Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/ptrace.h>
  28#include <linux/errno.h>
  29#include <linux/ioport.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/in.h>
  37#include <linux/ip.h>
  38#include <net/ip.h>
  39#include <linux/tcp.h>
  40#include <linux/udp.h>
  41#include <linux/icmp.h>
  42#include <linux/spinlock.h>
  43#include <linux/workqueue.h>
  44#include <linux/bitops.h>
  45#include <linux/io.h>
  46#include <linux/irq.h>
  47#include <linux/clk.h>
  48#include <linux/platform_device.h>
  49#include <linux/phy.h>
  50#include <linux/fec.h>
  51#include <linux/of.h>
  52#include <linux/of_device.h>
  53#include <linux/of_gpio.h>
  54#include <linux/of_net.h>
  55#include <linux/regulator/consumer.h>
  56#include <linux/if_vlan.h>
  57
  58#include <asm/cacheflush.h>
  59
  60#include "fec.h"
  61
  62static void set_multicast_list(struct net_device *ndev);
  63
  64#if defined(CONFIG_ARM)
  65#define FEC_ALIGNMENT	0xf
  66#else
  67#define FEC_ALIGNMENT	0x3
  68#endif
  69
  70#define DRIVER_NAME	"fec"
  71
  72/* Pause frame feild and FIFO threshold */
  73#define FEC_ENET_FCE	(1 << 5)
  74#define FEC_ENET_RSEM_V	0x84
  75#define FEC_ENET_RSFL_V	16
  76#define FEC_ENET_RAEM_V	0x8
  77#define FEC_ENET_RAFL_V	0x8
  78#define FEC_ENET_OPD_V	0xFFF0
  79
  80/* Controller is ENET-MAC */
  81#define FEC_QUIRK_ENET_MAC		(1 << 0)
  82/* Controller needs driver to swap frame */
  83#define FEC_QUIRK_SWAP_FRAME		(1 << 1)
  84/* Controller uses gasket */
  85#define FEC_QUIRK_USE_GASKET		(1 << 2)
  86/* Controller has GBIT support */
  87#define FEC_QUIRK_HAS_GBIT		(1 << 3)
  88/* Controller has extend desc buffer */
  89#define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
  90/* Controller has hardware checksum support */
  91#define FEC_QUIRK_HAS_CSUM		(1 << 5)
  92/* Controller has hardware vlan support */
  93#define FEC_QUIRK_HAS_VLAN		(1 << 6)
  94/* ENET IP errata ERR006358
  95 *
  96 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
  97 * detected as not set during a prior frame transmission, then the
  98 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
  99 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
 100 * frames not being transmitted until there is a 0-to-1 transition on
 101 * ENET_TDAR[TDAR].
 102 */
 103#define FEC_QUIRK_ERR006358            (1 << 7)
 104
 105static struct platform_device_id fec_devtype[] = {
 106	{
 107		/* keep it for coldfire */
 108		.name = DRIVER_NAME,
 109		.driver_data = 0,
 110	}, {
 111		.name = "imx25-fec",
 112		.driver_data = FEC_QUIRK_USE_GASKET,
 113	}, {
 114		.name = "imx27-fec",
 115		.driver_data = 0,
 116	}, {
 117		.name = "imx28-fec",
 118		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
 119	}, {
 120		.name = "imx6q-fec",
 121		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 122				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 123				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
 124	}, {
 125		.name = "mvf600-fec",
 126		.driver_data = FEC_QUIRK_ENET_MAC,
 127	}, {
 128		/* sentinel */
 129	}
 130};
 131MODULE_DEVICE_TABLE(platform, fec_devtype);
 132
 133enum imx_fec_type {
 134	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 135	IMX27_FEC,	/* runs on i.mx27/35/51 */
 136	IMX28_FEC,
 137	IMX6Q_FEC,
 138	MVF600_FEC,
 139};
 140
 141static const struct of_device_id fec_dt_ids[] = {
 142	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 143	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 144	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 145	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 146	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 147	{ /* sentinel */ }
 148};
 149MODULE_DEVICE_TABLE(of, fec_dt_ids);
 150
 151static unsigned char macaddr[ETH_ALEN];
 152module_param_array(macaddr, byte, NULL, 0);
 153MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 154
 155#if defined(CONFIG_M5272)
 156/*
 157 * Some hardware gets it MAC address out of local flash memory.
 158 * if this is non-zero then assume it is the address to get MAC from.
 159 */
 160#if defined(CONFIG_NETtel)
 161#define	FEC_FLASHMAC	0xf0006006
 162#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 163#define	FEC_FLASHMAC	0xf0006000
 164#elif defined(CONFIG_CANCam)
 165#define	FEC_FLASHMAC	0xf0020000
 166#elif defined (CONFIG_M5272C3)
 167#define	FEC_FLASHMAC	(0xffe04000 + 4)
 168#elif defined(CONFIG_MOD5272)
 169#define FEC_FLASHMAC	0xffc0406b
 170#else
 171#define	FEC_FLASHMAC	0
 172#endif
 173#endif /* CONFIG_M5272 */
 174
 175#if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
 176#error "FEC: descriptor ring size constants too large"
 177#endif
 178
 179/* Interrupt events/masks. */
 180#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 181#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 182#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 183#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 184#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 185#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 186#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 187#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 188#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 189#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 190
 191#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
 192#define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
 193
 194/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 195 */
 196#define PKT_MAXBUF_SIZE		1522
 197#define PKT_MINBUF_SIZE		64
 198#define PKT_MAXBLR_SIZE		1536
 199
 200/* FEC receive acceleration */
 201#define FEC_RACC_IPDIS		(1 << 1)
 202#define FEC_RACC_PRODIS		(1 << 2)
 203#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 204
 205/*
 206 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 207 * size bits. Other FEC hardware does not, so we need to take that into
 208 * account when setting it.
 209 */
 210#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 211    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 212#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 213#else
 214#define	OPT_FRAME_SIZE	0
 215#endif
 216
 217/* FEC MII MMFR bits definition */
 218#define FEC_MMFR_ST		(1 << 30)
 219#define FEC_MMFR_OP_READ	(2 << 28)
 220#define FEC_MMFR_OP_WRITE	(1 << 28)
 221#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 222#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 223#define FEC_MMFR_TA		(2 << 16)
 224#define FEC_MMFR_DATA(v)	(v & 0xffff)
 225
 226#define FEC_MII_TIMEOUT		30000 /* us */
 227
 228/* Transmitter timeout */
 229#define TX_TIMEOUT (2 * HZ)
 230
 231#define FEC_PAUSE_FLAG_AUTONEG	0x1
 232#define FEC_PAUSE_FLAG_ENABLE	0x2
 233
 234static int mii_cnt;
 235
 236static inline
 237struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
 238{
 239	struct bufdesc *new_bd = bdp + 1;
 240	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
 241	struct bufdesc_ex *ex_base;
 242	struct bufdesc *base;
 243	int ring_size;
 244
 245	if (bdp >= fep->tx_bd_base) {
 246		base = fep->tx_bd_base;
 247		ring_size = fep->tx_ring_size;
 248		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
 249	} else {
 250		base = fep->rx_bd_base;
 251		ring_size = fep->rx_ring_size;
 252		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
 253	}
 254
 255	if (fep->bufdesc_ex)
 256		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
 257			ex_base : ex_new_bd);
 258	else
 259		return (new_bd >= (base + ring_size)) ?
 260			base : new_bd;
 261}
 262
 263static inline
 264struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
 265{
 266	struct bufdesc *new_bd = bdp - 1;
 267	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
 268	struct bufdesc_ex *ex_base;
 269	struct bufdesc *base;
 270	int ring_size;
 271
 272	if (bdp >= fep->tx_bd_base) {
 273		base = fep->tx_bd_base;
 274		ring_size = fep->tx_ring_size;
 275		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
 276	} else {
 277		base = fep->rx_bd_base;
 278		ring_size = fep->rx_ring_size;
 279		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
 280	}
 281
 282	if (fep->bufdesc_ex)
 283		return (struct bufdesc *)((ex_new_bd < ex_base) ?
 284			(ex_new_bd + ring_size) : ex_new_bd);
 285	else
 286		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
 287}
 288
 289static void *swap_buffer(void *bufaddr, int len)
 290{
 291	int i;
 292	unsigned int *buf = bufaddr;
 293
 294	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
 295		*buf = cpu_to_be32(*buf);
 296
 297	return bufaddr;
 298}
 299
 300static int
 301fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 302{
 303	/* Only run for packets requiring a checksum. */
 304	if (skb->ip_summed != CHECKSUM_PARTIAL)
 305		return 0;
 306
 307	if (unlikely(skb_cow_head(skb, 0)))
 308		return -1;
 309
 310	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 311
 312	return 0;
 313}
 314
 315static netdev_tx_t
 316fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 317{
 318	struct fec_enet_private *fep = netdev_priv(ndev);
 319	const struct platform_device_id *id_entry =
 320				platform_get_device_id(fep->pdev);
 321	struct bufdesc *bdp, *bdp_pre;
 322	void *bufaddr;
 323	unsigned short	status;
 324	unsigned int index;
 325
 326	/* Fill in a Tx ring entry */
 327	bdp = fep->cur_tx;
 328
 329	status = bdp->cbd_sc;
 330
 331	if (status & BD_ENET_TX_READY) {
 332		/* Ooops.  All transmit buffers are full.  Bail out.
 333		 * This should not happen, since ndev->tbusy should be set.
 334		 */
 335		netdev_err(ndev, "tx queue full!\n");
 336		return NETDEV_TX_BUSY;
 337	}
 338
 339	/* Protocol checksum off-load for TCP and UDP. */
 340	if (fec_enet_clear_csum(skb, ndev)) {
 341		dev_kfree_skb_any(skb);
 342		return NETDEV_TX_OK;
 343	}
 344
 345	/* Clear all of the status flags */
 346	status &= ~BD_ENET_TX_STATS;
 347
 348	/* Set buffer length and buffer pointer */
 349	bufaddr = skb->data;
 350	bdp->cbd_datlen = skb->len;
 351
 352	/*
 353	 * On some FEC implementations data must be aligned on
 354	 * 4-byte boundaries. Use bounce buffers to copy data
 355	 * and get it aligned. Ugh.
 356	 */
 357	if (fep->bufdesc_ex)
 358		index = (struct bufdesc_ex *)bdp -
 359			(struct bufdesc_ex *)fep->tx_bd_base;
 360	else
 361		index = bdp - fep->tx_bd_base;
 362
 363	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 364		memcpy(fep->tx_bounce[index], skb->data, skb->len);
 365		bufaddr = fep->tx_bounce[index];
 366	}
 367
 368	/*
 369	 * Some design made an incorrect assumption on endian mode of
 370	 * the system that it's running on. As the result, driver has to
 371	 * swap every frame going to and coming from the controller.
 372	 */
 373	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 374		swap_buffer(bufaddr, skb->len);
 375
 376	/* Save skb pointer */
 377	fep->tx_skbuff[index] = skb;
 378
 379	/* Push the data cache so the CPM does not get stale memory
 380	 * data.
 381	 */
 382	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
 383			skb->len, DMA_TO_DEVICE);
 384	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
 385		bdp->cbd_bufaddr = 0;
 386		fep->tx_skbuff[index] = NULL;
 387		dev_kfree_skb_any(skb);
 388		if (net_ratelimit())
 389			netdev_err(ndev, "Tx DMA memory map failed\n");
 390		return NETDEV_TX_OK;
 391	}
 392
 393	if (fep->bufdesc_ex) {
 394
 395		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 396		ebdp->cbd_bdu = 0;
 397		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 398			fep->hwts_tx_en)) {
 399			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
 400			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 401		} else {
 402			ebdp->cbd_esc = BD_ENET_TX_INT;
 403
 404			/* Enable protocol checksum flags
 405			 * We do not bother with the IP Checksum bits as they
 406			 * are done by the kernel
 407			 */
 408			if (skb->ip_summed == CHECKSUM_PARTIAL)
 409				ebdp->cbd_esc |= BD_ENET_TX_PINS;
 410		}
 411	}
 412
 413	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 414	 * it's the last BD of the frame, and to put the CRC on the end.
 415	 */
 416	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 417			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 418	bdp->cbd_sc = status;
 419
 420	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
 421	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
 422	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
 423		fep->delay_work.trig_tx = true;
 424		schedule_delayed_work(&(fep->delay_work.delay_work),
 425					msecs_to_jiffies(1));
 426	}
 427
 428	/* If this was the last BD in the ring, start at the beginning again. */
 429	bdp = fec_enet_get_nextdesc(bdp, fep);
 430
 431	skb_tx_timestamp(skb);
 432
 433	fep->cur_tx = bdp;
 434
 435	if (fep->cur_tx == fep->dirty_tx)
 436		netif_stop_queue(ndev);
 437
 438	/* Trigger transmission start */
 439	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 440
 441	return NETDEV_TX_OK;
 442}
 443
 444/* Init RX & TX buffer descriptors
 445 */
 446static void fec_enet_bd_init(struct net_device *dev)
 447{
 448	struct fec_enet_private *fep = netdev_priv(dev);
 449	struct bufdesc *bdp;
 450	unsigned int i;
 451
 452	/* Initialize the receive buffer descriptors. */
 453	bdp = fep->rx_bd_base;
 454	for (i = 0; i < fep->rx_ring_size; i++) {
 455
 456		/* Initialize the BD for every fragment in the page. */
 457		if (bdp->cbd_bufaddr)
 458			bdp->cbd_sc = BD_ENET_RX_EMPTY;
 459		else
 460			bdp->cbd_sc = 0;
 461		bdp = fec_enet_get_nextdesc(bdp, fep);
 462	}
 463
 464	/* Set the last buffer to wrap */
 465	bdp = fec_enet_get_prevdesc(bdp, fep);
 466	bdp->cbd_sc |= BD_SC_WRAP;
 467
 468	fep->cur_rx = fep->rx_bd_base;
 469
 470	/* ...and the same for transmit */
 471	bdp = fep->tx_bd_base;
 472	fep->cur_tx = bdp;
 473	for (i = 0; i < fep->tx_ring_size; i++) {
 474
 475		/* Initialize the BD for every fragment in the page. */
 476		bdp->cbd_sc = 0;
 477		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
 478			dev_kfree_skb_any(fep->tx_skbuff[i]);
 479			fep->tx_skbuff[i] = NULL;
 480		}
 481		bdp->cbd_bufaddr = 0;
 482		bdp = fec_enet_get_nextdesc(bdp, fep);
 483	}
 484
 485	/* Set the last buffer to wrap */
 486	bdp = fec_enet_get_prevdesc(bdp, fep);
 487	bdp->cbd_sc |= BD_SC_WRAP;
 488	fep->dirty_tx = bdp;
 489}
 490
 491/* This function is called to start or restart the FEC during a link
 492 * change.  This only happens when switching between half and full
 493 * duplex.
 494 */
 495static void
 496fec_restart(struct net_device *ndev, int duplex)
 497{
 498	struct fec_enet_private *fep = netdev_priv(ndev);
 499	const struct platform_device_id *id_entry =
 500				platform_get_device_id(fep->pdev);
 501	int i;
 502	u32 val;
 503	u32 temp_mac[2];
 504	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 505	u32 ecntl = 0x2; /* ETHEREN */
 506
 507	if (netif_running(ndev)) {
 508		netif_device_detach(ndev);
 509		napi_disable(&fep->napi);
 510		netif_stop_queue(ndev);
 511		netif_tx_lock_bh(ndev);
 512	}
 513
 514	/* Whack a reset.  We should wait for this. */
 515	writel(1, fep->hwp + FEC_ECNTRL);
 516	udelay(10);
 517
 518	/*
 519	 * enet-mac reset will reset mac address registers too,
 520	 * so need to reconfigure it.
 521	 */
 522	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 523		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 524		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
 525		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
 526	}
 527
 528	/* Clear any outstanding interrupt. */
 529	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 530
 531	/* Set maximum receive buffer size. */
 532	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 533
 534	fec_enet_bd_init(ndev);
 535
 536	/* Set receive and transmit descriptor base. */
 537	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 538	if (fep->bufdesc_ex)
 539		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
 540			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
 541	else
 542		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
 543			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
 544
 545
 546	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 547		if (fep->tx_skbuff[i]) {
 548			dev_kfree_skb_any(fep->tx_skbuff[i]);
 549			fep->tx_skbuff[i] = NULL;
 550		}
 551	}
 552
 553	/* Enable MII mode */
 554	if (duplex) {
 555		/* FD enable */
 556		writel(0x04, fep->hwp + FEC_X_CNTRL);
 557	} else {
 558		/* No Rcv on Xmit */
 559		rcntl |= 0x02;
 560		writel(0x0, fep->hwp + FEC_X_CNTRL);
 561	}
 562
 563	fep->full_duplex = duplex;
 564
 565	/* Set MII speed */
 566	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 567
 568#if !defined(CONFIG_M5272)
 569	/* set RX checksum */
 570	val = readl(fep->hwp + FEC_RACC);
 571	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 572		val |= FEC_RACC_OPTIONS;
 573	else
 574		val &= ~FEC_RACC_OPTIONS;
 575	writel(val, fep->hwp + FEC_RACC);
 576#endif
 577
 578	/*
 579	 * The phy interface and speed need to get configured
 580	 * differently on enet-mac.
 581	 */
 582	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 583		/* Enable flow control and length check */
 584		rcntl |= 0x40000000 | 0x00000020;
 585
 586		/* RGMII, RMII or MII */
 587		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
 588			rcntl |= (1 << 6);
 589		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 590			rcntl |= (1 << 8);
 591		else
 592			rcntl &= ~(1 << 8);
 593
 594		/* 1G, 100M or 10M */
 595		if (fep->phy_dev) {
 596			if (fep->phy_dev->speed == SPEED_1000)
 597				ecntl |= (1 << 5);
 598			else if (fep->phy_dev->speed == SPEED_100)
 599				rcntl &= ~(1 << 9);
 600			else
 601				rcntl |= (1 << 9);
 602		}
 603	} else {
 604#ifdef FEC_MIIGSK_ENR
 605		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
 606			u32 cfgr;
 607			/* disable the gasket and wait */
 608			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 609			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 610				udelay(1);
 611
 612			/*
 613			 * configure the gasket:
 614			 *   RMII, 50 MHz, no loopback, no echo
 615			 *   MII, 25 MHz, no loopback, no echo
 616			 */
 617			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 618				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 619			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 620				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 621			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 622
 623			/* re-enable the gasket */
 624			writel(2, fep->hwp + FEC_MIIGSK_ENR);
 625		}
 626#endif
 627	}
 628
 629#if !defined(CONFIG_M5272)
 630	/* enable pause frame*/
 631	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
 632	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
 633	     fep->phy_dev && fep->phy_dev->pause)) {
 634		rcntl |= FEC_ENET_FCE;
 635
 636		/* set FIFO threshold parameter to reduce overrun */
 637		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
 638		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
 639		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
 640		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
 641
 642		/* OPD */
 643		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
 644	} else {
 645		rcntl &= ~FEC_ENET_FCE;
 646	}
 647#endif /* !defined(CONFIG_M5272) */
 648
 649	writel(rcntl, fep->hwp + FEC_R_CNTRL);
 650
 651	/* Setup multicast filter. */
 652	set_multicast_list(ndev);
 653#ifndef CONFIG_M5272
 654	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 655	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 656#endif
 657
 658	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 659		/* enable ENET endian swap */
 660		ecntl |= (1 << 8);
 661		/* enable ENET store and forward mode */
 662		writel(1 << 8, fep->hwp + FEC_X_WMRK);
 663	}
 664
 665	if (fep->bufdesc_ex)
 666		ecntl |= (1 << 4);
 667
 668#ifndef CONFIG_M5272
 669	/* Enable the MIB statistic event counters */
 670	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
 671#endif
 672
 673	/* And last, enable the transmit and receive processing */
 674	writel(ecntl, fep->hwp + FEC_ECNTRL);
 675	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 676
 677	if (fep->bufdesc_ex)
 678		fec_ptp_start_cyclecounter(ndev);
 679
 680	/* Enable interrupts we wish to service */
 681	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 682
 683	if (netif_running(ndev)) {
 684		netif_tx_unlock_bh(ndev);
 685		netif_wake_queue(ndev);
 686		napi_enable(&fep->napi);
 687		netif_device_attach(ndev);
 688	}
 689}
 690
 691static void
 692fec_stop(struct net_device *ndev)
 693{
 694	struct fec_enet_private *fep = netdev_priv(ndev);
 695	const struct platform_device_id *id_entry =
 696				platform_get_device_id(fep->pdev);
 697	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
 698
 699	/* We cannot expect a graceful transmit stop without link !!! */
 700	if (fep->link) {
 701		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 702		udelay(10);
 703		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 704			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
 705	}
 706
 707	/* Whack a reset.  We should wait for this. */
 708	writel(1, fep->hwp + FEC_ECNTRL);
 709	udelay(10);
 710	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 711	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 712
 713	/* We have to keep ENET enabled to have MII interrupt stay working */
 714	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 715		writel(2, fep->hwp + FEC_ECNTRL);
 716		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
 717	}
 718}
 719
 720
 721static void
 722fec_timeout(struct net_device *ndev)
 723{
 724	struct fec_enet_private *fep = netdev_priv(ndev);
 725
 726	ndev->stats.tx_errors++;
 727
 728	fep->delay_work.timeout = true;
 729	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
 730}
 731
 732static void fec_enet_work(struct work_struct *work)
 733{
 734	struct fec_enet_private *fep =
 735		container_of(work,
 736			     struct fec_enet_private,
 737			     delay_work.delay_work.work);
 738
 739	if (fep->delay_work.timeout) {
 740		fep->delay_work.timeout = false;
 741		fec_restart(fep->netdev, fep->full_duplex);
 742		netif_wake_queue(fep->netdev);
 743	}
 744
 745	if (fep->delay_work.trig_tx) {
 746		fep->delay_work.trig_tx = false;
 747		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 748	}
 749}
 750
 751static void
 752fec_enet_tx(struct net_device *ndev)
 753{
 754	struct	fec_enet_private *fep;
 755	struct bufdesc *bdp;
 756	unsigned short status;
 757	struct	sk_buff	*skb;
 758	int	index = 0;
 759
 760	fep = netdev_priv(ndev);
 761	bdp = fep->dirty_tx;
 762
 763	/* get next bdp of dirty_tx */
 764	bdp = fec_enet_get_nextdesc(bdp, fep);
 765
 766	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 767
 768		/* current queue is empty */
 769		if (bdp == fep->cur_tx)
 770			break;
 771
 772		if (fep->bufdesc_ex)
 773			index = (struct bufdesc_ex *)bdp -
 774				(struct bufdesc_ex *)fep->tx_bd_base;
 775		else
 776			index = bdp - fep->tx_bd_base;
 777
 778		skb = fep->tx_skbuff[index];
 779		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
 780				DMA_TO_DEVICE);
 781		bdp->cbd_bufaddr = 0;
 782
 783		/* Check for errors. */
 784		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 785				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 786				   BD_ENET_TX_CSL)) {
 787			ndev->stats.tx_errors++;
 788			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 789				ndev->stats.tx_heartbeat_errors++;
 790			if (status & BD_ENET_TX_LC)  /* Late collision */
 791				ndev->stats.tx_window_errors++;
 792			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 793				ndev->stats.tx_aborted_errors++;
 794			if (status & BD_ENET_TX_UN)  /* Underrun */
 795				ndev->stats.tx_fifo_errors++;
 796			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 797				ndev->stats.tx_carrier_errors++;
 798		} else {
 799			ndev->stats.tx_packets++;
 800			ndev->stats.tx_bytes += bdp->cbd_datlen;
 801		}
 802
 803		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
 804			fep->bufdesc_ex) {
 805			struct skb_shared_hwtstamps shhwtstamps;
 806			unsigned long flags;
 807			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 808
 809			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 810			spin_lock_irqsave(&fep->tmreg_lock, flags);
 811			shhwtstamps.hwtstamp = ns_to_ktime(
 812				timecounter_cyc2time(&fep->tc, ebdp->ts));
 813			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 814			skb_tstamp_tx(skb, &shhwtstamps);
 815		}
 816
 817		if (status & BD_ENET_TX_READY)
 818			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
 819
 820		/* Deferred means some collisions occurred during transmit,
 821		 * but we eventually sent the packet OK.
 822		 */
 823		if (status & BD_ENET_TX_DEF)
 824			ndev->stats.collisions++;
 825
 826		/* Free the sk buffer associated with this last transmit */
 827		dev_kfree_skb_any(skb);
 828		fep->tx_skbuff[index] = NULL;
 829
 830		fep->dirty_tx = bdp;
 831
 832		/* Update pointer to next buffer descriptor to be transmitted */
 833		bdp = fec_enet_get_nextdesc(bdp, fep);
 834
 835		/* Since we have freed up a buffer, the ring is no longer full
 836		 */
 837		if (fep->dirty_tx != fep->cur_tx) {
 838			if (netif_queue_stopped(ndev))
 839				netif_wake_queue(ndev);
 840		}
 841	}
 842	return;
 843}
 844
 845
 846/* During a receive, the cur_rx points to the current incoming buffer.
 847 * When we update through the ring, if the next incoming buffer has
 848 * not been given to the system, we just set the empty indicator,
 849 * effectively tossing the packet.
 850 */
 851static int
 852fec_enet_rx(struct net_device *ndev, int budget)
 853{
 854	struct fec_enet_private *fep = netdev_priv(ndev);
 855	const struct platform_device_id *id_entry =
 856				platform_get_device_id(fep->pdev);
 857	struct bufdesc *bdp;
 858	unsigned short status;
 859	struct	sk_buff	*skb;
 860	ushort	pkt_len;
 861	__u8 *data;
 862	int	pkt_received = 0;
 863	struct	bufdesc_ex *ebdp = NULL;
 864	bool	vlan_packet_rcvd = false;
 865	u16	vlan_tag;
 866	int	index = 0;
 867
 868#ifdef CONFIG_M532x
 869	flush_cache_all();
 870#endif
 871
 872	/* First, grab all of the stats for the incoming packet.
 873	 * These get messed up if we get called due to a busy condition.
 874	 */
 875	bdp = fep->cur_rx;
 876
 877	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 878
 879		if (pkt_received >= budget)
 880			break;
 881		pkt_received++;
 882
 883		/* Since we have allocated space to hold a complete frame,
 884		 * the last indicator should be set.
 885		 */
 886		if ((status & BD_ENET_RX_LAST) == 0)
 887			netdev_err(ndev, "rcv is not +last\n");
 888
 889		if (!fep->opened)
 890			goto rx_processing_done;
 891
 892		/* Check for errors. */
 893		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 894			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 895			ndev->stats.rx_errors++;
 896			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 897				/* Frame too long or too short. */
 898				ndev->stats.rx_length_errors++;
 899			}
 900			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 901				ndev->stats.rx_frame_errors++;
 902			if (status & BD_ENET_RX_CR)	/* CRC Error */
 903				ndev->stats.rx_crc_errors++;
 904			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 905				ndev->stats.rx_fifo_errors++;
 906		}
 907
 908		/* Report late collisions as a frame error.
 909		 * On this error, the BD is closed, but we don't know what we
 910		 * have in the buffer.  So, just drop this frame on the floor.
 911		 */
 912		if (status & BD_ENET_RX_CL) {
 913			ndev->stats.rx_errors++;
 914			ndev->stats.rx_frame_errors++;
 915			goto rx_processing_done;
 916		}
 917
 918		/* Process the incoming frame. */
 919		ndev->stats.rx_packets++;
 920		pkt_len = bdp->cbd_datlen;
 921		ndev->stats.rx_bytes += pkt_len;
 922
 923		if (fep->bufdesc_ex)
 924			index = (struct bufdesc_ex *)bdp -
 925				(struct bufdesc_ex *)fep->rx_bd_base;
 926		else
 927			index = bdp - fep->rx_bd_base;
 928		data = fep->rx_skbuff[index]->data;
 929		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
 930					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 931
 932		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 933			swap_buffer(data, pkt_len);
 934
 935		/* Extract the enhanced buffer descriptor */
 936		ebdp = NULL;
 937		if (fep->bufdesc_ex)
 938			ebdp = (struct bufdesc_ex *)bdp;
 939
 940		/* If this is a VLAN packet remove the VLAN Tag */
 941		vlan_packet_rcvd = false;
 942		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 943		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
 944			/* Push and remove the vlan tag */
 945			struct vlan_hdr *vlan_header =
 946					(struct vlan_hdr *) (data + ETH_HLEN);
 947			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
 948			pkt_len -= VLAN_HLEN;
 949
 950			vlan_packet_rcvd = true;
 951		}
 952
 953		/* This does 16 byte alignment, exactly what we need.
 954		 * The packet length includes FCS, but we don't want to
 955		 * include that when passing upstream as it messes up
 956		 * bridging applications.
 957		 */
 958		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
 959
 960		if (unlikely(!skb)) {
 961			ndev->stats.rx_dropped++;
 962		} else {
 963			int payload_offset = (2 * ETH_ALEN);
 964			skb_reserve(skb, NET_IP_ALIGN);
 965			skb_put(skb, pkt_len - 4);	/* Make room */
 966
 967			/* Extract the frame data without the VLAN header. */
 968			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
 969			if (vlan_packet_rcvd)
 970				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
 971			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
 972						       data + payload_offset,
 973						       pkt_len - 4 - (2 * ETH_ALEN));
 974
 975			skb->protocol = eth_type_trans(skb, ndev);
 976
 977			/* Get receive timestamp from the skb */
 978			if (fep->hwts_rx_en && fep->bufdesc_ex) {
 979				struct skb_shared_hwtstamps *shhwtstamps =
 980							    skb_hwtstamps(skb);
 981				unsigned long flags;
 982
 983				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 984
 985				spin_lock_irqsave(&fep->tmreg_lock, flags);
 986				shhwtstamps->hwtstamp = ns_to_ktime(
 987				    timecounter_cyc2time(&fep->tc, ebdp->ts));
 988				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 989			}
 990
 991			if (fep->bufdesc_ex &&
 992			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
 993				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
 994					/* don't check it */
 995					skb->ip_summed = CHECKSUM_UNNECESSARY;
 996				} else {
 997					skb_checksum_none_assert(skb);
 998				}
 999			}
1000
1001			/* Handle received VLAN packets */
1002			if (vlan_packet_rcvd)
1003				__vlan_hwaccel_put_tag(skb,
1004						       htons(ETH_P_8021Q),
1005						       vlan_tag);
1006
1007			napi_gro_receive(&fep->napi, skb);
1008		}
1009
1010		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012rx_processing_done:
1013		/* Clear the status flags for this buffer */
1014		status &= ~BD_ENET_RX_STATS;
1015
1016		/* Mark the buffer empty */
1017		status |= BD_ENET_RX_EMPTY;
1018		bdp->cbd_sc = status;
1019
1020		if (fep->bufdesc_ex) {
1021			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022
1023			ebdp->cbd_esc = BD_ENET_RX_INT;
1024			ebdp->cbd_prot = 0;
1025			ebdp->cbd_bdu = 0;
1026		}
1027
1028		/* Update BD pointer to next entry */
1029		bdp = fec_enet_get_nextdesc(bdp, fep);
1030
1031		/* Doing this here will keep the FEC running while we process
1032		 * incoming frames.  On a heavily loaded network, we should be
1033		 * able to keep up at the expense of system resources.
1034		 */
1035		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036	}
1037	fep->cur_rx = bdp;
1038
1039	return pkt_received;
1040}
1041
1042static irqreturn_t
1043fec_enet_interrupt(int irq, void *dev_id)
1044{
1045	struct net_device *ndev = dev_id;
1046	struct fec_enet_private *fep = netdev_priv(ndev);
1047	uint int_events;
1048	irqreturn_t ret = IRQ_NONE;
1049
1050	do {
1051		int_events = readl(fep->hwp + FEC_IEVENT);
1052		writel(int_events, fep->hwp + FEC_IEVENT);
1053
1054		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055			ret = IRQ_HANDLED;
1056
1057			/* Disable the RX interrupt */
1058			if (napi_schedule_prep(&fep->napi)) {
1059				writel(FEC_RX_DISABLED_IMASK,
1060					fep->hwp + FEC_IMASK);
1061				__napi_schedule(&fep->napi);
1062			}
1063		}
1064
1065		if (int_events & FEC_ENET_MII) {
1066			ret = IRQ_HANDLED;
1067			complete(&fep->mdio_done);
1068		}
1069	} while (int_events);
1070
1071	return ret;
1072}
1073
1074static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075{
1076	struct net_device *ndev = napi->dev;
1077	int pkts = fec_enet_rx(ndev, budget);
1078	struct fec_enet_private *fep = netdev_priv(ndev);
1079
1080	fec_enet_tx(ndev);
1081
1082	if (pkts < budget) {
1083		napi_complete(napi);
1084		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085	}
1086	return pkts;
1087}
1088
1089/* ------------------------------------------------------------------------- */
1090static void fec_get_mac(struct net_device *ndev)
1091{
1092	struct fec_enet_private *fep = netdev_priv(ndev);
1093	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094	unsigned char *iap, tmpaddr[ETH_ALEN];
1095
1096	/*
1097	 * try to get mac address in following order:
1098	 *
1099	 * 1) module parameter via kernel command line in form
1100	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101	 */
1102	iap = macaddr;
1103
1104	/*
1105	 * 2) from device tree data
1106	 */
1107	if (!is_valid_ether_addr(iap)) {
1108		struct device_node *np = fep->pdev->dev.of_node;
1109		if (np) {
1110			const char *mac = of_get_mac_address(np);
1111			if (mac)
1112				iap = (unsigned char *) mac;
1113		}
1114	}
1115
1116	/*
1117	 * 3) from flash or fuse (via platform data)
1118	 */
1119	if (!is_valid_ether_addr(iap)) {
1120#ifdef CONFIG_M5272
1121		if (FEC_FLASHMAC)
1122			iap = (unsigned char *)FEC_FLASHMAC;
1123#else
1124		if (pdata)
1125			iap = (unsigned char *)&pdata->mac;
1126#endif
1127	}
1128
1129	/*
1130	 * 4) FEC mac registers set by bootloader
1131	 */
1132	if (!is_valid_ether_addr(iap)) {
1133		*((__be32 *) &tmpaddr[0]) =
1134			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135		*((__be16 *) &tmpaddr[4]) =
1136			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137		iap = &tmpaddr[0];
1138	}
1139
1140	/*
1141	 * 5) random mac address
1142	 */
1143	if (!is_valid_ether_addr(iap)) {
1144		/* Report it and use a random ethernet address instead */
1145		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146		eth_hw_addr_random(ndev);
1147		netdev_info(ndev, "Using random MAC address: %pM\n",
1148			    ndev->dev_addr);
1149		return;
1150	}
1151
1152	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153
1154	/* Adjust MAC if using macaddr */
1155	if (iap == macaddr)
1156		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157}
1158
1159/* ------------------------------------------------------------------------- */
1160
1161/*
1162 * Phy section
1163 */
1164static void fec_enet_adjust_link(struct net_device *ndev)
1165{
1166	struct fec_enet_private *fep = netdev_priv(ndev);
1167	struct phy_device *phy_dev = fep->phy_dev;
1168	int status_change = 0;
1169
1170	/* Prevent a state halted on mii error */
1171	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172		phy_dev->state = PHY_RESUMING;
1173		return;
1174	}
1175
1176	if (phy_dev->link) {
1177		if (!fep->link) {
1178			fep->link = phy_dev->link;
1179			status_change = 1;
1180		}
1181
1182		if (fep->full_duplex != phy_dev->duplex)
1183			status_change = 1;
1184
1185		if (phy_dev->speed != fep->speed) {
1186			fep->speed = phy_dev->speed;
1187			status_change = 1;
1188		}
1189
1190		/* if any of the above changed restart the FEC */
1191		if (status_change)
1192			fec_restart(ndev, phy_dev->duplex);
1193	} else {
1194		if (fep->link) {
1195			fec_stop(ndev);
1196			fep->link = phy_dev->link;
1197			status_change = 1;
1198		}
1199	}
1200
1201	if (status_change)
1202		phy_print_status(phy_dev);
1203}
1204
1205static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206{
1207	struct fec_enet_private *fep = bus->priv;
1208	unsigned long time_left;
1209
1210	fep->mii_timeout = 0;
1211	init_completion(&fep->mdio_done);
1212
1213	/* start a read op */
1214	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217
1218	/* wait for end of transfer */
1219	time_left = wait_for_completion_timeout(&fep->mdio_done,
1220			usecs_to_jiffies(FEC_MII_TIMEOUT));
1221	if (time_left == 0) {
1222		fep->mii_timeout = 1;
1223		netdev_err(fep->netdev, "MDIO read timeout\n");
1224		return -ETIMEDOUT;
1225	}
1226
1227	/* return value */
1228	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1229}
1230
1231static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232			   u16 value)
1233{
1234	struct fec_enet_private *fep = bus->priv;
1235	unsigned long time_left;
1236
1237	fep->mii_timeout = 0;
1238	init_completion(&fep->mdio_done);
1239
1240	/* start a write op */
1241	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244		fep->hwp + FEC_MII_DATA);
1245
1246	/* wait for end of transfer */
1247	time_left = wait_for_completion_timeout(&fep->mdio_done,
1248			usecs_to_jiffies(FEC_MII_TIMEOUT));
1249	if (time_left == 0) {
1250		fep->mii_timeout = 1;
1251		netdev_err(fep->netdev, "MDIO write timeout\n");
1252		return -ETIMEDOUT;
1253	}
1254
1255	return 0;
1256}
1257
1258static int fec_enet_mii_probe(struct net_device *ndev)
1259{
1260	struct fec_enet_private *fep = netdev_priv(ndev);
1261	const struct platform_device_id *id_entry =
1262				platform_get_device_id(fep->pdev);
1263	struct phy_device *phy_dev = NULL;
1264	char mdio_bus_id[MII_BUS_ID_SIZE];
1265	char phy_name[MII_BUS_ID_SIZE + 3];
1266	int phy_id;
1267	int dev_id = fep->dev_id;
1268
1269	fep->phy_dev = NULL;
1270
1271	/* check for attached phy */
1272	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1273		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1274			continue;
1275		if (fep->mii_bus->phy_map[phy_id] == NULL)
1276			continue;
1277		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1278			continue;
1279		if (dev_id--)
1280			continue;
1281		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1282		break;
1283	}
1284
1285	if (phy_id >= PHY_MAX_ADDR) {
1286		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1287		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1288		phy_id = 0;
1289	}
1290
1291	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1292	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1293			      fep->phy_interface);
1294	if (IS_ERR(phy_dev)) {
1295		netdev_err(ndev, "could not attach to PHY\n");
1296		return PTR_ERR(phy_dev);
1297	}
1298
1299	/* mask with MAC supported features */
1300	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1301		phy_dev->supported &= PHY_GBIT_FEATURES;
1302#if !defined(CONFIG_M5272)
1303		phy_dev->supported |= SUPPORTED_Pause;
1304#endif
1305	}
1306	else
1307		phy_dev->supported &= PHY_BASIC_FEATURES;
1308
1309	phy_dev->advertising = phy_dev->supported;
1310
1311	fep->phy_dev = phy_dev;
1312	fep->link = 0;
1313	fep->full_duplex = 0;
1314
1315	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1316		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1317		    fep->phy_dev->irq);
1318
1319	return 0;
1320}
1321
1322static int fec_enet_mii_init(struct platform_device *pdev)
1323{
1324	static struct mii_bus *fec0_mii_bus;
1325	struct net_device *ndev = platform_get_drvdata(pdev);
1326	struct fec_enet_private *fep = netdev_priv(ndev);
1327	const struct platform_device_id *id_entry =
1328				platform_get_device_id(fep->pdev);
1329	int err = -ENXIO, i;
1330
1331	/*
1332	 * The dual fec interfaces are not equivalent with enet-mac.
1333	 * Here are the differences:
1334	 *
1335	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1336	 *  - fec0 acts as the 1588 time master while fec1 is slave
1337	 *  - external phys can only be configured by fec0
1338	 *
1339	 * That is to say fec1 can not work independently. It only works
1340	 * when fec0 is working. The reason behind this design is that the
1341	 * second interface is added primarily for Switch mode.
1342	 *
1343	 * Because of the last point above, both phys are attached on fec0
1344	 * mdio interface in board design, and need to be configured by
1345	 * fec0 mii_bus.
1346	 */
1347	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1348		/* fec1 uses fec0 mii_bus */
1349		if (mii_cnt && fec0_mii_bus) {
1350			fep->mii_bus = fec0_mii_bus;
1351			mii_cnt++;
1352			return 0;
1353		}
1354		return -ENOENT;
1355	}
1356
1357	fep->mii_timeout = 0;
1358
1359	/*
1360	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1361	 *
1362	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1363	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1364	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1365	 * document.
1366	 */
1367	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1368	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1369		fep->phy_speed--;
1370	fep->phy_speed <<= 1;
1371	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1372
1373	fep->mii_bus = mdiobus_alloc();
1374	if (fep->mii_bus == NULL) {
1375		err = -ENOMEM;
1376		goto err_out;
1377	}
1378
1379	fep->mii_bus->name = "fec_enet_mii_bus";
1380	fep->mii_bus->read = fec_enet_mdio_read;
1381	fep->mii_bus->write = fec_enet_mdio_write;
1382	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1383		pdev->name, fep->dev_id + 1);
1384	fep->mii_bus->priv = fep;
1385	fep->mii_bus->parent = &pdev->dev;
1386
1387	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1388	if (!fep->mii_bus->irq) {
1389		err = -ENOMEM;
1390		goto err_out_free_mdiobus;
1391	}
1392
1393	for (i = 0; i < PHY_MAX_ADDR; i++)
1394		fep->mii_bus->irq[i] = PHY_POLL;
1395
1396	if (mdiobus_register(fep->mii_bus))
1397		goto err_out_free_mdio_irq;
1398
1399	mii_cnt++;
1400
1401	/* save fec0 mii_bus */
1402	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1403		fec0_mii_bus = fep->mii_bus;
1404
1405	return 0;
1406
1407err_out_free_mdio_irq:
1408	kfree(fep->mii_bus->irq);
1409err_out_free_mdiobus:
1410	mdiobus_free(fep->mii_bus);
1411err_out:
1412	return err;
1413}
1414
1415static void fec_enet_mii_remove(struct fec_enet_private *fep)
1416{
1417	if (--mii_cnt == 0) {
1418		mdiobus_unregister(fep->mii_bus);
1419		kfree(fep->mii_bus->irq);
1420		mdiobus_free(fep->mii_bus);
1421	}
1422}
1423
1424static int fec_enet_get_settings(struct net_device *ndev,
1425				  struct ethtool_cmd *cmd)
1426{
1427	struct fec_enet_private *fep = netdev_priv(ndev);
1428	struct phy_device *phydev = fep->phy_dev;
1429
1430	if (!phydev)
1431		return -ENODEV;
1432
1433	return phy_ethtool_gset(phydev, cmd);
1434}
1435
1436static int fec_enet_set_settings(struct net_device *ndev,
1437				 struct ethtool_cmd *cmd)
1438{
1439	struct fec_enet_private *fep = netdev_priv(ndev);
1440	struct phy_device *phydev = fep->phy_dev;
1441
1442	if (!phydev)
1443		return -ENODEV;
1444
1445	return phy_ethtool_sset(phydev, cmd);
1446}
1447
1448static void fec_enet_get_drvinfo(struct net_device *ndev,
1449				 struct ethtool_drvinfo *info)
1450{
1451	struct fec_enet_private *fep = netdev_priv(ndev);
1452
1453	strlcpy(info->driver, fep->pdev->dev.driver->name,
1454		sizeof(info->driver));
1455	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1456	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1457}
1458
1459static int fec_enet_get_ts_info(struct net_device *ndev,
1460				struct ethtool_ts_info *info)
1461{
1462	struct fec_enet_private *fep = netdev_priv(ndev);
1463
1464	if (fep->bufdesc_ex) {
1465
1466		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1467					SOF_TIMESTAMPING_RX_SOFTWARE |
1468					SOF_TIMESTAMPING_SOFTWARE |
1469					SOF_TIMESTAMPING_TX_HARDWARE |
1470					SOF_TIMESTAMPING_RX_HARDWARE |
1471					SOF_TIMESTAMPING_RAW_HARDWARE;
1472		if (fep->ptp_clock)
1473			info->phc_index = ptp_clock_index(fep->ptp_clock);
1474		else
1475			info->phc_index = -1;
1476
1477		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1478				 (1 << HWTSTAMP_TX_ON);
1479
1480		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1481				   (1 << HWTSTAMP_FILTER_ALL);
1482		return 0;
1483	} else {
1484		return ethtool_op_get_ts_info(ndev, info);
1485	}
1486}
1487
1488#if !defined(CONFIG_M5272)
1489
1490static void fec_enet_get_pauseparam(struct net_device *ndev,
1491				    struct ethtool_pauseparam *pause)
1492{
1493	struct fec_enet_private *fep = netdev_priv(ndev);
1494
1495	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1496	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1497	pause->rx_pause = pause->tx_pause;
1498}
1499
1500static int fec_enet_set_pauseparam(struct net_device *ndev,
1501				   struct ethtool_pauseparam *pause)
1502{
1503	struct fec_enet_private *fep = netdev_priv(ndev);
1504
1505	if (pause->tx_pause != pause->rx_pause) {
1506		netdev_info(ndev,
1507			"hardware only support enable/disable both tx and rx");
1508		return -EINVAL;
1509	}
1510
1511	fep->pause_flag = 0;
1512
1513	/* tx pause must be same as rx pause */
1514	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1515	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1516
1517	if (pause->rx_pause || pause->autoneg) {
1518		fep->phy_dev->supported |= ADVERTISED_Pause;
1519		fep->phy_dev->advertising |= ADVERTISED_Pause;
1520	} else {
1521		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1522		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1523	}
1524
1525	if (pause->autoneg) {
1526		if (netif_running(ndev))
1527			fec_stop(ndev);
1528		phy_start_aneg(fep->phy_dev);
1529	}
1530	if (netif_running(ndev))
1531		fec_restart(ndev, 0);
1532
1533	return 0;
1534}
1535
1536static const struct fec_stat {
1537	char name[ETH_GSTRING_LEN];
1538	u16 offset;
1539} fec_stats[] = {
1540	/* RMON TX */
1541	{ "tx_dropped", RMON_T_DROP },
1542	{ "tx_packets", RMON_T_PACKETS },
1543	{ "tx_broadcast", RMON_T_BC_PKT },
1544	{ "tx_multicast", RMON_T_MC_PKT },
1545	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1546	{ "tx_undersize", RMON_T_UNDERSIZE },
1547	{ "tx_oversize", RMON_T_OVERSIZE },
1548	{ "tx_fragment", RMON_T_FRAG },
1549	{ "tx_jabber", RMON_T_JAB },
1550	{ "tx_collision", RMON_T_COL },
1551	{ "tx_64byte", RMON_T_P64 },
1552	{ "tx_65to127byte", RMON_T_P65TO127 },
1553	{ "tx_128to255byte", RMON_T_P128TO255 },
1554	{ "tx_256to511byte", RMON_T_P256TO511 },
1555	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1556	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1557	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1558	{ "tx_octets", RMON_T_OCTETS },
1559
1560	/* IEEE TX */
1561	{ "IEEE_tx_drop", IEEE_T_DROP },
1562	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1563	{ "IEEE_tx_1col", IEEE_T_1COL },
1564	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1565	{ "IEEE_tx_def", IEEE_T_DEF },
1566	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1567	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1568	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1569	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1570	{ "IEEE_tx_sqe", IEEE_T_SQE },
1571	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1572	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1573
1574	/* RMON RX */
1575	{ "rx_packets", RMON_R_PACKETS },
1576	{ "rx_broadcast", RMON_R_BC_PKT },
1577	{ "rx_multicast", RMON_R_MC_PKT },
1578	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1579	{ "rx_undersize", RMON_R_UNDERSIZE },
1580	{ "rx_oversize", RMON_R_OVERSIZE },
1581	{ "rx_fragment", RMON_R_FRAG },
1582	{ "rx_jabber", RMON_R_JAB },
1583	{ "rx_64byte", RMON_R_P64 },
1584	{ "rx_65to127byte", RMON_R_P65TO127 },
1585	{ "rx_128to255byte", RMON_R_P128TO255 },
1586	{ "rx_256to511byte", RMON_R_P256TO511 },
1587	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1588	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1589	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1590	{ "rx_octets", RMON_R_OCTETS },
1591
1592	/* IEEE RX */
1593	{ "IEEE_rx_drop", IEEE_R_DROP },
1594	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1595	{ "IEEE_rx_crc", IEEE_R_CRC },
1596	{ "IEEE_rx_align", IEEE_R_ALIGN },
1597	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1598	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1599	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1600};
1601
1602static void fec_enet_get_ethtool_stats(struct net_device *dev,
1603	struct ethtool_stats *stats, u64 *data)
1604{
1605	struct fec_enet_private *fep = netdev_priv(dev);
1606	int i;
1607
1608	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1609		data[i] = readl(fep->hwp + fec_stats[i].offset);
1610}
1611
1612static void fec_enet_get_strings(struct net_device *netdev,
1613	u32 stringset, u8 *data)
1614{
1615	int i;
1616	switch (stringset) {
1617	case ETH_SS_STATS:
1618		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1619			memcpy(data + i * ETH_GSTRING_LEN,
1620				fec_stats[i].name, ETH_GSTRING_LEN);
1621		break;
1622	}
1623}
1624
1625static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1626{
1627	switch (sset) {
1628	case ETH_SS_STATS:
1629		return ARRAY_SIZE(fec_stats);
1630	default:
1631		return -EOPNOTSUPP;
1632	}
1633}
1634#endif /* !defined(CONFIG_M5272) */
1635
1636static int fec_enet_nway_reset(struct net_device *dev)
1637{
1638	struct fec_enet_private *fep = netdev_priv(dev);
1639	struct phy_device *phydev = fep->phy_dev;
1640
1641	if (!phydev)
1642		return -ENODEV;
1643
1644	return genphy_restart_aneg(phydev);
1645}
1646
1647static const struct ethtool_ops fec_enet_ethtool_ops = {
1648#if !defined(CONFIG_M5272)
1649	.get_pauseparam		= fec_enet_get_pauseparam,
1650	.set_pauseparam		= fec_enet_set_pauseparam,
1651#endif
1652	.get_settings		= fec_enet_get_settings,
1653	.set_settings		= fec_enet_set_settings,
1654	.get_drvinfo		= fec_enet_get_drvinfo,
1655	.get_link		= ethtool_op_get_link,
1656	.get_ts_info		= fec_enet_get_ts_info,
1657	.nway_reset		= fec_enet_nway_reset,
1658#ifndef CONFIG_M5272
1659	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1660	.get_strings		= fec_enet_get_strings,
1661	.get_sset_count		= fec_enet_get_sset_count,
1662#endif
1663};
1664
1665static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1666{
1667	struct fec_enet_private *fep = netdev_priv(ndev);
1668	struct phy_device *phydev = fep->phy_dev;
1669
1670	if (!netif_running(ndev))
1671		return -EINVAL;
1672
1673	if (!phydev)
1674		return -ENODEV;
1675
1676	if (fep->bufdesc_ex) {
1677		if (cmd == SIOCSHWTSTAMP)
1678			return fec_ptp_set(ndev, rq);
1679		if (cmd == SIOCGHWTSTAMP)
1680			return fec_ptp_get(ndev, rq);
1681	}
1682
1683	return phy_mii_ioctl(phydev, rq, cmd);
1684}
1685
1686static void fec_enet_free_buffers(struct net_device *ndev)
1687{
1688	struct fec_enet_private *fep = netdev_priv(ndev);
1689	unsigned int i;
1690	struct sk_buff *skb;
1691	struct bufdesc	*bdp;
1692
1693	bdp = fep->rx_bd_base;
1694	for (i = 0; i < fep->rx_ring_size; i++) {
1695		skb = fep->rx_skbuff[i];
1696
1697		if (bdp->cbd_bufaddr)
1698			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1699					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1700		if (skb)
1701			dev_kfree_skb(skb);
1702		bdp = fec_enet_get_nextdesc(bdp, fep);
1703	}
1704
1705	bdp = fep->tx_bd_base;
1706	for (i = 0; i < fep->tx_ring_size; i++)
1707		kfree(fep->tx_bounce[i]);
1708}
1709
1710static int fec_enet_alloc_buffers(struct net_device *ndev)
1711{
1712	struct fec_enet_private *fep = netdev_priv(ndev);
1713	unsigned int i;
1714	struct sk_buff *skb;
1715	struct bufdesc	*bdp;
1716
1717	bdp = fep->rx_bd_base;
1718	for (i = 0; i < fep->rx_ring_size; i++) {
1719		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1720		if (!skb) {
1721			fec_enet_free_buffers(ndev);
1722			return -ENOMEM;
1723		}
1724		fep->rx_skbuff[i] = skb;
1725
1726		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1727				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1728		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1729			fec_enet_free_buffers(ndev);
1730			if (net_ratelimit())
1731				netdev_err(ndev, "Rx DMA memory map failed\n");
1732			return -ENOMEM;
1733		}
1734		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1735
1736		if (fep->bufdesc_ex) {
1737			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1738			ebdp->cbd_esc = BD_ENET_RX_INT;
1739		}
1740
1741		bdp = fec_enet_get_nextdesc(bdp, fep);
1742	}
1743
1744	/* Set the last buffer to wrap. */
1745	bdp = fec_enet_get_prevdesc(bdp, fep);
1746	bdp->cbd_sc |= BD_SC_WRAP;
1747
1748	bdp = fep->tx_bd_base;
1749	for (i = 0; i < fep->tx_ring_size; i++) {
1750		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1751
1752		bdp->cbd_sc = 0;
1753		bdp->cbd_bufaddr = 0;
1754
1755		if (fep->bufdesc_ex) {
1756			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1757			ebdp->cbd_esc = BD_ENET_TX_INT;
1758		}
1759
1760		bdp = fec_enet_get_nextdesc(bdp, fep);
1761	}
1762
1763	/* Set the last buffer to wrap. */
1764	bdp = fec_enet_get_prevdesc(bdp, fep);
1765	bdp->cbd_sc |= BD_SC_WRAP;
1766
1767	return 0;
1768}
1769
1770static int
1771fec_enet_open(struct net_device *ndev)
1772{
1773	struct fec_enet_private *fep = netdev_priv(ndev);
1774	int ret;
1775
1776	/* I should reset the ring buffers here, but I don't yet know
1777	 * a simple way to do that.
1778	 */
1779
1780	ret = fec_enet_alloc_buffers(ndev);
1781	if (ret)
1782		return ret;
1783
1784	/* Probe and connect to PHY when open the interface */
1785	ret = fec_enet_mii_probe(ndev);
1786	if (ret) {
1787		fec_enet_free_buffers(ndev);
1788		return ret;
1789	}
1790
1791	napi_enable(&fep->napi);
1792	phy_start(fep->phy_dev);
1793	netif_start_queue(ndev);
1794	fep->opened = 1;
1795	return 0;
1796}
1797
1798static int
1799fec_enet_close(struct net_device *ndev)
1800{
1801	struct fec_enet_private *fep = netdev_priv(ndev);
1802
1803	/* Don't know what to do yet. */
1804	napi_disable(&fep->napi);
1805	fep->opened = 0;
1806	netif_stop_queue(ndev);
1807	fec_stop(ndev);
1808
1809	if (fep->phy_dev) {
1810		phy_stop(fep->phy_dev);
1811		phy_disconnect(fep->phy_dev);
1812	}
1813
1814	fec_enet_free_buffers(ndev);
1815
1816	return 0;
1817}
1818
1819/* Set or clear the multicast filter for this adaptor.
1820 * Skeleton taken from sunlance driver.
1821 * The CPM Ethernet implementation allows Multicast as well as individual
1822 * MAC address filtering.  Some of the drivers check to make sure it is
1823 * a group multicast address, and discard those that are not.  I guess I
1824 * will do the same for now, but just remove the test if you want
1825 * individual filtering as well (do the upper net layers want or support
1826 * this kind of feature?).
1827 */
1828
1829#define HASH_BITS	6		/* #bits in hash */
1830#define CRC32_POLY	0xEDB88320
1831
1832static void set_multicast_list(struct net_device *ndev)
1833{
1834	struct fec_enet_private *fep = netdev_priv(ndev);
1835	struct netdev_hw_addr *ha;
1836	unsigned int i, bit, data, crc, tmp;
1837	unsigned char hash;
1838
1839	if (ndev->flags & IFF_PROMISC) {
1840		tmp = readl(fep->hwp + FEC_R_CNTRL);
1841		tmp |= 0x8;
1842		writel(tmp, fep->hwp + FEC_R_CNTRL);
1843		return;
1844	}
1845
1846	tmp = readl(fep->hwp + FEC_R_CNTRL);
1847	tmp &= ~0x8;
1848	writel(tmp, fep->hwp + FEC_R_CNTRL);
1849
1850	if (ndev->flags & IFF_ALLMULTI) {
1851		/* Catch all multicast addresses, so set the
1852		 * filter to all 1's
1853		 */
1854		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1855		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1856
1857		return;
1858	}
1859
1860	/* Clear filter and add the addresses in hash register
1861	 */
1862	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1863	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1864
1865	netdev_for_each_mc_addr(ha, ndev) {
1866		/* calculate crc32 value of mac address */
1867		crc = 0xffffffff;
1868
1869		for (i = 0; i < ndev->addr_len; i++) {
1870			data = ha->addr[i];
1871			for (bit = 0; bit < 8; bit++, data >>= 1) {
1872				crc = (crc >> 1) ^
1873				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1874			}
1875		}
1876
1877		/* only upper 6 bits (HASH_BITS) are used
1878		 * which point to specific bit in he hash registers
1879		 */
1880		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1881
1882		if (hash > 31) {
1883			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1884			tmp |= 1 << (hash - 32);
1885			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886		} else {
1887			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1888			tmp |= 1 << hash;
1889			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890		}
1891	}
1892}
1893
1894/* Set a MAC change in hardware. */
1895static int
1896fec_set_mac_address(struct net_device *ndev, void *p)
1897{
1898	struct fec_enet_private *fep = netdev_priv(ndev);
1899	struct sockaddr *addr = p;
1900
1901	if (addr) {
1902		if (!is_valid_ether_addr(addr->sa_data))
1903			return -EADDRNOTAVAIL;
1904		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1905	}
1906
1907	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1908		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1909		fep->hwp + FEC_ADDR_LOW);
1910	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1911		fep->hwp + FEC_ADDR_HIGH);
1912	return 0;
1913}
1914
1915#ifdef CONFIG_NET_POLL_CONTROLLER
1916/**
1917 * fec_poll_controller - FEC Poll controller function
1918 * @dev: The FEC network adapter
1919 *
1920 * Polled functionality used by netconsole and others in non interrupt mode
1921 *
1922 */
1923static void fec_poll_controller(struct net_device *dev)
1924{
1925	int i;
1926	struct fec_enet_private *fep = netdev_priv(dev);
1927
1928	for (i = 0; i < FEC_IRQ_NUM; i++) {
1929		if (fep->irq[i] > 0) {
1930			disable_irq(fep->irq[i]);
1931			fec_enet_interrupt(fep->irq[i], dev);
1932			enable_irq(fep->irq[i]);
1933		}
1934	}
1935}
1936#endif
1937
1938static int fec_set_features(struct net_device *netdev,
1939	netdev_features_t features)
1940{
1941	struct fec_enet_private *fep = netdev_priv(netdev);
1942	netdev_features_t changed = features ^ netdev->features;
1943
1944	netdev->features = features;
1945
1946	/* Receive checksum has been changed */
1947	if (changed & NETIF_F_RXCSUM) {
1948		if (features & NETIF_F_RXCSUM)
1949			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1950		else
1951			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1952
1953		if (netif_running(netdev)) {
1954			fec_stop(netdev);
1955			fec_restart(netdev, fep->phy_dev->duplex);
1956			netif_wake_queue(netdev);
1957		} else {
1958			fec_restart(netdev, fep->phy_dev->duplex);
1959		}
1960	}
1961
1962	return 0;
1963}
1964
1965static const struct net_device_ops fec_netdev_ops = {
1966	.ndo_open		= fec_enet_open,
1967	.ndo_stop		= fec_enet_close,
1968	.ndo_start_xmit		= fec_enet_start_xmit,
1969	.ndo_set_rx_mode	= set_multicast_list,
1970	.ndo_change_mtu		= eth_change_mtu,
1971	.ndo_validate_addr	= eth_validate_addr,
1972	.ndo_tx_timeout		= fec_timeout,
1973	.ndo_set_mac_address	= fec_set_mac_address,
1974	.ndo_do_ioctl		= fec_enet_ioctl,
1975#ifdef CONFIG_NET_POLL_CONTROLLER
1976	.ndo_poll_controller	= fec_poll_controller,
1977#endif
1978	.ndo_set_features	= fec_set_features,
1979};
1980
1981 /*
1982  * XXX:  We need to clean up on failure exits here.
1983  *
1984  */
1985static int fec_enet_init(struct net_device *ndev)
1986{
1987	struct fec_enet_private *fep = netdev_priv(ndev);
1988	const struct platform_device_id *id_entry =
1989				platform_get_device_id(fep->pdev);
1990	struct bufdesc *cbd_base;
1991
1992	/* Allocate memory for buffer descriptors. */
1993	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1994				      GFP_KERNEL);
1995	if (!cbd_base)
1996		return -ENOMEM;
1997
1998	memset(cbd_base, 0, PAGE_SIZE);
1999
2000	fep->netdev = ndev;
2001
2002	/* Get the Ethernet address */
2003	fec_get_mac(ndev);
2004	/* make sure MAC we just acquired is programmed into the hw */
2005	fec_set_mac_address(ndev, NULL);
2006
2007	/* init the tx & rx ring size */
2008	fep->tx_ring_size = TX_RING_SIZE;
2009	fep->rx_ring_size = RX_RING_SIZE;
2010
2011	/* Set receive and transmit descriptor base. */
2012	fep->rx_bd_base = cbd_base;
2013	if (fep->bufdesc_ex)
2014		fep->tx_bd_base = (struct bufdesc *)
2015			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2016	else
2017		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2018
2019	/* The FEC Ethernet specific entries in the device structure */
2020	ndev->watchdog_timeo = TX_TIMEOUT;
2021	ndev->netdev_ops = &fec_netdev_ops;
2022	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2023
2024	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2025	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2026
2027	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2028		/* enable hw VLAN support */
2029		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2030		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2031	}
2032
2033	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2034		/* enable hw accelerator */
2035		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2036				| NETIF_F_RXCSUM);
2037		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2038				| NETIF_F_RXCSUM);
2039		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2040	}
2041
2042	fec_restart(ndev, 0);
2043
2044	return 0;
2045}
2046
2047#ifdef CONFIG_OF
2048static void fec_reset_phy(struct platform_device *pdev)
2049{
2050	int err, phy_reset;
2051	int msec = 1;
2052	struct device_node *np = pdev->dev.of_node;
2053
2054	if (!np)
2055		return;
2056
2057	of_property_read_u32(np, "phy-reset-duration", &msec);
2058	/* A sane reset duration should not be longer than 1s */
2059	if (msec > 1000)
2060		msec = 1;
2061
2062	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2063	if (!gpio_is_valid(phy_reset))
2064		return;
2065
2066	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2067				    GPIOF_OUT_INIT_LOW, "phy-reset");
2068	if (err) {
2069		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2070		return;
2071	}
2072	msleep(msec);
2073	gpio_set_value(phy_reset, 1);
2074}
2075#else /* CONFIG_OF */
2076static void fec_reset_phy(struct platform_device *pdev)
2077{
2078	/*
2079	 * In case of platform probe, the reset has been done
2080	 * by machine code.
2081	 */
2082}
2083#endif /* CONFIG_OF */
2084
2085static int
2086fec_probe(struct platform_device *pdev)
2087{
2088	struct fec_enet_private *fep;
2089	struct fec_platform_data *pdata;
2090	struct net_device *ndev;
2091	int i, irq, ret = 0;
2092	struct resource *r;
2093	const struct of_device_id *of_id;
2094	static int dev_id;
2095
2096	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2097	if (of_id)
2098		pdev->id_entry = of_id->data;
2099
2100	/* Init network device */
2101	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2102	if (!ndev)
2103		return -ENOMEM;
2104
2105	SET_NETDEV_DEV(ndev, &pdev->dev);
2106
2107	/* setup board info structure */
2108	fep = netdev_priv(ndev);
2109
2110#if !defined(CONFIG_M5272)
2111	/* default enable pause frame auto negotiation */
2112	if (pdev->id_entry &&
2113	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2114		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2115#endif
2116
2117	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2118	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2119	if (IS_ERR(fep->hwp)) {
2120		ret = PTR_ERR(fep->hwp);
2121		goto failed_ioremap;
2122	}
2123
2124	fep->pdev = pdev;
2125	fep->dev_id = dev_id++;
2126
2127	fep->bufdesc_ex = 0;
2128
2129	platform_set_drvdata(pdev, ndev);
2130
2131	ret = of_get_phy_mode(pdev->dev.of_node);
2132	if (ret < 0) {
2133		pdata = dev_get_platdata(&pdev->dev);
2134		if (pdata)
2135			fep->phy_interface = pdata->phy;
2136		else
2137			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2138	} else {
2139		fep->phy_interface = ret;
2140	}
2141
2142	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2143	if (IS_ERR(fep->clk_ipg)) {
2144		ret = PTR_ERR(fep->clk_ipg);
2145		goto failed_clk;
2146	}
2147
2148	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2149	if (IS_ERR(fep->clk_ahb)) {
2150		ret = PTR_ERR(fep->clk_ahb);
2151		goto failed_clk;
2152	}
2153
2154	/* enet_out is optional, depends on board */
2155	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2156	if (IS_ERR(fep->clk_enet_out))
2157		fep->clk_enet_out = NULL;
2158
2159	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2160	fep->bufdesc_ex =
2161		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2162	if (IS_ERR(fep->clk_ptp)) {
2163		fep->clk_ptp = NULL;
2164		fep->bufdesc_ex = 0;
2165	}
2166
2167	ret = clk_prepare_enable(fep->clk_ahb);
2168	if (ret)
2169		goto failed_clk;
2170
2171	ret = clk_prepare_enable(fep->clk_ipg);
2172	if (ret)
2173		goto failed_clk_ipg;
2174
2175	if (fep->clk_enet_out) {
2176		ret = clk_prepare_enable(fep->clk_enet_out);
2177		if (ret)
2178			goto failed_clk_enet_out;
2179	}
2180
2181	if (fep->clk_ptp) {
2182		ret = clk_prepare_enable(fep->clk_ptp);
2183		if (ret)
2184			goto failed_clk_ptp;
2185	}
2186
2187	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2188	if (!IS_ERR(fep->reg_phy)) {
2189		ret = regulator_enable(fep->reg_phy);
2190		if (ret) {
2191			dev_err(&pdev->dev,
2192				"Failed to enable phy regulator: %d\n", ret);
2193			goto failed_regulator;
2194		}
2195	} else {
2196		fep->reg_phy = NULL;
2197	}
2198
2199	fec_reset_phy(pdev);
2200
2201	if (fep->bufdesc_ex)
2202		fec_ptp_init(pdev);
2203
2204	ret = fec_enet_init(ndev);
2205	if (ret)
2206		goto failed_init;
2207
2208	for (i = 0; i < FEC_IRQ_NUM; i++) {
2209		irq = platform_get_irq(pdev, i);
2210		if (irq < 0) {
2211			if (i)
2212				break;
2213			ret = irq;
2214			goto failed_irq;
2215		}
2216		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2217				       0, pdev->name, ndev);
2218		if (ret)
2219			goto failed_irq;
2220	}
2221
2222	ret = fec_enet_mii_init(pdev);
2223	if (ret)
2224		goto failed_mii_init;
2225
2226	/* Carrier starts down, phylib will bring it up */
2227	netif_carrier_off(ndev);
2228
2229	ret = register_netdev(ndev);
2230	if (ret)
2231		goto failed_register;
2232
2233	if (fep->bufdesc_ex && fep->ptp_clock)
2234		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2235
2236	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2237	return 0;
2238
2239failed_register:
2240	fec_enet_mii_remove(fep);
2241failed_mii_init:
2242failed_irq:
2243failed_init:
2244	if (fep->reg_phy)
2245		regulator_disable(fep->reg_phy);
2246failed_regulator:
2247	if (fep->clk_ptp)
2248		clk_disable_unprepare(fep->clk_ptp);
2249failed_clk_ptp:
2250	if (fep->clk_enet_out)
2251		clk_disable_unprepare(fep->clk_enet_out);
2252failed_clk_enet_out:
2253	clk_disable_unprepare(fep->clk_ipg);
2254failed_clk_ipg:
2255	clk_disable_unprepare(fep->clk_ahb);
2256failed_clk:
2257failed_ioremap:
2258	free_netdev(ndev);
2259
2260	return ret;
2261}
2262
2263static int
2264fec_drv_remove(struct platform_device *pdev)
2265{
2266	struct net_device *ndev = platform_get_drvdata(pdev);
2267	struct fec_enet_private *fep = netdev_priv(ndev);
2268
2269	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2270	unregister_netdev(ndev);
2271	fec_enet_mii_remove(fep);
2272	del_timer_sync(&fep->time_keep);
2273	if (fep->reg_phy)
2274		regulator_disable(fep->reg_phy);
2275	if (fep->clk_ptp)
2276		clk_disable_unprepare(fep->clk_ptp);
2277	if (fep->ptp_clock)
2278		ptp_clock_unregister(fep->ptp_clock);
2279	if (fep->clk_enet_out)
2280		clk_disable_unprepare(fep->clk_enet_out);
2281	clk_disable_unprepare(fep->clk_ipg);
2282	clk_disable_unprepare(fep->clk_ahb);
2283	free_netdev(ndev);
2284
2285	return 0;
2286}
2287
2288#ifdef CONFIG_PM_SLEEP
2289static int
2290fec_suspend(struct device *dev)
2291{
2292	struct net_device *ndev = dev_get_drvdata(dev);
2293	struct fec_enet_private *fep = netdev_priv(ndev);
2294
2295	if (netif_running(ndev)) {
2296		fec_stop(ndev);
2297		netif_device_detach(ndev);
2298	}
2299	if (fep->clk_ptp)
2300		clk_disable_unprepare(fep->clk_ptp);
2301	if (fep->clk_enet_out)
2302		clk_disable_unprepare(fep->clk_enet_out);
2303	clk_disable_unprepare(fep->clk_ipg);
2304	clk_disable_unprepare(fep->clk_ahb);
2305
2306	if (fep->reg_phy)
2307		regulator_disable(fep->reg_phy);
2308
2309	return 0;
2310}
2311
2312static int
2313fec_resume(struct device *dev)
2314{
2315	struct net_device *ndev = dev_get_drvdata(dev);
2316	struct fec_enet_private *fep = netdev_priv(ndev);
2317	int ret;
2318
2319	if (fep->reg_phy) {
2320		ret = regulator_enable(fep->reg_phy);
2321		if (ret)
2322			return ret;
2323	}
2324
2325	ret = clk_prepare_enable(fep->clk_ahb);
2326	if (ret)
2327		goto failed_clk_ahb;
2328
2329	ret = clk_prepare_enable(fep->clk_ipg);
2330	if (ret)
2331		goto failed_clk_ipg;
2332
2333	if (fep->clk_enet_out) {
2334		ret = clk_prepare_enable(fep->clk_enet_out);
2335		if (ret)
2336			goto failed_clk_enet_out;
2337	}
2338
2339	if (fep->clk_ptp) {
2340		ret = clk_prepare_enable(fep->clk_ptp);
2341		if (ret)
2342			goto failed_clk_ptp;
2343	}
2344
2345	if (netif_running(ndev)) {
2346		fec_restart(ndev, fep->full_duplex);
2347		netif_device_attach(ndev);
2348	}
2349
2350	return 0;
2351
2352failed_clk_ptp:
2353	if (fep->clk_enet_out)
2354		clk_disable_unprepare(fep->clk_enet_out);
2355failed_clk_enet_out:
2356	clk_disable_unprepare(fep->clk_ipg);
2357failed_clk_ipg:
2358	clk_disable_unprepare(fep->clk_ahb);
2359failed_clk_ahb:
2360	if (fep->reg_phy)
2361		regulator_disable(fep->reg_phy);
2362	return ret;
2363}
2364#endif /* CONFIG_PM_SLEEP */
2365
2366static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2367
2368static struct platform_driver fec_driver = {
2369	.driver	= {
2370		.name	= DRIVER_NAME,
2371		.owner	= THIS_MODULE,
2372		.pm	= &fec_pm_ops,
2373		.of_match_table = fec_dt_ids,
2374	},
2375	.id_table = fec_devtype,
2376	.probe	= fec_probe,
2377	.remove	= fec_drv_remove,
2378};
2379
2380module_platform_driver(fec_driver);
2381
2382MODULE_ALIAS("platform:"DRIVER_NAME);
2383MODULE_LICENSE("GPL");