Loading...
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43#include <linux/module.h>
44#include <linux/delay.h>
45#include <linux/dma-mapping.h>
46#include <linux/hardirq.h>
47#include <linux/if.h>
48#include <linux/io.h>
49#include <linux/netdevice.h>
50#include <linux/cache.h>
51#include <linux/ethtool.h>
52#include <linux/uaccess.h>
53#include <linux/slab.h>
54#include <linux/etherdevice.h>
55
56#include <net/ieee80211_radiotap.h>
57
58#include <asm/unaligned.h>
59
60#include "base.h"
61#include "reg.h"
62#include "debug.h"
63#include "ani.h"
64
65#define CREATE_TRACE_POINTS
66#include "trace.h"
67
68int ath5k_modparam_nohwcrypt;
69module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
70MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
71
72static int modparam_all_channels;
73module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
74MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
75
76static int modparam_fastchanswitch;
77module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
78MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
79
80
81/* Module info */
82MODULE_AUTHOR("Jiri Slaby");
83MODULE_AUTHOR("Nick Kossifidis");
84MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
85MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
86MODULE_LICENSE("Dual BSD/GPL");
87
88static int ath5k_init(struct ieee80211_hw *hw);
89static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
90 bool skip_pcu);
91
92/* Known SREVs */
93static const struct ath5k_srev_name srev_names[] = {
94#ifdef CONFIG_ATHEROS_AR231X
95 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
96 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
97 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
98 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
99 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
100 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
101 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
102#else
103 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
104 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
105 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
106 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
107 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
108 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
109 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
110 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
111 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
112 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
113 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
114 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
115 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
116 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
117 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
118 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
119 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
120 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
121#endif
122 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
123 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
124 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
125 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
126 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
127 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
128 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
129 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
130 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
131 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
132 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
133 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
134 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
135 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
136 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
137#ifdef CONFIG_ATHEROS_AR231X
138 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
139 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
140#endif
141 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
142};
143
144static const struct ieee80211_rate ath5k_rates[] = {
145 { .bitrate = 10,
146 .hw_value = ATH5K_RATE_CODE_1M, },
147 { .bitrate = 20,
148 .hw_value = ATH5K_RATE_CODE_2M,
149 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
150 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
151 { .bitrate = 55,
152 .hw_value = ATH5K_RATE_CODE_5_5M,
153 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
154 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
155 { .bitrate = 110,
156 .hw_value = ATH5K_RATE_CODE_11M,
157 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 60,
160 .hw_value = ATH5K_RATE_CODE_6M,
161 .flags = 0 },
162 { .bitrate = 90,
163 .hw_value = ATH5K_RATE_CODE_9M,
164 .flags = 0 },
165 { .bitrate = 120,
166 .hw_value = ATH5K_RATE_CODE_12M,
167 .flags = 0 },
168 { .bitrate = 180,
169 .hw_value = ATH5K_RATE_CODE_18M,
170 .flags = 0 },
171 { .bitrate = 240,
172 .hw_value = ATH5K_RATE_CODE_24M,
173 .flags = 0 },
174 { .bitrate = 360,
175 .hw_value = ATH5K_RATE_CODE_36M,
176 .flags = 0 },
177 { .bitrate = 480,
178 .hw_value = ATH5K_RATE_CODE_48M,
179 .flags = 0 },
180 { .bitrate = 540,
181 .hw_value = ATH5K_RATE_CODE_54M,
182 .flags = 0 },
183 /* XR missing */
184};
185
186static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
187{
188 u64 tsf = ath5k_hw_get_tsf64(ah);
189
190 if ((tsf & 0x7fff) < rstamp)
191 tsf -= 0x8000;
192
193 return (tsf & ~0x7fff) | rstamp;
194}
195
196const char *
197ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
198{
199 const char *name = "xxxxx";
200 unsigned int i;
201
202 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
203 if (srev_names[i].sr_type != type)
204 continue;
205
206 if ((val & 0xf0) == srev_names[i].sr_val)
207 name = srev_names[i].sr_name;
208
209 if ((val & 0xff) == srev_names[i].sr_val) {
210 name = srev_names[i].sr_name;
211 break;
212 }
213 }
214
215 return name;
216}
217static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
218{
219 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
220 return ath5k_hw_reg_read(ah, reg_offset);
221}
222
223static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
224{
225 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
226 ath5k_hw_reg_write(ah, val, reg_offset);
227}
228
229static const struct ath_ops ath5k_common_ops = {
230 .read = ath5k_ioread32,
231 .write = ath5k_iowrite32,
232};
233
234/***********************\
235* Driver Initialization *
236\***********************/
237
238static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
239{
240 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
241 struct ath5k_hw *ah = hw->priv;
242 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
243
244 return ath_reg_notifier_apply(wiphy, request, regulatory);
245}
246
247/********************\
248* Channel/mode setup *
249\********************/
250
251/*
252 * Returns true for the channel numbers used without all_channels modparam.
253 */
254static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
255{
256 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
257 return true;
258
259 return /* UNII 1,2 */
260 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
261 /* midband */
262 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
263 /* UNII-3 */
264 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
265 /* 802.11j 5.030-5.080 GHz (20MHz) */
266 (chan == 8 || chan == 12 || chan == 16) ||
267 /* 802.11j 4.9GHz (20MHz) */
268 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
269}
270
271static unsigned int
272ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
273 unsigned int mode, unsigned int max)
274{
275 unsigned int count, size, chfreq, freq, ch;
276 enum ieee80211_band band;
277
278 switch (mode) {
279 case AR5K_MODE_11A:
280 /* 1..220, but 2GHz frequencies are filtered by check_channel */
281 size = 220;
282 chfreq = CHANNEL_5GHZ;
283 band = IEEE80211_BAND_5GHZ;
284 break;
285 case AR5K_MODE_11B:
286 case AR5K_MODE_11G:
287 size = 26;
288 chfreq = CHANNEL_2GHZ;
289 band = IEEE80211_BAND_2GHZ;
290 break;
291 default:
292 ATH5K_WARN(ah, "bad mode, not copying channels\n");
293 return 0;
294 }
295
296 count = 0;
297 for (ch = 1; ch <= size && count < max; ch++) {
298 freq = ieee80211_channel_to_frequency(ch, band);
299
300 if (freq == 0) /* mapping failed - not a standard channel */
301 continue;
302
303 /* Check if channel is supported by the chipset */
304 if (!ath5k_channel_ok(ah, freq, chfreq))
305 continue;
306
307 if (!modparam_all_channels &&
308 !ath5k_is_standard_channel(ch, band))
309 continue;
310
311 /* Write channel info and increment counter */
312 channels[count].center_freq = freq;
313 channels[count].band = band;
314 switch (mode) {
315 case AR5K_MODE_11A:
316 case AR5K_MODE_11G:
317 channels[count].hw_value = chfreq | CHANNEL_OFDM;
318 break;
319 case AR5K_MODE_11B:
320 channels[count].hw_value = CHANNEL_B;
321 }
322
323 count++;
324 }
325
326 return count;
327}
328
329static void
330ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
331{
332 u8 i;
333
334 for (i = 0; i < AR5K_MAX_RATES; i++)
335 ah->rate_idx[b->band][i] = -1;
336
337 for (i = 0; i < b->n_bitrates; i++) {
338 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
339 if (b->bitrates[i].hw_value_short)
340 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
341 }
342}
343
344static int
345ath5k_setup_bands(struct ieee80211_hw *hw)
346{
347 struct ath5k_hw *ah = hw->priv;
348 struct ieee80211_supported_band *sband;
349 int max_c, count_c = 0;
350 int i;
351
352 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
353 max_c = ARRAY_SIZE(ah->channels);
354
355 /* 2GHz band */
356 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
357 sband->band = IEEE80211_BAND_2GHZ;
358 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
359
360 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
361 /* G mode */
362 memcpy(sband->bitrates, &ath5k_rates[0],
363 sizeof(struct ieee80211_rate) * 12);
364 sband->n_bitrates = 12;
365
366 sband->channels = ah->channels;
367 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
368 AR5K_MODE_11G, max_c);
369
370 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
371 count_c = sband->n_channels;
372 max_c -= count_c;
373 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
374 /* B mode */
375 memcpy(sband->bitrates, &ath5k_rates[0],
376 sizeof(struct ieee80211_rate) * 4);
377 sband->n_bitrates = 4;
378
379 /* 5211 only supports B rates and uses 4bit rate codes
380 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381 * fix them up here:
382 */
383 if (ah->ah_version == AR5K_AR5211) {
384 for (i = 0; i < 4; i++) {
385 sband->bitrates[i].hw_value =
386 sband->bitrates[i].hw_value & 0xF;
387 sband->bitrates[i].hw_value_short =
388 sband->bitrates[i].hw_value_short & 0xF;
389 }
390 }
391
392 sband->channels = ah->channels;
393 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
394 AR5K_MODE_11B, max_c);
395
396 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
397 count_c = sband->n_channels;
398 max_c -= count_c;
399 }
400 ath5k_setup_rate_idx(ah, sband);
401
402 /* 5GHz band, A mode */
403 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
404 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
405 sband->band = IEEE80211_BAND_5GHZ;
406 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
407
408 memcpy(sband->bitrates, &ath5k_rates[4],
409 sizeof(struct ieee80211_rate) * 8);
410 sband->n_bitrates = 8;
411
412 sband->channels = &ah->channels[count_c];
413 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
414 AR5K_MODE_11A, max_c);
415
416 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
417 }
418 ath5k_setup_rate_idx(ah, sband);
419
420 ath5k_debug_dump_bands(ah);
421
422 return 0;
423}
424
425/*
426 * Set/change channels. We always reset the chip.
427 * To accomplish this we must first cleanup any pending DMA,
428 * then restart stuff after a la ath5k_init.
429 *
430 * Called with ah->lock.
431 */
432int
433ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
434{
435 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
436 "channel set, resetting (%u -> %u MHz)\n",
437 ah->curchan->center_freq, chan->center_freq);
438
439 /*
440 * To switch channels clear any pending DMA operations;
441 * wait long enough for the RX fifo to drain, reset the
442 * hardware at the new frequency, and then re-enable
443 * the relevant bits of the h/w.
444 */
445 return ath5k_reset(ah, chan, true);
446}
447
448void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
449{
450 struct ath5k_vif_iter_data *iter_data = data;
451 int i;
452 struct ath5k_vif *avf = (void *)vif->drv_priv;
453
454 if (iter_data->hw_macaddr)
455 for (i = 0; i < ETH_ALEN; i++)
456 iter_data->mask[i] &=
457 ~(iter_data->hw_macaddr[i] ^ mac[i]);
458
459 if (!iter_data->found_active) {
460 iter_data->found_active = true;
461 memcpy(iter_data->active_mac, mac, ETH_ALEN);
462 }
463
464 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
465 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
466 iter_data->need_set_hw_addr = false;
467
468 if (!iter_data->any_assoc) {
469 if (avf->assoc)
470 iter_data->any_assoc = true;
471 }
472
473 /* Calculate combined mode - when APs are active, operate in AP mode.
474 * Otherwise use the mode of the new interface. This can currently
475 * only deal with combinations of APs and STAs. Only one ad-hoc
476 * interfaces is allowed.
477 */
478 if (avf->opmode == NL80211_IFTYPE_AP)
479 iter_data->opmode = NL80211_IFTYPE_AP;
480 else {
481 if (avf->opmode == NL80211_IFTYPE_STATION)
482 iter_data->n_stas++;
483 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
484 iter_data->opmode = avf->opmode;
485 }
486}
487
488void
489ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
490 struct ieee80211_vif *vif)
491{
492 struct ath_common *common = ath5k_hw_common(ah);
493 struct ath5k_vif_iter_data iter_data;
494 u32 rfilt;
495
496 /*
497 * Use the hardware MAC address as reference, the hardware uses it
498 * together with the BSSID mask when matching addresses.
499 */
500 iter_data.hw_macaddr = common->macaddr;
501 memset(&iter_data.mask, 0xff, ETH_ALEN);
502 iter_data.found_active = false;
503 iter_data.need_set_hw_addr = true;
504 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
505 iter_data.n_stas = 0;
506
507 if (vif)
508 ath5k_vif_iter(&iter_data, vif->addr, vif);
509
510 /* Get list of all active MAC addresses */
511 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
512 &iter_data);
513 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
514
515 ah->opmode = iter_data.opmode;
516 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
517 /* Nothing active, default to station mode */
518 ah->opmode = NL80211_IFTYPE_STATION;
519
520 ath5k_hw_set_opmode(ah, ah->opmode);
521 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
522 ah->opmode, ath_opmode_to_string(ah->opmode));
523
524 if (iter_data.need_set_hw_addr && iter_data.found_active)
525 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
526
527 if (ath5k_hw_hasbssidmask(ah))
528 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
529
530 /* Set up RX Filter */
531 if (iter_data.n_stas > 1) {
532 /* If you have multiple STA interfaces connected to
533 * different APs, ARPs are not received (most of the time?)
534 * Enabling PROMISC appears to fix that problem.
535 */
536 ah->filter_flags |= AR5K_RX_FILTER_PROM;
537 }
538
539 rfilt = ah->filter_flags;
540 ath5k_hw_set_rx_filter(ah, rfilt);
541 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
542}
543
544static inline int
545ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
546{
547 int rix;
548
549 /* return base rate on errors */
550 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
551 "hw_rix out of bounds: %x\n", hw_rix))
552 return 0;
553
554 rix = ah->rate_idx[ah->curchan->band][hw_rix];
555 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
556 rix = 0;
557
558 return rix;
559}
560
561/***************\
562* Buffers setup *
563\***************/
564
565static
566struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
567{
568 struct ath_common *common = ath5k_hw_common(ah);
569 struct sk_buff *skb;
570
571 /*
572 * Allocate buffer with headroom_needed space for the
573 * fake physical layer header at the start.
574 */
575 skb = ath_rxbuf_alloc(common,
576 common->rx_bufsize,
577 GFP_ATOMIC);
578
579 if (!skb) {
580 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
581 common->rx_bufsize);
582 return NULL;
583 }
584
585 *skb_addr = dma_map_single(ah->dev,
586 skb->data, common->rx_bufsize,
587 DMA_FROM_DEVICE);
588
589 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
590 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
591 dev_kfree_skb(skb);
592 return NULL;
593 }
594 return skb;
595}
596
597static int
598ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
599{
600 struct sk_buff *skb = bf->skb;
601 struct ath5k_desc *ds;
602 int ret;
603
604 if (!skb) {
605 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
606 if (!skb)
607 return -ENOMEM;
608 bf->skb = skb;
609 }
610
611 /*
612 * Setup descriptors. For receive we always terminate
613 * the descriptor list with a self-linked entry so we'll
614 * not get overrun under high load (as can happen with a
615 * 5212 when ANI processing enables PHY error frames).
616 *
617 * To ensure the last descriptor is self-linked we create
618 * each descriptor as self-linked and add it to the end. As
619 * each additional descriptor is added the previous self-linked
620 * entry is "fixed" naturally. This should be safe even
621 * if DMA is happening. When processing RX interrupts we
622 * never remove/process the last, self-linked, entry on the
623 * descriptor list. This ensures the hardware always has
624 * someplace to write a new frame.
625 */
626 ds = bf->desc;
627 ds->ds_link = bf->daddr; /* link to self */
628 ds->ds_data = bf->skbaddr;
629 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
630 if (ret) {
631 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
632 return ret;
633 }
634
635 if (ah->rxlink != NULL)
636 *ah->rxlink = bf->daddr;
637 ah->rxlink = &ds->ds_link;
638 return 0;
639}
640
641static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
642{
643 struct ieee80211_hdr *hdr;
644 enum ath5k_pkt_type htype;
645 __le16 fc;
646
647 hdr = (struct ieee80211_hdr *)skb->data;
648 fc = hdr->frame_control;
649
650 if (ieee80211_is_beacon(fc))
651 htype = AR5K_PKT_TYPE_BEACON;
652 else if (ieee80211_is_probe_resp(fc))
653 htype = AR5K_PKT_TYPE_PROBE_RESP;
654 else if (ieee80211_is_atim(fc))
655 htype = AR5K_PKT_TYPE_ATIM;
656 else if (ieee80211_is_pspoll(fc))
657 htype = AR5K_PKT_TYPE_PSPOLL;
658 else
659 htype = AR5K_PKT_TYPE_NORMAL;
660
661 return htype;
662}
663
664static int
665ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
666 struct ath5k_txq *txq, int padsize)
667{
668 struct ath5k_desc *ds = bf->desc;
669 struct sk_buff *skb = bf->skb;
670 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
671 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
672 struct ieee80211_rate *rate;
673 unsigned int mrr_rate[3], mrr_tries[3];
674 int i, ret;
675 u16 hw_rate;
676 u16 cts_rate = 0;
677 u16 duration = 0;
678 u8 rc_flags;
679
680 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
681
682 /* XXX endianness */
683 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
684 DMA_TO_DEVICE);
685
686 rate = ieee80211_get_tx_rate(ah->hw, info);
687 if (!rate) {
688 ret = -EINVAL;
689 goto err_unmap;
690 }
691
692 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
693 flags |= AR5K_TXDESC_NOACK;
694
695 rc_flags = info->control.rates[0].flags;
696 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
697 rate->hw_value_short : rate->hw_value;
698
699 pktlen = skb->len;
700
701 /* FIXME: If we are in g mode and rate is a CCK rate
702 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
703 * from tx power (value is in dB units already) */
704 if (info->control.hw_key) {
705 keyidx = info->control.hw_key->hw_key_idx;
706 pktlen += info->control.hw_key->icv_len;
707 }
708 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
709 flags |= AR5K_TXDESC_RTSENA;
710 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
711 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
712 info->control.vif, pktlen, info));
713 }
714 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
715 flags |= AR5K_TXDESC_CTSENA;
716 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
717 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
718 info->control.vif, pktlen, info));
719 }
720 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
721 ieee80211_get_hdrlen_from_skb(skb), padsize,
722 get_hw_packet_type(skb),
723 (ah->power_level * 2),
724 hw_rate,
725 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
726 cts_rate, duration);
727 if (ret)
728 goto err_unmap;
729
730 memset(mrr_rate, 0, sizeof(mrr_rate));
731 memset(mrr_tries, 0, sizeof(mrr_tries));
732 for (i = 0; i < 3; i++) {
733 rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
734 if (!rate)
735 break;
736
737 mrr_rate[i] = rate->hw_value;
738 mrr_tries[i] = info->control.rates[i + 1].count;
739 }
740
741 ath5k_hw_setup_mrr_tx_desc(ah, ds,
742 mrr_rate[0], mrr_tries[0],
743 mrr_rate[1], mrr_tries[1],
744 mrr_rate[2], mrr_tries[2]);
745
746 ds->ds_link = 0;
747 ds->ds_data = bf->skbaddr;
748
749 spin_lock_bh(&txq->lock);
750 list_add_tail(&bf->list, &txq->q);
751 txq->txq_len++;
752 if (txq->link == NULL) /* is this first packet? */
753 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
754 else /* no, so only link it */
755 *txq->link = bf->daddr;
756
757 txq->link = &ds->ds_link;
758 ath5k_hw_start_tx_dma(ah, txq->qnum);
759 mmiowb();
760 spin_unlock_bh(&txq->lock);
761
762 return 0;
763err_unmap:
764 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
765 return ret;
766}
767
768/*******************\
769* Descriptors setup *
770\*******************/
771
772static int
773ath5k_desc_alloc(struct ath5k_hw *ah)
774{
775 struct ath5k_desc *ds;
776 struct ath5k_buf *bf;
777 dma_addr_t da;
778 unsigned int i;
779 int ret;
780
781 /* allocate descriptors */
782 ah->desc_len = sizeof(struct ath5k_desc) *
783 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
784
785 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
786 &ah->desc_daddr, GFP_KERNEL);
787 if (ah->desc == NULL) {
788 ATH5K_ERR(ah, "can't allocate descriptors\n");
789 ret = -ENOMEM;
790 goto err;
791 }
792 ds = ah->desc;
793 da = ah->desc_daddr;
794 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
795 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
796
797 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
798 sizeof(struct ath5k_buf), GFP_KERNEL);
799 if (bf == NULL) {
800 ATH5K_ERR(ah, "can't allocate bufptr\n");
801 ret = -ENOMEM;
802 goto err_free;
803 }
804 ah->bufptr = bf;
805
806 INIT_LIST_HEAD(&ah->rxbuf);
807 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
808 bf->desc = ds;
809 bf->daddr = da;
810 list_add_tail(&bf->list, &ah->rxbuf);
811 }
812
813 INIT_LIST_HEAD(&ah->txbuf);
814 ah->txbuf_len = ATH_TXBUF;
815 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
816 bf->desc = ds;
817 bf->daddr = da;
818 list_add_tail(&bf->list, &ah->txbuf);
819 }
820
821 /* beacon buffers */
822 INIT_LIST_HEAD(&ah->bcbuf);
823 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
824 bf->desc = ds;
825 bf->daddr = da;
826 list_add_tail(&bf->list, &ah->bcbuf);
827 }
828
829 return 0;
830err_free:
831 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
832err:
833 ah->desc = NULL;
834 return ret;
835}
836
837void
838ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
839{
840 BUG_ON(!bf);
841 if (!bf->skb)
842 return;
843 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
844 DMA_TO_DEVICE);
845 dev_kfree_skb_any(bf->skb);
846 bf->skb = NULL;
847 bf->skbaddr = 0;
848 bf->desc->ds_data = 0;
849}
850
851void
852ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
853{
854 struct ath_common *common = ath5k_hw_common(ah);
855
856 BUG_ON(!bf);
857 if (!bf->skb)
858 return;
859 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
860 DMA_FROM_DEVICE);
861 dev_kfree_skb_any(bf->skb);
862 bf->skb = NULL;
863 bf->skbaddr = 0;
864 bf->desc->ds_data = 0;
865}
866
867static void
868ath5k_desc_free(struct ath5k_hw *ah)
869{
870 struct ath5k_buf *bf;
871
872 list_for_each_entry(bf, &ah->txbuf, list)
873 ath5k_txbuf_free_skb(ah, bf);
874 list_for_each_entry(bf, &ah->rxbuf, list)
875 ath5k_rxbuf_free_skb(ah, bf);
876 list_for_each_entry(bf, &ah->bcbuf, list)
877 ath5k_txbuf_free_skb(ah, bf);
878
879 /* Free memory associated with all descriptors */
880 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
881 ah->desc = NULL;
882 ah->desc_daddr = 0;
883
884 kfree(ah->bufptr);
885 ah->bufptr = NULL;
886}
887
888
889/**************\
890* Queues setup *
891\**************/
892
893static struct ath5k_txq *
894ath5k_txq_setup(struct ath5k_hw *ah,
895 int qtype, int subtype)
896{
897 struct ath5k_txq *txq;
898 struct ath5k_txq_info qi = {
899 .tqi_subtype = subtype,
900 /* XXX: default values not correct for B and XR channels,
901 * but who cares? */
902 .tqi_aifs = AR5K_TUNE_AIFS,
903 .tqi_cw_min = AR5K_TUNE_CWMIN,
904 .tqi_cw_max = AR5K_TUNE_CWMAX
905 };
906 int qnum;
907
908 /*
909 * Enable interrupts only for EOL and DESC conditions.
910 * We mark tx descriptors to receive a DESC interrupt
911 * when a tx queue gets deep; otherwise we wait for the
912 * EOL to reap descriptors. Note that this is done to
913 * reduce interrupt load and this only defers reaping
914 * descriptors, never transmitting frames. Aside from
915 * reducing interrupts this also permits more concurrency.
916 * The only potential downside is if the tx queue backs
917 * up in which case the top half of the kernel may backup
918 * due to a lack of tx descriptors.
919 */
920 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
921 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
922 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
923 if (qnum < 0) {
924 /*
925 * NB: don't print a message, this happens
926 * normally on parts with too few tx queues
927 */
928 return ERR_PTR(qnum);
929 }
930 if (qnum >= ARRAY_SIZE(ah->txqs)) {
931 ATH5K_ERR(ah, "hw qnum %u out of range, max %tu!\n",
932 qnum, ARRAY_SIZE(ah->txqs));
933 ath5k_hw_release_tx_queue(ah, qnum);
934 return ERR_PTR(-EINVAL);
935 }
936 txq = &ah->txqs[qnum];
937 if (!txq->setup) {
938 txq->qnum = qnum;
939 txq->link = NULL;
940 INIT_LIST_HEAD(&txq->q);
941 spin_lock_init(&txq->lock);
942 txq->setup = true;
943 txq->txq_len = 0;
944 txq->txq_max = ATH5K_TXQ_LEN_MAX;
945 txq->txq_poll_mark = false;
946 txq->txq_stuck = 0;
947 }
948 return &ah->txqs[qnum];
949}
950
951static int
952ath5k_beaconq_setup(struct ath5k_hw *ah)
953{
954 struct ath5k_txq_info qi = {
955 /* XXX: default values not correct for B and XR channels,
956 * but who cares? */
957 .tqi_aifs = AR5K_TUNE_AIFS,
958 .tqi_cw_min = AR5K_TUNE_CWMIN,
959 .tqi_cw_max = AR5K_TUNE_CWMAX,
960 /* NB: for dynamic turbo, don't enable any other interrupts */
961 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
962 };
963
964 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
965}
966
967static int
968ath5k_beaconq_config(struct ath5k_hw *ah)
969{
970 struct ath5k_txq_info qi;
971 int ret;
972
973 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
974 if (ret)
975 goto err;
976
977 if (ah->opmode == NL80211_IFTYPE_AP ||
978 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
979 /*
980 * Always burst out beacon and CAB traffic
981 * (aifs = cwmin = cwmax = 0)
982 */
983 qi.tqi_aifs = 0;
984 qi.tqi_cw_min = 0;
985 qi.tqi_cw_max = 0;
986 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
987 /*
988 * Adhoc mode; backoff between 0 and (2 * cw_min).
989 */
990 qi.tqi_aifs = 0;
991 qi.tqi_cw_min = 0;
992 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
993 }
994
995 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
996 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
997 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
998
999 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1000 if (ret) {
1001 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1002 "hardware queue!\n", __func__);
1003 goto err;
1004 }
1005 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1006 if (ret)
1007 goto err;
1008
1009 /* reconfigure cabq with ready time to 80% of beacon_interval */
1010 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1011 if (ret)
1012 goto err;
1013
1014 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1015 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1016 if (ret)
1017 goto err;
1018
1019 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1020err:
1021 return ret;
1022}
1023
1024/**
1025 * ath5k_drain_tx_buffs - Empty tx buffers
1026 *
1027 * @ah The &struct ath5k_hw
1028 *
1029 * Empty tx buffers from all queues in preparation
1030 * of a reset or during shutdown.
1031 *
1032 * NB: this assumes output has been stopped and
1033 * we do not need to block ath5k_tx_tasklet
1034 */
1035static void
1036ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1037{
1038 struct ath5k_txq *txq;
1039 struct ath5k_buf *bf, *bf0;
1040 int i;
1041
1042 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1043 if (ah->txqs[i].setup) {
1044 txq = &ah->txqs[i];
1045 spin_lock_bh(&txq->lock);
1046 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1047 ath5k_debug_printtxbuf(ah, bf);
1048
1049 ath5k_txbuf_free_skb(ah, bf);
1050
1051 spin_lock_bh(&ah->txbuflock);
1052 list_move_tail(&bf->list, &ah->txbuf);
1053 ah->txbuf_len++;
1054 txq->txq_len--;
1055 spin_unlock_bh(&ah->txbuflock);
1056 }
1057 txq->link = NULL;
1058 txq->txq_poll_mark = false;
1059 spin_unlock_bh(&txq->lock);
1060 }
1061 }
1062}
1063
1064static void
1065ath5k_txq_release(struct ath5k_hw *ah)
1066{
1067 struct ath5k_txq *txq = ah->txqs;
1068 unsigned int i;
1069
1070 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1071 if (txq->setup) {
1072 ath5k_hw_release_tx_queue(ah, txq->qnum);
1073 txq->setup = false;
1074 }
1075}
1076
1077
1078/*************\
1079* RX Handling *
1080\*************/
1081
1082/*
1083 * Enable the receive h/w following a reset.
1084 */
1085static int
1086ath5k_rx_start(struct ath5k_hw *ah)
1087{
1088 struct ath_common *common = ath5k_hw_common(ah);
1089 struct ath5k_buf *bf;
1090 int ret;
1091
1092 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1093
1094 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1095 common->cachelsz, common->rx_bufsize);
1096
1097 spin_lock_bh(&ah->rxbuflock);
1098 ah->rxlink = NULL;
1099 list_for_each_entry(bf, &ah->rxbuf, list) {
1100 ret = ath5k_rxbuf_setup(ah, bf);
1101 if (ret != 0) {
1102 spin_unlock_bh(&ah->rxbuflock);
1103 goto err;
1104 }
1105 }
1106 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1107 ath5k_hw_set_rxdp(ah, bf->daddr);
1108 spin_unlock_bh(&ah->rxbuflock);
1109
1110 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1111 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1112 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1113
1114 return 0;
1115err:
1116 return ret;
1117}
1118
1119/*
1120 * Disable the receive logic on PCU (DRU)
1121 * In preparation for a shutdown.
1122 *
1123 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1124 * does.
1125 */
1126static void
1127ath5k_rx_stop(struct ath5k_hw *ah)
1128{
1129
1130 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1131 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1132
1133 ath5k_debug_printrxbuffs(ah);
1134}
1135
1136static unsigned int
1137ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1138 struct ath5k_rx_status *rs)
1139{
1140 struct ath_common *common = ath5k_hw_common(ah);
1141 struct ieee80211_hdr *hdr = (void *)skb->data;
1142 unsigned int keyix, hlen;
1143
1144 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1145 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1146 return RX_FLAG_DECRYPTED;
1147
1148 /* Apparently when a default key is used to decrypt the packet
1149 the hw does not set the index used to decrypt. In such cases
1150 get the index from the packet. */
1151 hlen = ieee80211_hdrlen(hdr->frame_control);
1152 if (ieee80211_has_protected(hdr->frame_control) &&
1153 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1154 skb->len >= hlen + 4) {
1155 keyix = skb->data[hlen + 3] >> 6;
1156
1157 if (test_bit(keyix, common->keymap))
1158 return RX_FLAG_DECRYPTED;
1159 }
1160
1161 return 0;
1162}
1163
1164
1165static void
1166ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1167 struct ieee80211_rx_status *rxs)
1168{
1169 struct ath_common *common = ath5k_hw_common(ah);
1170 u64 tsf, bc_tstamp;
1171 u32 hw_tu;
1172 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1173
1174 if (ieee80211_is_beacon(mgmt->frame_control) &&
1175 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1176 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1177 /*
1178 * Received an IBSS beacon with the same BSSID. Hardware *must*
1179 * have updated the local TSF. We have to work around various
1180 * hardware bugs, though...
1181 */
1182 tsf = ath5k_hw_get_tsf64(ah);
1183 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1184 hw_tu = TSF_TO_TU(tsf);
1185
1186 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1187 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1188 (unsigned long long)bc_tstamp,
1189 (unsigned long long)rxs->mactime,
1190 (unsigned long long)(rxs->mactime - bc_tstamp),
1191 (unsigned long long)tsf);
1192
1193 /*
1194 * Sometimes the HW will give us a wrong tstamp in the rx
1195 * status, causing the timestamp extension to go wrong.
1196 * (This seems to happen especially with beacon frames bigger
1197 * than 78 byte (incl. FCS))
1198 * But we know that the receive timestamp must be later than the
1199 * timestamp of the beacon since HW must have synced to that.
1200 *
1201 * NOTE: here we assume mactime to be after the frame was
1202 * received, not like mac80211 which defines it at the start.
1203 */
1204 if (bc_tstamp > rxs->mactime) {
1205 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1206 "fixing mactime from %llx to %llx\n",
1207 (unsigned long long)rxs->mactime,
1208 (unsigned long long)tsf);
1209 rxs->mactime = tsf;
1210 }
1211
1212 /*
1213 * Local TSF might have moved higher than our beacon timers,
1214 * in that case we have to update them to continue sending
1215 * beacons. This also takes care of synchronizing beacon sending
1216 * times with other stations.
1217 */
1218 if (hw_tu >= ah->nexttbtt)
1219 ath5k_beacon_update_timers(ah, bc_tstamp);
1220
1221 /* Check if the beacon timers are still correct, because a TSF
1222 * update might have created a window between them - for a
1223 * longer description see the comment of this function: */
1224 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1225 ath5k_beacon_update_timers(ah, bc_tstamp);
1226 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1227 "fixed beacon timers after beacon receive\n");
1228 }
1229 }
1230}
1231
1232static void
1233ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1234{
1235 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1236 struct ath_common *common = ath5k_hw_common(ah);
1237
1238 /* only beacons from our BSSID */
1239 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1240 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1241 return;
1242
1243 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1244
1245 /* in IBSS mode we should keep RSSI statistics per neighbour */
1246 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1247}
1248
1249/*
1250 * Compute padding position. skb must contain an IEEE 802.11 frame
1251 */
1252static int ath5k_common_padpos(struct sk_buff *skb)
1253{
1254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1255 __le16 frame_control = hdr->frame_control;
1256 int padpos = 24;
1257
1258 if (ieee80211_has_a4(frame_control))
1259 padpos += ETH_ALEN;
1260
1261 if (ieee80211_is_data_qos(frame_control))
1262 padpos += IEEE80211_QOS_CTL_LEN;
1263
1264 return padpos;
1265}
1266
1267/*
1268 * This function expects an 802.11 frame and returns the number of
1269 * bytes added, or -1 if we don't have enough header room.
1270 */
1271static int ath5k_add_padding(struct sk_buff *skb)
1272{
1273 int padpos = ath5k_common_padpos(skb);
1274 int padsize = padpos & 3;
1275
1276 if (padsize && skb->len > padpos) {
1277
1278 if (skb_headroom(skb) < padsize)
1279 return -1;
1280
1281 skb_push(skb, padsize);
1282 memmove(skb->data, skb->data + padsize, padpos);
1283 return padsize;
1284 }
1285
1286 return 0;
1287}
1288
1289/*
1290 * The MAC header is padded to have 32-bit boundary if the
1291 * packet payload is non-zero. The general calculation for
1292 * padsize would take into account odd header lengths:
1293 * padsize = 4 - (hdrlen & 3); however, since only
1294 * even-length headers are used, padding can only be 0 or 2
1295 * bytes and we can optimize this a bit. We must not try to
1296 * remove padding from short control frames that do not have a
1297 * payload.
1298 *
1299 * This function expects an 802.11 frame and returns the number of
1300 * bytes removed.
1301 */
1302static int ath5k_remove_padding(struct sk_buff *skb)
1303{
1304 int padpos = ath5k_common_padpos(skb);
1305 int padsize = padpos & 3;
1306
1307 if (padsize && skb->len >= padpos + padsize) {
1308 memmove(skb->data + padsize, skb->data, padpos);
1309 skb_pull(skb, padsize);
1310 return padsize;
1311 }
1312
1313 return 0;
1314}
1315
1316static void
1317ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1318 struct ath5k_rx_status *rs)
1319{
1320 struct ieee80211_rx_status *rxs;
1321
1322 ath5k_remove_padding(skb);
1323
1324 rxs = IEEE80211_SKB_RXCB(skb);
1325
1326 rxs->flag = 0;
1327 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1328 rxs->flag |= RX_FLAG_MMIC_ERROR;
1329
1330 /*
1331 * always extend the mac timestamp, since this information is
1332 * also needed for proper IBSS merging.
1333 *
1334 * XXX: it might be too late to do it here, since rs_tstamp is
1335 * 15bit only. that means TSF extension has to be done within
1336 * 32768usec (about 32ms). it might be necessary to move this to
1337 * the interrupt handler, like it is done in madwifi.
1338 *
1339 * Unfortunately we don't know when the hardware takes the rx
1340 * timestamp (beginning of phy frame, data frame, end of rx?).
1341 * The only thing we know is that it is hardware specific...
1342 * On AR5213 it seems the rx timestamp is at the end of the
1343 * frame, but I'm not sure.
1344 *
1345 * NOTE: mac80211 defines mactime at the beginning of the first
1346 * data symbol. Since we don't have any time references it's
1347 * impossible to comply to that. This affects IBSS merge only
1348 * right now, so it's not too bad...
1349 */
1350 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1351 rxs->flag |= RX_FLAG_MACTIME_MPDU;
1352
1353 rxs->freq = ah->curchan->center_freq;
1354 rxs->band = ah->curchan->band;
1355
1356 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1357
1358 rxs->antenna = rs->rs_antenna;
1359
1360 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1361 ah->stats.antenna_rx[rs->rs_antenna]++;
1362 else
1363 ah->stats.antenna_rx[0]++; /* invalid */
1364
1365 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1366 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1367
1368 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1369 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1370 rxs->flag |= RX_FLAG_SHORTPRE;
1371
1372 trace_ath5k_rx(ah, skb);
1373
1374 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1375
1376 /* check beacons in IBSS mode */
1377 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1378 ath5k_check_ibss_tsf(ah, skb, rxs);
1379
1380 ieee80211_rx(ah->hw, skb);
1381}
1382
1383/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1384 *
1385 * Check if we want to further process this frame or not. Also update
1386 * statistics. Return true if we want this frame, false if not.
1387 */
1388static bool
1389ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1390{
1391 ah->stats.rx_all_count++;
1392 ah->stats.rx_bytes_count += rs->rs_datalen;
1393
1394 if (unlikely(rs->rs_status)) {
1395 if (rs->rs_status & AR5K_RXERR_CRC)
1396 ah->stats.rxerr_crc++;
1397 if (rs->rs_status & AR5K_RXERR_FIFO)
1398 ah->stats.rxerr_fifo++;
1399 if (rs->rs_status & AR5K_RXERR_PHY) {
1400 ah->stats.rxerr_phy++;
1401 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1402 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1403 return false;
1404 }
1405 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1406 /*
1407 * Decrypt error. If the error occurred
1408 * because there was no hardware key, then
1409 * let the frame through so the upper layers
1410 * can process it. This is necessary for 5210
1411 * parts which have no way to setup a ``clear''
1412 * key cache entry.
1413 *
1414 * XXX do key cache faulting
1415 */
1416 ah->stats.rxerr_decrypt++;
1417 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1418 !(rs->rs_status & AR5K_RXERR_CRC))
1419 return true;
1420 }
1421 if (rs->rs_status & AR5K_RXERR_MIC) {
1422 ah->stats.rxerr_mic++;
1423 return true;
1424 }
1425
1426 /* reject any frames with non-crypto errors */
1427 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1428 return false;
1429 }
1430
1431 if (unlikely(rs->rs_more)) {
1432 ah->stats.rxerr_jumbo++;
1433 return false;
1434 }
1435 return true;
1436}
1437
1438static void
1439ath5k_set_current_imask(struct ath5k_hw *ah)
1440{
1441 enum ath5k_int imask;
1442 unsigned long flags;
1443
1444 spin_lock_irqsave(&ah->irqlock, flags);
1445 imask = ah->imask;
1446 if (ah->rx_pending)
1447 imask &= ~AR5K_INT_RX_ALL;
1448 if (ah->tx_pending)
1449 imask &= ~AR5K_INT_TX_ALL;
1450 ath5k_hw_set_imr(ah, imask);
1451 spin_unlock_irqrestore(&ah->irqlock, flags);
1452}
1453
1454static void
1455ath5k_tasklet_rx(unsigned long data)
1456{
1457 struct ath5k_rx_status rs = {};
1458 struct sk_buff *skb, *next_skb;
1459 dma_addr_t next_skb_addr;
1460 struct ath5k_hw *ah = (void *)data;
1461 struct ath_common *common = ath5k_hw_common(ah);
1462 struct ath5k_buf *bf;
1463 struct ath5k_desc *ds;
1464 int ret;
1465
1466 spin_lock(&ah->rxbuflock);
1467 if (list_empty(&ah->rxbuf)) {
1468 ATH5K_WARN(ah, "empty rx buf pool\n");
1469 goto unlock;
1470 }
1471 do {
1472 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1473 BUG_ON(bf->skb == NULL);
1474 skb = bf->skb;
1475 ds = bf->desc;
1476
1477 /* bail if HW is still using self-linked descriptor */
1478 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1479 break;
1480
1481 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1482 if (unlikely(ret == -EINPROGRESS))
1483 break;
1484 else if (unlikely(ret)) {
1485 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1486 ah->stats.rxerr_proc++;
1487 break;
1488 }
1489
1490 if (ath5k_receive_frame_ok(ah, &rs)) {
1491 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1492
1493 /*
1494 * If we can't replace bf->skb with a new skb under
1495 * memory pressure, just skip this packet
1496 */
1497 if (!next_skb)
1498 goto next;
1499
1500 dma_unmap_single(ah->dev, bf->skbaddr,
1501 common->rx_bufsize,
1502 DMA_FROM_DEVICE);
1503
1504 skb_put(skb, rs.rs_datalen);
1505
1506 ath5k_receive_frame(ah, skb, &rs);
1507
1508 bf->skb = next_skb;
1509 bf->skbaddr = next_skb_addr;
1510 }
1511next:
1512 list_move_tail(&bf->list, &ah->rxbuf);
1513 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1514unlock:
1515 spin_unlock(&ah->rxbuflock);
1516 ah->rx_pending = false;
1517 ath5k_set_current_imask(ah);
1518}
1519
1520
1521/*************\
1522* TX Handling *
1523\*************/
1524
1525void
1526ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1527 struct ath5k_txq *txq)
1528{
1529 struct ath5k_hw *ah = hw->priv;
1530 struct ath5k_buf *bf;
1531 unsigned long flags;
1532 int padsize;
1533
1534 trace_ath5k_tx(ah, skb, txq);
1535
1536 /*
1537 * The hardware expects the header padded to 4 byte boundaries.
1538 * If this is not the case, we add the padding after the header.
1539 */
1540 padsize = ath5k_add_padding(skb);
1541 if (padsize < 0) {
1542 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1543 " headroom to pad");
1544 goto drop_packet;
1545 }
1546
1547 if (txq->txq_len >= txq->txq_max &&
1548 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1549 ieee80211_stop_queue(hw, txq->qnum);
1550
1551 spin_lock_irqsave(&ah->txbuflock, flags);
1552 if (list_empty(&ah->txbuf)) {
1553 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1554 spin_unlock_irqrestore(&ah->txbuflock, flags);
1555 ieee80211_stop_queues(hw);
1556 goto drop_packet;
1557 }
1558 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1559 list_del(&bf->list);
1560 ah->txbuf_len--;
1561 if (list_empty(&ah->txbuf))
1562 ieee80211_stop_queues(hw);
1563 spin_unlock_irqrestore(&ah->txbuflock, flags);
1564
1565 bf->skb = skb;
1566
1567 if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1568 bf->skb = NULL;
1569 spin_lock_irqsave(&ah->txbuflock, flags);
1570 list_add_tail(&bf->list, &ah->txbuf);
1571 ah->txbuf_len++;
1572 spin_unlock_irqrestore(&ah->txbuflock, flags);
1573 goto drop_packet;
1574 }
1575 return;
1576
1577drop_packet:
1578 dev_kfree_skb_any(skb);
1579}
1580
1581static void
1582ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1583 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1584{
1585 struct ieee80211_tx_info *info;
1586 u8 tries[3];
1587 int i;
1588
1589 ah->stats.tx_all_count++;
1590 ah->stats.tx_bytes_count += skb->len;
1591 info = IEEE80211_SKB_CB(skb);
1592
1593 tries[0] = info->status.rates[0].count;
1594 tries[1] = info->status.rates[1].count;
1595 tries[2] = info->status.rates[2].count;
1596
1597 ieee80211_tx_info_clear_status(info);
1598
1599 for (i = 0; i < ts->ts_final_idx; i++) {
1600 struct ieee80211_tx_rate *r =
1601 &info->status.rates[i];
1602
1603 r->count = tries[i];
1604 }
1605
1606 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1607 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1608
1609 if (unlikely(ts->ts_status)) {
1610 ah->stats.ack_fail++;
1611 if (ts->ts_status & AR5K_TXERR_FILT) {
1612 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1613 ah->stats.txerr_filt++;
1614 }
1615 if (ts->ts_status & AR5K_TXERR_XRETRY)
1616 ah->stats.txerr_retry++;
1617 if (ts->ts_status & AR5K_TXERR_FIFO)
1618 ah->stats.txerr_fifo++;
1619 } else {
1620 info->flags |= IEEE80211_TX_STAT_ACK;
1621 info->status.ack_signal = ts->ts_rssi;
1622
1623 /* count the successful attempt as well */
1624 info->status.rates[ts->ts_final_idx].count++;
1625 }
1626
1627 /*
1628 * Remove MAC header padding before giving the frame
1629 * back to mac80211.
1630 */
1631 ath5k_remove_padding(skb);
1632
1633 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1634 ah->stats.antenna_tx[ts->ts_antenna]++;
1635 else
1636 ah->stats.antenna_tx[0]++; /* invalid */
1637
1638 trace_ath5k_tx_complete(ah, skb, txq, ts);
1639 ieee80211_tx_status(ah->hw, skb);
1640}
1641
1642static void
1643ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1644{
1645 struct ath5k_tx_status ts = {};
1646 struct ath5k_buf *bf, *bf0;
1647 struct ath5k_desc *ds;
1648 struct sk_buff *skb;
1649 int ret;
1650
1651 spin_lock(&txq->lock);
1652 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1653
1654 txq->txq_poll_mark = false;
1655
1656 /* skb might already have been processed last time. */
1657 if (bf->skb != NULL) {
1658 ds = bf->desc;
1659
1660 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1661 if (unlikely(ret == -EINPROGRESS))
1662 break;
1663 else if (unlikely(ret)) {
1664 ATH5K_ERR(ah,
1665 "error %d while processing "
1666 "queue %u\n", ret, txq->qnum);
1667 break;
1668 }
1669
1670 skb = bf->skb;
1671 bf->skb = NULL;
1672
1673 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1674 DMA_TO_DEVICE);
1675 ath5k_tx_frame_completed(ah, skb, txq, &ts);
1676 }
1677
1678 /*
1679 * It's possible that the hardware can say the buffer is
1680 * completed when it hasn't yet loaded the ds_link from
1681 * host memory and moved on.
1682 * Always keep the last descriptor to avoid HW races...
1683 */
1684 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1685 spin_lock(&ah->txbuflock);
1686 list_move_tail(&bf->list, &ah->txbuf);
1687 ah->txbuf_len++;
1688 txq->txq_len--;
1689 spin_unlock(&ah->txbuflock);
1690 }
1691 }
1692 spin_unlock(&txq->lock);
1693 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1694 ieee80211_wake_queue(ah->hw, txq->qnum);
1695}
1696
1697static void
1698ath5k_tasklet_tx(unsigned long data)
1699{
1700 int i;
1701 struct ath5k_hw *ah = (void *)data;
1702
1703 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1704 if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i)))
1705 ath5k_tx_processq(ah, &ah->txqs[i]);
1706
1707 ah->tx_pending = false;
1708 ath5k_set_current_imask(ah);
1709}
1710
1711
1712/*****************\
1713* Beacon handling *
1714\*****************/
1715
1716/*
1717 * Setup the beacon frame for transmit.
1718 */
1719static int
1720ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1721{
1722 struct sk_buff *skb = bf->skb;
1723 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1724 struct ath5k_desc *ds;
1725 int ret = 0;
1726 u8 antenna;
1727 u32 flags;
1728 const int padsize = 0;
1729
1730 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1731 DMA_TO_DEVICE);
1732 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1733 "skbaddr %llx\n", skb, skb->data, skb->len,
1734 (unsigned long long)bf->skbaddr);
1735
1736 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1737 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1738 dev_kfree_skb_any(skb);
1739 bf->skb = NULL;
1740 return -EIO;
1741 }
1742
1743 ds = bf->desc;
1744 antenna = ah->ah_tx_ant;
1745
1746 flags = AR5K_TXDESC_NOACK;
1747 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1748 ds->ds_link = bf->daddr; /* self-linked */
1749 flags |= AR5K_TXDESC_VEOL;
1750 } else
1751 ds->ds_link = 0;
1752
1753 /*
1754 * If we use multiple antennas on AP and use
1755 * the Sectored AP scenario, switch antenna every
1756 * 4 beacons to make sure everybody hears our AP.
1757 * When a client tries to associate, hw will keep
1758 * track of the tx antenna to be used for this client
1759 * automatically, based on ACKed packets.
1760 *
1761 * Note: AP still listens and transmits RTS on the
1762 * default antenna which is supposed to be an omni.
1763 *
1764 * Note2: On sectored scenarios it's possible to have
1765 * multiple antennas (1 omni -- the default -- and 14
1766 * sectors), so if we choose to actually support this
1767 * mode, we need to allow the user to set how many antennas
1768 * we have and tweak the code below to send beacons
1769 * on all of them.
1770 */
1771 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1772 antenna = ah->bsent & 4 ? 2 : 1;
1773
1774
1775 /* FIXME: If we are in g mode and rate is a CCK rate
1776 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1777 * from tx power (value is in dB units already) */
1778 ds->ds_data = bf->skbaddr;
1779 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1780 ieee80211_get_hdrlen_from_skb(skb), padsize,
1781 AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1782 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1783 1, AR5K_TXKEYIX_INVALID,
1784 antenna, flags, 0, 0);
1785 if (ret)
1786 goto err_unmap;
1787
1788 return 0;
1789err_unmap:
1790 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1791 return ret;
1792}
1793
1794/*
1795 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1796 * this is called only once at config_bss time, for AP we do it every
1797 * SWBA interrupt so that the TIM will reflect buffered frames.
1798 *
1799 * Called with the beacon lock.
1800 */
1801int
1802ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1803{
1804 int ret;
1805 struct ath5k_hw *ah = hw->priv;
1806 struct ath5k_vif *avf = (void *)vif->drv_priv;
1807 struct sk_buff *skb;
1808
1809 if (WARN_ON(!vif)) {
1810 ret = -EINVAL;
1811 goto out;
1812 }
1813
1814 skb = ieee80211_beacon_get(hw, vif);
1815
1816 if (!skb) {
1817 ret = -ENOMEM;
1818 goto out;
1819 }
1820
1821 ath5k_txbuf_free_skb(ah, avf->bbuf);
1822 avf->bbuf->skb = skb;
1823 ret = ath5k_beacon_setup(ah, avf->bbuf);
1824out:
1825 return ret;
1826}
1827
1828/*
1829 * Transmit a beacon frame at SWBA. Dynamic updates to the
1830 * frame contents are done as needed and the slot time is
1831 * also adjusted based on current state.
1832 *
1833 * This is called from software irq context (beacontq tasklets)
1834 * or user context from ath5k_beacon_config.
1835 */
1836static void
1837ath5k_beacon_send(struct ath5k_hw *ah)
1838{
1839 struct ieee80211_vif *vif;
1840 struct ath5k_vif *avf;
1841 struct ath5k_buf *bf;
1842 struct sk_buff *skb;
1843 int err;
1844
1845 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1846
1847 /*
1848 * Check if the previous beacon has gone out. If
1849 * not, don't don't try to post another: skip this
1850 * period and wait for the next. Missed beacons
1851 * indicate a problem and should not occur. If we
1852 * miss too many consecutive beacons reset the device.
1853 */
1854 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1855 ah->bmisscount++;
1856 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1857 "missed %u consecutive beacons\n", ah->bmisscount);
1858 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1859 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1860 "stuck beacon time (%u missed)\n",
1861 ah->bmisscount);
1862 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1863 "stuck beacon, resetting\n");
1864 ieee80211_queue_work(ah->hw, &ah->reset_work);
1865 }
1866 return;
1867 }
1868 if (unlikely(ah->bmisscount != 0)) {
1869 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1870 "resume beacon xmit after %u misses\n",
1871 ah->bmisscount);
1872 ah->bmisscount = 0;
1873 }
1874
1875 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) ||
1876 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1877 u64 tsf = ath5k_hw_get_tsf64(ah);
1878 u32 tsftu = TSF_TO_TU(tsf);
1879 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1880 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1881 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1882 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1883 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1884 } else /* only one interface */
1885 vif = ah->bslot[0];
1886
1887 if (!vif)
1888 return;
1889
1890 avf = (void *)vif->drv_priv;
1891 bf = avf->bbuf;
1892
1893 /*
1894 * Stop any current dma and put the new frame on the queue.
1895 * This should never fail since we check above that no frames
1896 * are still pending on the queue.
1897 */
1898 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1899 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1900 /* NB: hw still stops DMA, so proceed */
1901 }
1902
1903 /* refresh the beacon for AP or MESH mode */
1904 if (ah->opmode == NL80211_IFTYPE_AP ||
1905 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1906 err = ath5k_beacon_update(ah->hw, vif);
1907 if (err)
1908 return;
1909 }
1910
1911 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1912 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1913 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1914 return;
1915 }
1916
1917 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1918
1919 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1920 ath5k_hw_start_tx_dma(ah, ah->bhalq);
1921 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1922 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1923
1924 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1925 while (skb) {
1926 ath5k_tx_queue(ah->hw, skb, ah->cabq);
1927
1928 if (ah->cabq->txq_len >= ah->cabq->txq_max)
1929 break;
1930
1931 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1932 }
1933
1934 ah->bsent++;
1935}
1936
1937/**
1938 * ath5k_beacon_update_timers - update beacon timers
1939 *
1940 * @ah: struct ath5k_hw pointer we are operating on
1941 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1942 * beacon timer update based on the current HW TSF.
1943 *
1944 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1945 * of a received beacon or the current local hardware TSF and write it to the
1946 * beacon timer registers.
1947 *
1948 * This is called in a variety of situations, e.g. when a beacon is received,
1949 * when a TSF update has been detected, but also when an new IBSS is created or
1950 * when we otherwise know we have to update the timers, but we keep it in this
1951 * function to have it all together in one place.
1952 */
1953void
1954ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1955{
1956 u32 nexttbtt, intval, hw_tu, bc_tu;
1957 u64 hw_tsf;
1958
1959 intval = ah->bintval & AR5K_BEACON_PERIOD;
1960 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) {
1961 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1962 if (intval < 15)
1963 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1964 intval);
1965 }
1966 if (WARN_ON(!intval))
1967 return;
1968
1969 /* beacon TSF converted to TU */
1970 bc_tu = TSF_TO_TU(bc_tsf);
1971
1972 /* current TSF converted to TU */
1973 hw_tsf = ath5k_hw_get_tsf64(ah);
1974 hw_tu = TSF_TO_TU(hw_tsf);
1975
1976#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1977 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1978 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1979 * configuration we need to make sure it is bigger than that. */
1980
1981 if (bc_tsf == -1) {
1982 /*
1983 * no beacons received, called internally.
1984 * just need to refresh timers based on HW TSF.
1985 */
1986 nexttbtt = roundup(hw_tu + FUDGE, intval);
1987 } else if (bc_tsf == 0) {
1988 /*
1989 * no beacon received, probably called by ath5k_reset_tsf().
1990 * reset TSF to start with 0.
1991 */
1992 nexttbtt = intval;
1993 intval |= AR5K_BEACON_RESET_TSF;
1994 } else if (bc_tsf > hw_tsf) {
1995 /*
1996 * beacon received, SW merge happened but HW TSF not yet updated.
1997 * not possible to reconfigure timers yet, but next time we
1998 * receive a beacon with the same BSSID, the hardware will
1999 * automatically update the TSF and then we need to reconfigure
2000 * the timers.
2001 */
2002 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2003 "need to wait for HW TSF sync\n");
2004 return;
2005 } else {
2006 /*
2007 * most important case for beacon synchronization between STA.
2008 *
2009 * beacon received and HW TSF has been already updated by HW.
2010 * update next TBTT based on the TSF of the beacon, but make
2011 * sure it is ahead of our local TSF timer.
2012 */
2013 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2014 }
2015#undef FUDGE
2016
2017 ah->nexttbtt = nexttbtt;
2018
2019 intval |= AR5K_BEACON_ENA;
2020 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2021
2022 /*
2023 * debugging output last in order to preserve the time critical aspect
2024 * of this function
2025 */
2026 if (bc_tsf == -1)
2027 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2028 "reconfigured timers based on HW TSF\n");
2029 else if (bc_tsf == 0)
2030 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2031 "reset HW TSF and timers\n");
2032 else
2033 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2034 "updated timers based on beacon TSF\n");
2035
2036 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2037 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2038 (unsigned long long) bc_tsf,
2039 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2040 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2041 intval & AR5K_BEACON_PERIOD,
2042 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2043 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2044}
2045
2046/**
2047 * ath5k_beacon_config - Configure the beacon queues and interrupts
2048 *
2049 * @ah: struct ath5k_hw pointer we are operating on
2050 *
2051 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2052 * interrupts to detect TSF updates only.
2053 */
2054void
2055ath5k_beacon_config(struct ath5k_hw *ah)
2056{
2057 unsigned long flags;
2058
2059 spin_lock_irqsave(&ah->block, flags);
2060 ah->bmisscount = 0;
2061 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2062
2063 if (ah->enable_beacon) {
2064 /*
2065 * In IBSS mode we use a self-linked tx descriptor and let the
2066 * hardware send the beacons automatically. We have to load it
2067 * only once here.
2068 * We use the SWBA interrupt only to keep track of the beacon
2069 * timers in order to detect automatic TSF updates.
2070 */
2071 ath5k_beaconq_config(ah);
2072
2073 ah->imask |= AR5K_INT_SWBA;
2074
2075 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2076 if (ath5k_hw_hasveol(ah))
2077 ath5k_beacon_send(ah);
2078 } else
2079 ath5k_beacon_update_timers(ah, -1);
2080 } else {
2081 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2082 }
2083
2084 ath5k_hw_set_imr(ah, ah->imask);
2085 mmiowb();
2086 spin_unlock_irqrestore(&ah->block, flags);
2087}
2088
2089static void ath5k_tasklet_beacon(unsigned long data)
2090{
2091 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2092
2093 /*
2094 * Software beacon alert--time to send a beacon.
2095 *
2096 * In IBSS mode we use this interrupt just to
2097 * keep track of the next TBTT (target beacon
2098 * transmission time) in order to detect whether
2099 * automatic TSF updates happened.
2100 */
2101 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2102 /* XXX: only if VEOL supported */
2103 u64 tsf = ath5k_hw_get_tsf64(ah);
2104 ah->nexttbtt += ah->bintval;
2105 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2106 "SWBA nexttbtt: %x hw_tu: %x "
2107 "TSF: %llx\n",
2108 ah->nexttbtt,
2109 TSF_TO_TU(tsf),
2110 (unsigned long long) tsf);
2111 } else {
2112 spin_lock(&ah->block);
2113 ath5k_beacon_send(ah);
2114 spin_unlock(&ah->block);
2115 }
2116}
2117
2118
2119/********************\
2120* Interrupt handling *
2121\********************/
2122
2123static void
2124ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2125{
2126 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2127 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2128 /* run ANI only when full calibration is not active */
2129 ah->ah_cal_next_ani = jiffies +
2130 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2131 tasklet_schedule(&ah->ani_tasklet);
2132
2133 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2134 ah->ah_cal_next_full = jiffies +
2135 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2136 tasklet_schedule(&ah->calib);
2137 }
2138 /* we could use SWI to generate enough interrupts to meet our
2139 * calibration interval requirements, if necessary:
2140 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2141}
2142
2143static void
2144ath5k_schedule_rx(struct ath5k_hw *ah)
2145{
2146 ah->rx_pending = true;
2147 tasklet_schedule(&ah->rxtq);
2148}
2149
2150static void
2151ath5k_schedule_tx(struct ath5k_hw *ah)
2152{
2153 ah->tx_pending = true;
2154 tasklet_schedule(&ah->txtq);
2155}
2156
2157static irqreturn_t
2158ath5k_intr(int irq, void *dev_id)
2159{
2160 struct ath5k_hw *ah = dev_id;
2161 enum ath5k_int status;
2162 unsigned int counter = 1000;
2163
2164 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2165 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2166 !ath5k_hw_is_intr_pending(ah))))
2167 return IRQ_NONE;
2168
2169 do {
2170 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2171 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2172 status, ah->imask);
2173 if (unlikely(status & AR5K_INT_FATAL)) {
2174 /*
2175 * Fatal errors are unrecoverable.
2176 * Typically these are caused by DMA errors.
2177 */
2178 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2179 "fatal int, resetting\n");
2180 ieee80211_queue_work(ah->hw, &ah->reset_work);
2181 } else if (unlikely(status & AR5K_INT_RXORN)) {
2182 /*
2183 * Receive buffers are full. Either the bus is busy or
2184 * the CPU is not fast enough to process all received
2185 * frames.
2186 * Older chipsets need a reset to come out of this
2187 * condition, but we treat it as RX for newer chips.
2188 * We don't know exactly which versions need a reset -
2189 * this guess is copied from the HAL.
2190 */
2191 ah->stats.rxorn_intr++;
2192 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2193 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2194 "rx overrun, resetting\n");
2195 ieee80211_queue_work(ah->hw, &ah->reset_work);
2196 } else
2197 ath5k_schedule_rx(ah);
2198 } else {
2199 if (status & AR5K_INT_SWBA)
2200 tasklet_hi_schedule(&ah->beacontq);
2201
2202 if (status & AR5K_INT_RXEOL) {
2203 /*
2204 * NB: the hardware should re-read the link when
2205 * RXE bit is written, but it doesn't work at
2206 * least on older hardware revs.
2207 */
2208 ah->stats.rxeol_intr++;
2209 }
2210 if (status & AR5K_INT_TXURN) {
2211 /* bump tx trigger level */
2212 ath5k_hw_update_tx_triglevel(ah, true);
2213 }
2214 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2215 ath5k_schedule_rx(ah);
2216 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2217 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2218 ath5k_schedule_tx(ah);
2219 if (status & AR5K_INT_BMISS) {
2220 /* TODO */
2221 }
2222 if (status & AR5K_INT_MIB) {
2223 ah->stats.mib_intr++;
2224 ath5k_hw_update_mib_counters(ah);
2225 ath5k_ani_mib_intr(ah);
2226 }
2227 if (status & AR5K_INT_GPIO)
2228 tasklet_schedule(&ah->rf_kill.toggleq);
2229
2230 }
2231
2232 if (ath5k_get_bus_type(ah) == ATH_AHB)
2233 break;
2234
2235 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2236
2237 if (ah->rx_pending || ah->tx_pending)
2238 ath5k_set_current_imask(ah);
2239
2240 if (unlikely(!counter))
2241 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2242
2243 ath5k_intr_calibration_poll(ah);
2244
2245 return IRQ_HANDLED;
2246}
2247
2248/*
2249 * Periodically recalibrate the PHY to account
2250 * for temperature/environment changes.
2251 */
2252static void
2253ath5k_tasklet_calibrate(unsigned long data)
2254{
2255 struct ath5k_hw *ah = (void *)data;
2256
2257 /* Only full calibration for now */
2258 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2259
2260 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2261 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2262 ah->curchan->hw_value);
2263
2264 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2265 /*
2266 * Rfgain is out of bounds, reset the chip
2267 * to load new gain values.
2268 */
2269 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2270 ieee80211_queue_work(ah->hw, &ah->reset_work);
2271 }
2272 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2273 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2274 ieee80211_frequency_to_channel(
2275 ah->curchan->center_freq));
2276
2277 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2278 * doesn't.
2279 * TODO: We should stop TX here, so that it doesn't interfere.
2280 * Note that stopping the queues is not enough to stop TX! */
2281 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2282 ah->ah_cal_next_nf = jiffies +
2283 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2284 ath5k_hw_update_noise_floor(ah);
2285 }
2286
2287 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2288}
2289
2290
2291static void
2292ath5k_tasklet_ani(unsigned long data)
2293{
2294 struct ath5k_hw *ah = (void *)data;
2295
2296 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2297 ath5k_ani_calibration(ah);
2298 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2299}
2300
2301
2302static void
2303ath5k_tx_complete_poll_work(struct work_struct *work)
2304{
2305 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2306 tx_complete_work.work);
2307 struct ath5k_txq *txq;
2308 int i;
2309 bool needreset = false;
2310
2311 mutex_lock(&ah->lock);
2312
2313 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2314 if (ah->txqs[i].setup) {
2315 txq = &ah->txqs[i];
2316 spin_lock_bh(&txq->lock);
2317 if (txq->txq_len > 1) {
2318 if (txq->txq_poll_mark) {
2319 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2320 "TX queue stuck %d\n",
2321 txq->qnum);
2322 needreset = true;
2323 txq->txq_stuck++;
2324 spin_unlock_bh(&txq->lock);
2325 break;
2326 } else {
2327 txq->txq_poll_mark = true;
2328 }
2329 }
2330 spin_unlock_bh(&txq->lock);
2331 }
2332 }
2333
2334 if (needreset) {
2335 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2336 "TX queues stuck, resetting\n");
2337 ath5k_reset(ah, NULL, true);
2338 }
2339
2340 mutex_unlock(&ah->lock);
2341
2342 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2343 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2344}
2345
2346
2347/*************************\
2348* Initialization routines *
2349\*************************/
2350
2351int __devinit
2352ath5k_init_softc(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2353{
2354 struct ieee80211_hw *hw = ah->hw;
2355 struct ath_common *common;
2356 int ret;
2357 int csz;
2358
2359 /* Initialize driver private data */
2360 SET_IEEE80211_DEV(hw, ah->dev);
2361 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2362 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2363 IEEE80211_HW_SIGNAL_DBM |
2364 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2365
2366 hw->wiphy->interface_modes =
2367 BIT(NL80211_IFTYPE_AP) |
2368 BIT(NL80211_IFTYPE_STATION) |
2369 BIT(NL80211_IFTYPE_ADHOC) |
2370 BIT(NL80211_IFTYPE_MESH_POINT);
2371
2372 /* both antennas can be configured as RX or TX */
2373 hw->wiphy->available_antennas_tx = 0x3;
2374 hw->wiphy->available_antennas_rx = 0x3;
2375
2376 hw->extra_tx_headroom = 2;
2377 hw->channel_change_time = 5000;
2378
2379 /*
2380 * Mark the device as detached to avoid processing
2381 * interrupts until setup is complete.
2382 */
2383 __set_bit(ATH_STAT_INVALID, ah->status);
2384
2385 ah->opmode = NL80211_IFTYPE_STATION;
2386 ah->bintval = 1000;
2387 mutex_init(&ah->lock);
2388 spin_lock_init(&ah->rxbuflock);
2389 spin_lock_init(&ah->txbuflock);
2390 spin_lock_init(&ah->block);
2391 spin_lock_init(&ah->irqlock);
2392
2393 /* Setup interrupt handler */
2394 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2395 if (ret) {
2396 ATH5K_ERR(ah, "request_irq failed\n");
2397 goto err;
2398 }
2399
2400 common = ath5k_hw_common(ah);
2401 common->ops = &ath5k_common_ops;
2402 common->bus_ops = bus_ops;
2403 common->ah = ah;
2404 common->hw = hw;
2405 common->priv = ah;
2406 common->clockrate = 40;
2407
2408 /*
2409 * Cache line size is used to size and align various
2410 * structures used to communicate with the hardware.
2411 */
2412 ath5k_read_cachesize(common, &csz);
2413 common->cachelsz = csz << 2; /* convert to bytes */
2414
2415 spin_lock_init(&common->cc_lock);
2416
2417 /* Initialize device */
2418 ret = ath5k_hw_init(ah);
2419 if (ret)
2420 goto err_irq;
2421
2422 /* set up multi-rate retry capabilities */
2423 if (ah->ah_version == AR5K_AR5212) {
2424 hw->max_rates = 4;
2425 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2426 AR5K_INIT_RETRY_LONG);
2427 }
2428
2429 hw->vif_data_size = sizeof(struct ath5k_vif);
2430
2431 /* Finish private driver data initialization */
2432 ret = ath5k_init(hw);
2433 if (ret)
2434 goto err_ah;
2435
2436 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2437 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2438 ah->ah_mac_srev,
2439 ah->ah_phy_revision);
2440
2441 if (!ah->ah_single_chip) {
2442 /* Single chip radio (!RF5111) */
2443 if (ah->ah_radio_5ghz_revision &&
2444 !ah->ah_radio_2ghz_revision) {
2445 /* No 5GHz support -> report 2GHz radio */
2446 if (!test_bit(AR5K_MODE_11A,
2447 ah->ah_capabilities.cap_mode)) {
2448 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2449 ath5k_chip_name(AR5K_VERSION_RAD,
2450 ah->ah_radio_5ghz_revision),
2451 ah->ah_radio_5ghz_revision);
2452 /* No 2GHz support (5110 and some
2453 * 5GHz only cards) -> report 5GHz radio */
2454 } else if (!test_bit(AR5K_MODE_11B,
2455 ah->ah_capabilities.cap_mode)) {
2456 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2457 ath5k_chip_name(AR5K_VERSION_RAD,
2458 ah->ah_radio_5ghz_revision),
2459 ah->ah_radio_5ghz_revision);
2460 /* Multiband radio */
2461 } else {
2462 ATH5K_INFO(ah, "RF%s multiband radio found"
2463 " (0x%x)\n",
2464 ath5k_chip_name(AR5K_VERSION_RAD,
2465 ah->ah_radio_5ghz_revision),
2466 ah->ah_radio_5ghz_revision);
2467 }
2468 }
2469 /* Multi chip radio (RF5111 - RF2111) ->
2470 * report both 2GHz/5GHz radios */
2471 else if (ah->ah_radio_5ghz_revision &&
2472 ah->ah_radio_2ghz_revision) {
2473 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2474 ath5k_chip_name(AR5K_VERSION_RAD,
2475 ah->ah_radio_5ghz_revision),
2476 ah->ah_radio_5ghz_revision);
2477 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2478 ath5k_chip_name(AR5K_VERSION_RAD,
2479 ah->ah_radio_2ghz_revision),
2480 ah->ah_radio_2ghz_revision);
2481 }
2482 }
2483
2484 ath5k_debug_init_device(ah);
2485
2486 /* ready to process interrupts */
2487 __clear_bit(ATH_STAT_INVALID, ah->status);
2488
2489 return 0;
2490err_ah:
2491 ath5k_hw_deinit(ah);
2492err_irq:
2493 free_irq(ah->irq, ah);
2494err:
2495 return ret;
2496}
2497
2498static int
2499ath5k_stop_locked(struct ath5k_hw *ah)
2500{
2501
2502 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2503 test_bit(ATH_STAT_INVALID, ah->status));
2504
2505 /*
2506 * Shutdown the hardware and driver:
2507 * stop output from above
2508 * disable interrupts
2509 * turn off timers
2510 * turn off the radio
2511 * clear transmit machinery
2512 * clear receive machinery
2513 * drain and release tx queues
2514 * reclaim beacon resources
2515 * power down hardware
2516 *
2517 * Note that some of this work is not possible if the
2518 * hardware is gone (invalid).
2519 */
2520 ieee80211_stop_queues(ah->hw);
2521
2522 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2523 ath5k_led_off(ah);
2524 ath5k_hw_set_imr(ah, 0);
2525 synchronize_irq(ah->irq);
2526 ath5k_rx_stop(ah);
2527 ath5k_hw_dma_stop(ah);
2528 ath5k_drain_tx_buffs(ah);
2529 ath5k_hw_phy_disable(ah);
2530 }
2531
2532 return 0;
2533}
2534
2535int ath5k_start(struct ieee80211_hw *hw)
2536{
2537 struct ath5k_hw *ah = hw->priv;
2538 struct ath_common *common = ath5k_hw_common(ah);
2539 int ret, i;
2540
2541 mutex_lock(&ah->lock);
2542
2543 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2544
2545 /*
2546 * Stop anything previously setup. This is safe
2547 * no matter this is the first time through or not.
2548 */
2549 ath5k_stop_locked(ah);
2550
2551 /*
2552 * The basic interface to setting the hardware in a good
2553 * state is ``reset''. On return the hardware is known to
2554 * be powered up and with interrupts disabled. This must
2555 * be followed by initialization of the appropriate bits
2556 * and then setup of the interrupt mask.
2557 */
2558 ah->curchan = ah->hw->conf.channel;
2559 ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2560 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2561 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2562
2563 ret = ath5k_reset(ah, NULL, false);
2564 if (ret)
2565 goto done;
2566
2567 ath5k_rfkill_hw_start(ah);
2568
2569 /*
2570 * Reset the key cache since some parts do not reset the
2571 * contents on initial power up or resume from suspend.
2572 */
2573 for (i = 0; i < common->keymax; i++)
2574 ath_hw_keyreset(common, (u16) i);
2575
2576 /* Use higher rates for acks instead of base
2577 * rate */
2578 ah->ah_ack_bitrate_high = true;
2579
2580 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2581 ah->bslot[i] = NULL;
2582
2583 ret = 0;
2584done:
2585 mmiowb();
2586 mutex_unlock(&ah->lock);
2587
2588 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2589 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2590
2591 return ret;
2592}
2593
2594static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2595{
2596 ah->rx_pending = false;
2597 ah->tx_pending = false;
2598 tasklet_kill(&ah->rxtq);
2599 tasklet_kill(&ah->txtq);
2600 tasklet_kill(&ah->calib);
2601 tasklet_kill(&ah->beacontq);
2602 tasklet_kill(&ah->ani_tasklet);
2603}
2604
2605/*
2606 * Stop the device, grabbing the top-level lock to protect
2607 * against concurrent entry through ath5k_init (which can happen
2608 * if another thread does a system call and the thread doing the
2609 * stop is preempted).
2610 */
2611void ath5k_stop(struct ieee80211_hw *hw)
2612{
2613 struct ath5k_hw *ah = hw->priv;
2614 int ret;
2615
2616 mutex_lock(&ah->lock);
2617 ret = ath5k_stop_locked(ah);
2618 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2619 /*
2620 * Don't set the card in full sleep mode!
2621 *
2622 * a) When the device is in this state it must be carefully
2623 * woken up or references to registers in the PCI clock
2624 * domain may freeze the bus (and system). This varies
2625 * by chip and is mostly an issue with newer parts
2626 * (madwifi sources mentioned srev >= 0x78) that go to
2627 * sleep more quickly.
2628 *
2629 * b) On older chips full sleep results a weird behaviour
2630 * during wakeup. I tested various cards with srev < 0x78
2631 * and they don't wake up after module reload, a second
2632 * module reload is needed to bring the card up again.
2633 *
2634 * Until we figure out what's going on don't enable
2635 * full chip reset on any chip (this is what Legacy HAL
2636 * and Sam's HAL do anyway). Instead Perform a full reset
2637 * on the device (same as initial state after attach) and
2638 * leave it idle (keep MAC/BB on warm reset) */
2639 ret = ath5k_hw_on_hold(ah);
2640
2641 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2642 "putting device to sleep\n");
2643 }
2644
2645 mmiowb();
2646 mutex_unlock(&ah->lock);
2647
2648 ath5k_stop_tasklets(ah);
2649
2650 cancel_delayed_work_sync(&ah->tx_complete_work);
2651
2652 ath5k_rfkill_hw_stop(ah);
2653}
2654
2655/*
2656 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2657 * and change to the given channel.
2658 *
2659 * This should be called with ah->lock.
2660 */
2661static int
2662ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2663 bool skip_pcu)
2664{
2665 struct ath_common *common = ath5k_hw_common(ah);
2666 int ret, ani_mode;
2667 bool fast;
2668
2669 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2670
2671 ath5k_hw_set_imr(ah, 0);
2672 synchronize_irq(ah->irq);
2673 ath5k_stop_tasklets(ah);
2674
2675 /* Save ani mode and disable ANI during
2676 * reset. If we don't we might get false
2677 * PHY error interrupts. */
2678 ani_mode = ah->ani_state.ani_mode;
2679 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2680
2681 /* We are going to empty hw queues
2682 * so we should also free any remaining
2683 * tx buffers */
2684 ath5k_drain_tx_buffs(ah);
2685 if (chan)
2686 ah->curchan = chan;
2687
2688 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2689
2690 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2691 if (ret) {
2692 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2693 goto err;
2694 }
2695
2696 ret = ath5k_rx_start(ah);
2697 if (ret) {
2698 ATH5K_ERR(ah, "can't start recv logic\n");
2699 goto err;
2700 }
2701
2702 ath5k_ani_init(ah, ani_mode);
2703
2704 ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100);
2705 ah->ah_cal_next_ani = jiffies;
2706 ah->ah_cal_next_nf = jiffies;
2707 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2708
2709 /* clear survey data and cycle counters */
2710 memset(&ah->survey, 0, sizeof(ah->survey));
2711 spin_lock_bh(&common->cc_lock);
2712 ath_hw_cycle_counters_update(common);
2713 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2714 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2715 spin_unlock_bh(&common->cc_lock);
2716
2717 /*
2718 * Change channels and update the h/w rate map if we're switching;
2719 * e.g. 11a to 11b/g.
2720 *
2721 * We may be doing a reset in response to an ioctl that changes the
2722 * channel so update any state that might change as a result.
2723 *
2724 * XXX needed?
2725 */
2726/* ath5k_chan_change(ah, c); */
2727
2728 ath5k_beacon_config(ah);
2729 /* intrs are enabled by ath5k_beacon_config */
2730
2731 ieee80211_wake_queues(ah->hw);
2732
2733 return 0;
2734err:
2735 return ret;
2736}
2737
2738static void ath5k_reset_work(struct work_struct *work)
2739{
2740 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2741 reset_work);
2742
2743 mutex_lock(&ah->lock);
2744 ath5k_reset(ah, NULL, true);
2745 mutex_unlock(&ah->lock);
2746}
2747
2748static int __devinit
2749ath5k_init(struct ieee80211_hw *hw)
2750{
2751
2752 struct ath5k_hw *ah = hw->priv;
2753 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2754 struct ath5k_txq *txq;
2755 u8 mac[ETH_ALEN] = {};
2756 int ret;
2757
2758
2759 /*
2760 * Check if the MAC has multi-rate retry support.
2761 * We do this by trying to setup a fake extended
2762 * descriptor. MACs that don't have support will
2763 * return false w/o doing anything. MACs that do
2764 * support it will return true w/o doing anything.
2765 */
2766 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2767
2768 if (ret < 0)
2769 goto err;
2770 if (ret > 0)
2771 __set_bit(ATH_STAT_MRRETRY, ah->status);
2772
2773 /*
2774 * Collect the channel list. The 802.11 layer
2775 * is responsible for filtering this list based
2776 * on settings like the phy mode and regulatory
2777 * domain restrictions.
2778 */
2779 ret = ath5k_setup_bands(hw);
2780 if (ret) {
2781 ATH5K_ERR(ah, "can't get channels\n");
2782 goto err;
2783 }
2784
2785 /*
2786 * Allocate tx+rx descriptors and populate the lists.
2787 */
2788 ret = ath5k_desc_alloc(ah);
2789 if (ret) {
2790 ATH5K_ERR(ah, "can't allocate descriptors\n");
2791 goto err;
2792 }
2793
2794 /*
2795 * Allocate hardware transmit queues: one queue for
2796 * beacon frames and one data queue for each QoS
2797 * priority. Note that hw functions handle resetting
2798 * these queues at the needed time.
2799 */
2800 ret = ath5k_beaconq_setup(ah);
2801 if (ret < 0) {
2802 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2803 goto err_desc;
2804 }
2805 ah->bhalq = ret;
2806 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2807 if (IS_ERR(ah->cabq)) {
2808 ATH5K_ERR(ah, "can't setup cab queue\n");
2809 ret = PTR_ERR(ah->cabq);
2810 goto err_bhal;
2811 }
2812
2813 /* 5211 and 5212 usually support 10 queues but we better rely on the
2814 * capability information */
2815 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2816 /* This order matches mac80211's queue priority, so we can
2817 * directly use the mac80211 queue number without any mapping */
2818 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2819 if (IS_ERR(txq)) {
2820 ATH5K_ERR(ah, "can't setup xmit queue\n");
2821 ret = PTR_ERR(txq);
2822 goto err_queues;
2823 }
2824 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2825 if (IS_ERR(txq)) {
2826 ATH5K_ERR(ah, "can't setup xmit queue\n");
2827 ret = PTR_ERR(txq);
2828 goto err_queues;
2829 }
2830 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2831 if (IS_ERR(txq)) {
2832 ATH5K_ERR(ah, "can't setup xmit queue\n");
2833 ret = PTR_ERR(txq);
2834 goto err_queues;
2835 }
2836 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2837 if (IS_ERR(txq)) {
2838 ATH5K_ERR(ah, "can't setup xmit queue\n");
2839 ret = PTR_ERR(txq);
2840 goto err_queues;
2841 }
2842 hw->queues = 4;
2843 } else {
2844 /* older hardware (5210) can only support one data queue */
2845 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2846 if (IS_ERR(txq)) {
2847 ATH5K_ERR(ah, "can't setup xmit queue\n");
2848 ret = PTR_ERR(txq);
2849 goto err_queues;
2850 }
2851 hw->queues = 1;
2852 }
2853
2854 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2855 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2856 tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah);
2857 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2858 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2859
2860 INIT_WORK(&ah->reset_work, ath5k_reset_work);
2861 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2862
2863 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2864 if (ret) {
2865 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2866 goto err_queues;
2867 }
2868
2869 SET_IEEE80211_PERM_ADDR(hw, mac);
2870 memcpy(&ah->lladdr, mac, ETH_ALEN);
2871 /* All MAC address bits matter for ACKs */
2872 ath5k_update_bssid_mask_and_opmode(ah, NULL);
2873
2874 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2875 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2876 if (ret) {
2877 ATH5K_ERR(ah, "can't initialize regulatory system\n");
2878 goto err_queues;
2879 }
2880
2881 ret = ieee80211_register_hw(hw);
2882 if (ret) {
2883 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2884 goto err_queues;
2885 }
2886
2887 if (!ath_is_world_regd(regulatory))
2888 regulatory_hint(hw->wiphy, regulatory->alpha2);
2889
2890 ath5k_init_leds(ah);
2891
2892 ath5k_sysfs_register(ah);
2893
2894 return 0;
2895err_queues:
2896 ath5k_txq_release(ah);
2897err_bhal:
2898 ath5k_hw_release_tx_queue(ah, ah->bhalq);
2899err_desc:
2900 ath5k_desc_free(ah);
2901err:
2902 return ret;
2903}
2904
2905void
2906ath5k_deinit_softc(struct ath5k_hw *ah)
2907{
2908 struct ieee80211_hw *hw = ah->hw;
2909
2910 /*
2911 * NB: the order of these is important:
2912 * o call the 802.11 layer before detaching ath5k_hw to
2913 * ensure callbacks into the driver to delete global
2914 * key cache entries can be handled
2915 * o reclaim the tx queue data structures after calling
2916 * the 802.11 layer as we'll get called back to reclaim
2917 * node state and potentially want to use them
2918 * o to cleanup the tx queues the hal is called, so detach
2919 * it last
2920 * XXX: ??? detach ath5k_hw ???
2921 * Other than that, it's straightforward...
2922 */
2923 ieee80211_unregister_hw(hw);
2924 ath5k_desc_free(ah);
2925 ath5k_txq_release(ah);
2926 ath5k_hw_release_tx_queue(ah, ah->bhalq);
2927 ath5k_unregister_leds(ah);
2928
2929 ath5k_sysfs_unregister(ah);
2930 /*
2931 * NB: can't reclaim these until after ieee80211_ifdetach
2932 * returns because we'll get called back to reclaim node
2933 * state and potentially want to use them.
2934 */
2935 ath5k_hw_deinit(ah);
2936 free_irq(ah->irq, ah);
2937}
2938
2939bool
2940ath5k_any_vif_assoc(struct ath5k_hw *ah)
2941{
2942 struct ath5k_vif_iter_data iter_data;
2943 iter_data.hw_macaddr = NULL;
2944 iter_data.any_assoc = false;
2945 iter_data.need_set_hw_addr = false;
2946 iter_data.found_active = true;
2947
2948 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
2949 &iter_data);
2950 return iter_data.any_assoc;
2951}
2952
2953void
2954ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2955{
2956 struct ath5k_hw *ah = hw->priv;
2957 u32 rfilt;
2958 rfilt = ath5k_hw_get_rx_filter(ah);
2959 if (enable)
2960 rfilt |= AR5K_RX_FILTER_BEACON;
2961 else
2962 rfilt &= ~AR5K_RX_FILTER_BEACON;
2963 ath5k_hw_set_rx_filter(ah, rfilt);
2964 ah->filter_flags = rfilt;
2965}
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45#include <linux/module.h>
46#include <linux/delay.h>
47#include <linux/dma-mapping.h>
48#include <linux/hardirq.h>
49#include <linux/if.h>
50#include <linux/io.h>
51#include <linux/netdevice.h>
52#include <linux/cache.h>
53#include <linux/ethtool.h>
54#include <linux/uaccess.h>
55#include <linux/slab.h>
56#include <linux/etherdevice.h>
57#include <linux/nl80211.h>
58
59#include <net/cfg80211.h>
60#include <net/ieee80211_radiotap.h>
61
62#include <asm/unaligned.h>
63
64#include <net/mac80211.h>
65#include "base.h"
66#include "reg.h"
67#include "debug.h"
68#include "ani.h"
69#include "ath5k.h"
70#include "../regd.h"
71
72#define CREATE_TRACE_POINTS
73#include "trace.h"
74
75bool ath5k_modparam_nohwcrypt;
76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79static bool modparam_fastchanswitch;
80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83static bool ath5k_modparam_no_hw_rfkill_switch;
84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, S_IRUGO);
86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89/* Module info */
90MODULE_AUTHOR("Jiri Slaby");
91MODULE_AUTHOR("Nick Kossifidis");
92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94MODULE_LICENSE("Dual BSD/GPL");
95
96static int ath5k_init(struct ieee80211_hw *hw);
97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 bool skip_pcu);
99
100/* Known SREVs */
101static const struct ath5k_srev_name srev_names[] = {
102#ifdef CONFIG_ATH5K_AHB
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
104 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
105 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
107 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
109 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
110#else
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
129#endif
130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
143 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
144 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
145#ifdef CONFIG_ATH5K_AHB
146 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
147 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
148#endif
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
150};
151
152static const struct ieee80211_rate ath5k_rates[] = {
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 IEEE80211_RATE_SUPPORTS_10MHZ },
171 { .bitrate = 90,
172 .hw_value = ATH5K_RATE_CODE_9M,
173 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 IEEE80211_RATE_SUPPORTS_10MHZ },
175 { .bitrate = 120,
176 .hw_value = ATH5K_RATE_CODE_12M,
177 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 IEEE80211_RATE_SUPPORTS_10MHZ },
179 { .bitrate = 180,
180 .hw_value = ATH5K_RATE_CODE_18M,
181 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 IEEE80211_RATE_SUPPORTS_10MHZ },
183 { .bitrate = 240,
184 .hw_value = ATH5K_RATE_CODE_24M,
185 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 IEEE80211_RATE_SUPPORTS_10MHZ },
187 { .bitrate = 360,
188 .hw_value = ATH5K_RATE_CODE_36M,
189 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 IEEE80211_RATE_SUPPORTS_10MHZ },
191 { .bitrate = 480,
192 .hw_value = ATH5K_RATE_CODE_48M,
193 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 IEEE80211_RATE_SUPPORTS_10MHZ },
195 { .bitrate = 540,
196 .hw_value = ATH5K_RATE_CODE_54M,
197 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 IEEE80211_RATE_SUPPORTS_10MHZ },
199};
200
201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202{
203 u64 tsf = ath5k_hw_get_tsf64(ah);
204
205 if ((tsf & 0x7fff) < rstamp)
206 tsf -= 0x8000;
207
208 return (tsf & ~0x7fff) | rstamp;
209}
210
211const char *
212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213{
214 const char *name = "xxxxx";
215 unsigned int i;
216
217 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 if (srev_names[i].sr_type != type)
219 continue;
220
221 if ((val & 0xf0) == srev_names[i].sr_val)
222 name = srev_names[i].sr_name;
223
224 if ((val & 0xff) == srev_names[i].sr_val) {
225 name = srev_names[i].sr_name;
226 break;
227 }
228 }
229
230 return name;
231}
232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233{
234 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 return ath5k_hw_reg_read(ah, reg_offset);
236}
237
238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239{
240 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 ath5k_hw_reg_write(ah, val, reg_offset);
242}
243
244static const struct ath_ops ath5k_common_ops = {
245 .read = ath5k_ioread32,
246 .write = ath5k_iowrite32,
247};
248
249/***********************\
250* Driver Initialization *
251\***********************/
252
253static void ath5k_reg_notifier(struct wiphy *wiphy,
254 struct regulatory_request *request)
255{
256 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257 struct ath5k_hw *ah = hw->priv;
258 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
259
260 ath_reg_notifier_apply(wiphy, request, regulatory);
261}
262
263/********************\
264* Channel/mode setup *
265\********************/
266
267/*
268 * Returns true for the channel numbers used.
269 */
270#ifdef CONFIG_ATH5K_TEST_CHANNELS
271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
272{
273 return true;
274}
275
276#else
277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
278{
279 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
280 return true;
281
282 return /* UNII 1,2 */
283 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284 /* midband */
285 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 /* UNII-3 */
287 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 /* 802.11j 5.030-5.080 GHz (20MHz) */
289 (chan == 8 || chan == 12 || chan == 16) ||
290 /* 802.11j 4.9GHz (20MHz) */
291 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
292}
293#endif
294
295static unsigned int
296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 unsigned int mode, unsigned int max)
298{
299 unsigned int count, size, freq, ch;
300 enum ieee80211_band band;
301
302 switch (mode) {
303 case AR5K_MODE_11A:
304 /* 1..220, but 2GHz frequencies are filtered by check_channel */
305 size = 220;
306 band = IEEE80211_BAND_5GHZ;
307 break;
308 case AR5K_MODE_11B:
309 case AR5K_MODE_11G:
310 size = 26;
311 band = IEEE80211_BAND_2GHZ;
312 break;
313 default:
314 ATH5K_WARN(ah, "bad mode, not copying channels\n");
315 return 0;
316 }
317
318 count = 0;
319 for (ch = 1; ch <= size && count < max; ch++) {
320 freq = ieee80211_channel_to_frequency(ch, band);
321
322 if (freq == 0) /* mapping failed - not a standard channel */
323 continue;
324
325 /* Write channel info, needed for ath5k_channel_ok() */
326 channels[count].center_freq = freq;
327 channels[count].band = band;
328 channels[count].hw_value = mode;
329
330 /* Check if channel is supported by the chipset */
331 if (!ath5k_channel_ok(ah, &channels[count]))
332 continue;
333
334 if (!ath5k_is_standard_channel(ch, band))
335 continue;
336
337 count++;
338 }
339
340 return count;
341}
342
343static void
344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
345{
346 u8 i;
347
348 for (i = 0; i < AR5K_MAX_RATES; i++)
349 ah->rate_idx[b->band][i] = -1;
350
351 for (i = 0; i < b->n_bitrates; i++) {
352 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353 if (b->bitrates[i].hw_value_short)
354 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
355 }
356}
357
358static int
359ath5k_setup_bands(struct ieee80211_hw *hw)
360{
361 struct ath5k_hw *ah = hw->priv;
362 struct ieee80211_supported_band *sband;
363 int max_c, count_c = 0;
364 int i;
365
366 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
367 max_c = ARRAY_SIZE(ah->channels);
368
369 /* 2GHz band */
370 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
371 sband->band = IEEE80211_BAND_2GHZ;
372 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
373
374 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375 /* G mode */
376 memcpy(sband->bitrates, &ath5k_rates[0],
377 sizeof(struct ieee80211_rate) * 12);
378 sband->n_bitrates = 12;
379
380 sband->channels = ah->channels;
381 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382 AR5K_MODE_11G, max_c);
383
384 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
385 count_c = sband->n_channels;
386 max_c -= count_c;
387 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388 /* B mode */
389 memcpy(sband->bitrates, &ath5k_rates[0],
390 sizeof(struct ieee80211_rate) * 4);
391 sband->n_bitrates = 4;
392
393 /* 5211 only supports B rates and uses 4bit rate codes
394 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 * fix them up here:
396 */
397 if (ah->ah_version == AR5K_AR5211) {
398 for (i = 0; i < 4; i++) {
399 sband->bitrates[i].hw_value =
400 sband->bitrates[i].hw_value & 0xF;
401 sband->bitrates[i].hw_value_short =
402 sband->bitrates[i].hw_value_short & 0xF;
403 }
404 }
405
406 sband->channels = ah->channels;
407 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 AR5K_MODE_11B, max_c);
409
410 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
411 count_c = sband->n_channels;
412 max_c -= count_c;
413 }
414 ath5k_setup_rate_idx(ah, sband);
415
416 /* 5GHz band, A mode */
417 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
419 sband->band = IEEE80211_BAND_5GHZ;
420 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
421
422 memcpy(sband->bitrates, &ath5k_rates[4],
423 sizeof(struct ieee80211_rate) * 8);
424 sband->n_bitrates = 8;
425
426 sband->channels = &ah->channels[count_c];
427 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428 AR5K_MODE_11A, max_c);
429
430 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
431 }
432 ath5k_setup_rate_idx(ah, sband);
433
434 ath5k_debug_dump_bands(ah);
435
436 return 0;
437}
438
439/*
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la ath5k_init.
443 *
444 * Called with ah->lock.
445 */
446int
447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
448{
449 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450 "channel set, resetting (%u -> %u MHz)\n",
451 ah->curchan->center_freq, chandef->chan->center_freq);
452
453 switch (chandef->width) {
454 case NL80211_CHAN_WIDTH_20:
455 case NL80211_CHAN_WIDTH_20_NOHT:
456 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 break;
458 case NL80211_CHAN_WIDTH_5:
459 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 break;
461 case NL80211_CHAN_WIDTH_10:
462 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 break;
464 default:
465 WARN_ON(1);
466 return -EINVAL;
467 }
468
469 /*
470 * To switch channels clear any pending DMA operations;
471 * wait long enough for the RX fifo to drain, reset the
472 * hardware at the new frequency, and then re-enable
473 * the relevant bits of the h/w.
474 */
475 return ath5k_reset(ah, chandef->chan, true);
476}
477
478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
479{
480 struct ath5k_vif_iter_data *iter_data = data;
481 int i;
482 struct ath5k_vif *avf = (void *)vif->drv_priv;
483
484 if (iter_data->hw_macaddr)
485 for (i = 0; i < ETH_ALEN; i++)
486 iter_data->mask[i] &=
487 ~(iter_data->hw_macaddr[i] ^ mac[i]);
488
489 if (!iter_data->found_active) {
490 iter_data->found_active = true;
491 memcpy(iter_data->active_mac, mac, ETH_ALEN);
492 }
493
494 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495 if (ether_addr_equal(iter_data->hw_macaddr, mac))
496 iter_data->need_set_hw_addr = false;
497
498 if (!iter_data->any_assoc) {
499 if (avf->assoc)
500 iter_data->any_assoc = true;
501 }
502
503 /* Calculate combined mode - when APs are active, operate in AP mode.
504 * Otherwise use the mode of the new interface. This can currently
505 * only deal with combinations of APs and STAs. Only one ad-hoc
506 * interfaces is allowed.
507 */
508 if (avf->opmode == NL80211_IFTYPE_AP)
509 iter_data->opmode = NL80211_IFTYPE_AP;
510 else {
511 if (avf->opmode == NL80211_IFTYPE_STATION)
512 iter_data->n_stas++;
513 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 iter_data->opmode = avf->opmode;
515 }
516}
517
518void
519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520 struct ieee80211_vif *vif)
521{
522 struct ath_common *common = ath5k_hw_common(ah);
523 struct ath5k_vif_iter_data iter_data;
524 u32 rfilt;
525
526 /*
527 * Use the hardware MAC address as reference, the hardware uses it
528 * together with the BSSID mask when matching addresses.
529 */
530 iter_data.hw_macaddr = common->macaddr;
531 eth_broadcast_addr(iter_data.mask);
532 iter_data.found_active = false;
533 iter_data.need_set_hw_addr = true;
534 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535 iter_data.n_stas = 0;
536
537 if (vif)
538 ath5k_vif_iter(&iter_data, vif->addr, vif);
539
540 /* Get list of all active MAC addresses */
541 ieee80211_iterate_active_interfaces_atomic(
542 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 ath5k_vif_iter, &iter_data);
544 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
545
546 ah->opmode = iter_data.opmode;
547 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548 /* Nothing active, default to station mode */
549 ah->opmode = NL80211_IFTYPE_STATION;
550
551 ath5k_hw_set_opmode(ah, ah->opmode);
552 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 ah->opmode, ath_opmode_to_string(ah->opmode));
554
555 if (iter_data.need_set_hw_addr && iter_data.found_active)
556 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
557
558 if (ath5k_hw_hasbssidmask(ah))
559 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
560
561 /* Set up RX Filter */
562 if (iter_data.n_stas > 1) {
563 /* If you have multiple STA interfaces connected to
564 * different APs, ARPs are not received (most of the time?)
565 * Enabling PROMISC appears to fix that problem.
566 */
567 ah->filter_flags |= AR5K_RX_FILTER_PROM;
568 }
569
570 rfilt = ah->filter_flags;
571 ath5k_hw_set_rx_filter(ah, rfilt);
572 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
573}
574
575static inline int
576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
577{
578 int rix;
579
580 /* return base rate on errors */
581 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 "hw_rix out of bounds: %x\n", hw_rix))
583 return 0;
584
585 rix = ah->rate_idx[ah->curchan->band][hw_rix];
586 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 rix = 0;
588
589 return rix;
590}
591
592/***************\
593* Buffers setup *
594\***************/
595
596static
597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
598{
599 struct ath_common *common = ath5k_hw_common(ah);
600 struct sk_buff *skb;
601
602 /*
603 * Allocate buffer with headroom_needed space for the
604 * fake physical layer header at the start.
605 */
606 skb = ath_rxbuf_alloc(common,
607 common->rx_bufsize,
608 GFP_ATOMIC);
609
610 if (!skb) {
611 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612 common->rx_bufsize);
613 return NULL;
614 }
615
616 *skb_addr = dma_map_single(ah->dev,
617 skb->data, common->rx_bufsize,
618 DMA_FROM_DEVICE);
619
620 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622 dev_kfree_skb(skb);
623 return NULL;
624 }
625 return skb;
626}
627
628static int
629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
630{
631 struct sk_buff *skb = bf->skb;
632 struct ath5k_desc *ds;
633 int ret;
634
635 if (!skb) {
636 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637 if (!skb)
638 return -ENOMEM;
639 bf->skb = skb;
640 }
641
642 /*
643 * Setup descriptors. For receive we always terminate
644 * the descriptor list with a self-linked entry so we'll
645 * not get overrun under high load (as can happen with a
646 * 5212 when ANI processing enables PHY error frames).
647 *
648 * To ensure the last descriptor is self-linked we create
649 * each descriptor as self-linked and add it to the end. As
650 * each additional descriptor is added the previous self-linked
651 * entry is "fixed" naturally. This should be safe even
652 * if DMA is happening. When processing RX interrupts we
653 * never remove/process the last, self-linked, entry on the
654 * descriptor list. This ensures the hardware always has
655 * someplace to write a new frame.
656 */
657 ds = bf->desc;
658 ds->ds_link = bf->daddr; /* link to self */
659 ds->ds_data = bf->skbaddr;
660 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661 if (ret) {
662 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663 return ret;
664 }
665
666 if (ah->rxlink != NULL)
667 *ah->rxlink = bf->daddr;
668 ah->rxlink = &ds->ds_link;
669 return 0;
670}
671
672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
673{
674 struct ieee80211_hdr *hdr;
675 enum ath5k_pkt_type htype;
676 __le16 fc;
677
678 hdr = (struct ieee80211_hdr *)skb->data;
679 fc = hdr->frame_control;
680
681 if (ieee80211_is_beacon(fc))
682 htype = AR5K_PKT_TYPE_BEACON;
683 else if (ieee80211_is_probe_resp(fc))
684 htype = AR5K_PKT_TYPE_PROBE_RESP;
685 else if (ieee80211_is_atim(fc))
686 htype = AR5K_PKT_TYPE_ATIM;
687 else if (ieee80211_is_pspoll(fc))
688 htype = AR5K_PKT_TYPE_PSPOLL;
689 else
690 htype = AR5K_PKT_TYPE_NORMAL;
691
692 return htype;
693}
694
695static struct ieee80211_rate *
696ath5k_get_rate(const struct ieee80211_hw *hw,
697 const struct ieee80211_tx_info *info,
698 struct ath5k_buf *bf, int idx)
699{
700 /*
701 * convert a ieee80211_tx_rate RC-table entry to
702 * the respective ieee80211_rate struct
703 */
704 if (bf->rates[idx].idx < 0) {
705 return NULL;
706 }
707
708 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709}
710
711static u16
712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 const struct ieee80211_tx_info *info,
714 struct ath5k_buf *bf, int idx)
715{
716 struct ieee80211_rate *rate;
717 u16 hw_rate;
718 u8 rc_flags;
719
720 rate = ath5k_get_rate(hw, info, bf, idx);
721 if (!rate)
722 return 0;
723
724 rc_flags = bf->rates[idx].flags;
725 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 rate->hw_value_short : rate->hw_value;
727
728 return hw_rate;
729}
730
731static int
732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733 struct ath5k_txq *txq, int padsize,
734 struct ieee80211_tx_control *control)
735{
736 struct ath5k_desc *ds = bf->desc;
737 struct sk_buff *skb = bf->skb;
738 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 struct ieee80211_rate *rate;
741 unsigned int mrr_rate[3], mrr_tries[3];
742 int i, ret;
743 u16 hw_rate;
744 u16 cts_rate = 0;
745 u16 duration = 0;
746 u8 rc_flags;
747
748 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
749
750 /* XXX endianness */
751 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752 DMA_TO_DEVICE);
753
754 if (dma_mapping_error(ah->dev, bf->skbaddr))
755 return -ENOSPC;
756
757 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758 ARRAY_SIZE(bf->rates));
759
760 rate = ath5k_get_rate(ah->hw, info, bf, 0);
761
762 if (!rate) {
763 ret = -EINVAL;
764 goto err_unmap;
765 }
766
767 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768 flags |= AR5K_TXDESC_NOACK;
769
770 rc_flags = bf->rates[0].flags;
771
772 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
773
774 pktlen = skb->len;
775
776 /* FIXME: If we are in g mode and rate is a CCK rate
777 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778 * from tx power (value is in dB units already) */
779 if (info->control.hw_key) {
780 keyidx = info->control.hw_key->hw_key_idx;
781 pktlen += info->control.hw_key->icv_len;
782 }
783 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784 flags |= AR5K_TXDESC_RTSENA;
785 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
787 info->control.vif, pktlen, info));
788 }
789 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790 flags |= AR5K_TXDESC_CTSENA;
791 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
793 info->control.vif, pktlen, info));
794 }
795
796 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797 ieee80211_get_hdrlen_from_skb(skb), padsize,
798 get_hw_packet_type(skb),
799 (ah->ah_txpower.txp_requested * 2),
800 hw_rate,
801 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
802 cts_rate, duration);
803 if (ret)
804 goto err_unmap;
805
806 /* Set up MRR descriptor */
807 if (ah->ah_capabilities.cap_has_mrr_support) {
808 memset(mrr_rate, 0, sizeof(mrr_rate));
809 memset(mrr_tries, 0, sizeof(mrr_tries));
810
811 for (i = 0; i < 3; i++) {
812
813 rate = ath5k_get_rate(ah->hw, info, bf, i);
814 if (!rate)
815 break;
816
817 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818 mrr_tries[i] = bf->rates[i].count;
819 }
820
821 ath5k_hw_setup_mrr_tx_desc(ah, ds,
822 mrr_rate[0], mrr_tries[0],
823 mrr_rate[1], mrr_tries[1],
824 mrr_rate[2], mrr_tries[2]);
825 }
826
827 ds->ds_link = 0;
828 ds->ds_data = bf->skbaddr;
829
830 spin_lock_bh(&txq->lock);
831 list_add_tail(&bf->list, &txq->q);
832 txq->txq_len++;
833 if (txq->link == NULL) /* is this first packet? */
834 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835 else /* no, so only link it */
836 *txq->link = bf->daddr;
837
838 txq->link = &ds->ds_link;
839 ath5k_hw_start_tx_dma(ah, txq->qnum);
840 mmiowb();
841 spin_unlock_bh(&txq->lock);
842
843 return 0;
844err_unmap:
845 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
846 return ret;
847}
848
849/*******************\
850* Descriptors setup *
851\*******************/
852
853static int
854ath5k_desc_alloc(struct ath5k_hw *ah)
855{
856 struct ath5k_desc *ds;
857 struct ath5k_buf *bf;
858 dma_addr_t da;
859 unsigned int i;
860 int ret;
861
862 /* allocate descriptors */
863 ah->desc_len = sizeof(struct ath5k_desc) *
864 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
865
866 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
867 &ah->desc_daddr, GFP_KERNEL);
868 if (ah->desc == NULL) {
869 ATH5K_ERR(ah, "can't allocate descriptors\n");
870 ret = -ENOMEM;
871 goto err;
872 }
873 ds = ah->desc;
874 da = ah->desc_daddr;
875 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
876 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
877
878 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
879 sizeof(struct ath5k_buf), GFP_KERNEL);
880 if (bf == NULL) {
881 ATH5K_ERR(ah, "can't allocate bufptr\n");
882 ret = -ENOMEM;
883 goto err_free;
884 }
885 ah->bufptr = bf;
886
887 INIT_LIST_HEAD(&ah->rxbuf);
888 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
889 bf->desc = ds;
890 bf->daddr = da;
891 list_add_tail(&bf->list, &ah->rxbuf);
892 }
893
894 INIT_LIST_HEAD(&ah->txbuf);
895 ah->txbuf_len = ATH_TXBUF;
896 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
897 bf->desc = ds;
898 bf->daddr = da;
899 list_add_tail(&bf->list, &ah->txbuf);
900 }
901
902 /* beacon buffers */
903 INIT_LIST_HEAD(&ah->bcbuf);
904 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
905 bf->desc = ds;
906 bf->daddr = da;
907 list_add_tail(&bf->list, &ah->bcbuf);
908 }
909
910 return 0;
911err_free:
912 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
913err:
914 ah->desc = NULL;
915 return ret;
916}
917
918void
919ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
920{
921 BUG_ON(!bf);
922 if (!bf->skb)
923 return;
924 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
925 DMA_TO_DEVICE);
926 ieee80211_free_txskb(ah->hw, bf->skb);
927 bf->skb = NULL;
928 bf->skbaddr = 0;
929 bf->desc->ds_data = 0;
930}
931
932void
933ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
934{
935 struct ath_common *common = ath5k_hw_common(ah);
936
937 BUG_ON(!bf);
938 if (!bf->skb)
939 return;
940 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
941 DMA_FROM_DEVICE);
942 dev_kfree_skb_any(bf->skb);
943 bf->skb = NULL;
944 bf->skbaddr = 0;
945 bf->desc->ds_data = 0;
946}
947
948static void
949ath5k_desc_free(struct ath5k_hw *ah)
950{
951 struct ath5k_buf *bf;
952
953 list_for_each_entry(bf, &ah->txbuf, list)
954 ath5k_txbuf_free_skb(ah, bf);
955 list_for_each_entry(bf, &ah->rxbuf, list)
956 ath5k_rxbuf_free_skb(ah, bf);
957 list_for_each_entry(bf, &ah->bcbuf, list)
958 ath5k_txbuf_free_skb(ah, bf);
959
960 /* Free memory associated with all descriptors */
961 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
962 ah->desc = NULL;
963 ah->desc_daddr = 0;
964
965 kfree(ah->bufptr);
966 ah->bufptr = NULL;
967}
968
969
970/**************\
971* Queues setup *
972\**************/
973
974static struct ath5k_txq *
975ath5k_txq_setup(struct ath5k_hw *ah,
976 int qtype, int subtype)
977{
978 struct ath5k_txq *txq;
979 struct ath5k_txq_info qi = {
980 .tqi_subtype = subtype,
981 /* XXX: default values not correct for B and XR channels,
982 * but who cares? */
983 .tqi_aifs = AR5K_TUNE_AIFS,
984 .tqi_cw_min = AR5K_TUNE_CWMIN,
985 .tqi_cw_max = AR5K_TUNE_CWMAX
986 };
987 int qnum;
988
989 /*
990 * Enable interrupts only for EOL and DESC conditions.
991 * We mark tx descriptors to receive a DESC interrupt
992 * when a tx queue gets deep; otherwise we wait for the
993 * EOL to reap descriptors. Note that this is done to
994 * reduce interrupt load and this only defers reaping
995 * descriptors, never transmitting frames. Aside from
996 * reducing interrupts this also permits more concurrency.
997 * The only potential downside is if the tx queue backs
998 * up in which case the top half of the kernel may backup
999 * due to a lack of tx descriptors.
1000 */
1001 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004 if (qnum < 0) {
1005 /*
1006 * NB: don't print a message, this happens
1007 * normally on parts with too few tx queues
1008 */
1009 return ERR_PTR(qnum);
1010 }
1011 txq = &ah->txqs[qnum];
1012 if (!txq->setup) {
1013 txq->qnum = qnum;
1014 txq->link = NULL;
1015 INIT_LIST_HEAD(&txq->q);
1016 spin_lock_init(&txq->lock);
1017 txq->setup = true;
1018 txq->txq_len = 0;
1019 txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020 txq->txq_poll_mark = false;
1021 txq->txq_stuck = 0;
1022 }
1023 return &ah->txqs[qnum];
1024}
1025
1026static int
1027ath5k_beaconq_setup(struct ath5k_hw *ah)
1028{
1029 struct ath5k_txq_info qi = {
1030 /* XXX: default values not correct for B and XR channels,
1031 * but who cares? */
1032 .tqi_aifs = AR5K_TUNE_AIFS,
1033 .tqi_cw_min = AR5K_TUNE_CWMIN,
1034 .tqi_cw_max = AR5K_TUNE_CWMAX,
1035 /* NB: for dynamic turbo, don't enable any other interrupts */
1036 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037 };
1038
1039 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1040}
1041
1042static int
1043ath5k_beaconq_config(struct ath5k_hw *ah)
1044{
1045 struct ath5k_txq_info qi;
1046 int ret;
1047
1048 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049 if (ret)
1050 goto err;
1051
1052 if (ah->opmode == NL80211_IFTYPE_AP ||
1053 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1054 /*
1055 * Always burst out beacon and CAB traffic
1056 * (aifs = cwmin = cwmax = 0)
1057 */
1058 qi.tqi_aifs = 0;
1059 qi.tqi_cw_min = 0;
1060 qi.tqi_cw_max = 0;
1061 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1062 /*
1063 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064 */
1065 qi.tqi_aifs = 0;
1066 qi.tqi_cw_min = 0;
1067 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1068 }
1069
1070 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1073
1074 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075 if (ret) {
1076 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077 "hardware queue!\n", __func__);
1078 goto err;
1079 }
1080 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081 if (ret)
1082 goto err;
1083
1084 /* reconfigure cabq with ready time to 80% of beacon_interval */
1085 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086 if (ret)
1087 goto err;
1088
1089 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091 if (ret)
1092 goto err;
1093
1094 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095err:
1096 return ret;
1097}
1098
1099/**
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1101 *
1102 * @ah The &struct ath5k_hw
1103 *
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1106 *
1107 * NB: this assumes output has been stopped and
1108 * we do not need to block ath5k_tx_tasklet
1109 */
1110static void
1111ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1112{
1113 struct ath5k_txq *txq;
1114 struct ath5k_buf *bf, *bf0;
1115 int i;
1116
1117 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118 if (ah->txqs[i].setup) {
1119 txq = &ah->txqs[i];
1120 spin_lock_bh(&txq->lock);
1121 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122 ath5k_debug_printtxbuf(ah, bf);
1123
1124 ath5k_txbuf_free_skb(ah, bf);
1125
1126 spin_lock(&ah->txbuflock);
1127 list_move_tail(&bf->list, &ah->txbuf);
1128 ah->txbuf_len++;
1129 txq->txq_len--;
1130 spin_unlock(&ah->txbuflock);
1131 }
1132 txq->link = NULL;
1133 txq->txq_poll_mark = false;
1134 spin_unlock_bh(&txq->lock);
1135 }
1136 }
1137}
1138
1139static void
1140ath5k_txq_release(struct ath5k_hw *ah)
1141{
1142 struct ath5k_txq *txq = ah->txqs;
1143 unsigned int i;
1144
1145 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146 if (txq->setup) {
1147 ath5k_hw_release_tx_queue(ah, txq->qnum);
1148 txq->setup = false;
1149 }
1150}
1151
1152
1153/*************\
1154* RX Handling *
1155\*************/
1156
1157/*
1158 * Enable the receive h/w following a reset.
1159 */
1160static int
1161ath5k_rx_start(struct ath5k_hw *ah)
1162{
1163 struct ath_common *common = ath5k_hw_common(ah);
1164 struct ath5k_buf *bf;
1165 int ret;
1166
1167 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1168
1169 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170 common->cachelsz, common->rx_bufsize);
1171
1172 spin_lock_bh(&ah->rxbuflock);
1173 ah->rxlink = NULL;
1174 list_for_each_entry(bf, &ah->rxbuf, list) {
1175 ret = ath5k_rxbuf_setup(ah, bf);
1176 if (ret != 0) {
1177 spin_unlock_bh(&ah->rxbuflock);
1178 goto err;
1179 }
1180 }
1181 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182 ath5k_hw_set_rxdp(ah, bf->daddr);
1183 spin_unlock_bh(&ah->rxbuflock);
1184
1185 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1186 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1188
1189 return 0;
1190err:
1191 return ret;
1192}
1193
1194/*
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1197 *
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
1200 */
1201static void
1202ath5k_rx_stop(struct ath5k_hw *ah)
1203{
1204
1205 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1206 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1207
1208 ath5k_debug_printrxbuffs(ah);
1209}
1210
1211static unsigned int
1212ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213 struct ath5k_rx_status *rs)
1214{
1215 struct ath_common *common = ath5k_hw_common(ah);
1216 struct ieee80211_hdr *hdr = (void *)skb->data;
1217 unsigned int keyix, hlen;
1218
1219 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221 return RX_FLAG_DECRYPTED;
1222
1223 /* Apparently when a default key is used to decrypt the packet
1224 the hw does not set the index used to decrypt. In such cases
1225 get the index from the packet. */
1226 hlen = ieee80211_hdrlen(hdr->frame_control);
1227 if (ieee80211_has_protected(hdr->frame_control) &&
1228 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229 skb->len >= hlen + 4) {
1230 keyix = skb->data[hlen + 3] >> 6;
1231
1232 if (test_bit(keyix, common->keymap))
1233 return RX_FLAG_DECRYPTED;
1234 }
1235
1236 return 0;
1237}
1238
1239
1240static void
1241ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242 struct ieee80211_rx_status *rxs)
1243{
1244 u64 tsf, bc_tstamp;
1245 u32 hw_tu;
1246 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247
1248 if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1249 /*
1250 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251 * have updated the local TSF. We have to work around various
1252 * hardware bugs, though...
1253 */
1254 tsf = ath5k_hw_get_tsf64(ah);
1255 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256 hw_tu = TSF_TO_TU(tsf);
1257
1258 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260 (unsigned long long)bc_tstamp,
1261 (unsigned long long)rxs->mactime,
1262 (unsigned long long)(rxs->mactime - bc_tstamp),
1263 (unsigned long long)tsf);
1264
1265 /*
1266 * Sometimes the HW will give us a wrong tstamp in the rx
1267 * status, causing the timestamp extension to go wrong.
1268 * (This seems to happen especially with beacon frames bigger
1269 * than 78 byte (incl. FCS))
1270 * But we know that the receive timestamp must be later than the
1271 * timestamp of the beacon since HW must have synced to that.
1272 *
1273 * NOTE: here we assume mactime to be after the frame was
1274 * received, not like mac80211 which defines it at the start.
1275 */
1276 if (bc_tstamp > rxs->mactime) {
1277 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278 "fixing mactime from %llx to %llx\n",
1279 (unsigned long long)rxs->mactime,
1280 (unsigned long long)tsf);
1281 rxs->mactime = tsf;
1282 }
1283
1284 /*
1285 * Local TSF might have moved higher than our beacon timers,
1286 * in that case we have to update them to continue sending
1287 * beacons. This also takes care of synchronizing beacon sending
1288 * times with other stations.
1289 */
1290 if (hw_tu >= ah->nexttbtt)
1291 ath5k_beacon_update_timers(ah, bc_tstamp);
1292
1293 /* Check if the beacon timers are still correct, because a TSF
1294 * update might have created a window between them - for a
1295 * longer description see the comment of this function: */
1296 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297 ath5k_beacon_update_timers(ah, bc_tstamp);
1298 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299 "fixed beacon timers after beacon receive\n");
1300 }
1301 }
1302}
1303
1304/*
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1306 */
1307static int ath5k_common_padpos(struct sk_buff *skb)
1308{
1309 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310 __le16 frame_control = hdr->frame_control;
1311 int padpos = 24;
1312
1313 if (ieee80211_has_a4(frame_control))
1314 padpos += ETH_ALEN;
1315
1316 if (ieee80211_is_data_qos(frame_control))
1317 padpos += IEEE80211_QOS_CTL_LEN;
1318
1319 return padpos;
1320}
1321
1322/*
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1325 */
1326static int ath5k_add_padding(struct sk_buff *skb)
1327{
1328 int padpos = ath5k_common_padpos(skb);
1329 int padsize = padpos & 3;
1330
1331 if (padsize && skb->len > padpos) {
1332
1333 if (skb_headroom(skb) < padsize)
1334 return -1;
1335
1336 skb_push(skb, padsize);
1337 memmove(skb->data, skb->data + padsize, padpos);
1338 return padsize;
1339 }
1340
1341 return 0;
1342}
1343
1344/*
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit. We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1353 *
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1356 */
1357static int ath5k_remove_padding(struct sk_buff *skb)
1358{
1359 int padpos = ath5k_common_padpos(skb);
1360 int padsize = padpos & 3;
1361
1362 if (padsize && skb->len >= padpos + padsize) {
1363 memmove(skb->data + padsize, skb->data, padpos);
1364 skb_pull(skb, padsize);
1365 return padsize;
1366 }
1367
1368 return 0;
1369}
1370
1371static void
1372ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373 struct ath5k_rx_status *rs)
1374{
1375 struct ieee80211_rx_status *rxs;
1376 struct ath_common *common = ath5k_hw_common(ah);
1377
1378 ath5k_remove_padding(skb);
1379
1380 rxs = IEEE80211_SKB_RXCB(skb);
1381
1382 rxs->flag = 0;
1383 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384 rxs->flag |= RX_FLAG_MMIC_ERROR;
1385 if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1386 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1387
1388
1389 /*
1390 * always extend the mac timestamp, since this information is
1391 * also needed for proper IBSS merging.
1392 *
1393 * XXX: it might be too late to do it here, since rs_tstamp is
1394 * 15bit only. that means TSF extension has to be done within
1395 * 32768usec (about 32ms). it might be necessary to move this to
1396 * the interrupt handler, like it is done in madwifi.
1397 */
1398 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1399 rxs->flag |= RX_FLAG_MACTIME_END;
1400
1401 rxs->freq = ah->curchan->center_freq;
1402 rxs->band = ah->curchan->band;
1403
1404 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1405
1406 rxs->antenna = rs->rs_antenna;
1407
1408 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1409 ah->stats.antenna_rx[rs->rs_antenna]++;
1410 else
1411 ah->stats.antenna_rx[0]++; /* invalid */
1412
1413 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1414 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1415 switch (ah->ah_bwmode) {
1416 case AR5K_BWMODE_5MHZ:
1417 rxs->flag |= RX_FLAG_5MHZ;
1418 break;
1419 case AR5K_BWMODE_10MHZ:
1420 rxs->flag |= RX_FLAG_10MHZ;
1421 break;
1422 default:
1423 break;
1424 }
1425
1426 if (rs->rs_rate ==
1427 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1428 rxs->flag |= RX_FLAG_SHORTPRE;
1429
1430 trace_ath5k_rx(ah, skb);
1431
1432 if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1433 ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1434
1435 /* check beacons in IBSS mode */
1436 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1437 ath5k_check_ibss_tsf(ah, skb, rxs);
1438 }
1439
1440 ieee80211_rx(ah->hw, skb);
1441}
1442
1443/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1444 *
1445 * Check if we want to further process this frame or not. Also update
1446 * statistics. Return true if we want this frame, false if not.
1447 */
1448static bool
1449ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1450{
1451 ah->stats.rx_all_count++;
1452 ah->stats.rx_bytes_count += rs->rs_datalen;
1453
1454 if (unlikely(rs->rs_status)) {
1455 unsigned int filters;
1456
1457 if (rs->rs_status & AR5K_RXERR_CRC)
1458 ah->stats.rxerr_crc++;
1459 if (rs->rs_status & AR5K_RXERR_FIFO)
1460 ah->stats.rxerr_fifo++;
1461 if (rs->rs_status & AR5K_RXERR_PHY) {
1462 ah->stats.rxerr_phy++;
1463 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1464 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1465
1466 /*
1467 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1468 * These restarts happen when the radio resynchronizes to a stronger frame
1469 * while receiving a weaker frame. Here we receive the prefix of the weak
1470 * frame. Since these are incomplete packets, mark their CRC as invalid.
1471 */
1472 if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1473 rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1474 rs->rs_status |= AR5K_RXERR_CRC;
1475 rs->rs_status &= ~AR5K_RXERR_PHY;
1476 } else {
1477 return false;
1478 }
1479 }
1480 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1481 /*
1482 * Decrypt error. If the error occurred
1483 * because there was no hardware key, then
1484 * let the frame through so the upper layers
1485 * can process it. This is necessary for 5210
1486 * parts which have no way to setup a ``clear''
1487 * key cache entry.
1488 *
1489 * XXX do key cache faulting
1490 */
1491 ah->stats.rxerr_decrypt++;
1492 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1493 !(rs->rs_status & AR5K_RXERR_CRC))
1494 return true;
1495 }
1496 if (rs->rs_status & AR5K_RXERR_MIC) {
1497 ah->stats.rxerr_mic++;
1498 return true;
1499 }
1500
1501 /*
1502 * Reject any frames with non-crypto errors, and take into account the
1503 * current FIF_* filters.
1504 */
1505 filters = AR5K_RXERR_DECRYPT;
1506 if (ah->fif_filter_flags & FIF_FCSFAIL)
1507 filters |= AR5K_RXERR_CRC;
1508
1509 if (rs->rs_status & ~filters)
1510 return false;
1511 }
1512
1513 if (unlikely(rs->rs_more)) {
1514 ah->stats.rxerr_jumbo++;
1515 return false;
1516 }
1517 return true;
1518}
1519
1520static void
1521ath5k_set_current_imask(struct ath5k_hw *ah)
1522{
1523 enum ath5k_int imask;
1524 unsigned long flags;
1525
1526 if (test_bit(ATH_STAT_RESET, ah->status))
1527 return;
1528
1529 spin_lock_irqsave(&ah->irqlock, flags);
1530 imask = ah->imask;
1531 if (ah->rx_pending)
1532 imask &= ~AR5K_INT_RX_ALL;
1533 if (ah->tx_pending)
1534 imask &= ~AR5K_INT_TX_ALL;
1535 ath5k_hw_set_imr(ah, imask);
1536 spin_unlock_irqrestore(&ah->irqlock, flags);
1537}
1538
1539static void
1540ath5k_tasklet_rx(unsigned long data)
1541{
1542 struct ath5k_rx_status rs = {};
1543 struct sk_buff *skb, *next_skb;
1544 dma_addr_t next_skb_addr;
1545 struct ath5k_hw *ah = (void *)data;
1546 struct ath_common *common = ath5k_hw_common(ah);
1547 struct ath5k_buf *bf;
1548 struct ath5k_desc *ds;
1549 int ret;
1550
1551 spin_lock(&ah->rxbuflock);
1552 if (list_empty(&ah->rxbuf)) {
1553 ATH5K_WARN(ah, "empty rx buf pool\n");
1554 goto unlock;
1555 }
1556 do {
1557 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1558 BUG_ON(bf->skb == NULL);
1559 skb = bf->skb;
1560 ds = bf->desc;
1561
1562 /* bail if HW is still using self-linked descriptor */
1563 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1564 break;
1565
1566 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1567 if (unlikely(ret == -EINPROGRESS))
1568 break;
1569 else if (unlikely(ret)) {
1570 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1571 ah->stats.rxerr_proc++;
1572 break;
1573 }
1574
1575 if (ath5k_receive_frame_ok(ah, &rs)) {
1576 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1577
1578 /*
1579 * If we can't replace bf->skb with a new skb under
1580 * memory pressure, just skip this packet
1581 */
1582 if (!next_skb)
1583 goto next;
1584
1585 dma_unmap_single(ah->dev, bf->skbaddr,
1586 common->rx_bufsize,
1587 DMA_FROM_DEVICE);
1588
1589 skb_put(skb, rs.rs_datalen);
1590
1591 ath5k_receive_frame(ah, skb, &rs);
1592
1593 bf->skb = next_skb;
1594 bf->skbaddr = next_skb_addr;
1595 }
1596next:
1597 list_move_tail(&bf->list, &ah->rxbuf);
1598 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1599unlock:
1600 spin_unlock(&ah->rxbuflock);
1601 ah->rx_pending = false;
1602 ath5k_set_current_imask(ah);
1603}
1604
1605
1606/*************\
1607* TX Handling *
1608\*************/
1609
1610void
1611ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1612 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1613{
1614 struct ath5k_hw *ah = hw->priv;
1615 struct ath5k_buf *bf;
1616 unsigned long flags;
1617 int padsize;
1618
1619 trace_ath5k_tx(ah, skb, txq);
1620
1621 /*
1622 * The hardware expects the header padded to 4 byte boundaries.
1623 * If this is not the case, we add the padding after the header.
1624 */
1625 padsize = ath5k_add_padding(skb);
1626 if (padsize < 0) {
1627 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1628 " headroom to pad");
1629 goto drop_packet;
1630 }
1631
1632 if (txq->txq_len >= txq->txq_max &&
1633 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1634 ieee80211_stop_queue(hw, txq->qnum);
1635
1636 spin_lock_irqsave(&ah->txbuflock, flags);
1637 if (list_empty(&ah->txbuf)) {
1638 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1639 spin_unlock_irqrestore(&ah->txbuflock, flags);
1640 ieee80211_stop_queues(hw);
1641 goto drop_packet;
1642 }
1643 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1644 list_del(&bf->list);
1645 ah->txbuf_len--;
1646 if (list_empty(&ah->txbuf))
1647 ieee80211_stop_queues(hw);
1648 spin_unlock_irqrestore(&ah->txbuflock, flags);
1649
1650 bf->skb = skb;
1651
1652 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1653 bf->skb = NULL;
1654 spin_lock_irqsave(&ah->txbuflock, flags);
1655 list_add_tail(&bf->list, &ah->txbuf);
1656 ah->txbuf_len++;
1657 spin_unlock_irqrestore(&ah->txbuflock, flags);
1658 goto drop_packet;
1659 }
1660 return;
1661
1662drop_packet:
1663 ieee80211_free_txskb(hw, skb);
1664}
1665
1666static void
1667ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1668 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1669 struct ath5k_buf *bf)
1670{
1671 struct ieee80211_tx_info *info;
1672 u8 tries[3];
1673 int i;
1674 int size = 0;
1675
1676 ah->stats.tx_all_count++;
1677 ah->stats.tx_bytes_count += skb->len;
1678 info = IEEE80211_SKB_CB(skb);
1679
1680 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1681 memcpy(info->status.rates, bf->rates, size);
1682
1683 tries[0] = info->status.rates[0].count;
1684 tries[1] = info->status.rates[1].count;
1685 tries[2] = info->status.rates[2].count;
1686
1687 ieee80211_tx_info_clear_status(info);
1688
1689 for (i = 0; i < ts->ts_final_idx; i++) {
1690 struct ieee80211_tx_rate *r =
1691 &info->status.rates[i];
1692
1693 r->count = tries[i];
1694 }
1695
1696 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1697 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1698
1699 if (unlikely(ts->ts_status)) {
1700 ah->stats.ack_fail++;
1701 if (ts->ts_status & AR5K_TXERR_FILT) {
1702 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1703 ah->stats.txerr_filt++;
1704 }
1705 if (ts->ts_status & AR5K_TXERR_XRETRY)
1706 ah->stats.txerr_retry++;
1707 if (ts->ts_status & AR5K_TXERR_FIFO)
1708 ah->stats.txerr_fifo++;
1709 } else {
1710 info->flags |= IEEE80211_TX_STAT_ACK;
1711 info->status.ack_signal = ts->ts_rssi;
1712
1713 /* count the successful attempt as well */
1714 info->status.rates[ts->ts_final_idx].count++;
1715 }
1716
1717 /*
1718 * Remove MAC header padding before giving the frame
1719 * back to mac80211.
1720 */
1721 ath5k_remove_padding(skb);
1722
1723 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1724 ah->stats.antenna_tx[ts->ts_antenna]++;
1725 else
1726 ah->stats.antenna_tx[0]++; /* invalid */
1727
1728 trace_ath5k_tx_complete(ah, skb, txq, ts);
1729 ieee80211_tx_status(ah->hw, skb);
1730}
1731
1732static void
1733ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1734{
1735 struct ath5k_tx_status ts = {};
1736 struct ath5k_buf *bf, *bf0;
1737 struct ath5k_desc *ds;
1738 struct sk_buff *skb;
1739 int ret;
1740
1741 spin_lock(&txq->lock);
1742 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1743
1744 txq->txq_poll_mark = false;
1745
1746 /* skb might already have been processed last time. */
1747 if (bf->skb != NULL) {
1748 ds = bf->desc;
1749
1750 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1751 if (unlikely(ret == -EINPROGRESS))
1752 break;
1753 else if (unlikely(ret)) {
1754 ATH5K_ERR(ah,
1755 "error %d while processing "
1756 "queue %u\n", ret, txq->qnum);
1757 break;
1758 }
1759
1760 skb = bf->skb;
1761 bf->skb = NULL;
1762
1763 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1764 DMA_TO_DEVICE);
1765 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1766 }
1767
1768 /*
1769 * It's possible that the hardware can say the buffer is
1770 * completed when it hasn't yet loaded the ds_link from
1771 * host memory and moved on.
1772 * Always keep the last descriptor to avoid HW races...
1773 */
1774 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1775 spin_lock(&ah->txbuflock);
1776 list_move_tail(&bf->list, &ah->txbuf);
1777 ah->txbuf_len++;
1778 txq->txq_len--;
1779 spin_unlock(&ah->txbuflock);
1780 }
1781 }
1782 spin_unlock(&txq->lock);
1783 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1784 ieee80211_wake_queue(ah->hw, txq->qnum);
1785}
1786
1787static void
1788ath5k_tasklet_tx(unsigned long data)
1789{
1790 int i;
1791 struct ath5k_hw *ah = (void *)data;
1792
1793 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1794 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1795 ath5k_tx_processq(ah, &ah->txqs[i]);
1796
1797 ah->tx_pending = false;
1798 ath5k_set_current_imask(ah);
1799}
1800
1801
1802/*****************\
1803* Beacon handling *
1804\*****************/
1805
1806/*
1807 * Setup the beacon frame for transmit.
1808 */
1809static int
1810ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1811{
1812 struct sk_buff *skb = bf->skb;
1813 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1814 struct ath5k_desc *ds;
1815 int ret = 0;
1816 u8 antenna;
1817 u32 flags;
1818 const int padsize = 0;
1819
1820 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1821 DMA_TO_DEVICE);
1822 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1823 "skbaddr %llx\n", skb, skb->data, skb->len,
1824 (unsigned long long)bf->skbaddr);
1825
1826 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1827 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1828 dev_kfree_skb_any(skb);
1829 bf->skb = NULL;
1830 return -EIO;
1831 }
1832
1833 ds = bf->desc;
1834 antenna = ah->ah_tx_ant;
1835
1836 flags = AR5K_TXDESC_NOACK;
1837 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1838 ds->ds_link = bf->daddr; /* self-linked */
1839 flags |= AR5K_TXDESC_VEOL;
1840 } else
1841 ds->ds_link = 0;
1842
1843 /*
1844 * If we use multiple antennas on AP and use
1845 * the Sectored AP scenario, switch antenna every
1846 * 4 beacons to make sure everybody hears our AP.
1847 * When a client tries to associate, hw will keep
1848 * track of the tx antenna to be used for this client
1849 * automatically, based on ACKed packets.
1850 *
1851 * Note: AP still listens and transmits RTS on the
1852 * default antenna which is supposed to be an omni.
1853 *
1854 * Note2: On sectored scenarios it's possible to have
1855 * multiple antennas (1 omni -- the default -- and 14
1856 * sectors), so if we choose to actually support this
1857 * mode, we need to allow the user to set how many antennas
1858 * we have and tweak the code below to send beacons
1859 * on all of them.
1860 */
1861 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1862 antenna = ah->bsent & 4 ? 2 : 1;
1863
1864
1865 /* FIXME: If we are in g mode and rate is a CCK rate
1866 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1867 * from tx power (value is in dB units already) */
1868 ds->ds_data = bf->skbaddr;
1869 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1870 ieee80211_get_hdrlen_from_skb(skb), padsize,
1871 AR5K_PKT_TYPE_BEACON,
1872 (ah->ah_txpower.txp_requested * 2),
1873 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1874 1, AR5K_TXKEYIX_INVALID,
1875 antenna, flags, 0, 0);
1876 if (ret)
1877 goto err_unmap;
1878
1879 return 0;
1880err_unmap:
1881 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1882 return ret;
1883}
1884
1885/*
1886 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1887 * this is called only once at config_bss time, for AP we do it every
1888 * SWBA interrupt so that the TIM will reflect buffered frames.
1889 *
1890 * Called with the beacon lock.
1891 */
1892int
1893ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1894{
1895 int ret;
1896 struct ath5k_hw *ah = hw->priv;
1897 struct ath5k_vif *avf;
1898 struct sk_buff *skb;
1899
1900 if (WARN_ON(!vif)) {
1901 ret = -EINVAL;
1902 goto out;
1903 }
1904
1905 skb = ieee80211_beacon_get(hw, vif);
1906
1907 if (!skb) {
1908 ret = -ENOMEM;
1909 goto out;
1910 }
1911
1912 avf = (void *)vif->drv_priv;
1913 ath5k_txbuf_free_skb(ah, avf->bbuf);
1914 avf->bbuf->skb = skb;
1915 ret = ath5k_beacon_setup(ah, avf->bbuf);
1916out:
1917 return ret;
1918}
1919
1920/*
1921 * Transmit a beacon frame at SWBA. Dynamic updates to the
1922 * frame contents are done as needed and the slot time is
1923 * also adjusted based on current state.
1924 *
1925 * This is called from software irq context (beacontq tasklets)
1926 * or user context from ath5k_beacon_config.
1927 */
1928static void
1929ath5k_beacon_send(struct ath5k_hw *ah)
1930{
1931 struct ieee80211_vif *vif;
1932 struct ath5k_vif *avf;
1933 struct ath5k_buf *bf;
1934 struct sk_buff *skb;
1935 int err;
1936
1937 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1938
1939 /*
1940 * Check if the previous beacon has gone out. If
1941 * not, don't don't try to post another: skip this
1942 * period and wait for the next. Missed beacons
1943 * indicate a problem and should not occur. If we
1944 * miss too many consecutive beacons reset the device.
1945 */
1946 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1947 ah->bmisscount++;
1948 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1949 "missed %u consecutive beacons\n", ah->bmisscount);
1950 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1951 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1952 "stuck beacon time (%u missed)\n",
1953 ah->bmisscount);
1954 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1955 "stuck beacon, resetting\n");
1956 ieee80211_queue_work(ah->hw, &ah->reset_work);
1957 }
1958 return;
1959 }
1960 if (unlikely(ah->bmisscount != 0)) {
1961 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1962 "resume beacon xmit after %u misses\n",
1963 ah->bmisscount);
1964 ah->bmisscount = 0;
1965 }
1966
1967 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1968 ah->num_mesh_vifs > 1) ||
1969 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1970 u64 tsf = ath5k_hw_get_tsf64(ah);
1971 u32 tsftu = TSF_TO_TU(tsf);
1972 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1973 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1974 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1975 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1976 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1977 } else /* only one interface */
1978 vif = ah->bslot[0];
1979
1980 if (!vif)
1981 return;
1982
1983 avf = (void *)vif->drv_priv;
1984 bf = avf->bbuf;
1985
1986 /*
1987 * Stop any current dma and put the new frame on the queue.
1988 * This should never fail since we check above that no frames
1989 * are still pending on the queue.
1990 */
1991 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1992 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1993 /* NB: hw still stops DMA, so proceed */
1994 }
1995
1996 /* refresh the beacon for AP or MESH mode */
1997 if (ah->opmode == NL80211_IFTYPE_AP ||
1998 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1999 err = ath5k_beacon_update(ah->hw, vif);
2000 if (err)
2001 return;
2002 }
2003
2004 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2005 ah->opmode == NL80211_IFTYPE_MONITOR)) {
2006 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2007 return;
2008 }
2009
2010 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2011
2012 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2013 ath5k_hw_start_tx_dma(ah, ah->bhalq);
2014 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2015 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2016
2017 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2018 while (skb) {
2019 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2020
2021 if (ah->cabq->txq_len >= ah->cabq->txq_max)
2022 break;
2023
2024 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2025 }
2026
2027 ah->bsent++;
2028}
2029
2030/**
2031 * ath5k_beacon_update_timers - update beacon timers
2032 *
2033 * @ah: struct ath5k_hw pointer we are operating on
2034 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2035 * beacon timer update based on the current HW TSF.
2036 *
2037 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2038 * of a received beacon or the current local hardware TSF and write it to the
2039 * beacon timer registers.
2040 *
2041 * This is called in a variety of situations, e.g. when a beacon is received,
2042 * when a TSF update has been detected, but also when an new IBSS is created or
2043 * when we otherwise know we have to update the timers, but we keep it in this
2044 * function to have it all together in one place.
2045 */
2046void
2047ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2048{
2049 u32 nexttbtt, intval, hw_tu, bc_tu;
2050 u64 hw_tsf;
2051
2052 intval = ah->bintval & AR5K_BEACON_PERIOD;
2053 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2054 + ah->num_mesh_vifs > 1) {
2055 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2056 if (intval < 15)
2057 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2058 intval);
2059 }
2060 if (WARN_ON(!intval))
2061 return;
2062
2063 /* beacon TSF converted to TU */
2064 bc_tu = TSF_TO_TU(bc_tsf);
2065
2066 /* current TSF converted to TU */
2067 hw_tsf = ath5k_hw_get_tsf64(ah);
2068 hw_tu = TSF_TO_TU(hw_tsf);
2069
2070#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2071 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2072 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2073 * configuration we need to make sure it is bigger than that. */
2074
2075 if (bc_tsf == -1) {
2076 /*
2077 * no beacons received, called internally.
2078 * just need to refresh timers based on HW TSF.
2079 */
2080 nexttbtt = roundup(hw_tu + FUDGE, intval);
2081 } else if (bc_tsf == 0) {
2082 /*
2083 * no beacon received, probably called by ath5k_reset_tsf().
2084 * reset TSF to start with 0.
2085 */
2086 nexttbtt = intval;
2087 intval |= AR5K_BEACON_RESET_TSF;
2088 } else if (bc_tsf > hw_tsf) {
2089 /*
2090 * beacon received, SW merge happened but HW TSF not yet updated.
2091 * not possible to reconfigure timers yet, but next time we
2092 * receive a beacon with the same BSSID, the hardware will
2093 * automatically update the TSF and then we need to reconfigure
2094 * the timers.
2095 */
2096 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097 "need to wait for HW TSF sync\n");
2098 return;
2099 } else {
2100 /*
2101 * most important case for beacon synchronization between STA.
2102 *
2103 * beacon received and HW TSF has been already updated by HW.
2104 * update next TBTT based on the TSF of the beacon, but make
2105 * sure it is ahead of our local TSF timer.
2106 */
2107 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2108 }
2109#undef FUDGE
2110
2111 ah->nexttbtt = nexttbtt;
2112
2113 intval |= AR5K_BEACON_ENA;
2114 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2115
2116 /*
2117 * debugging output last in order to preserve the time critical aspect
2118 * of this function
2119 */
2120 if (bc_tsf == -1)
2121 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2122 "reconfigured timers based on HW TSF\n");
2123 else if (bc_tsf == 0)
2124 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2125 "reset HW TSF and timers\n");
2126 else
2127 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2128 "updated timers based on beacon TSF\n");
2129
2130 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2131 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2132 (unsigned long long) bc_tsf,
2133 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2134 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2135 intval & AR5K_BEACON_PERIOD,
2136 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2137 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2138}
2139
2140/**
2141 * ath5k_beacon_config - Configure the beacon queues and interrupts
2142 *
2143 * @ah: struct ath5k_hw pointer we are operating on
2144 *
2145 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2146 * interrupts to detect TSF updates only.
2147 */
2148void
2149ath5k_beacon_config(struct ath5k_hw *ah)
2150{
2151 spin_lock_bh(&ah->block);
2152 ah->bmisscount = 0;
2153 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2154
2155 if (ah->enable_beacon) {
2156 /*
2157 * In IBSS mode we use a self-linked tx descriptor and let the
2158 * hardware send the beacons automatically. We have to load it
2159 * only once here.
2160 * We use the SWBA interrupt only to keep track of the beacon
2161 * timers in order to detect automatic TSF updates.
2162 */
2163 ath5k_beaconq_config(ah);
2164
2165 ah->imask |= AR5K_INT_SWBA;
2166
2167 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2168 if (ath5k_hw_hasveol(ah))
2169 ath5k_beacon_send(ah);
2170 } else
2171 ath5k_beacon_update_timers(ah, -1);
2172 } else {
2173 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2174 }
2175
2176 ath5k_hw_set_imr(ah, ah->imask);
2177 mmiowb();
2178 spin_unlock_bh(&ah->block);
2179}
2180
2181static void ath5k_tasklet_beacon(unsigned long data)
2182{
2183 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2184
2185 /*
2186 * Software beacon alert--time to send a beacon.
2187 *
2188 * In IBSS mode we use this interrupt just to
2189 * keep track of the next TBTT (target beacon
2190 * transmission time) in order to detect whether
2191 * automatic TSF updates happened.
2192 */
2193 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2194 /* XXX: only if VEOL supported */
2195 u64 tsf = ath5k_hw_get_tsf64(ah);
2196 ah->nexttbtt += ah->bintval;
2197 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2198 "SWBA nexttbtt: %x hw_tu: %x "
2199 "TSF: %llx\n",
2200 ah->nexttbtt,
2201 TSF_TO_TU(tsf),
2202 (unsigned long long) tsf);
2203 } else {
2204 spin_lock(&ah->block);
2205 ath5k_beacon_send(ah);
2206 spin_unlock(&ah->block);
2207 }
2208}
2209
2210
2211/********************\
2212* Interrupt handling *
2213\********************/
2214
2215static void
2216ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2217{
2218 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2219 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2220 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2221
2222 /* Run ANI only when calibration is not active */
2223
2224 ah->ah_cal_next_ani = jiffies +
2225 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2226 tasklet_schedule(&ah->ani_tasklet);
2227
2228 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2229 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2230 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2231
2232 /* Run calibration only when another calibration
2233 * is not running.
2234 *
2235 * Note: This is for both full/short calibration,
2236 * if it's time for a full one, ath5k_calibrate_work will deal
2237 * with it. */
2238
2239 ah->ah_cal_next_short = jiffies +
2240 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2241 ieee80211_queue_work(ah->hw, &ah->calib_work);
2242 }
2243 /* we could use SWI to generate enough interrupts to meet our
2244 * calibration interval requirements, if necessary:
2245 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2246}
2247
2248static void
2249ath5k_schedule_rx(struct ath5k_hw *ah)
2250{
2251 ah->rx_pending = true;
2252 tasklet_schedule(&ah->rxtq);
2253}
2254
2255static void
2256ath5k_schedule_tx(struct ath5k_hw *ah)
2257{
2258 ah->tx_pending = true;
2259 tasklet_schedule(&ah->txtq);
2260}
2261
2262static irqreturn_t
2263ath5k_intr(int irq, void *dev_id)
2264{
2265 struct ath5k_hw *ah = dev_id;
2266 enum ath5k_int status;
2267 unsigned int counter = 1000;
2268
2269
2270 /*
2271 * If hw is not ready (or detached) and we get an
2272 * interrupt, or if we have no interrupts pending
2273 * (that means it's not for us) skip it.
2274 *
2275 * NOTE: Group 0/1 PCI interface registers are not
2276 * supported on WiSOCs, so we can't check for pending
2277 * interrupts (ISR belongs to another register group
2278 * so we are ok).
2279 */
2280 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2281 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2282 !ath5k_hw_is_intr_pending(ah))))
2283 return IRQ_NONE;
2284
2285 /** Main loop **/
2286 do {
2287 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2288
2289 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2290 status, ah->imask);
2291
2292 /*
2293 * Fatal hw error -> Log and reset
2294 *
2295 * Fatal errors are unrecoverable so we have to
2296 * reset the card. These errors include bus and
2297 * dma errors.
2298 */
2299 if (unlikely(status & AR5K_INT_FATAL)) {
2300
2301 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2302 "fatal int, resetting\n");
2303 ieee80211_queue_work(ah->hw, &ah->reset_work);
2304
2305 /*
2306 * RX Overrun -> Count and reset if needed
2307 *
2308 * Receive buffers are full. Either the bus is busy or
2309 * the CPU is not fast enough to process all received
2310 * frames.
2311 */
2312 } else if (unlikely(status & AR5K_INT_RXORN)) {
2313
2314 /*
2315 * Older chipsets need a reset to come out of this
2316 * condition, but we treat it as RX for newer chips.
2317 * We don't know exactly which versions need a reset
2318 * this guess is copied from the HAL.
2319 */
2320 ah->stats.rxorn_intr++;
2321
2322 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2323 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2324 "rx overrun, resetting\n");
2325 ieee80211_queue_work(ah->hw, &ah->reset_work);
2326 } else
2327 ath5k_schedule_rx(ah);
2328
2329 } else {
2330
2331 /* Software Beacon Alert -> Schedule beacon tasklet */
2332 if (status & AR5K_INT_SWBA)
2333 tasklet_hi_schedule(&ah->beacontq);
2334
2335 /*
2336 * No more RX descriptors -> Just count
2337 *
2338 * NB: the hardware should re-read the link when
2339 * RXE bit is written, but it doesn't work at
2340 * least on older hardware revs.
2341 */
2342 if (status & AR5K_INT_RXEOL)
2343 ah->stats.rxeol_intr++;
2344
2345
2346 /* TX Underrun -> Bump tx trigger level */
2347 if (status & AR5K_INT_TXURN)
2348 ath5k_hw_update_tx_triglevel(ah, true);
2349
2350 /* RX -> Schedule rx tasklet */
2351 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2352 ath5k_schedule_rx(ah);
2353
2354 /* TX -> Schedule tx tasklet */
2355 if (status & (AR5K_INT_TXOK
2356 | AR5K_INT_TXDESC
2357 | AR5K_INT_TXERR
2358 | AR5K_INT_TXEOL))
2359 ath5k_schedule_tx(ah);
2360
2361 /* Missed beacon -> TODO
2362 if (status & AR5K_INT_BMISS)
2363 */
2364
2365 /* MIB event -> Update counters and notify ANI */
2366 if (status & AR5K_INT_MIB) {
2367 ah->stats.mib_intr++;
2368 ath5k_hw_update_mib_counters(ah);
2369 ath5k_ani_mib_intr(ah);
2370 }
2371
2372 /* GPIO -> Notify RFKill layer */
2373 if (status & AR5K_INT_GPIO)
2374 tasklet_schedule(&ah->rf_kill.toggleq);
2375
2376 }
2377
2378 if (ath5k_get_bus_type(ah) == ATH_AHB)
2379 break;
2380
2381 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2382
2383 /*
2384 * Until we handle rx/tx interrupts mask them on IMR
2385 *
2386 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2387 * and unset after we 've handled the interrupts.
2388 */
2389 if (ah->rx_pending || ah->tx_pending)
2390 ath5k_set_current_imask(ah);
2391
2392 if (unlikely(!counter))
2393 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2394
2395 /* Fire up calibration poll */
2396 ath5k_intr_calibration_poll(ah);
2397
2398 return IRQ_HANDLED;
2399}
2400
2401/*
2402 * Periodically recalibrate the PHY to account
2403 * for temperature/environment changes.
2404 */
2405static void
2406ath5k_calibrate_work(struct work_struct *work)
2407{
2408 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2409 calib_work);
2410
2411 /* Should we run a full calibration ? */
2412 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2413
2414 ah->ah_cal_next_full = jiffies +
2415 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2416 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2417
2418 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2419 "running full calibration\n");
2420
2421 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2422 /*
2423 * Rfgain is out of bounds, reset the chip
2424 * to load new gain values.
2425 */
2426 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2427 "got new rfgain, resetting\n");
2428 ieee80211_queue_work(ah->hw, &ah->reset_work);
2429 }
2430 } else
2431 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2432
2433
2434 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2435 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2436 ah->curchan->hw_value);
2437
2438 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2439 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2440 ieee80211_frequency_to_channel(
2441 ah->curchan->center_freq));
2442
2443 /* Clear calibration flags */
2444 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2445 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2446 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2447 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2448}
2449
2450
2451static void
2452ath5k_tasklet_ani(unsigned long data)
2453{
2454 struct ath5k_hw *ah = (void *)data;
2455
2456 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2457 ath5k_ani_calibration(ah);
2458 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2459}
2460
2461
2462static void
2463ath5k_tx_complete_poll_work(struct work_struct *work)
2464{
2465 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2466 tx_complete_work.work);
2467 struct ath5k_txq *txq;
2468 int i;
2469 bool needreset = false;
2470
2471 if (!test_bit(ATH_STAT_STARTED, ah->status))
2472 return;
2473
2474 mutex_lock(&ah->lock);
2475
2476 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2477 if (ah->txqs[i].setup) {
2478 txq = &ah->txqs[i];
2479 spin_lock_bh(&txq->lock);
2480 if (txq->txq_len > 1) {
2481 if (txq->txq_poll_mark) {
2482 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2483 "TX queue stuck %d\n",
2484 txq->qnum);
2485 needreset = true;
2486 txq->txq_stuck++;
2487 spin_unlock_bh(&txq->lock);
2488 break;
2489 } else {
2490 txq->txq_poll_mark = true;
2491 }
2492 }
2493 spin_unlock_bh(&txq->lock);
2494 }
2495 }
2496
2497 if (needreset) {
2498 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2499 "TX queues stuck, resetting\n");
2500 ath5k_reset(ah, NULL, true);
2501 }
2502
2503 mutex_unlock(&ah->lock);
2504
2505 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2506 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2507}
2508
2509
2510/*************************\
2511* Initialization routines *
2512\*************************/
2513
2514static const struct ieee80211_iface_limit if_limits[] = {
2515 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2516 { .max = 4, .types =
2517#ifdef CONFIG_MAC80211_MESH
2518 BIT(NL80211_IFTYPE_MESH_POINT) |
2519#endif
2520 BIT(NL80211_IFTYPE_AP) },
2521};
2522
2523static const struct ieee80211_iface_combination if_comb = {
2524 .limits = if_limits,
2525 .n_limits = ARRAY_SIZE(if_limits),
2526 .max_interfaces = 2048,
2527 .num_different_channels = 1,
2528};
2529
2530int
2531ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2532{
2533 struct ieee80211_hw *hw = ah->hw;
2534 struct ath_common *common;
2535 int ret;
2536 int csz;
2537
2538 /* Initialize driver private data */
2539 SET_IEEE80211_DEV(hw, ah->dev);
2540 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2541 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2542 ieee80211_hw_set(hw, MFP_CAPABLE);
2543 ieee80211_hw_set(hw, SIGNAL_DBM);
2544 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2545 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2546
2547 hw->wiphy->interface_modes =
2548 BIT(NL80211_IFTYPE_AP) |
2549 BIT(NL80211_IFTYPE_STATION) |
2550 BIT(NL80211_IFTYPE_ADHOC) |
2551 BIT(NL80211_IFTYPE_MESH_POINT);
2552
2553 hw->wiphy->iface_combinations = &if_comb;
2554 hw->wiphy->n_iface_combinations = 1;
2555
2556 /* SW support for IBSS_RSN is provided by mac80211 */
2557 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2558
2559 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2560
2561 /* both antennas can be configured as RX or TX */
2562 hw->wiphy->available_antennas_tx = 0x3;
2563 hw->wiphy->available_antennas_rx = 0x3;
2564
2565 hw->extra_tx_headroom = 2;
2566
2567 /*
2568 * Mark the device as detached to avoid processing
2569 * interrupts until setup is complete.
2570 */
2571 __set_bit(ATH_STAT_INVALID, ah->status);
2572
2573 ah->opmode = NL80211_IFTYPE_STATION;
2574 ah->bintval = 1000;
2575 mutex_init(&ah->lock);
2576 spin_lock_init(&ah->rxbuflock);
2577 spin_lock_init(&ah->txbuflock);
2578 spin_lock_init(&ah->block);
2579 spin_lock_init(&ah->irqlock);
2580
2581 /* Setup interrupt handler */
2582 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2583 if (ret) {
2584 ATH5K_ERR(ah, "request_irq failed\n");
2585 goto err;
2586 }
2587
2588 common = ath5k_hw_common(ah);
2589 common->ops = &ath5k_common_ops;
2590 common->bus_ops = bus_ops;
2591 common->ah = ah;
2592 common->hw = hw;
2593 common->priv = ah;
2594 common->clockrate = 40;
2595
2596 /*
2597 * Cache line size is used to size and align various
2598 * structures used to communicate with the hardware.
2599 */
2600 ath5k_read_cachesize(common, &csz);
2601 common->cachelsz = csz << 2; /* convert to bytes */
2602
2603 spin_lock_init(&common->cc_lock);
2604
2605 /* Initialize device */
2606 ret = ath5k_hw_init(ah);
2607 if (ret)
2608 goto err_irq;
2609
2610 /* Set up multi-rate retry capabilities */
2611 if (ah->ah_capabilities.cap_has_mrr_support) {
2612 hw->max_rates = 4;
2613 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2614 AR5K_INIT_RETRY_LONG);
2615 }
2616
2617 hw->vif_data_size = sizeof(struct ath5k_vif);
2618
2619 /* Finish private driver data initialization */
2620 ret = ath5k_init(hw);
2621 if (ret)
2622 goto err_ah;
2623
2624 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2625 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2626 ah->ah_mac_srev,
2627 ah->ah_phy_revision);
2628
2629 if (!ah->ah_single_chip) {
2630 /* Single chip radio (!RF5111) */
2631 if (ah->ah_radio_5ghz_revision &&
2632 !ah->ah_radio_2ghz_revision) {
2633 /* No 5GHz support -> report 2GHz radio */
2634 if (!test_bit(AR5K_MODE_11A,
2635 ah->ah_capabilities.cap_mode)) {
2636 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2637 ath5k_chip_name(AR5K_VERSION_RAD,
2638 ah->ah_radio_5ghz_revision),
2639 ah->ah_radio_5ghz_revision);
2640 /* No 2GHz support (5110 and some
2641 * 5GHz only cards) -> report 5GHz radio */
2642 } else if (!test_bit(AR5K_MODE_11B,
2643 ah->ah_capabilities.cap_mode)) {
2644 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2645 ath5k_chip_name(AR5K_VERSION_RAD,
2646 ah->ah_radio_5ghz_revision),
2647 ah->ah_radio_5ghz_revision);
2648 /* Multiband radio */
2649 } else {
2650 ATH5K_INFO(ah, "RF%s multiband radio found"
2651 " (0x%x)\n",
2652 ath5k_chip_name(AR5K_VERSION_RAD,
2653 ah->ah_radio_5ghz_revision),
2654 ah->ah_radio_5ghz_revision);
2655 }
2656 }
2657 /* Multi chip radio (RF5111 - RF2111) ->
2658 * report both 2GHz/5GHz radios */
2659 else if (ah->ah_radio_5ghz_revision &&
2660 ah->ah_radio_2ghz_revision) {
2661 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2662 ath5k_chip_name(AR5K_VERSION_RAD,
2663 ah->ah_radio_5ghz_revision),
2664 ah->ah_radio_5ghz_revision);
2665 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2666 ath5k_chip_name(AR5K_VERSION_RAD,
2667 ah->ah_radio_2ghz_revision),
2668 ah->ah_radio_2ghz_revision);
2669 }
2670 }
2671
2672 ath5k_debug_init_device(ah);
2673
2674 /* ready to process interrupts */
2675 __clear_bit(ATH_STAT_INVALID, ah->status);
2676
2677 return 0;
2678err_ah:
2679 ath5k_hw_deinit(ah);
2680err_irq:
2681 free_irq(ah->irq, ah);
2682err:
2683 return ret;
2684}
2685
2686static int
2687ath5k_stop_locked(struct ath5k_hw *ah)
2688{
2689
2690 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2691 test_bit(ATH_STAT_INVALID, ah->status));
2692
2693 /*
2694 * Shutdown the hardware and driver:
2695 * stop output from above
2696 * disable interrupts
2697 * turn off timers
2698 * turn off the radio
2699 * clear transmit machinery
2700 * clear receive machinery
2701 * drain and release tx queues
2702 * reclaim beacon resources
2703 * power down hardware
2704 *
2705 * Note that some of this work is not possible if the
2706 * hardware is gone (invalid).
2707 */
2708 ieee80211_stop_queues(ah->hw);
2709
2710 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2711 ath5k_led_off(ah);
2712 ath5k_hw_set_imr(ah, 0);
2713 synchronize_irq(ah->irq);
2714 ath5k_rx_stop(ah);
2715 ath5k_hw_dma_stop(ah);
2716 ath5k_drain_tx_buffs(ah);
2717 ath5k_hw_phy_disable(ah);
2718 }
2719
2720 return 0;
2721}
2722
2723int ath5k_start(struct ieee80211_hw *hw)
2724{
2725 struct ath5k_hw *ah = hw->priv;
2726 struct ath_common *common = ath5k_hw_common(ah);
2727 int ret, i;
2728
2729 mutex_lock(&ah->lock);
2730
2731 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2732
2733 /*
2734 * Stop anything previously setup. This is safe
2735 * no matter this is the first time through or not.
2736 */
2737 ath5k_stop_locked(ah);
2738
2739 /*
2740 * The basic interface to setting the hardware in a good
2741 * state is ``reset''. On return the hardware is known to
2742 * be powered up and with interrupts disabled. This must
2743 * be followed by initialization of the appropriate bits
2744 * and then setup of the interrupt mask.
2745 */
2746 ah->curchan = ah->hw->conf.chandef.chan;
2747 ah->imask = AR5K_INT_RXOK
2748 | AR5K_INT_RXERR
2749 | AR5K_INT_RXEOL
2750 | AR5K_INT_RXORN
2751 | AR5K_INT_TXDESC
2752 | AR5K_INT_TXEOL
2753 | AR5K_INT_FATAL
2754 | AR5K_INT_GLOBAL
2755 | AR5K_INT_MIB;
2756
2757 ret = ath5k_reset(ah, NULL, false);
2758 if (ret)
2759 goto done;
2760
2761 if (!ath5k_modparam_no_hw_rfkill_switch)
2762 ath5k_rfkill_hw_start(ah);
2763
2764 /*
2765 * Reset the key cache since some parts do not reset the
2766 * contents on initial power up or resume from suspend.
2767 */
2768 for (i = 0; i < common->keymax; i++)
2769 ath_hw_keyreset(common, (u16) i);
2770
2771 /* Use higher rates for acks instead of base
2772 * rate */
2773 ah->ah_ack_bitrate_high = true;
2774
2775 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2776 ah->bslot[i] = NULL;
2777
2778 ret = 0;
2779done:
2780 mmiowb();
2781 mutex_unlock(&ah->lock);
2782
2783 set_bit(ATH_STAT_STARTED, ah->status);
2784 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2785 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2786
2787 return ret;
2788}
2789
2790static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2791{
2792 ah->rx_pending = false;
2793 ah->tx_pending = false;
2794 tasklet_kill(&ah->rxtq);
2795 tasklet_kill(&ah->txtq);
2796 tasklet_kill(&ah->beacontq);
2797 tasklet_kill(&ah->ani_tasklet);
2798}
2799
2800/*
2801 * Stop the device, grabbing the top-level lock to protect
2802 * against concurrent entry through ath5k_init (which can happen
2803 * if another thread does a system call and the thread doing the
2804 * stop is preempted).
2805 */
2806void ath5k_stop(struct ieee80211_hw *hw)
2807{
2808 struct ath5k_hw *ah = hw->priv;
2809 int ret;
2810
2811 mutex_lock(&ah->lock);
2812 ret = ath5k_stop_locked(ah);
2813 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2814 /*
2815 * Don't set the card in full sleep mode!
2816 *
2817 * a) When the device is in this state it must be carefully
2818 * woken up or references to registers in the PCI clock
2819 * domain may freeze the bus (and system). This varies
2820 * by chip and is mostly an issue with newer parts
2821 * (madwifi sources mentioned srev >= 0x78) that go to
2822 * sleep more quickly.
2823 *
2824 * b) On older chips full sleep results a weird behaviour
2825 * during wakeup. I tested various cards with srev < 0x78
2826 * and they don't wake up after module reload, a second
2827 * module reload is needed to bring the card up again.
2828 *
2829 * Until we figure out what's going on don't enable
2830 * full chip reset on any chip (this is what Legacy HAL
2831 * and Sam's HAL do anyway). Instead Perform a full reset
2832 * on the device (same as initial state after attach) and
2833 * leave it idle (keep MAC/BB on warm reset) */
2834 ret = ath5k_hw_on_hold(ah);
2835
2836 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2837 "putting device to sleep\n");
2838 }
2839
2840 mmiowb();
2841 mutex_unlock(&ah->lock);
2842
2843 ath5k_stop_tasklets(ah);
2844
2845 clear_bit(ATH_STAT_STARTED, ah->status);
2846 cancel_delayed_work_sync(&ah->tx_complete_work);
2847
2848 if (!ath5k_modparam_no_hw_rfkill_switch)
2849 ath5k_rfkill_hw_stop(ah);
2850}
2851
2852/*
2853 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2854 * and change to the given channel.
2855 *
2856 * This should be called with ah->lock.
2857 */
2858static int
2859ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2860 bool skip_pcu)
2861{
2862 struct ath_common *common = ath5k_hw_common(ah);
2863 int ret, ani_mode;
2864 bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2865
2866 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2867
2868 __set_bit(ATH_STAT_RESET, ah->status);
2869
2870 ath5k_hw_set_imr(ah, 0);
2871 synchronize_irq(ah->irq);
2872 ath5k_stop_tasklets(ah);
2873
2874 /* Save ani mode and disable ANI during
2875 * reset. If we don't we might get false
2876 * PHY error interrupts. */
2877 ani_mode = ah->ani_state.ani_mode;
2878 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2879
2880 /* We are going to empty hw queues
2881 * so we should also free any remaining
2882 * tx buffers */
2883 ath5k_drain_tx_buffs(ah);
2884
2885 /* Stop PCU */
2886 ath5k_hw_stop_rx_pcu(ah);
2887
2888 /* Stop DMA
2889 *
2890 * Note: If DMA didn't stop continue
2891 * since only a reset will fix it.
2892 */
2893 ret = ath5k_hw_dma_stop(ah);
2894
2895 /* RF Bus grant won't work if we have pending
2896 * frames
2897 */
2898 if (ret && fast) {
2899 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2900 "DMA didn't stop, falling back to normal reset\n");
2901 fast = false;
2902 }
2903
2904 if (chan)
2905 ah->curchan = chan;
2906
2907 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2908 if (ret) {
2909 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2910 goto err;
2911 }
2912
2913 ret = ath5k_rx_start(ah);
2914 if (ret) {
2915 ATH5K_ERR(ah, "can't start recv logic\n");
2916 goto err;
2917 }
2918
2919 ath5k_ani_init(ah, ani_mode);
2920
2921 /*
2922 * Set calibration intervals
2923 *
2924 * Note: We don't need to run calibration imediately
2925 * since some initial calibration is done on reset
2926 * even for fast channel switching. Also on scanning
2927 * this will get set again and again and it won't get
2928 * executed unless we connect somewhere and spend some
2929 * time on the channel (that's what calibration needs
2930 * anyway to be accurate).
2931 */
2932 ah->ah_cal_next_full = jiffies +
2933 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2934 ah->ah_cal_next_ani = jiffies +
2935 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2936 ah->ah_cal_next_short = jiffies +
2937 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2938
2939 ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2940
2941 /* clear survey data and cycle counters */
2942 memset(&ah->survey, 0, sizeof(ah->survey));
2943 spin_lock_bh(&common->cc_lock);
2944 ath_hw_cycle_counters_update(common);
2945 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2946 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2947 spin_unlock_bh(&common->cc_lock);
2948
2949 /*
2950 * Change channels and update the h/w rate map if we're switching;
2951 * e.g. 11a to 11b/g.
2952 *
2953 * We may be doing a reset in response to an ioctl that changes the
2954 * channel so update any state that might change as a result.
2955 *
2956 * XXX needed?
2957 */
2958/* ath5k_chan_change(ah, c); */
2959
2960 __clear_bit(ATH_STAT_RESET, ah->status);
2961
2962 ath5k_beacon_config(ah);
2963 /* intrs are enabled by ath5k_beacon_config */
2964
2965 ieee80211_wake_queues(ah->hw);
2966
2967 return 0;
2968err:
2969 return ret;
2970}
2971
2972static void ath5k_reset_work(struct work_struct *work)
2973{
2974 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2975 reset_work);
2976
2977 mutex_lock(&ah->lock);
2978 ath5k_reset(ah, NULL, true);
2979 mutex_unlock(&ah->lock);
2980}
2981
2982static int
2983ath5k_init(struct ieee80211_hw *hw)
2984{
2985
2986 struct ath5k_hw *ah = hw->priv;
2987 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2988 struct ath5k_txq *txq;
2989 u8 mac[ETH_ALEN] = {};
2990 int ret;
2991
2992
2993 /*
2994 * Collect the channel list. The 802.11 layer
2995 * is responsible for filtering this list based
2996 * on settings like the phy mode and regulatory
2997 * domain restrictions.
2998 */
2999 ret = ath5k_setup_bands(hw);
3000 if (ret) {
3001 ATH5K_ERR(ah, "can't get channels\n");
3002 goto err;
3003 }
3004
3005 /*
3006 * Allocate tx+rx descriptors and populate the lists.
3007 */
3008 ret = ath5k_desc_alloc(ah);
3009 if (ret) {
3010 ATH5K_ERR(ah, "can't allocate descriptors\n");
3011 goto err;
3012 }
3013
3014 /*
3015 * Allocate hardware transmit queues: one queue for
3016 * beacon frames and one data queue for each QoS
3017 * priority. Note that hw functions handle resetting
3018 * these queues at the needed time.
3019 */
3020 ret = ath5k_beaconq_setup(ah);
3021 if (ret < 0) {
3022 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3023 goto err_desc;
3024 }
3025 ah->bhalq = ret;
3026 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3027 if (IS_ERR(ah->cabq)) {
3028 ATH5K_ERR(ah, "can't setup cab queue\n");
3029 ret = PTR_ERR(ah->cabq);
3030 goto err_bhal;
3031 }
3032
3033 /* 5211 and 5212 usually support 10 queues but we better rely on the
3034 * capability information */
3035 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3036 /* This order matches mac80211's queue priority, so we can
3037 * directly use the mac80211 queue number without any mapping */
3038 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3039 if (IS_ERR(txq)) {
3040 ATH5K_ERR(ah, "can't setup xmit queue\n");
3041 ret = PTR_ERR(txq);
3042 goto err_queues;
3043 }
3044 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3045 if (IS_ERR(txq)) {
3046 ATH5K_ERR(ah, "can't setup xmit queue\n");
3047 ret = PTR_ERR(txq);
3048 goto err_queues;
3049 }
3050 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3051 if (IS_ERR(txq)) {
3052 ATH5K_ERR(ah, "can't setup xmit queue\n");
3053 ret = PTR_ERR(txq);
3054 goto err_queues;
3055 }
3056 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3057 if (IS_ERR(txq)) {
3058 ATH5K_ERR(ah, "can't setup xmit queue\n");
3059 ret = PTR_ERR(txq);
3060 goto err_queues;
3061 }
3062 hw->queues = 4;
3063 } else {
3064 /* older hardware (5210) can only support one data queue */
3065 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3066 if (IS_ERR(txq)) {
3067 ATH5K_ERR(ah, "can't setup xmit queue\n");
3068 ret = PTR_ERR(txq);
3069 goto err_queues;
3070 }
3071 hw->queues = 1;
3072 }
3073
3074 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3075 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3076 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3077 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3078
3079 INIT_WORK(&ah->reset_work, ath5k_reset_work);
3080 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3081 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3082
3083 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3084 if (ret) {
3085 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3086 goto err_queues;
3087 }
3088
3089 SET_IEEE80211_PERM_ADDR(hw, mac);
3090 /* All MAC address bits matter for ACKs */
3091 ath5k_update_bssid_mask_and_opmode(ah, NULL);
3092
3093 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3094 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3095 if (ret) {
3096 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3097 goto err_queues;
3098 }
3099
3100 ret = ieee80211_register_hw(hw);
3101 if (ret) {
3102 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3103 goto err_queues;
3104 }
3105
3106 if (!ath_is_world_regd(regulatory))
3107 regulatory_hint(hw->wiphy, regulatory->alpha2);
3108
3109 ath5k_init_leds(ah);
3110
3111 ath5k_sysfs_register(ah);
3112
3113 return 0;
3114err_queues:
3115 ath5k_txq_release(ah);
3116err_bhal:
3117 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3118err_desc:
3119 ath5k_desc_free(ah);
3120err:
3121 return ret;
3122}
3123
3124void
3125ath5k_deinit_ah(struct ath5k_hw *ah)
3126{
3127 struct ieee80211_hw *hw = ah->hw;
3128
3129 /*
3130 * NB: the order of these is important:
3131 * o call the 802.11 layer before detaching ath5k_hw to
3132 * ensure callbacks into the driver to delete global
3133 * key cache entries can be handled
3134 * o reclaim the tx queue data structures after calling
3135 * the 802.11 layer as we'll get called back to reclaim
3136 * node state and potentially want to use them
3137 * o to cleanup the tx queues the hal is called, so detach
3138 * it last
3139 * XXX: ??? detach ath5k_hw ???
3140 * Other than that, it's straightforward...
3141 */
3142 ieee80211_unregister_hw(hw);
3143 ath5k_desc_free(ah);
3144 ath5k_txq_release(ah);
3145 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3146 ath5k_unregister_leds(ah);
3147
3148 ath5k_sysfs_unregister(ah);
3149 /*
3150 * NB: can't reclaim these until after ieee80211_ifdetach
3151 * returns because we'll get called back to reclaim node
3152 * state and potentially want to use them.
3153 */
3154 ath5k_hw_deinit(ah);
3155 free_irq(ah->irq, ah);
3156}
3157
3158bool
3159ath5k_any_vif_assoc(struct ath5k_hw *ah)
3160{
3161 struct ath5k_vif_iter_data iter_data;
3162 iter_data.hw_macaddr = NULL;
3163 iter_data.any_assoc = false;
3164 iter_data.need_set_hw_addr = false;
3165 iter_data.found_active = true;
3166
3167 ieee80211_iterate_active_interfaces_atomic(
3168 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3169 ath5k_vif_iter, &iter_data);
3170 return iter_data.any_assoc;
3171}
3172
3173void
3174ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3175{
3176 struct ath5k_hw *ah = hw->priv;
3177 u32 rfilt;
3178 rfilt = ath5k_hw_get_rx_filter(ah);
3179 if (enable)
3180 rfilt |= AR5K_RX_FILTER_BEACON;
3181 else
3182 rfilt &= ~AR5K_RX_FILTER_BEACON;
3183 ath5k_hw_set_rx_filter(ah, rfilt);
3184 ah->filter_flags = rfilt;
3185}
3186
3187void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3188 const char *fmt, ...)
3189{
3190 struct va_format vaf;
3191 va_list args;
3192
3193 va_start(args, fmt);
3194
3195 vaf.fmt = fmt;
3196 vaf.va = &args;
3197
3198 if (ah && ah->hw)
3199 printk("%s" pr_fmt("%s: %pV"),
3200 level, wiphy_name(ah->hw->wiphy), &vaf);
3201 else
3202 printk("%s" pr_fmt("%pV"), level, &vaf);
3203
3204 va_end(args);
3205}