Linux Audio

Check our new training course

Loading...
v3.1
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#include "ttm/ttm_module.h"
  32#include "ttm/ttm_bo_driver.h"
  33#include "ttm/ttm_placement.h"
 
 
  34#include <linux/jiffies.h>
  35#include <linux/slab.h>
  36#include <linux/sched.h>
  37#include <linux/mm.h>
  38#include <linux/file.h>
  39#include <linux/module.h>
  40#include <linux/atomic.h>
  41
  42#define TTM_ASSERT_LOCKED(param)
  43#define TTM_DEBUG(fmt, arg...)
  44#define TTM_BO_HASH_ORDER 13
  45
  46static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  47static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  48static void ttm_bo_global_kobj_release(struct kobject *kobj);
  49
  50static struct attribute ttm_bo_count = {
  51	.name = "bo_count",
  52	.mode = S_IRUGO
  53};
  54
  55static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  56{
  57	int i;
  58
  59	for (i = 0; i <= TTM_PL_PRIV5; i++)
  60		if (flags & (1 << i)) {
  61			*mem_type = i;
  62			return 0;
  63		}
  64	return -EINVAL;
  65}
  66
  67static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  68{
  69	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  70
  71	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
  72	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
  73	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
  74	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
  75	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
  76	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
  77		man->available_caching);
  78	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
  79		man->default_caching);
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
  87	int i, ret, mem_type;
  88
  89	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
  90		bo, bo->mem.num_pages, bo->mem.size >> 10,
  91		bo->mem.size >> 20);
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
  98			i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 131{
 132	return 1 << (type);
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 
 
 
 152	if (bo->destroy)
 153		bo->destroy(bo);
 154	else {
 155		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
 156		kfree(bo);
 157	}
 
 158}
 159
 160int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 161{
 162	if (interruptible) {
 163		return wait_event_interruptible(bo->event_queue,
 164					       atomic_read(&bo->reserved) == 0);
 165	} else {
 166		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 167		return 0;
 168	}
 169}
 170EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 171
 172void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 173{
 174	struct ttm_bo_device *bdev = bo->bdev;
 175	struct ttm_mem_type_manager *man;
 176
 177	BUG_ON(!atomic_read(&bo->reserved));
 178
 179	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 180
 181		BUG_ON(!list_empty(&bo->lru));
 182
 183		man = &bdev->man[bo->mem.mem_type];
 184		list_add_tail(&bo->lru, &man->lru);
 185		kref_get(&bo->list_kref);
 186
 187		if (bo->ttm != NULL) {
 188			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 189			kref_get(&bo->list_kref);
 190		}
 191	}
 192}
 
 193
 194int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 195{
 196	int put_count = 0;
 197
 198	if (!list_empty(&bo->swap)) {
 199		list_del_init(&bo->swap);
 200		++put_count;
 201	}
 202	if (!list_empty(&bo->lru)) {
 203		list_del_init(&bo->lru);
 204		++put_count;
 205	}
 206
 207	/*
 208	 * TODO: Add a driver hook to delete from
 209	 * driver-specific LRU's here.
 210	 */
 211
 212	return put_count;
 213}
 214
 215int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 216			  bool interruptible,
 217			  bool no_wait, bool use_sequence, uint32_t sequence)
 218{
 219	struct ttm_bo_global *glob = bo->glob;
 220	int ret;
 221
 222	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 223		/**
 224		 * Deadlock avoidance for multi-bo reserving.
 225		 */
 226		if (use_sequence && bo->seq_valid) {
 227			/**
 228			 * We've already reserved this one.
 229			 */
 230			if (unlikely(sequence == bo->val_seq))
 231				return -EDEADLK;
 232			/**
 233			 * Already reserved by a thread that will not back
 234			 * off for us. We need to back off.
 235			 */
 236			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 237				return -EAGAIN;
 238		}
 239
 240		if (no_wait)
 241			return -EBUSY;
 242
 243		spin_unlock(&glob->lru_lock);
 244		ret = ttm_bo_wait_unreserved(bo, interruptible);
 245		spin_lock(&glob->lru_lock);
 246
 247		if (unlikely(ret))
 248			return ret;
 249	}
 250
 251	if (use_sequence) {
 252		/**
 253		 * Wake up waiters that may need to recheck for deadlock,
 254		 * if we decreased the sequence number.
 255		 */
 256		if (unlikely((bo->val_seq - sequence < (1 << 31))
 257			     || !bo->seq_valid))
 258			wake_up_all(&bo->event_queue);
 259
 260		bo->val_seq = sequence;
 261		bo->seq_valid = true;
 262	} else {
 263		bo->seq_valid = false;
 264	}
 265
 266	return 0;
 267}
 268EXPORT_SYMBOL(ttm_bo_reserve);
 269
 270static void ttm_bo_ref_bug(struct kref *list_kref)
 271{
 272	BUG();
 273}
 274
 275void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 276			 bool never_free)
 277{
 278	kref_sub(&bo->list_kref, count,
 279		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 280}
 281
 282int ttm_bo_reserve(struct ttm_buffer_object *bo,
 283		   bool interruptible,
 284		   bool no_wait, bool use_sequence, uint32_t sequence)
 285{
 286	struct ttm_bo_global *glob = bo->glob;
 287	int put_count = 0;
 288	int ret;
 289
 290	spin_lock(&glob->lru_lock);
 291	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 292				    sequence);
 293	if (likely(ret == 0))
 294		put_count = ttm_bo_del_from_lru(bo);
 295	spin_unlock(&glob->lru_lock);
 296
 
 
 
 297	ttm_bo_list_ref_sub(bo, put_count, true);
 298
 299	return ret;
 300}
 301
 302void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 303{
 304	ttm_bo_add_to_lru(bo);
 305	atomic_set(&bo->reserved, 0);
 306	wake_up_all(&bo->event_queue);
 307}
 308
 309void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 310{
 311	struct ttm_bo_global *glob = bo->glob;
 312
 313	spin_lock(&glob->lru_lock);
 314	ttm_bo_unreserve_locked(bo);
 315	spin_unlock(&glob->lru_lock);
 316}
 317EXPORT_SYMBOL(ttm_bo_unreserve);
 318
 319/*
 320 * Call bo->mutex locked.
 321 */
 322static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 323{
 324	struct ttm_bo_device *bdev = bo->bdev;
 325	struct ttm_bo_global *glob = bo->glob;
 326	int ret = 0;
 327	uint32_t page_flags = 0;
 328
 329	TTM_ASSERT_LOCKED(&bo->mutex);
 330	bo->ttm = NULL;
 331
 332	if (bdev->need_dma32)
 333		page_flags |= TTM_PAGE_FLAG_DMA32;
 334
 335	switch (bo->type) {
 336	case ttm_bo_type_device:
 337		if (zero_alloc)
 338			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 339	case ttm_bo_type_kernel:
 340		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 341					page_flags, glob->dummy_read_page);
 342		if (unlikely(bo->ttm == NULL))
 343			ret = -ENOMEM;
 344		break;
 345	case ttm_bo_type_user:
 346		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 347					page_flags | TTM_PAGE_FLAG_USER,
 348					glob->dummy_read_page);
 349		if (unlikely(bo->ttm == NULL)) {
 350			ret = -ENOMEM;
 351			break;
 352		}
 353
 354		ret = ttm_tt_set_user(bo->ttm, current,
 355				      bo->buffer_start, bo->num_pages);
 356		if (unlikely(ret != 0)) {
 357			ttm_tt_destroy(bo->ttm);
 358			bo->ttm = NULL;
 359		}
 360		break;
 361	default:
 362		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
 363		ret = -EINVAL;
 364		break;
 365	}
 366
 367	return ret;
 368}
 369
 370static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 371				  struct ttm_mem_reg *mem,
 372				  bool evict, bool interruptible,
 373				  bool no_wait_reserve, bool no_wait_gpu)
 374{
 375	struct ttm_bo_device *bdev = bo->bdev;
 376	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 377	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 378	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 379	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 380	int ret = 0;
 381
 382	if (old_is_pci || new_is_pci ||
 383	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 384		ret = ttm_mem_io_lock(old_man, true);
 385		if (unlikely(ret != 0))
 386			goto out_err;
 387		ttm_bo_unmap_virtual_locked(bo);
 388		ttm_mem_io_unlock(old_man);
 389	}
 390
 391	/*
 392	 * Create and bind a ttm if required.
 393	 */
 394
 395	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 396		if (bo->ttm == NULL) {
 397			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 398			ret = ttm_bo_add_ttm(bo, zero);
 399			if (ret)
 400				goto out_err;
 401		}
 402
 403		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 404		if (ret)
 405			goto out_err;
 406
 407		if (mem->mem_type != TTM_PL_SYSTEM) {
 408			ret = ttm_tt_bind(bo->ttm, mem);
 409			if (ret)
 410				goto out_err;
 411		}
 412
 413		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 414			if (bdev->driver->move_notify)
 415				bdev->driver->move_notify(bo, mem);
 416			bo->mem = *mem;
 417			mem->mm_node = NULL;
 418			goto moved;
 419		}
 420	}
 421
 422	if (bdev->driver->move_notify)
 423		bdev->driver->move_notify(bo, mem);
 424
 425	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 426	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 427		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428	else if (bdev->driver->move)
 429		ret = bdev->driver->move(bo, evict, interruptible,
 430					 no_wait_reserve, no_wait_gpu, mem);
 431	else
 432		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 
 
 
 
 
 
 
 
 
 
 433
 434	if (ret)
 435		goto out_err;
 
 436
 437moved:
 438	if (bo->evicted) {
 439		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 440		if (ret)
 441			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
 
 
 442		bo->evicted = false;
 443	}
 444
 445	if (bo->mem.mm_node) {
 446		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 447		    bdev->man[bo->mem.mem_type].gpu_offset;
 448		bo->cur_placement = bo->mem.placement;
 449	} else
 450		bo->offset = 0;
 451
 452	return 0;
 453
 454out_err:
 455	new_man = &bdev->man[bo->mem.mem_type];
 456	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 457		ttm_tt_unbind(bo->ttm);
 458		ttm_tt_destroy(bo->ttm);
 459		bo->ttm = NULL;
 460	}
 461
 462	return ret;
 463}
 464
 465/**
 466 * Call bo::reserved.
 467 * Will release GPU memory type usage on destruction.
 468 * This is the place to put in driver specific hooks to release
 469 * driver private resources.
 470 * Will release the bo::reserved lock.
 471 */
 472
 473static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 474{
 
 
 
 475	if (bo->ttm) {
 476		ttm_tt_unbind(bo->ttm);
 477		ttm_tt_destroy(bo->ttm);
 478		bo->ttm = NULL;
 479	}
 480	ttm_bo_mem_put(bo, &bo->mem);
 481
 482	atomic_set(&bo->reserved, 0);
 483
 484	/*
 485	 * Make processes trying to reserve really pick it up.
 486	 */
 487	smp_mb__after_atomic_dec();
 488	wake_up_all(&bo->event_queue);
 489}
 490
 491static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 492{
 493	struct ttm_bo_device *bdev = bo->bdev;
 494	struct ttm_bo_global *glob = bo->glob;
 495	struct ttm_bo_driver *driver;
 496	void *sync_obj = NULL;
 497	void *sync_obj_arg;
 498	int put_count;
 499	int ret;
 500
 
 
 
 501	spin_lock(&bdev->fence_lock);
 502	(void) ttm_bo_wait(bo, false, false, true);
 503	if (!bo->sync_obj) {
 504
 505		spin_lock(&glob->lru_lock);
 506
 507		/**
 508		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 509		 * but that's OK, since we're only trylocking.
 510		 */
 511
 512		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 513
 514		if (unlikely(ret == -EBUSY))
 515			goto queue;
 516
 517		spin_unlock(&bdev->fence_lock);
 518		put_count = ttm_bo_del_from_lru(bo);
 519
 520		spin_unlock(&glob->lru_lock);
 521		ttm_bo_cleanup_memtype_use(bo);
 522
 523		ttm_bo_list_ref_sub(bo, put_count, true);
 524
 525		return;
 526	} else {
 527		spin_lock(&glob->lru_lock);
 528	}
 529queue:
 530	driver = bdev->driver;
 531	if (bo->sync_obj)
 532		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 533	sync_obj_arg = bo->sync_obj_arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535	kref_get(&bo->list_kref);
 536	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 537	spin_unlock(&glob->lru_lock);
 538	spin_unlock(&bdev->fence_lock);
 539
 540	if (sync_obj) {
 541		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 542		driver->sync_obj_unref(&sync_obj);
 543	}
 544	schedule_delayed_work(&bdev->wq,
 545			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 546}
 547
 548/**
 549 * function ttm_bo_cleanup_refs
 550 * If bo idle, remove from delayed- and lru lists, and unref.
 551 * If not idle, do nothing.
 552 *
 
 
 
 553 * @interruptible         Any sleeps should occur interruptibly.
 554 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 555 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 556 */
 557
 558static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 559			       bool interruptible,
 560			       bool no_wait_reserve,
 561			       bool no_wait_gpu)
 562{
 563	struct ttm_bo_device *bdev = bo->bdev;
 
 564	struct ttm_bo_global *glob = bo->glob;
 565	int put_count;
 566	int ret = 0;
 567
 568retry:
 569	spin_lock(&bdev->fence_lock);
 570	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 571	spin_unlock(&bdev->fence_lock);
 572
 573	if (unlikely(ret != 0))
 574		return ret;
 575
 576	spin_lock(&glob->lru_lock);
 577	ret = ttm_bo_reserve_locked(bo, interruptible,
 578				    no_wait_reserve, false, 0);
 
 
 
 
 579
 580	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
 581		spin_unlock(&glob->lru_lock);
 582		return ret;
 583	}
 584
 585	/**
 586	 * We can re-check for sync object without taking
 587	 * the bo::lock since setting the sync object requires
 588	 * also bo::reserved. A busy object at this point may
 589	 * be caused by another thread recently starting an accelerated
 590	 * eviction.
 591	 */
 
 
 
 
 
 
 
 
 
 
 
 592
 593	if (unlikely(bo->sync_obj)) {
 594		atomic_set(&bo->reserved, 0);
 595		wake_up_all(&bo->event_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596		spin_unlock(&glob->lru_lock);
 597		goto retry;
 598	}
 599
 600	put_count = ttm_bo_del_from_lru(bo);
 601	list_del_init(&bo->ddestroy);
 602	++put_count;
 603
 604	spin_unlock(&glob->lru_lock);
 605	ttm_bo_cleanup_memtype_use(bo);
 606
 607	ttm_bo_list_ref_sub(bo, put_count, true);
 608
 609	return 0;
 610}
 611
 612/**
 613 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 614 * encountered buffers.
 615 */
 616
 617static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 618{
 619	struct ttm_bo_global *glob = bdev->glob;
 620	struct ttm_buffer_object *entry = NULL;
 621	int ret = 0;
 622
 623	spin_lock(&glob->lru_lock);
 624	if (list_empty(&bdev->ddestroy))
 625		goto out_unlock;
 626
 627	entry = list_first_entry(&bdev->ddestroy,
 628		struct ttm_buffer_object, ddestroy);
 629	kref_get(&entry->list_kref);
 630
 631	for (;;) {
 632		struct ttm_buffer_object *nentry = NULL;
 633
 634		if (entry->ddestroy.next != &bdev->ddestroy) {
 635			nentry = list_first_entry(&entry->ddestroy,
 636				struct ttm_buffer_object, ddestroy);
 637			kref_get(&nentry->list_kref);
 638		}
 639
 640		spin_unlock(&glob->lru_lock);
 641		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 642					  !remove_all);
 
 
 
 
 
 
 
 
 
 
 
 643		kref_put(&entry->list_kref, ttm_bo_release_list);
 644		entry = nentry;
 645
 646		if (ret || !entry)
 647			goto out;
 648
 649		spin_lock(&glob->lru_lock);
 650		if (list_empty(&entry->ddestroy))
 651			break;
 652	}
 653
 654out_unlock:
 655	spin_unlock(&glob->lru_lock);
 656out:
 657	if (entry)
 658		kref_put(&entry->list_kref, ttm_bo_release_list);
 659	return ret;
 660}
 661
 662static void ttm_bo_delayed_workqueue(struct work_struct *work)
 663{
 664	struct ttm_bo_device *bdev =
 665	    container_of(work, struct ttm_bo_device, wq.work);
 666
 667	if (ttm_bo_delayed_delete(bdev, false)) {
 668		schedule_delayed_work(&bdev->wq,
 669				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 670	}
 671}
 672
 673static void ttm_bo_release(struct kref *kref)
 674{
 675	struct ttm_buffer_object *bo =
 676	    container_of(kref, struct ttm_buffer_object, kref);
 677	struct ttm_bo_device *bdev = bo->bdev;
 678	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 679
 680	if (likely(bo->vm_node != NULL)) {
 681		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 682		drm_mm_put_block(bo->vm_node);
 683		bo->vm_node = NULL;
 684	}
 685	write_unlock(&bdev->vm_lock);
 686	ttm_mem_io_lock(man, false);
 687	ttm_mem_io_free_vm(bo);
 688	ttm_mem_io_unlock(man);
 689	ttm_bo_cleanup_refs_or_queue(bo);
 690	kref_put(&bo->list_kref, ttm_bo_release_list);
 691	write_lock(&bdev->vm_lock);
 692}
 693
 694void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 695{
 696	struct ttm_buffer_object *bo = *p_bo;
 697	struct ttm_bo_device *bdev = bo->bdev;
 698
 699	*p_bo = NULL;
 700	write_lock(&bdev->vm_lock);
 701	kref_put(&bo->kref, ttm_bo_release);
 702	write_unlock(&bdev->vm_lock);
 703}
 704EXPORT_SYMBOL(ttm_bo_unref);
 705
 706int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 707{
 708	return cancel_delayed_work_sync(&bdev->wq);
 709}
 710EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 711
 712void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 713{
 714	if (resched)
 715		schedule_delayed_work(&bdev->wq,
 716				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 717}
 718EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 719
 720static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 721			bool no_wait_reserve, bool no_wait_gpu)
 722{
 723	struct ttm_bo_device *bdev = bo->bdev;
 724	struct ttm_mem_reg evict_mem;
 725	struct ttm_placement placement;
 726	int ret = 0;
 727
 728	spin_lock(&bdev->fence_lock);
 729	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 730	spin_unlock(&bdev->fence_lock);
 731
 732	if (unlikely(ret != 0)) {
 733		if (ret != -ERESTARTSYS) {
 734			printk(KERN_ERR TTM_PFX
 735			       "Failed to expire sync object before "
 736			       "buffer eviction.\n");
 737		}
 738		goto out;
 739	}
 740
 741	BUG_ON(!atomic_read(&bo->reserved));
 742
 743	evict_mem = bo->mem;
 744	evict_mem.mm_node = NULL;
 745	evict_mem.bus.io_reserved_vm = false;
 746	evict_mem.bus.io_reserved_count = 0;
 747
 748	placement.fpfn = 0;
 749	placement.lpfn = 0;
 750	placement.num_placement = 0;
 751	placement.num_busy_placement = 0;
 752	bdev->driver->evict_flags(bo, &placement);
 753	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 754				no_wait_reserve, no_wait_gpu);
 755	if (ret) {
 756		if (ret != -ERESTARTSYS) {
 757			printk(KERN_ERR TTM_PFX
 758			       "Failed to find memory space for "
 759			       "buffer 0x%p eviction.\n", bo);
 760			ttm_bo_mem_space_debug(bo, &placement);
 761		}
 762		goto out;
 763	}
 764
 765	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 766				     no_wait_reserve, no_wait_gpu);
 767	if (ret) {
 768		if (ret != -ERESTARTSYS)
 769			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
 770		ttm_bo_mem_put(bo, &evict_mem);
 771		goto out;
 772	}
 773	bo->evicted = true;
 774out:
 775	return ret;
 776}
 777
 778static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 779				uint32_t mem_type,
 780				bool interruptible, bool no_wait_reserve,
 781				bool no_wait_gpu)
 782{
 783	struct ttm_bo_global *glob = bdev->glob;
 784	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 785	struct ttm_buffer_object *bo;
 786	int ret, put_count = 0;
 787
 788retry:
 789	spin_lock(&glob->lru_lock);
 790	if (list_empty(&man->lru)) {
 791		spin_unlock(&glob->lru_lock);
 792		return -EBUSY;
 
 793	}
 794
 795	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 796	kref_get(&bo->list_kref);
 797
 798	if (!list_empty(&bo->ddestroy)) {
 799		spin_unlock(&glob->lru_lock);
 800		ret = ttm_bo_cleanup_refs(bo, interruptible,
 801					  no_wait_reserve, no_wait_gpu);
 802		kref_put(&bo->list_kref, ttm_bo_release_list);
 803
 804		if (likely(ret == 0 || ret == -ERESTARTSYS))
 805			return ret;
 806
 807		goto retry;
 808	}
 809
 810	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 811
 812	if (unlikely(ret == -EBUSY)) {
 813		spin_unlock(&glob->lru_lock);
 814		if (likely(!no_wait_gpu))
 815			ret = ttm_bo_wait_unreserved(bo, interruptible);
 816
 
 
 
 817		kref_put(&bo->list_kref, ttm_bo_release_list);
 818
 819		/**
 820		 * We *need* to retry after releasing the lru lock.
 821		 */
 822
 823		if (unlikely(ret != 0))
 824			return ret;
 825		goto retry;
 826	}
 827
 828	put_count = ttm_bo_del_from_lru(bo);
 829	spin_unlock(&glob->lru_lock);
 830
 831	BUG_ON(ret != 0);
 832
 833	ttm_bo_list_ref_sub(bo, put_count, true);
 834
 835	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 836	ttm_bo_unreserve(bo);
 837
 838	kref_put(&bo->list_kref, ttm_bo_release_list);
 839	return ret;
 840}
 841
 842void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 843{
 844	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 845
 846	if (mem->mm_node)
 847		(*man->func->put_node)(man, mem);
 848}
 849EXPORT_SYMBOL(ttm_bo_mem_put);
 850
 851/**
 852 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 853 * space, or we've evicted everything and there isn't enough space.
 854 */
 855static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 856					uint32_t mem_type,
 857					struct ttm_placement *placement,
 858					struct ttm_mem_reg *mem,
 859					bool interruptible,
 860					bool no_wait_reserve,
 861					bool no_wait_gpu)
 862{
 863	struct ttm_bo_device *bdev = bo->bdev;
 864	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 865	int ret;
 866
 867	do {
 868		ret = (*man->func->get_node)(man, bo, placement, mem);
 869		if (unlikely(ret != 0))
 870			return ret;
 871		if (mem->mm_node)
 872			break;
 873		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 874						no_wait_reserve, no_wait_gpu);
 875		if (unlikely(ret != 0))
 876			return ret;
 877	} while (1);
 878	if (mem->mm_node == NULL)
 879		return -ENOMEM;
 880	mem->mem_type = mem_type;
 881	return 0;
 882}
 883
 884static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 885				      uint32_t cur_placement,
 886				      uint32_t proposed_placement)
 887{
 888	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 889	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 890
 891	/**
 892	 * Keep current caching if possible.
 893	 */
 894
 895	if ((cur_placement & caching) != 0)
 896		result |= (cur_placement & caching);
 897	else if ((man->default_caching & caching) != 0)
 898		result |= man->default_caching;
 899	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 900		result |= TTM_PL_FLAG_CACHED;
 901	else if ((TTM_PL_FLAG_WC & caching) != 0)
 902		result |= TTM_PL_FLAG_WC;
 903	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 904		result |= TTM_PL_FLAG_UNCACHED;
 905
 906	return result;
 907}
 908
 909static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 910				 bool disallow_fixed,
 911				 uint32_t mem_type,
 912				 uint32_t proposed_placement,
 913				 uint32_t *masked_placement)
 914{
 915	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 916
 917	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
 918		return false;
 919
 920	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 921		return false;
 922
 923	if ((proposed_placement & man->available_caching) == 0)
 924		return false;
 925
 926	cur_flags |= (proposed_placement & man->available_caching);
 927
 928	*masked_placement = cur_flags;
 929	return true;
 930}
 931
 932/**
 933 * Creates space for memory region @mem according to its type.
 934 *
 935 * This function first searches for free space in compatible memory types in
 936 * the priority order defined by the driver.  If free space isn't found, then
 937 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 938 * space.
 939 */
 940int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 941			struct ttm_placement *placement,
 942			struct ttm_mem_reg *mem,
 943			bool interruptible, bool no_wait_reserve,
 944			bool no_wait_gpu)
 945{
 946	struct ttm_bo_device *bdev = bo->bdev;
 947	struct ttm_mem_type_manager *man;
 948	uint32_t mem_type = TTM_PL_SYSTEM;
 949	uint32_t cur_flags = 0;
 950	bool type_found = false;
 951	bool type_ok = false;
 952	bool has_erestartsys = false;
 953	int i, ret;
 954
 955	mem->mm_node = NULL;
 956	for (i = 0; i < placement->num_placement; ++i) {
 957		ret = ttm_mem_type_from_flags(placement->placement[i],
 958						&mem_type);
 959		if (ret)
 960			return ret;
 961		man = &bdev->man[mem_type];
 962
 963		type_ok = ttm_bo_mt_compatible(man,
 964						bo->type == ttm_bo_type_user,
 965						mem_type,
 966						placement->placement[i],
 967						&cur_flags);
 968
 969		if (!type_ok)
 970			continue;
 971
 972		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 973						  cur_flags);
 974		/*
 975		 * Use the access and other non-mapping-related flag bits from
 976		 * the memory placement flags to the current flags
 977		 */
 978		ttm_flag_masked(&cur_flags, placement->placement[i],
 979				~TTM_PL_MASK_MEMTYPE);
 980
 981		if (mem_type == TTM_PL_SYSTEM)
 982			break;
 983
 984		if (man->has_type && man->use_type) {
 985			type_found = true;
 986			ret = (*man->func->get_node)(man, bo, placement, mem);
 987			if (unlikely(ret))
 988				return ret;
 989		}
 990		if (mem->mm_node)
 991			break;
 992	}
 993
 994	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 995		mem->mem_type = mem_type;
 996		mem->placement = cur_flags;
 997		return 0;
 998	}
 999
1000	if (!type_found)
1001		return -EINVAL;
1002
1003	for (i = 0; i < placement->num_busy_placement; ++i) {
1004		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005						&mem_type);
1006		if (ret)
1007			return ret;
1008		man = &bdev->man[mem_type];
1009		if (!man->has_type)
1010			continue;
1011		if (!ttm_bo_mt_compatible(man,
1012						bo->type == ttm_bo_type_user,
1013						mem_type,
1014						placement->busy_placement[i],
1015						&cur_flags))
1016			continue;
1017
1018		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019						  cur_flags);
1020		/*
1021		 * Use the access and other non-mapping-related flag bits from
1022		 * the memory placement flags to the current flags
1023		 */
1024		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025				~TTM_PL_MASK_MEMTYPE);
1026
1027
1028		if (mem_type == TTM_PL_SYSTEM) {
1029			mem->mem_type = mem_type;
1030			mem->placement = cur_flags;
1031			mem->mm_node = NULL;
1032			return 0;
1033		}
1034
1035		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036						interruptible, no_wait_reserve, no_wait_gpu);
1037		if (ret == 0 && mem->mm_node) {
1038			mem->placement = cur_flags;
1039			return 0;
1040		}
1041		if (ret == -ERESTARTSYS)
1042			has_erestartsys = true;
1043	}
1044	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045	return ret;
1046}
1047EXPORT_SYMBOL(ttm_bo_mem_space);
1048
1049int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050{
1051	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052		return -EBUSY;
1053
1054	return wait_event_interruptible(bo->event_queue,
1055					atomic_read(&bo->cpu_writers) == 0);
1056}
1057EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058
1059int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060			struct ttm_placement *placement,
1061			bool interruptible, bool no_wait_reserve,
1062			bool no_wait_gpu)
1063{
1064	int ret = 0;
1065	struct ttm_mem_reg mem;
1066	struct ttm_bo_device *bdev = bo->bdev;
1067
1068	BUG_ON(!atomic_read(&bo->reserved));
1069
1070	/*
1071	 * FIXME: It's possible to pipeline buffer moves.
1072	 * Have the driver move function wait for idle when necessary,
1073	 * instead of doing it here.
1074	 */
1075	spin_lock(&bdev->fence_lock);
1076	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077	spin_unlock(&bdev->fence_lock);
1078	if (ret)
1079		return ret;
1080	mem.num_pages = bo->num_pages;
1081	mem.size = mem.num_pages << PAGE_SHIFT;
1082	mem.page_alignment = bo->mem.page_alignment;
1083	mem.bus.io_reserved_vm = false;
1084	mem.bus.io_reserved_count = 0;
1085	/*
1086	 * Determine where to move the buffer.
1087	 */
1088	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
 
1089	if (ret)
1090		goto out_unlock;
1091	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
 
1092out_unlock:
1093	if (ret && mem.mm_node)
1094		ttm_bo_mem_put(bo, &mem);
1095	return ret;
1096}
1097
1098static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099			     struct ttm_mem_reg *mem)
 
1100{
1101	int i;
1102
1103	if (mem->mm_node && placement->lpfn != 0 &&
1104	    (mem->start < placement->fpfn ||
1105	     mem->start + mem->num_pages > placement->lpfn))
1106		return -1;
1107
1108	for (i = 0; i < placement->num_placement; i++) {
1109		if ((placement->placement[i] & mem->placement &
1110			TTM_PL_MASK_CACHING) &&
1111			(placement->placement[i] & mem->placement &
1112			TTM_PL_MASK_MEM))
1113			return i;
 
 
 
 
 
 
1114	}
1115	return -1;
 
1116}
1117
1118int ttm_bo_validate(struct ttm_buffer_object *bo,
1119			struct ttm_placement *placement,
1120			bool interruptible, bool no_wait_reserve,
1121			bool no_wait_gpu)
1122{
1123	int ret;
 
1124
1125	BUG_ON(!atomic_read(&bo->reserved));
1126	/* Check that range is valid */
1127	if (placement->lpfn || placement->fpfn)
1128		if (placement->fpfn > placement->lpfn ||
1129			(placement->lpfn - placement->fpfn) < bo->num_pages)
1130			return -EINVAL;
1131	/*
1132	 * Check whether we need to move buffer.
1133	 */
1134	ret = ttm_bo_mem_compat(placement, &bo->mem);
1135	if (ret < 0) {
1136		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137		if (ret)
1138			return ret;
1139	} else {
1140		/*
1141		 * Use the access and other non-mapping-related flag bits from
1142		 * the compatible memory placement flags to the active flags
1143		 */
1144		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145				~TTM_PL_MASK_MEMTYPE);
1146	}
1147	/*
1148	 * We might need to add a TTM.
1149	 */
1150	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151		ret = ttm_bo_add_ttm(bo, true);
1152		if (ret)
1153			return ret;
1154	}
1155	return 0;
1156}
1157EXPORT_SYMBOL(ttm_bo_validate);
1158
1159int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160				struct ttm_placement *placement)
1161{
1162	BUG_ON((placement->fpfn || placement->lpfn) &&
1163	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164
1165	return 0;
1166}
1167
1168int ttm_bo_init(struct ttm_bo_device *bdev,
1169		struct ttm_buffer_object *bo,
1170		unsigned long size,
1171		enum ttm_bo_type type,
1172		struct ttm_placement *placement,
1173		uint32_t page_alignment,
1174		unsigned long buffer_start,
1175		bool interruptible,
1176		struct file *persistent_swap_storage,
1177		size_t acc_size,
 
1178		void (*destroy) (struct ttm_buffer_object *))
1179{
1180	int ret = 0;
1181	unsigned long num_pages;
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183	size += buffer_start & ~PAGE_MASK;
1184	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185	if (num_pages == 0) {
1186		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187		if (destroy)
1188			(*destroy)(bo);
1189		else
1190			kfree(bo);
 
1191		return -EINVAL;
1192	}
1193	bo->destroy = destroy;
1194
1195	kref_init(&bo->kref);
1196	kref_init(&bo->list_kref);
1197	atomic_set(&bo->cpu_writers, 0);
1198	atomic_set(&bo->reserved, 1);
1199	init_waitqueue_head(&bo->event_queue);
1200	INIT_LIST_HEAD(&bo->lru);
1201	INIT_LIST_HEAD(&bo->ddestroy);
1202	INIT_LIST_HEAD(&bo->swap);
1203	INIT_LIST_HEAD(&bo->io_reserve_lru);
 
1204	bo->bdev = bdev;
1205	bo->glob = bdev->glob;
1206	bo->type = type;
1207	bo->num_pages = num_pages;
1208	bo->mem.size = num_pages << PAGE_SHIFT;
1209	bo->mem.mem_type = TTM_PL_SYSTEM;
1210	bo->mem.num_pages = bo->num_pages;
1211	bo->mem.mm_node = NULL;
1212	bo->mem.page_alignment = page_alignment;
1213	bo->mem.bus.io_reserved_vm = false;
1214	bo->mem.bus.io_reserved_count = 0;
1215	bo->buffer_start = buffer_start & PAGE_MASK;
1216	bo->priv_flags = 0;
1217	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218	bo->seq_valid = false;
1219	bo->persistent_swap_storage = persistent_swap_storage;
1220	bo->acc_size = acc_size;
 
 
 
1221	atomic_inc(&bo->glob->bo_count);
 
1222
1223	ret = ttm_bo_check_placement(bo, placement);
1224	if (unlikely(ret != 0))
1225		goto out_err;
1226
1227	/*
1228	 * For ttm_bo_type_device buffers, allocate
1229	 * address space from the device.
1230	 */
1231	if (bo->type == ttm_bo_type_device) {
1232		ret = ttm_bo_setup_vm(bo);
1233		if (ret)
1234			goto out_err;
1235	}
1236
1237	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238	if (ret)
1239		goto out_err;
1240
1241	ttm_bo_unreserve(bo);
1242	return 0;
1243
1244out_err:
1245	ttm_bo_unreserve(bo);
1246	ttm_bo_unref(&bo);
 
 
1247
1248	return ret;
1249}
1250EXPORT_SYMBOL(ttm_bo_init);
1251
1252static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253				 unsigned long num_pages)
1254{
1255	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256	    PAGE_MASK;
1257
1258	return glob->ttm_bo_size + 2 * page_array_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259}
 
1260
1261int ttm_bo_create(struct ttm_bo_device *bdev,
1262			unsigned long size,
1263			enum ttm_bo_type type,
1264			struct ttm_placement *placement,
1265			uint32_t page_alignment,
1266			unsigned long buffer_start,
1267			bool interruptible,
1268			struct file *persistent_swap_storage,
1269			struct ttm_buffer_object **p_bo)
1270{
1271	struct ttm_buffer_object *bo;
1272	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273	int ret;
1274
1275	size_t acc_size =
1276	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278	if (unlikely(ret != 0))
1279		return ret;
1280
1281	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282
1283	if (unlikely(bo == NULL)) {
1284		ttm_mem_global_free(mem_glob, acc_size);
1285		return -ENOMEM;
1286	}
1287
 
1288	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289				buffer_start, interruptible,
1290				persistent_swap_storage, acc_size, NULL);
1291	if (likely(ret == 0))
1292		*p_bo = bo;
1293
1294	return ret;
1295}
 
1296
1297static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1298					unsigned mem_type, bool allow_errors)
1299{
1300	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1301	struct ttm_bo_global *glob = bdev->glob;
1302	int ret;
1303
1304	/*
1305	 * Can't use standard list traversal since we're unlocking.
1306	 */
1307
1308	spin_lock(&glob->lru_lock);
1309	while (!list_empty(&man->lru)) {
1310		spin_unlock(&glob->lru_lock);
1311		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1312		if (ret) {
1313			if (allow_errors) {
1314				return ret;
1315			} else {
1316				printk(KERN_ERR TTM_PFX
1317					"Cleanup eviction failed\n");
1318			}
1319		}
1320		spin_lock(&glob->lru_lock);
1321	}
1322	spin_unlock(&glob->lru_lock);
1323	return 0;
1324}
1325
1326int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1327{
1328	struct ttm_mem_type_manager *man;
1329	int ret = -EINVAL;
1330
1331	if (mem_type >= TTM_NUM_MEM_TYPES) {
1332		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1333		return ret;
1334	}
1335	man = &bdev->man[mem_type];
1336
1337	if (!man->has_type) {
1338		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1339		       "memory manager type %u\n", mem_type);
1340		return ret;
1341	}
1342
1343	man->use_type = false;
1344	man->has_type = false;
1345
1346	ret = 0;
1347	if (mem_type > 0) {
1348		ttm_bo_force_list_clean(bdev, mem_type, false);
1349
1350		ret = (*man->func->takedown)(man);
1351	}
1352
1353	return ret;
1354}
1355EXPORT_SYMBOL(ttm_bo_clean_mm);
1356
1357int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1360
1361	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1362		printk(KERN_ERR TTM_PFX
1363		       "Illegal memory manager memory type %u.\n",
1364		       mem_type);
1365		return -EINVAL;
1366	}
1367
1368	if (!man->has_type) {
1369		printk(KERN_ERR TTM_PFX
1370		       "Memory type %u has not been initialized.\n",
1371		       mem_type);
1372		return 0;
1373	}
1374
1375	return ttm_bo_force_list_clean(bdev, mem_type, true);
1376}
1377EXPORT_SYMBOL(ttm_bo_evict_mm);
1378
1379int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1380			unsigned long p_size)
1381{
1382	int ret = -EINVAL;
1383	struct ttm_mem_type_manager *man;
1384
1385	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1386	man = &bdev->man[type];
1387	BUG_ON(man->has_type);
1388	man->io_reserve_fastpath = true;
1389	man->use_io_reserve_lru = false;
1390	mutex_init(&man->io_reserve_mutex);
1391	INIT_LIST_HEAD(&man->io_reserve_lru);
1392
1393	ret = bdev->driver->init_mem_type(bdev, type, man);
1394	if (ret)
1395		return ret;
1396	man->bdev = bdev;
1397
1398	ret = 0;
1399	if (type != TTM_PL_SYSTEM) {
1400		ret = (*man->func->init)(man, p_size);
1401		if (ret)
1402			return ret;
1403	}
1404	man->has_type = true;
1405	man->use_type = true;
1406	man->size = p_size;
1407
1408	INIT_LIST_HEAD(&man->lru);
1409
1410	return 0;
1411}
1412EXPORT_SYMBOL(ttm_bo_init_mm);
1413
1414static void ttm_bo_global_kobj_release(struct kobject *kobj)
1415{
1416	struct ttm_bo_global *glob =
1417		container_of(kobj, struct ttm_bo_global, kobj);
1418
1419	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1420	__free_page(glob->dummy_read_page);
1421	kfree(glob);
1422}
1423
1424void ttm_bo_global_release(struct drm_global_reference *ref)
1425{
1426	struct ttm_bo_global *glob = ref->object;
1427
1428	kobject_del(&glob->kobj);
1429	kobject_put(&glob->kobj);
1430}
1431EXPORT_SYMBOL(ttm_bo_global_release);
1432
1433int ttm_bo_global_init(struct drm_global_reference *ref)
1434{
1435	struct ttm_bo_global_ref *bo_ref =
1436		container_of(ref, struct ttm_bo_global_ref, ref);
1437	struct ttm_bo_global *glob = ref->object;
1438	int ret;
1439
1440	mutex_init(&glob->device_list_mutex);
1441	spin_lock_init(&glob->lru_lock);
1442	glob->mem_glob = bo_ref->mem_glob;
1443	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1444
1445	if (unlikely(glob->dummy_read_page == NULL)) {
1446		ret = -ENOMEM;
1447		goto out_no_drp;
1448	}
1449
1450	INIT_LIST_HEAD(&glob->swap_lru);
1451	INIT_LIST_HEAD(&glob->device_list);
1452
1453	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1454	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1455	if (unlikely(ret != 0)) {
1456		printk(KERN_ERR TTM_PFX
1457		       "Could not register buffer object swapout.\n");
1458		goto out_no_shrink;
1459	}
1460
1461	glob->ttm_bo_extra_size =
1462		ttm_round_pot(sizeof(struct ttm_tt)) +
1463		ttm_round_pot(sizeof(struct ttm_backend));
1464
1465	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1466		ttm_round_pot(sizeof(struct ttm_buffer_object));
1467
1468	atomic_set(&glob->bo_count, 0);
1469
1470	ret = kobject_init_and_add(
1471		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1472	if (unlikely(ret != 0))
1473		kobject_put(&glob->kobj);
1474	return ret;
1475out_no_shrink:
1476	__free_page(glob->dummy_read_page);
1477out_no_drp:
1478	kfree(glob);
1479	return ret;
1480}
1481EXPORT_SYMBOL(ttm_bo_global_init);
1482
1483
1484int ttm_bo_device_release(struct ttm_bo_device *bdev)
1485{
1486	int ret = 0;
1487	unsigned i = TTM_NUM_MEM_TYPES;
1488	struct ttm_mem_type_manager *man;
1489	struct ttm_bo_global *glob = bdev->glob;
1490
1491	while (i--) {
1492		man = &bdev->man[i];
1493		if (man->has_type) {
1494			man->use_type = false;
1495			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1496				ret = -EBUSY;
1497				printk(KERN_ERR TTM_PFX
1498				       "DRM memory manager type %d "
1499				       "is not clean.\n", i);
1500			}
1501			man->has_type = false;
1502		}
1503	}
1504
1505	mutex_lock(&glob->device_list_mutex);
1506	list_del(&bdev->device_list);
1507	mutex_unlock(&glob->device_list_mutex);
1508
1509	cancel_delayed_work_sync(&bdev->wq);
1510
1511	while (ttm_bo_delayed_delete(bdev, true))
1512		;
1513
1514	spin_lock(&glob->lru_lock);
1515	if (list_empty(&bdev->ddestroy))
1516		TTM_DEBUG("Delayed destroy list was clean\n");
1517
1518	if (list_empty(&bdev->man[0].lru))
1519		TTM_DEBUG("Swap list was clean\n");
1520	spin_unlock(&glob->lru_lock);
1521
1522	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1523	write_lock(&bdev->vm_lock);
1524	drm_mm_takedown(&bdev->addr_space_mm);
1525	write_unlock(&bdev->vm_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532		       struct ttm_bo_global *glob,
1533		       struct ttm_bo_driver *driver,
 
1534		       uint64_t file_page_offset,
1535		       bool need_dma32)
1536{
1537	int ret = -EINVAL;
1538
1539	rwlock_init(&bdev->vm_lock);
1540	bdev->driver = driver;
1541
1542	memset(bdev->man, 0, sizeof(bdev->man));
1543
1544	/*
1545	 * Initialize the system memory buffer type.
1546	 * Other types need to be driver / IOCTL initialized.
1547	 */
1548	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549	if (unlikely(ret != 0))
1550		goto out_no_sys;
1551
1552	bdev->addr_space_rb = RB_ROOT;
1553	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1554	if (unlikely(ret != 0))
1555		goto out_no_addr_mm;
1556
1557	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1558	bdev->nice_mode = true;
1559	INIT_LIST_HEAD(&bdev->ddestroy);
1560	bdev->dev_mapping = NULL;
1561	bdev->glob = glob;
1562	bdev->need_dma32 = need_dma32;
1563	bdev->val_seq = 0;
1564	spin_lock_init(&bdev->fence_lock);
1565	mutex_lock(&glob->device_list_mutex);
1566	list_add_tail(&bdev->device_list, &glob->device_list);
1567	mutex_unlock(&glob->device_list_mutex);
1568
1569	return 0;
1570out_no_addr_mm:
1571	ttm_bo_clean_mm(bdev, 0);
1572out_no_sys:
1573	return ret;
1574}
1575EXPORT_SYMBOL(ttm_bo_device_init);
1576
1577/*
1578 * buffer object vm functions.
1579 */
1580
1581bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1582{
1583	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1584
1585	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1586		if (mem->mem_type == TTM_PL_SYSTEM)
1587			return false;
1588
1589		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1590			return false;
1591
1592		if (mem->placement & TTM_PL_FLAG_CACHED)
1593			return false;
1594	}
1595	return true;
1596}
1597
1598void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1599{
1600	struct ttm_bo_device *bdev = bo->bdev;
1601	loff_t offset = (loff_t) bo->addr_space_offset;
1602	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1603
1604	if (!bdev->dev_mapping)
1605		return;
1606	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1607	ttm_mem_io_free_vm(bo);
1608}
1609
1610void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1611{
1612	struct ttm_bo_device *bdev = bo->bdev;
1613	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1614
1615	ttm_mem_io_lock(man, false);
1616	ttm_bo_unmap_virtual_locked(bo);
1617	ttm_mem_io_unlock(man);
1618}
1619
1620
1621EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1622
1623static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1624{
1625	struct ttm_bo_device *bdev = bo->bdev;
1626	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1627	struct rb_node *parent = NULL;
1628	struct ttm_buffer_object *cur_bo;
1629	unsigned long offset = bo->vm_node->start;
1630	unsigned long cur_offset;
1631
1632	while (*cur) {
1633		parent = *cur;
1634		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1635		cur_offset = cur_bo->vm_node->start;
1636		if (offset < cur_offset)
1637			cur = &parent->rb_left;
1638		else if (offset > cur_offset)
1639			cur = &parent->rb_right;
1640		else
1641			BUG();
1642	}
1643
1644	rb_link_node(&bo->vm_rb, parent, cur);
1645	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1646}
1647
1648/**
1649 * ttm_bo_setup_vm:
1650 *
1651 * @bo: the buffer to allocate address space for
1652 *
1653 * Allocate address space in the drm device so that applications
1654 * can mmap the buffer and access the contents. This only
1655 * applies to ttm_bo_type_device objects as others are not
1656 * placed in the drm device address space.
1657 */
1658
1659static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1660{
1661	struct ttm_bo_device *bdev = bo->bdev;
1662	int ret;
1663
1664retry_pre_get:
1665	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1666	if (unlikely(ret != 0))
1667		return ret;
1668
1669	write_lock(&bdev->vm_lock);
1670	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1671					 bo->mem.num_pages, 0, 0);
1672
1673	if (unlikely(bo->vm_node == NULL)) {
1674		ret = -ENOMEM;
1675		goto out_unlock;
1676	}
1677
1678	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1679					      bo->mem.num_pages, 0);
1680
1681	if (unlikely(bo->vm_node == NULL)) {
1682		write_unlock(&bdev->vm_lock);
1683		goto retry_pre_get;
1684	}
1685
1686	ttm_bo_vm_insert_rb(bo);
1687	write_unlock(&bdev->vm_lock);
1688	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1689
1690	return 0;
1691out_unlock:
1692	write_unlock(&bdev->vm_lock);
1693	return ret;
1694}
1695
1696int ttm_bo_wait(struct ttm_buffer_object *bo,
1697		bool lazy, bool interruptible, bool no_wait)
1698{
1699	struct ttm_bo_driver *driver = bo->bdev->driver;
1700	struct ttm_bo_device *bdev = bo->bdev;
1701	void *sync_obj;
1702	void *sync_obj_arg;
1703	int ret = 0;
1704
1705	if (likely(bo->sync_obj == NULL))
1706		return 0;
1707
1708	while (bo->sync_obj) {
1709
1710		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1711			void *tmp_obj = bo->sync_obj;
1712			bo->sync_obj = NULL;
1713			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1714			spin_unlock(&bdev->fence_lock);
1715			driver->sync_obj_unref(&tmp_obj);
1716			spin_lock(&bdev->fence_lock);
1717			continue;
1718		}
1719
1720		if (no_wait)
1721			return -EBUSY;
1722
1723		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1724		sync_obj_arg = bo->sync_obj_arg;
1725		spin_unlock(&bdev->fence_lock);
1726		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1727					    lazy, interruptible);
1728		if (unlikely(ret != 0)) {
1729			driver->sync_obj_unref(&sync_obj);
1730			spin_lock(&bdev->fence_lock);
1731			return ret;
1732		}
1733		spin_lock(&bdev->fence_lock);
1734		if (likely(bo->sync_obj == sync_obj &&
1735			   bo->sync_obj_arg == sync_obj_arg)) {
1736			void *tmp_obj = bo->sync_obj;
1737			bo->sync_obj = NULL;
1738			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1739				  &bo->priv_flags);
1740			spin_unlock(&bdev->fence_lock);
1741			driver->sync_obj_unref(&sync_obj);
1742			driver->sync_obj_unref(&tmp_obj);
1743			spin_lock(&bdev->fence_lock);
1744		} else {
1745			spin_unlock(&bdev->fence_lock);
1746			driver->sync_obj_unref(&sync_obj);
1747			spin_lock(&bdev->fence_lock);
1748		}
1749	}
1750	return 0;
1751}
1752EXPORT_SYMBOL(ttm_bo_wait);
1753
1754int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1755{
1756	struct ttm_bo_device *bdev = bo->bdev;
1757	int ret = 0;
1758
1759	/*
1760	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1761	 */
1762
1763	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1764	if (unlikely(ret != 0))
1765		return ret;
1766	spin_lock(&bdev->fence_lock);
1767	ret = ttm_bo_wait(bo, false, true, no_wait);
1768	spin_unlock(&bdev->fence_lock);
1769	if (likely(ret == 0))
1770		atomic_inc(&bo->cpu_writers);
1771	ttm_bo_unreserve(bo);
1772	return ret;
1773}
1774EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1775
1776void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1777{
1778	if (atomic_dec_and_test(&bo->cpu_writers))
1779		wake_up_all(&bo->event_queue);
1780}
1781EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1782
1783/**
1784 * A buffer object shrink method that tries to swap out the first
1785 * buffer object on the bo_global::swap_lru list.
1786 */
1787
1788static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1789{
1790	struct ttm_bo_global *glob =
1791	    container_of(shrink, struct ttm_bo_global, shrink);
1792	struct ttm_buffer_object *bo;
1793	int ret = -EBUSY;
1794	int put_count;
1795	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1796
1797	spin_lock(&glob->lru_lock);
1798	while (ret == -EBUSY) {
1799		if (unlikely(list_empty(&glob->swap_lru))) {
1800			spin_unlock(&glob->lru_lock);
1801			return -EBUSY;
1802		}
1803
1804		bo = list_first_entry(&glob->swap_lru,
1805				      struct ttm_buffer_object, swap);
1806		kref_get(&bo->list_kref);
1807
1808		if (!list_empty(&bo->ddestroy)) {
1809			spin_unlock(&glob->lru_lock);
1810			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1811			kref_put(&bo->list_kref, ttm_bo_release_list);
1812			continue;
1813		}
1814
1815		/**
1816		 * Reserve buffer. Since we unlock while sleeping, we need
1817		 * to re-check that nobody removed us from the swap-list while
1818		 * we slept.
1819		 */
1820
1821		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1822		if (unlikely(ret == -EBUSY)) {
1823			spin_unlock(&glob->lru_lock);
1824			ttm_bo_wait_unreserved(bo, false);
1825			kref_put(&bo->list_kref, ttm_bo_release_list);
1826			spin_lock(&glob->lru_lock);
1827		}
1828	}
1829
1830	BUG_ON(ret != 0);
1831	put_count = ttm_bo_del_from_lru(bo);
1832	spin_unlock(&glob->lru_lock);
1833
1834	ttm_bo_list_ref_sub(bo, put_count, true);
1835
1836	/**
1837	 * Wait for GPU, then move to system cached.
1838	 */
1839
1840	spin_lock(&bo->bdev->fence_lock);
1841	ret = ttm_bo_wait(bo, false, false, false);
1842	spin_unlock(&bo->bdev->fence_lock);
1843
1844	if (unlikely(ret != 0))
1845		goto out;
1846
1847	if ((bo->mem.placement & swap_placement) != swap_placement) {
1848		struct ttm_mem_reg evict_mem;
1849
1850		evict_mem = bo->mem;
1851		evict_mem.mm_node = NULL;
1852		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1853		evict_mem.mem_type = TTM_PL_SYSTEM;
1854
1855		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1856					     false, false, false);
1857		if (unlikely(ret != 0))
1858			goto out;
1859	}
1860
1861	ttm_bo_unmap_virtual(bo);
1862
1863	/**
1864	 * Swap out. Buffer will be swapped in again as soon as
1865	 * anyone tries to access a ttm page.
1866	 */
1867
1868	if (bo->bdev->driver->swap_notify)
1869		bo->bdev->driver->swap_notify(bo);
1870
1871	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1872out:
1873
1874	/**
1875	 *
1876	 * Unreserve without putting on LRU to avoid swapping out an
1877	 * already swapped buffer.
1878	 */
1879
1880	atomic_set(&bo->reserved, 0);
1881	wake_up_all(&bo->event_queue);
1882	kref_put(&bo->list_kref, ttm_bo_release_list);
1883	return ret;
1884}
1885
1886void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1887{
1888	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1889		;
1890}
1891EXPORT_SYMBOL(ttm_bo_swapout_all);
v3.15
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include <drm/ttm/ttm_module.h>
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
  43
  44#define TTM_ASSERT_LOCKED(param)
  45#define TTM_DEBUG(fmt, arg...)
  46#define TTM_BO_HASH_ORDER 13
  47
 
  48static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  49static void ttm_bo_global_kobj_release(struct kobject *kobj);
  50
  51static struct attribute ttm_bo_count = {
  52	.name = "bo_count",
  53	.mode = S_IRUGO
  54};
  55
  56static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  57{
  58	int i;
  59
  60	for (i = 0; i <= TTM_PL_PRIV5; i++)
  61		if (flags & (1 << i)) {
  62			*mem_type = i;
  63			return 0;
  64		}
  65	return -EINVAL;
  66}
  67
  68static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  69{
  70	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  71
  72	pr_err("    has_type: %d\n", man->has_type);
  73	pr_err("    use_type: %d\n", man->use_type);
  74	pr_err("    flags: 0x%08X\n", man->flags);
  75	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
  76	pr_err("    size: %llu\n", man->size);
  77	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  78	pr_err("    default_caching: 0x%08X\n", man->default_caching);
 
 
  79	if (mem_type != TTM_PL_SYSTEM)
  80		(*man->func->debug)(man, TTM_PFX);
  81}
  82
  83static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  84					struct ttm_placement *placement)
  85{
  86	int i, ret, mem_type;
  87
  88	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  89	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  90	       bo->mem.size >> 20);
  91	for (i = 0; i < placement->num_placement; i++) {
  92		ret = ttm_mem_type_from_flags(placement->placement[i],
  93						&mem_type);
  94		if (ret)
  95			return;
  96		pr_err("  placement[%d]=0x%08X (%d)\n",
  97		       i, placement->placement[i], mem_type);
  98		ttm_mem_type_debug(bo->bdev, mem_type);
  99	}
 100}
 101
 102static ssize_t ttm_bo_global_show(struct kobject *kobj,
 103				  struct attribute *attr,
 104				  char *buffer)
 105{
 106	struct ttm_bo_global *glob =
 107		container_of(kobj, struct ttm_bo_global, kobj);
 108
 109	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 110			(unsigned long) atomic_read(&glob->bo_count));
 111}
 112
 113static struct attribute *ttm_bo_global_attrs[] = {
 114	&ttm_bo_count,
 115	NULL
 116};
 117
 118static const struct sysfs_ops ttm_bo_global_ops = {
 119	.show = &ttm_bo_global_show
 120};
 121
 122static struct kobj_type ttm_bo_glob_kobj_type  = {
 123	.release = &ttm_bo_global_kobj_release,
 124	.sysfs_ops = &ttm_bo_global_ops,
 125	.default_attrs = ttm_bo_global_attrs
 126};
 127
 128
 129static inline uint32_t ttm_bo_type_flags(unsigned type)
 130{
 131	return 1 << (type);
 132}
 133
 134static void ttm_bo_release_list(struct kref *list_kref)
 135{
 136	struct ttm_buffer_object *bo =
 137	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 138	struct ttm_bo_device *bdev = bo->bdev;
 139	size_t acc_size = bo->acc_size;
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 152	if (bo->resv == &bo->ttm_resv)
 153		reservation_object_fini(&bo->ttm_resv);
 154	mutex_destroy(&bo->wu_mutex);
 155	if (bo->destroy)
 156		bo->destroy(bo);
 157	else {
 
 158		kfree(bo);
 159	}
 160	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 161}
 162
 
 
 
 
 
 
 
 
 
 
 
 
 163void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 164{
 165	struct ttm_bo_device *bdev = bo->bdev;
 166	struct ttm_mem_type_manager *man;
 167
 168	lockdep_assert_held(&bo->resv->lock.base);
 169
 170	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 171
 172		BUG_ON(!list_empty(&bo->lru));
 173
 174		man = &bdev->man[bo->mem.mem_type];
 175		list_add_tail(&bo->lru, &man->lru);
 176		kref_get(&bo->list_kref);
 177
 178		if (bo->ttm != NULL) {
 179			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 180			kref_get(&bo->list_kref);
 181		}
 182	}
 183}
 184EXPORT_SYMBOL(ttm_bo_add_to_lru);
 185
 186int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 187{
 188	int put_count = 0;
 189
 190	if (!list_empty(&bo->swap)) {
 191		list_del_init(&bo->swap);
 192		++put_count;
 193	}
 194	if (!list_empty(&bo->lru)) {
 195		list_del_init(&bo->lru);
 196		++put_count;
 197	}
 198
 199	/*
 200	 * TODO: Add a driver hook to delete from
 201	 * driver-specific LRU's here.
 202	 */
 203
 204	return put_count;
 205}
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207static void ttm_bo_ref_bug(struct kref *list_kref)
 208{
 209	BUG();
 210}
 211
 212void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 213			 bool never_free)
 214{
 215	kref_sub(&bo->list_kref, count,
 216		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 217}
 218
 219void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 
 
 220{
 221	int put_count;
 
 
 
 
 
 
 
 
 
 222
 223	spin_lock(&bo->glob->lru_lock);
 224	put_count = ttm_bo_del_from_lru(bo);
 225	spin_unlock(&bo->glob->lru_lock);
 226	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 
 
 
 
 
 
 227}
 228EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 
 
 
 
 
 
 
 
 
 229
 230/*
 231 * Call bo->mutex locked.
 232 */
 233static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 234{
 235	struct ttm_bo_device *bdev = bo->bdev;
 236	struct ttm_bo_global *glob = bo->glob;
 237	int ret = 0;
 238	uint32_t page_flags = 0;
 239
 240	TTM_ASSERT_LOCKED(&bo->mutex);
 241	bo->ttm = NULL;
 242
 243	if (bdev->need_dma32)
 244		page_flags |= TTM_PAGE_FLAG_DMA32;
 245
 246	switch (bo->type) {
 247	case ttm_bo_type_device:
 248		if (zero_alloc)
 249			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 250	case ttm_bo_type_kernel:
 251		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 252						      page_flags, glob->dummy_read_page);
 253		if (unlikely(bo->ttm == NULL))
 254			ret = -ENOMEM;
 255		break;
 256	case ttm_bo_type_sg:
 257		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 258						      page_flags | TTM_PAGE_FLAG_SG,
 259						      glob->dummy_read_page);
 260		if (unlikely(bo->ttm == NULL)) {
 261			ret = -ENOMEM;
 262			break;
 263		}
 264		bo->ttm->sg = bo->sg;
 
 
 
 
 
 
 265		break;
 266	default:
 267		pr_err("Illegal buffer object type\n");
 268		ret = -EINVAL;
 269		break;
 270	}
 271
 272	return ret;
 273}
 274
 275static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 276				  struct ttm_mem_reg *mem,
 277				  bool evict, bool interruptible,
 278				  bool no_wait_gpu)
 279{
 280	struct ttm_bo_device *bdev = bo->bdev;
 281	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 282	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 283	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 284	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 285	int ret = 0;
 286
 287	if (old_is_pci || new_is_pci ||
 288	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 289		ret = ttm_mem_io_lock(old_man, true);
 290		if (unlikely(ret != 0))
 291			goto out_err;
 292		ttm_bo_unmap_virtual_locked(bo);
 293		ttm_mem_io_unlock(old_man);
 294	}
 295
 296	/*
 297	 * Create and bind a ttm if required.
 298	 */
 299
 300	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 301		if (bo->ttm == NULL) {
 302			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 303			ret = ttm_bo_add_ttm(bo, zero);
 304			if (ret)
 305				goto out_err;
 306		}
 307
 308		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 309		if (ret)
 310			goto out_err;
 311
 312		if (mem->mem_type != TTM_PL_SYSTEM) {
 313			ret = ttm_tt_bind(bo->ttm, mem);
 314			if (ret)
 315				goto out_err;
 316		}
 317
 318		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 319			if (bdev->driver->move_notify)
 320				bdev->driver->move_notify(bo, mem);
 321			bo->mem = *mem;
 322			mem->mm_node = NULL;
 323			goto moved;
 324		}
 325	}
 326
 327	if (bdev->driver->move_notify)
 328		bdev->driver->move_notify(bo, mem);
 329
 330	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 331	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 332		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
 333	else if (bdev->driver->move)
 334		ret = bdev->driver->move(bo, evict, interruptible,
 335					 no_wait_gpu, mem);
 336	else
 337		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
 338
 339	if (ret) {
 340		if (bdev->driver->move_notify) {
 341			struct ttm_mem_reg tmp_mem = *mem;
 342			*mem = bo->mem;
 343			bo->mem = tmp_mem;
 344			bdev->driver->move_notify(bo, mem);
 345			bo->mem = *mem;
 346			*mem = tmp_mem;
 347		}
 348
 
 349		goto out_err;
 350	}
 351
 352moved:
 353	if (bo->evicted) {
 354		if (bdev->driver->invalidate_caches) {
 355			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 356			if (ret)
 357				pr_err("Can not flush read caches\n");
 358		}
 359		bo->evicted = false;
 360	}
 361
 362	if (bo->mem.mm_node) {
 363		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 364		    bdev->man[bo->mem.mem_type].gpu_offset;
 365		bo->cur_placement = bo->mem.placement;
 366	} else
 367		bo->offset = 0;
 368
 369	return 0;
 370
 371out_err:
 372	new_man = &bdev->man[bo->mem.mem_type];
 373	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 374		ttm_tt_unbind(bo->ttm);
 375		ttm_tt_destroy(bo->ttm);
 376		bo->ttm = NULL;
 377	}
 378
 379	return ret;
 380}
 381
 382/**
 383 * Call bo::reserved.
 384 * Will release GPU memory type usage on destruction.
 385 * This is the place to put in driver specific hooks to release
 386 * driver private resources.
 387 * Will release the bo::reserved lock.
 388 */
 389
 390static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 391{
 392	if (bo->bdev->driver->move_notify)
 393		bo->bdev->driver->move_notify(bo, NULL);
 394
 395	if (bo->ttm) {
 396		ttm_tt_unbind(bo->ttm);
 397		ttm_tt_destroy(bo->ttm);
 398		bo->ttm = NULL;
 399	}
 400	ttm_bo_mem_put(bo, &bo->mem);
 401
 402	ww_mutex_unlock (&bo->resv->lock);
 
 
 
 
 
 
 403}
 404
 405static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 406{
 407	struct ttm_bo_device *bdev = bo->bdev;
 408	struct ttm_bo_global *glob = bo->glob;
 409	struct ttm_bo_driver *driver = bdev->driver;
 410	void *sync_obj = NULL;
 
 411	int put_count;
 412	int ret;
 413
 414	spin_lock(&glob->lru_lock);
 415	ret = __ttm_bo_reserve(bo, false, true, false, 0);
 416
 417	spin_lock(&bdev->fence_lock);
 418	(void) ttm_bo_wait(bo, false, false, true);
 419	if (!ret && !bo->sync_obj) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 420		spin_unlock(&bdev->fence_lock);
 421		put_count = ttm_bo_del_from_lru(bo);
 422
 423		spin_unlock(&glob->lru_lock);
 424		ttm_bo_cleanup_memtype_use(bo);
 425
 426		ttm_bo_list_ref_sub(bo, put_count, true);
 427
 428		return;
 
 
 429	}
 
 
 430	if (bo->sync_obj)
 431		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 432	spin_unlock(&bdev->fence_lock);
 433
 434	if (!ret) {
 435
 436		/*
 437		 * Make NO_EVICT bos immediately available to
 438		 * shrinkers, now that they are queued for
 439		 * destruction.
 440		 */
 441		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 442			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 443			ttm_bo_add_to_lru(bo);
 444		}
 445
 446		__ttm_bo_unreserve(bo);
 447	}
 448
 449	kref_get(&bo->list_kref);
 450	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 451	spin_unlock(&glob->lru_lock);
 
 452
 453	if (sync_obj) {
 454		driver->sync_obj_flush(sync_obj);
 455		driver->sync_obj_unref(&sync_obj);
 456	}
 457	schedule_delayed_work(&bdev->wq,
 458			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 459}
 460
 461/**
 462 * function ttm_bo_cleanup_refs_and_unlock
 463 * If bo idle, remove from delayed- and lru lists, and unref.
 464 * If not idle, do nothing.
 465 *
 466 * Must be called with lru_lock and reservation held, this function
 467 * will drop both before returning.
 468 *
 469 * @interruptible         Any sleeps should occur interruptibly.
 
 470 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 471 */
 472
 473static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
 474					  bool interruptible,
 475					  bool no_wait_gpu)
 
 476{
 477	struct ttm_bo_device *bdev = bo->bdev;
 478	struct ttm_bo_driver *driver = bdev->driver;
 479	struct ttm_bo_global *glob = bo->glob;
 480	int put_count;
 481	int ret;
 482
 
 483	spin_lock(&bdev->fence_lock);
 484	ret = ttm_bo_wait(bo, false, false, true);
 
 485
 486	if (ret && !no_wait_gpu) {
 487		void *sync_obj;
 488
 489		/*
 490		 * Take a reference to the fence and unreserve,
 491		 * at this point the buffer should be dead, so
 492		 * no new sync objects can be attached.
 493		 */
 494		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 495		spin_unlock(&bdev->fence_lock);
 496
 497		__ttm_bo_unreserve(bo);
 498		spin_unlock(&glob->lru_lock);
 
 
 499
 500		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
 501		driver->sync_obj_unref(&sync_obj);
 502		if (ret)
 503			return ret;
 504
 505		/*
 506		 * remove sync_obj with ttm_bo_wait, the wait should be
 507		 * finished, and no new wait object should have been added.
 508		 */
 509		spin_lock(&bdev->fence_lock);
 510		ret = ttm_bo_wait(bo, false, false, true);
 511		WARN_ON(ret);
 512		spin_unlock(&bdev->fence_lock);
 513		if (ret)
 514			return ret;
 515
 516		spin_lock(&glob->lru_lock);
 517		ret = __ttm_bo_reserve(bo, false, true, false, 0);
 518
 519		/*
 520		 * We raced, and lost, someone else holds the reservation now,
 521		 * and is probably busy in ttm_bo_cleanup_memtype_use.
 522		 *
 523		 * Even if it's not the case, because we finished waiting any
 524		 * delayed destruction would succeed, so just return success
 525		 * here.
 526		 */
 527		if (ret) {
 528			spin_unlock(&glob->lru_lock);
 529			return 0;
 530		}
 531	} else
 532		spin_unlock(&bdev->fence_lock);
 533
 534	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 535		__ttm_bo_unreserve(bo);
 536		spin_unlock(&glob->lru_lock);
 537		return ret;
 538	}
 539
 540	put_count = ttm_bo_del_from_lru(bo);
 541	list_del_init(&bo->ddestroy);
 542	++put_count;
 543
 544	spin_unlock(&glob->lru_lock);
 545	ttm_bo_cleanup_memtype_use(bo);
 546
 547	ttm_bo_list_ref_sub(bo, put_count, true);
 548
 549	return 0;
 550}
 551
 552/**
 553 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 554 * encountered buffers.
 555 */
 556
 557static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 558{
 559	struct ttm_bo_global *glob = bdev->glob;
 560	struct ttm_buffer_object *entry = NULL;
 561	int ret = 0;
 562
 563	spin_lock(&glob->lru_lock);
 564	if (list_empty(&bdev->ddestroy))
 565		goto out_unlock;
 566
 567	entry = list_first_entry(&bdev->ddestroy,
 568		struct ttm_buffer_object, ddestroy);
 569	kref_get(&entry->list_kref);
 570
 571	for (;;) {
 572		struct ttm_buffer_object *nentry = NULL;
 573
 574		if (entry->ddestroy.next != &bdev->ddestroy) {
 575			nentry = list_first_entry(&entry->ddestroy,
 576				struct ttm_buffer_object, ddestroy);
 577			kref_get(&nentry->list_kref);
 578		}
 579
 580		ret = __ttm_bo_reserve(entry, false, true, false, 0);
 581		if (remove_all && ret) {
 582			spin_unlock(&glob->lru_lock);
 583			ret = __ttm_bo_reserve(entry, false, false,
 584					       false, 0);
 585			spin_lock(&glob->lru_lock);
 586		}
 587
 588		if (!ret)
 589			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
 590							     !remove_all);
 591		else
 592			spin_unlock(&glob->lru_lock);
 593
 594		kref_put(&entry->list_kref, ttm_bo_release_list);
 595		entry = nentry;
 596
 597		if (ret || !entry)
 598			goto out;
 599
 600		spin_lock(&glob->lru_lock);
 601		if (list_empty(&entry->ddestroy))
 602			break;
 603	}
 604
 605out_unlock:
 606	spin_unlock(&glob->lru_lock);
 607out:
 608	if (entry)
 609		kref_put(&entry->list_kref, ttm_bo_release_list);
 610	return ret;
 611}
 612
 613static void ttm_bo_delayed_workqueue(struct work_struct *work)
 614{
 615	struct ttm_bo_device *bdev =
 616	    container_of(work, struct ttm_bo_device, wq.work);
 617
 618	if (ttm_bo_delayed_delete(bdev, false)) {
 619		schedule_delayed_work(&bdev->wq,
 620				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 621	}
 622}
 623
 624static void ttm_bo_release(struct kref *kref)
 625{
 626	struct ttm_buffer_object *bo =
 627	    container_of(kref, struct ttm_buffer_object, kref);
 628	struct ttm_bo_device *bdev = bo->bdev;
 629	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 630
 631	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
 
 
 
 
 
 632	ttm_mem_io_lock(man, false);
 633	ttm_mem_io_free_vm(bo);
 634	ttm_mem_io_unlock(man);
 635	ttm_bo_cleanup_refs_or_queue(bo);
 636	kref_put(&bo->list_kref, ttm_bo_release_list);
 
 637}
 638
 639void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 640{
 641	struct ttm_buffer_object *bo = *p_bo;
 
 642
 643	*p_bo = NULL;
 
 644	kref_put(&bo->kref, ttm_bo_release);
 
 645}
 646EXPORT_SYMBOL(ttm_bo_unref);
 647
 648int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 649{
 650	return cancel_delayed_work_sync(&bdev->wq);
 651}
 652EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 653
 654void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 655{
 656	if (resched)
 657		schedule_delayed_work(&bdev->wq,
 658				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 659}
 660EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 661
 662static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 663			bool no_wait_gpu)
 664{
 665	struct ttm_bo_device *bdev = bo->bdev;
 666	struct ttm_mem_reg evict_mem;
 667	struct ttm_placement placement;
 668	int ret = 0;
 669
 670	spin_lock(&bdev->fence_lock);
 671	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 672	spin_unlock(&bdev->fence_lock);
 673
 674	if (unlikely(ret != 0)) {
 675		if (ret != -ERESTARTSYS) {
 676			pr_err("Failed to expire sync object before buffer eviction\n");
 
 
 677		}
 678		goto out;
 679	}
 680
 681	lockdep_assert_held(&bo->resv->lock.base);
 682
 683	evict_mem = bo->mem;
 684	evict_mem.mm_node = NULL;
 685	evict_mem.bus.io_reserved_vm = false;
 686	evict_mem.bus.io_reserved_count = 0;
 687
 688	placement.fpfn = 0;
 689	placement.lpfn = 0;
 690	placement.num_placement = 0;
 691	placement.num_busy_placement = 0;
 692	bdev->driver->evict_flags(bo, &placement);
 693	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 694				no_wait_gpu);
 695	if (ret) {
 696		if (ret != -ERESTARTSYS) {
 697			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 698			       bo);
 
 699			ttm_bo_mem_space_debug(bo, &placement);
 700		}
 701		goto out;
 702	}
 703
 704	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 705				     no_wait_gpu);
 706	if (ret) {
 707		if (ret != -ERESTARTSYS)
 708			pr_err("Buffer eviction failed\n");
 709		ttm_bo_mem_put(bo, &evict_mem);
 710		goto out;
 711	}
 712	bo->evicted = true;
 713out:
 714	return ret;
 715}
 716
 717static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 718				uint32_t mem_type,
 719				bool interruptible,
 720				bool no_wait_gpu)
 721{
 722	struct ttm_bo_global *glob = bdev->glob;
 723	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 724	struct ttm_buffer_object *bo;
 725	int ret = -EBUSY, put_count;
 726
 
 727	spin_lock(&glob->lru_lock);
 728	list_for_each_entry(bo, &man->lru, lru) {
 729		ret = __ttm_bo_reserve(bo, false, true, false, 0);
 730		if (!ret)
 731			break;
 732	}
 733
 734	if (ret) {
 
 
 
 735		spin_unlock(&glob->lru_lock);
 736		return ret;
 
 
 
 
 
 
 
 737	}
 738
 739	kref_get(&bo->list_kref);
 
 
 
 
 
 740
 741	if (!list_empty(&bo->ddestroy)) {
 742		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
 743						     no_wait_gpu);
 744		kref_put(&bo->list_kref, ttm_bo_release_list);
 745		return ret;
 
 
 
 
 
 
 
 746	}
 747
 748	put_count = ttm_bo_del_from_lru(bo);
 749	spin_unlock(&glob->lru_lock);
 750
 751	BUG_ON(ret != 0);
 752
 753	ttm_bo_list_ref_sub(bo, put_count, true);
 754
 755	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
 756	ttm_bo_unreserve(bo);
 757
 758	kref_put(&bo->list_kref, ttm_bo_release_list);
 759	return ret;
 760}
 761
 762void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 763{
 764	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 765
 766	if (mem->mm_node)
 767		(*man->func->put_node)(man, mem);
 768}
 769EXPORT_SYMBOL(ttm_bo_mem_put);
 770
 771/**
 772 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 773 * space, or we've evicted everything and there isn't enough space.
 774 */
 775static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 776					uint32_t mem_type,
 777					struct ttm_placement *placement,
 778					struct ttm_mem_reg *mem,
 779					bool interruptible,
 
 780					bool no_wait_gpu)
 781{
 782	struct ttm_bo_device *bdev = bo->bdev;
 783	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 784	int ret;
 785
 786	do {
 787		ret = (*man->func->get_node)(man, bo, placement, mem);
 788		if (unlikely(ret != 0))
 789			return ret;
 790		if (mem->mm_node)
 791			break;
 792		ret = ttm_mem_evict_first(bdev, mem_type,
 793					  interruptible, no_wait_gpu);
 794		if (unlikely(ret != 0))
 795			return ret;
 796	} while (1);
 797	if (mem->mm_node == NULL)
 798		return -ENOMEM;
 799	mem->mem_type = mem_type;
 800	return 0;
 801}
 802
 803static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 804				      uint32_t cur_placement,
 805				      uint32_t proposed_placement)
 806{
 807	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 808	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 809
 810	/**
 811	 * Keep current caching if possible.
 812	 */
 813
 814	if ((cur_placement & caching) != 0)
 815		result |= (cur_placement & caching);
 816	else if ((man->default_caching & caching) != 0)
 817		result |= man->default_caching;
 818	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 819		result |= TTM_PL_FLAG_CACHED;
 820	else if ((TTM_PL_FLAG_WC & caching) != 0)
 821		result |= TTM_PL_FLAG_WC;
 822	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 823		result |= TTM_PL_FLAG_UNCACHED;
 824
 825	return result;
 826}
 827
 828static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 
 829				 uint32_t mem_type,
 830				 uint32_t proposed_placement,
 831				 uint32_t *masked_placement)
 832{
 833	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 834
 
 
 
 835	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 836		return false;
 837
 838	if ((proposed_placement & man->available_caching) == 0)
 839		return false;
 840
 841	cur_flags |= (proposed_placement & man->available_caching);
 842
 843	*masked_placement = cur_flags;
 844	return true;
 845}
 846
 847/**
 848 * Creates space for memory region @mem according to its type.
 849 *
 850 * This function first searches for free space in compatible memory types in
 851 * the priority order defined by the driver.  If free space isn't found, then
 852 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 853 * space.
 854 */
 855int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 856			struct ttm_placement *placement,
 857			struct ttm_mem_reg *mem,
 858			bool interruptible,
 859			bool no_wait_gpu)
 860{
 861	struct ttm_bo_device *bdev = bo->bdev;
 862	struct ttm_mem_type_manager *man;
 863	uint32_t mem_type = TTM_PL_SYSTEM;
 864	uint32_t cur_flags = 0;
 865	bool type_found = false;
 866	bool type_ok = false;
 867	bool has_erestartsys = false;
 868	int i, ret;
 869
 870	mem->mm_node = NULL;
 871	for (i = 0; i < placement->num_placement; ++i) {
 872		ret = ttm_mem_type_from_flags(placement->placement[i],
 873						&mem_type);
 874		if (ret)
 875			return ret;
 876		man = &bdev->man[mem_type];
 877
 878		type_ok = ttm_bo_mt_compatible(man,
 
 879						mem_type,
 880						placement->placement[i],
 881						&cur_flags);
 882
 883		if (!type_ok)
 884			continue;
 885
 886		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 887						  cur_flags);
 888		/*
 889		 * Use the access and other non-mapping-related flag bits from
 890		 * the memory placement flags to the current flags
 891		 */
 892		ttm_flag_masked(&cur_flags, placement->placement[i],
 893				~TTM_PL_MASK_MEMTYPE);
 894
 895		if (mem_type == TTM_PL_SYSTEM)
 896			break;
 897
 898		if (man->has_type && man->use_type) {
 899			type_found = true;
 900			ret = (*man->func->get_node)(man, bo, placement, mem);
 901			if (unlikely(ret))
 902				return ret;
 903		}
 904		if (mem->mm_node)
 905			break;
 906	}
 907
 908	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 909		mem->mem_type = mem_type;
 910		mem->placement = cur_flags;
 911		return 0;
 912	}
 913
 914	if (!type_found)
 915		return -EINVAL;
 916
 917	for (i = 0; i < placement->num_busy_placement; ++i) {
 918		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
 919						&mem_type);
 920		if (ret)
 921			return ret;
 922		man = &bdev->man[mem_type];
 923		if (!man->has_type)
 924			continue;
 925		if (!ttm_bo_mt_compatible(man,
 
 926						mem_type,
 927						placement->busy_placement[i],
 928						&cur_flags))
 929			continue;
 930
 931		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 932						  cur_flags);
 933		/*
 934		 * Use the access and other non-mapping-related flag bits from
 935		 * the memory placement flags to the current flags
 936		 */
 937		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
 938				~TTM_PL_MASK_MEMTYPE);
 939
 940
 941		if (mem_type == TTM_PL_SYSTEM) {
 942			mem->mem_type = mem_type;
 943			mem->placement = cur_flags;
 944			mem->mm_node = NULL;
 945			return 0;
 946		}
 947
 948		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
 949						interruptible, no_wait_gpu);
 950		if (ret == 0 && mem->mm_node) {
 951			mem->placement = cur_flags;
 952			return 0;
 953		}
 954		if (ret == -ERESTARTSYS)
 955			has_erestartsys = true;
 956	}
 957	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
 958	return ret;
 959}
 960EXPORT_SYMBOL(ttm_bo_mem_space);
 961
 962static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 
 
 
 
 
 
 
 
 
 
 963			struct ttm_placement *placement,
 964			bool interruptible,
 965			bool no_wait_gpu)
 966{
 967	int ret = 0;
 968	struct ttm_mem_reg mem;
 969	struct ttm_bo_device *bdev = bo->bdev;
 970
 971	lockdep_assert_held(&bo->resv->lock.base);
 972
 973	/*
 974	 * FIXME: It's possible to pipeline buffer moves.
 975	 * Have the driver move function wait for idle when necessary,
 976	 * instead of doing it here.
 977	 */
 978	spin_lock(&bdev->fence_lock);
 979	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 980	spin_unlock(&bdev->fence_lock);
 981	if (ret)
 982		return ret;
 983	mem.num_pages = bo->num_pages;
 984	mem.size = mem.num_pages << PAGE_SHIFT;
 985	mem.page_alignment = bo->mem.page_alignment;
 986	mem.bus.io_reserved_vm = false;
 987	mem.bus.io_reserved_count = 0;
 988	/*
 989	 * Determine where to move the buffer.
 990	 */
 991	ret = ttm_bo_mem_space(bo, placement, &mem,
 992			       interruptible, no_wait_gpu);
 993	if (ret)
 994		goto out_unlock;
 995	ret = ttm_bo_handle_move_mem(bo, &mem, false,
 996				     interruptible, no_wait_gpu);
 997out_unlock:
 998	if (ret && mem.mm_node)
 999		ttm_bo_mem_put(bo, &mem);
1000	return ret;
1001}
1002
1003static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1004			      struct ttm_mem_reg *mem,
1005			      uint32_t *new_flags)
1006{
1007	int i;
1008
1009	if (mem->mm_node && placement->lpfn != 0 &&
1010	    (mem->start < placement->fpfn ||
1011	     mem->start + mem->num_pages > placement->lpfn))
1012		return false;
1013
1014	for (i = 0; i < placement->num_placement; i++) {
1015		*new_flags = placement->placement[i];
1016		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1017		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1018			return true;
1019	}
1020
1021	for (i = 0; i < placement->num_busy_placement; i++) {
1022		*new_flags = placement->busy_placement[i];
1023		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1024		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1025			return true;
1026	}
1027
1028	return false;
1029}
1030
1031int ttm_bo_validate(struct ttm_buffer_object *bo,
1032			struct ttm_placement *placement,
1033			bool interruptible,
1034			bool no_wait_gpu)
1035{
1036	int ret;
1037	uint32_t new_flags;
1038
1039	lockdep_assert_held(&bo->resv->lock.base);
1040	/* Check that range is valid */
1041	if (placement->lpfn || placement->fpfn)
1042		if (placement->fpfn > placement->lpfn ||
1043			(placement->lpfn - placement->fpfn) < bo->num_pages)
1044			return -EINVAL;
1045	/*
1046	 * Check whether we need to move buffer.
1047	 */
1048	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1049		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1050					 no_wait_gpu);
1051		if (ret)
1052			return ret;
1053	} else {
1054		/*
1055		 * Use the access and other non-mapping-related flag bits from
1056		 * the compatible memory placement flags to the active flags
1057		 */
1058		ttm_flag_masked(&bo->mem.placement, new_flags,
1059				~TTM_PL_MASK_MEMTYPE);
1060	}
1061	/*
1062	 * We might need to add a TTM.
1063	 */
1064	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1065		ret = ttm_bo_add_ttm(bo, true);
1066		if (ret)
1067			return ret;
1068	}
1069	return 0;
1070}
1071EXPORT_SYMBOL(ttm_bo_validate);
1072
1073int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1074				struct ttm_placement *placement)
1075{
1076	BUG_ON((placement->fpfn || placement->lpfn) &&
1077	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1078
1079	return 0;
1080}
1081
1082int ttm_bo_init(struct ttm_bo_device *bdev,
1083		struct ttm_buffer_object *bo,
1084		unsigned long size,
1085		enum ttm_bo_type type,
1086		struct ttm_placement *placement,
1087		uint32_t page_alignment,
 
1088		bool interruptible,
1089		struct file *persistent_swap_storage,
1090		size_t acc_size,
1091		struct sg_table *sg,
1092		void (*destroy) (struct ttm_buffer_object *))
1093{
1094	int ret = 0;
1095	unsigned long num_pages;
1096	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1097	bool locked;
1098
1099	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1100	if (ret) {
1101		pr_err("Out of kernel memory\n");
1102		if (destroy)
1103			(*destroy)(bo);
1104		else
1105			kfree(bo);
1106		return -ENOMEM;
1107	}
1108
 
1109	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1110	if (num_pages == 0) {
1111		pr_err("Illegal buffer object size\n");
1112		if (destroy)
1113			(*destroy)(bo);
1114		else
1115			kfree(bo);
1116		ttm_mem_global_free(mem_glob, acc_size);
1117		return -EINVAL;
1118	}
1119	bo->destroy = destroy;
1120
1121	kref_init(&bo->kref);
1122	kref_init(&bo->list_kref);
1123	atomic_set(&bo->cpu_writers, 0);
 
 
1124	INIT_LIST_HEAD(&bo->lru);
1125	INIT_LIST_HEAD(&bo->ddestroy);
1126	INIT_LIST_HEAD(&bo->swap);
1127	INIT_LIST_HEAD(&bo->io_reserve_lru);
1128	mutex_init(&bo->wu_mutex);
1129	bo->bdev = bdev;
1130	bo->glob = bdev->glob;
1131	bo->type = type;
1132	bo->num_pages = num_pages;
1133	bo->mem.size = num_pages << PAGE_SHIFT;
1134	bo->mem.mem_type = TTM_PL_SYSTEM;
1135	bo->mem.num_pages = bo->num_pages;
1136	bo->mem.mm_node = NULL;
1137	bo->mem.page_alignment = page_alignment;
1138	bo->mem.bus.io_reserved_vm = false;
1139	bo->mem.bus.io_reserved_count = 0;
 
1140	bo->priv_flags = 0;
1141	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
 
1142	bo->persistent_swap_storage = persistent_swap_storage;
1143	bo->acc_size = acc_size;
1144	bo->sg = sg;
1145	bo->resv = &bo->ttm_resv;
1146	reservation_object_init(bo->resv);
1147	atomic_inc(&bo->glob->bo_count);
1148	drm_vma_node_reset(&bo->vma_node);
1149
1150	ret = ttm_bo_check_placement(bo, placement);
 
 
1151
1152	/*
1153	 * For ttm_bo_type_device buffers, allocate
1154	 * address space from the device.
1155	 */
1156	if (likely(!ret) &&
1157	    (bo->type == ttm_bo_type_device ||
1158	     bo->type == ttm_bo_type_sg))
1159		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1160					 bo->mem.num_pages);
1161
1162	locked = ww_mutex_trylock(&bo->resv->lock);
1163	WARN_ON(!locked);
 
1164
1165	if (likely(!ret))
1166		ret = ttm_bo_validate(bo, placement, interruptible, false);
1167
 
1168	ttm_bo_unreserve(bo);
1169
1170	if (unlikely(ret))
1171		ttm_bo_unref(&bo);
1172
1173	return ret;
1174}
1175EXPORT_SYMBOL(ttm_bo_init);
1176
1177size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1178		       unsigned long bo_size,
1179		       unsigned struct_size)
1180{
1181	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1182	size_t size = 0;
1183
1184	size += ttm_round_pot(struct_size);
1185	size += PAGE_ALIGN(npages * sizeof(void *));
1186	size += ttm_round_pot(sizeof(struct ttm_tt));
1187	return size;
1188}
1189EXPORT_SYMBOL(ttm_bo_acc_size);
1190
1191size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1192			   unsigned long bo_size,
1193			   unsigned struct_size)
1194{
1195	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1196	size_t size = 0;
1197
1198	size += ttm_round_pot(struct_size);
1199	size += PAGE_ALIGN(npages * sizeof(void *));
1200	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1201	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1202	return size;
1203}
1204EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1205
1206int ttm_bo_create(struct ttm_bo_device *bdev,
1207			unsigned long size,
1208			enum ttm_bo_type type,
1209			struct ttm_placement *placement,
1210			uint32_t page_alignment,
 
1211			bool interruptible,
1212			struct file *persistent_swap_storage,
1213			struct ttm_buffer_object **p_bo)
1214{
1215	struct ttm_buffer_object *bo;
1216	size_t acc_size;
1217	int ret;
1218
 
 
 
 
 
 
1219	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1220	if (unlikely(bo == NULL))
 
 
1221		return -ENOMEM;
 
1222
1223	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1224	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1225			  interruptible, persistent_swap_storage, acc_size,
1226			  NULL, NULL);
1227	if (likely(ret == 0))
1228		*p_bo = bo;
1229
1230	return ret;
1231}
1232EXPORT_SYMBOL(ttm_bo_create);
1233
1234static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1235					unsigned mem_type, bool allow_errors)
1236{
1237	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1238	struct ttm_bo_global *glob = bdev->glob;
1239	int ret;
1240
1241	/*
1242	 * Can't use standard list traversal since we're unlocking.
1243	 */
1244
1245	spin_lock(&glob->lru_lock);
1246	while (!list_empty(&man->lru)) {
1247		spin_unlock(&glob->lru_lock);
1248		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1249		if (ret) {
1250			if (allow_errors) {
1251				return ret;
1252			} else {
1253				pr_err("Cleanup eviction failed\n");
 
1254			}
1255		}
1256		spin_lock(&glob->lru_lock);
1257	}
1258	spin_unlock(&glob->lru_lock);
1259	return 0;
1260}
1261
1262int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1263{
1264	struct ttm_mem_type_manager *man;
1265	int ret = -EINVAL;
1266
1267	if (mem_type >= TTM_NUM_MEM_TYPES) {
1268		pr_err("Illegal memory type %d\n", mem_type);
1269		return ret;
1270	}
1271	man = &bdev->man[mem_type];
1272
1273	if (!man->has_type) {
1274		pr_err("Trying to take down uninitialized memory manager type %u\n",
1275		       mem_type);
1276		return ret;
1277	}
1278
1279	man->use_type = false;
1280	man->has_type = false;
1281
1282	ret = 0;
1283	if (mem_type > 0) {
1284		ttm_bo_force_list_clean(bdev, mem_type, false);
1285
1286		ret = (*man->func->takedown)(man);
1287	}
1288
1289	return ret;
1290}
1291EXPORT_SYMBOL(ttm_bo_clean_mm);
1292
1293int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1294{
1295	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1296
1297	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1298		pr_err("Illegal memory manager memory type %u\n", mem_type);
 
 
1299		return -EINVAL;
1300	}
1301
1302	if (!man->has_type) {
1303		pr_err("Memory type %u has not been initialized\n", mem_type);
 
 
1304		return 0;
1305	}
1306
1307	return ttm_bo_force_list_clean(bdev, mem_type, true);
1308}
1309EXPORT_SYMBOL(ttm_bo_evict_mm);
1310
1311int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1312			unsigned long p_size)
1313{
1314	int ret = -EINVAL;
1315	struct ttm_mem_type_manager *man;
1316
1317	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1318	man = &bdev->man[type];
1319	BUG_ON(man->has_type);
1320	man->io_reserve_fastpath = true;
1321	man->use_io_reserve_lru = false;
1322	mutex_init(&man->io_reserve_mutex);
1323	INIT_LIST_HEAD(&man->io_reserve_lru);
1324
1325	ret = bdev->driver->init_mem_type(bdev, type, man);
1326	if (ret)
1327		return ret;
1328	man->bdev = bdev;
1329
1330	ret = 0;
1331	if (type != TTM_PL_SYSTEM) {
1332		ret = (*man->func->init)(man, p_size);
1333		if (ret)
1334			return ret;
1335	}
1336	man->has_type = true;
1337	man->use_type = true;
1338	man->size = p_size;
1339
1340	INIT_LIST_HEAD(&man->lru);
1341
1342	return 0;
1343}
1344EXPORT_SYMBOL(ttm_bo_init_mm);
1345
1346static void ttm_bo_global_kobj_release(struct kobject *kobj)
1347{
1348	struct ttm_bo_global *glob =
1349		container_of(kobj, struct ttm_bo_global, kobj);
1350
1351	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1352	__free_page(glob->dummy_read_page);
1353	kfree(glob);
1354}
1355
1356void ttm_bo_global_release(struct drm_global_reference *ref)
1357{
1358	struct ttm_bo_global *glob = ref->object;
1359
1360	kobject_del(&glob->kobj);
1361	kobject_put(&glob->kobj);
1362}
1363EXPORT_SYMBOL(ttm_bo_global_release);
1364
1365int ttm_bo_global_init(struct drm_global_reference *ref)
1366{
1367	struct ttm_bo_global_ref *bo_ref =
1368		container_of(ref, struct ttm_bo_global_ref, ref);
1369	struct ttm_bo_global *glob = ref->object;
1370	int ret;
1371
1372	mutex_init(&glob->device_list_mutex);
1373	spin_lock_init(&glob->lru_lock);
1374	glob->mem_glob = bo_ref->mem_glob;
1375	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1376
1377	if (unlikely(glob->dummy_read_page == NULL)) {
1378		ret = -ENOMEM;
1379		goto out_no_drp;
1380	}
1381
1382	INIT_LIST_HEAD(&glob->swap_lru);
1383	INIT_LIST_HEAD(&glob->device_list);
1384
1385	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1386	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1387	if (unlikely(ret != 0)) {
1388		pr_err("Could not register buffer object swapout\n");
 
1389		goto out_no_shrink;
1390	}
1391
 
 
 
 
 
 
 
1392	atomic_set(&glob->bo_count, 0);
1393
1394	ret = kobject_init_and_add(
1395		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1396	if (unlikely(ret != 0))
1397		kobject_put(&glob->kobj);
1398	return ret;
1399out_no_shrink:
1400	__free_page(glob->dummy_read_page);
1401out_no_drp:
1402	kfree(glob);
1403	return ret;
1404}
1405EXPORT_SYMBOL(ttm_bo_global_init);
1406
1407
1408int ttm_bo_device_release(struct ttm_bo_device *bdev)
1409{
1410	int ret = 0;
1411	unsigned i = TTM_NUM_MEM_TYPES;
1412	struct ttm_mem_type_manager *man;
1413	struct ttm_bo_global *glob = bdev->glob;
1414
1415	while (i--) {
1416		man = &bdev->man[i];
1417		if (man->has_type) {
1418			man->use_type = false;
1419			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1420				ret = -EBUSY;
1421				pr_err("DRM memory manager type %d is not clean\n",
1422				       i);
 
1423			}
1424			man->has_type = false;
1425		}
1426	}
1427
1428	mutex_lock(&glob->device_list_mutex);
1429	list_del(&bdev->device_list);
1430	mutex_unlock(&glob->device_list_mutex);
1431
1432	cancel_delayed_work_sync(&bdev->wq);
1433
1434	while (ttm_bo_delayed_delete(bdev, true))
1435		;
1436
1437	spin_lock(&glob->lru_lock);
1438	if (list_empty(&bdev->ddestroy))
1439		TTM_DEBUG("Delayed destroy list was clean\n");
1440
1441	if (list_empty(&bdev->man[0].lru))
1442		TTM_DEBUG("Swap list was clean\n");
1443	spin_unlock(&glob->lru_lock);
1444
1445	drm_vma_offset_manager_destroy(&bdev->vma_manager);
 
 
 
1446
1447	return ret;
1448}
1449EXPORT_SYMBOL(ttm_bo_device_release);
1450
1451int ttm_bo_device_init(struct ttm_bo_device *bdev,
1452		       struct ttm_bo_global *glob,
1453		       struct ttm_bo_driver *driver,
1454		       struct address_space *mapping,
1455		       uint64_t file_page_offset,
1456		       bool need_dma32)
1457{
1458	int ret = -EINVAL;
1459
 
1460	bdev->driver = driver;
1461
1462	memset(bdev->man, 0, sizeof(bdev->man));
1463
1464	/*
1465	 * Initialize the system memory buffer type.
1466	 * Other types need to be driver / IOCTL initialized.
1467	 */
1468	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1469	if (unlikely(ret != 0))
1470		goto out_no_sys;
1471
1472	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1473				    0x10000000);
 
 
 
1474	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
 
1475	INIT_LIST_HEAD(&bdev->ddestroy);
1476	bdev->dev_mapping = mapping;
1477	bdev->glob = glob;
1478	bdev->need_dma32 = need_dma32;
1479	bdev->val_seq = 0;
1480	spin_lock_init(&bdev->fence_lock);
1481	mutex_lock(&glob->device_list_mutex);
1482	list_add_tail(&bdev->device_list, &glob->device_list);
1483	mutex_unlock(&glob->device_list_mutex);
1484
1485	return 0;
 
 
1486out_no_sys:
1487	return ret;
1488}
1489EXPORT_SYMBOL(ttm_bo_device_init);
1490
1491/*
1492 * buffer object vm functions.
1493 */
1494
1495bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1496{
1497	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1498
1499	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1500		if (mem->mem_type == TTM_PL_SYSTEM)
1501			return false;
1502
1503		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1504			return false;
1505
1506		if (mem->placement & TTM_PL_FLAG_CACHED)
1507			return false;
1508	}
1509	return true;
1510}
1511
1512void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1513{
1514	struct ttm_bo_device *bdev = bo->bdev;
 
 
1515
1516	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
 
 
1517	ttm_mem_io_free_vm(bo);
1518}
1519
1520void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1521{
1522	struct ttm_bo_device *bdev = bo->bdev;
1523	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1524
1525	ttm_mem_io_lock(man, false);
1526	ttm_bo_unmap_virtual_locked(bo);
1527	ttm_mem_io_unlock(man);
1528}
1529
1530
1531EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533
1534int ttm_bo_wait(struct ttm_buffer_object *bo,
1535		bool lazy, bool interruptible, bool no_wait)
1536{
1537	struct ttm_bo_driver *driver = bo->bdev->driver;
1538	struct ttm_bo_device *bdev = bo->bdev;
1539	void *sync_obj;
 
1540	int ret = 0;
1541
1542	if (likely(bo->sync_obj == NULL))
1543		return 0;
1544
1545	while (bo->sync_obj) {
1546
1547		if (driver->sync_obj_signaled(bo->sync_obj)) {
1548			void *tmp_obj = bo->sync_obj;
1549			bo->sync_obj = NULL;
1550			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1551			spin_unlock(&bdev->fence_lock);
1552			driver->sync_obj_unref(&tmp_obj);
1553			spin_lock(&bdev->fence_lock);
1554			continue;
1555		}
1556
1557		if (no_wait)
1558			return -EBUSY;
1559
1560		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 
1561		spin_unlock(&bdev->fence_lock);
1562		ret = driver->sync_obj_wait(sync_obj,
1563					    lazy, interruptible);
1564		if (unlikely(ret != 0)) {
1565			driver->sync_obj_unref(&sync_obj);
1566			spin_lock(&bdev->fence_lock);
1567			return ret;
1568		}
1569		spin_lock(&bdev->fence_lock);
1570		if (likely(bo->sync_obj == sync_obj)) {
 
1571			void *tmp_obj = bo->sync_obj;
1572			bo->sync_obj = NULL;
1573			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1574				  &bo->priv_flags);
1575			spin_unlock(&bdev->fence_lock);
1576			driver->sync_obj_unref(&sync_obj);
1577			driver->sync_obj_unref(&tmp_obj);
1578			spin_lock(&bdev->fence_lock);
1579		} else {
1580			spin_unlock(&bdev->fence_lock);
1581			driver->sync_obj_unref(&sync_obj);
1582			spin_lock(&bdev->fence_lock);
1583		}
1584	}
1585	return 0;
1586}
1587EXPORT_SYMBOL(ttm_bo_wait);
1588
1589int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1590{
1591	struct ttm_bo_device *bdev = bo->bdev;
1592	int ret = 0;
1593
1594	/*
1595	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1596	 */
1597
1598	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1599	if (unlikely(ret != 0))
1600		return ret;
1601	spin_lock(&bdev->fence_lock);
1602	ret = ttm_bo_wait(bo, false, true, no_wait);
1603	spin_unlock(&bdev->fence_lock);
1604	if (likely(ret == 0))
1605		atomic_inc(&bo->cpu_writers);
1606	ttm_bo_unreserve(bo);
1607	return ret;
1608}
1609EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1610
1611void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1612{
1613	atomic_dec(&bo->cpu_writers);
 
1614}
1615EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1616
1617/**
1618 * A buffer object shrink method that tries to swap out the first
1619 * buffer object on the bo_global::swap_lru list.
1620 */
1621
1622static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1623{
1624	struct ttm_bo_global *glob =
1625	    container_of(shrink, struct ttm_bo_global, shrink);
1626	struct ttm_buffer_object *bo;
1627	int ret = -EBUSY;
1628	int put_count;
1629	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1630
1631	spin_lock(&glob->lru_lock);
1632	list_for_each_entry(bo, &glob->swap_lru, swap) {
1633		ret = __ttm_bo_reserve(bo, false, true, false, 0);
1634		if (!ret)
1635			break;
1636	}
 
 
 
 
1637
1638	if (ret) {
1639		spin_unlock(&glob->lru_lock);
1640		return ret;
1641	}
 
 
1642
1643	kref_get(&bo->list_kref);
 
 
 
 
1644
1645	if (!list_empty(&bo->ddestroy)) {
1646		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1647		kref_put(&bo->list_kref, ttm_bo_release_list);
1648		return ret;
 
 
 
1649	}
1650
 
1651	put_count = ttm_bo_del_from_lru(bo);
1652	spin_unlock(&glob->lru_lock);
1653
1654	ttm_bo_list_ref_sub(bo, put_count, true);
1655
1656	/**
1657	 * Wait for GPU, then move to system cached.
1658	 */
1659
1660	spin_lock(&bo->bdev->fence_lock);
1661	ret = ttm_bo_wait(bo, false, false, false);
1662	spin_unlock(&bo->bdev->fence_lock);
1663
1664	if (unlikely(ret != 0))
1665		goto out;
1666
1667	if ((bo->mem.placement & swap_placement) != swap_placement) {
1668		struct ttm_mem_reg evict_mem;
1669
1670		evict_mem = bo->mem;
1671		evict_mem.mm_node = NULL;
1672		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1673		evict_mem.mem_type = TTM_PL_SYSTEM;
1674
1675		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1676					     false, false);
1677		if (unlikely(ret != 0))
1678			goto out;
1679	}
1680
1681	ttm_bo_unmap_virtual(bo);
1682
1683	/**
1684	 * Swap out. Buffer will be swapped in again as soon as
1685	 * anyone tries to access a ttm page.
1686	 */
1687
1688	if (bo->bdev->driver->swap_notify)
1689		bo->bdev->driver->swap_notify(bo);
1690
1691	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1692out:
1693
1694	/**
1695	 *
1696	 * Unreserve without putting on LRU to avoid swapping out an
1697	 * already swapped buffer.
1698	 */
1699
1700	__ttm_bo_unreserve(bo);
 
1701	kref_put(&bo->list_kref, ttm_bo_release_list);
1702	return ret;
1703}
1704
1705void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1706{
1707	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1708		;
1709}
1710EXPORT_SYMBOL(ttm_bo_swapout_all);
1711
1712/**
1713 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1714 * unreserved
1715 *
1716 * @bo: Pointer to buffer
1717 */
1718int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1719{
1720	int ret;
1721
1722	/*
1723	 * In the absense of a wait_unlocked API,
1724	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1725	 * concurrent use of this function. Note that this use of
1726	 * bo::wu_mutex can go away if we change locking order to
1727	 * mmap_sem -> bo::reserve.
1728	 */
1729	ret = mutex_lock_interruptible(&bo->wu_mutex);
1730	if (unlikely(ret != 0))
1731		return -ERESTARTSYS;
1732	if (!ww_mutex_is_locked(&bo->resv->lock))
1733		goto out_unlock;
1734	ret = __ttm_bo_reserve(bo, true, false, false, NULL);
1735	if (unlikely(ret != 0))
1736		goto out_unlock;
1737	__ttm_bo_unreserve(bo);
1738
1739out_unlock:
1740	mutex_unlock(&bo->wu_mutex);
1741	return ret;
1742}