127	u32 rfilt;
3128	rfilt = ath5k_hw_get_rx_filter(ah);
3129	if (enable)
3130		rfilt |= AR5K_RX_FILTER_BEACON;
3131	else
3132		rfilt &= ~AR5K_RX_FILTER_BEACON;
3133	ath5k_hw_set_rx_filter(ah, rfilt);
3134	ah->filter_flags = rfilt;
3135}
3136
3137void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3138		   const char *fmt, ...)
3139{
3140	struct va_format vaf;
3141	va_list args;
3142
3143	va_start(args, fmt);
3144
3145	vaf.fmt = fmt;
3146	vaf.va = &args;
3147
3148	if (ah && ah->hw)
3149		printk("%s" pr_fmt("%s: %pV"),
3150		       level, wiphy_name(ah->hw->wiphy), &vaf);
3151	else
3152		printk("%s" pr_fmt("%pV"), level, &vaf);
3153
3154	va_end(args);
3155}