Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2   rbd.c -- Export ceph rados objects as a Linux block device
   3
   4
   5   based on drivers/block/osdblk.c:
   6
   7   Copyright 2009 Red Hat, Inc.
   8
   9   This program is free software; you can redistribute it and/or modify
  10   it under the terms of the GNU General Public License as published by
  11   the Free Software Foundation.
  12
  13   This program is distributed in the hope that it will be useful,
  14   but WITHOUT ANY WARRANTY; without even the implied warranty of
  15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16   GNU General Public License for more details.
  17
  18   You should have received a copy of the GNU General Public License
  19   along with this program; see the file COPYING.  If not, write to
  20   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21
  22
  23
  24   For usage instructions, please refer to:
  25
  26                 Documentation/ABI/testing/sysfs-bus-rbd
  27
  28 */
  29
  30#include <linux/ceph/libceph.h>
  31#include <linux/ceph/osd_client.h>
  32#include <linux/ceph/mon_client.h>
  33#include <linux/ceph/decode.h>
  34#include <linux/parser.h>
 
  35
  36#include <linux/kernel.h>
  37#include <linux/device.h>
  38#include <linux/module.h>
  39#include <linux/fs.h>
  40#include <linux/blkdev.h>
 
 
  41
  42#include "rbd_types.h"
  43
  44#define DRV_NAME "rbd"
  45#define DRV_NAME_LONG "rbd (rados block device)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47#define RBD_MINORS_PER_MAJOR	256		/* max minors per blkdev */
 
 
  48
  49#define RBD_MAX_MD_NAME_LEN	(96 + sizeof(RBD_SUFFIX))
  50#define RBD_MAX_POOL_NAME_LEN	64
  51#define RBD_MAX_SNAP_NAME_LEN	32
  52#define RBD_MAX_OPT_LEN		1024
  53
  54#define RBD_SNAP_HEAD_NAME	"-"
  55
  56#define DEV_NAME_LEN		32
 
 
 
 
 
 
 
 
  57
  58#define RBD_NOTIFY_TIMEOUT_DEFAULT 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60/*
  61 * block device image metadata (in-memory version)
  62 */
  63struct rbd_image_header {
  64	u64 image_size;
  65	char block_name[32];
  66	__u8 obj_order;
  67	__u8 crypt_type;
  68	__u8 comp_type;
  69	struct rw_semaphore snap_rwsem;
 
 
 
 
 
  70	struct ceph_snap_context *snapc;
  71	size_t snap_names_len;
  72	u64 snap_seq;
  73	u32 total_snaps;
  74
  75	char *snap_names;
  76	u64 *snap_sizes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78	u64 obj_version;
  79};
  80
  81struct rbd_options {
  82	int	notify_timeout;
 
 
  83};
  84
  85/*
  86 * an instance of the client.  multiple devices may share a client.
  87 */
  88struct rbd_client {
  89	struct ceph_client	*client;
  90	struct rbd_options	*rbd_opts;
  91	struct kref		kref;
  92	struct list_head	node;
  93};
  94
  95struct rbd_req_coll;
 
  96
  97/*
  98 * a single io request
  99 */
 100struct rbd_request {
 101	struct request		*rq;		/* blk layer request */
 102	struct bio		*bio;		/* cloned bio */
 103	struct page		**pages;	/* list of used pages */
 104	u64			len;
 105	int			coll_index;
 106	struct rbd_req_coll	*coll;
 107};
 108
 109struct rbd_req_status {
 110	int done;
 111	int rc;
 112	u64 bytes;
 
 113};
 114
 115/*
 116 * a collection of requests
 117 */
 118struct rbd_req_coll {
 119	int			total;
 120	int			num_done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121	struct kref		kref;
 122	struct rbd_req_status	status[0];
 123};
 124
 125struct rbd_snap {
 126	struct	device		dev;
 127	const char		*name;
 128	size_t			size;
 129	struct list_head	node;
 130	u64			id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131};
 132
 133/*
 134 * a single device
 135 */
 136struct rbd_device {
 137	int			id;		/* blkdev unique id */
 138
 139	int			major;		/* blkdev assigned major */
 
 140	struct gendisk		*disk;		/* blkdev's gendisk and rq */
 141	struct request_queue	*q;
 142
 143	struct ceph_client	*client;
 144	struct rbd_client	*rbd_client;
 145
 146	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
 147
 148	spinlock_t		lock;		/* queue lock */
 149
 150	struct rbd_image_header	header;
 151	char			obj[RBD_MAX_OBJ_NAME_LEN]; /* rbd image name */
 152	int			obj_len;
 153	char			obj_md_name[RBD_MAX_MD_NAME_LEN]; /* hdr nm. */
 154	char			pool_name[RBD_MAX_POOL_NAME_LEN];
 155	int			poolid;
 
 156
 157	struct ceph_osd_event   *watch_event;
 158	struct ceph_osd_request *watch_request;
 159
 160	char                    snap_name[RBD_MAX_SNAP_NAME_LEN];
 161	u32 cur_snap;	/* index+1 of current snapshot within snap context
 162			   0 - for the head */
 163	int read_only;
 164
 165	struct list_head	node;
 
 
 
 166
 167	/* list of snapshots */
 168	struct list_head	snaps;
 169
 170	/* sysfs related */
 171	struct device		dev;
 
 172};
 173
 174static struct bus_type rbd_bus_type = {
 175	.name		= "rbd",
 
 
 
 
 
 
 
 
 176};
 177
 178static spinlock_t node_lock;      /* protects client get/put */
 179
 180static DEFINE_MUTEX(ctl_mutex);	  /* Serialize open/close/setup/teardown */
 181static LIST_HEAD(rbd_dev_list);    /* devices */
 182static LIST_HEAD(rbd_client_list);      /* clients */
 183
 184static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
 185static void rbd_dev_release(struct device *dev);
 186static ssize_t rbd_snap_rollback(struct device *dev,
 187				 struct device_attribute *attr,
 188				 const char *buf,
 189				 size_t size);
 190static ssize_t rbd_snap_add(struct device *dev,
 191			    struct device_attribute *attr,
 192			    const char *buf,
 193			    size_t count);
 194static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
 195				  struct rbd_snap *snap);;
 196
 
 
 
 197
 198static struct rbd_device *dev_to_rbd(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199{
 200	return container_of(dev, struct rbd_device, dev);
 201}
 202
 203static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
 204{
 205	return get_device(&rbd_dev->dev);
 206}
 207
 208static void rbd_put_dev(struct rbd_device *rbd_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209{
 210	put_device(&rbd_dev->dev);
 
 
 
 
 
 211}
 212
 213static int __rbd_update_snaps(struct rbd_device *rbd_dev);
 
 
 
 
 214
 215static int rbd_open(struct block_device *bdev, fmode_t mode)
 
 
 
 
 
 216{
 217	struct gendisk *disk = bdev->bd_disk;
 218	struct rbd_device *rbd_dev = disk->private_data;
 219
 220	rbd_get_dev(rbd_dev);
 
 
 
 
 
 
 
 
 
 221
 222	set_device_ro(bdev, rbd_dev->read_only);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	if ((mode & FMODE_WRITE) && rbd_dev->read_only)
 225		return -EROFS;
 226
 
 
 
 
 
 
 
 
 
 
 
 
 227	return 0;
 228}
 229
 230static int rbd_release(struct gendisk *disk, fmode_t mode)
 231{
 232	struct rbd_device *rbd_dev = disk->private_data;
 
 233
 234	rbd_put_dev(rbd_dev);
 
 
 
 235
 236	return 0;
 237}
 238
 239static const struct block_device_operations rbd_bd_ops = {
 240	.owner			= THIS_MODULE,
 241	.open			= rbd_open,
 242	.release		= rbd_release,
 243};
 244
 245/*
 246 * Initialize an rbd client instance.
 247 * We own *opt.
 248 */
 249static struct rbd_client *rbd_client_create(struct ceph_options *opt,
 250					    struct rbd_options *rbd_opts)
 251{
 252	struct rbd_client *rbdc;
 253	int ret = -ENOMEM;
 254
 255	dout("rbd_client_create\n");
 256	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
 257	if (!rbdc)
 258		goto out_opt;
 259
 260	kref_init(&rbdc->kref);
 261	INIT_LIST_HEAD(&rbdc->node);
 262
 263	rbdc->client = ceph_create_client(opt, rbdc);
 264	if (IS_ERR(rbdc->client))
 265		goto out_rbdc;
 266	opt = NULL; /* Now rbdc->client is responsible for opt */
 267
 268	ret = ceph_open_session(rbdc->client);
 269	if (ret < 0)
 270		goto out_err;
 271
 272	rbdc->rbd_opts = rbd_opts;
 273
 274	spin_lock(&node_lock);
 275	list_add_tail(&rbdc->node, &rbd_client_list);
 276	spin_unlock(&node_lock);
 277
 278	dout("rbd_client_create created %p\n", rbdc);
 279	return rbdc;
 280
 281out_err:
 
 282	ceph_destroy_client(rbdc->client);
 283out_rbdc:
 284	kfree(rbdc);
 285out_opt:
 286	if (opt)
 287		ceph_destroy_options(opt);
 
 
 288	return ERR_PTR(ret);
 289}
 290
 
 
 
 
 
 
 
 291/*
 292 * Find a ceph client with specific addr and configuration.
 
 293 */
 294static struct rbd_client *__rbd_client_find(struct ceph_options *opt)
 295{
 296	struct rbd_client *client_node;
 
 297
 298	if (opt->flags & CEPH_OPT_NOSHARE)
 299		return NULL;
 300
 301	list_for_each_entry(client_node, &rbd_client_list, node)
 302		if (ceph_compare_options(opt, client_node->client) == 0)
 303			return client_node;
 304	return NULL;
 
 
 
 
 
 
 
 
 305}
 306
 307/*
 308 * mount options
 309 */
 310enum {
 311	Opt_notify_timeout,
 312	Opt_last_int,
 313	/* int args above */
 314	Opt_last_string,
 315	/* string args above */
 
 
 
 
 316};
 317
 318static match_table_t rbdopt_tokens = {
 319	{Opt_notify_timeout, "notify_timeout=%d"},
 320	/* int args above */
 321	/* string args above */
 
 
 
 
 
 322	{-1, NULL}
 323};
 324
 
 
 
 
 
 
 325static int parse_rbd_opts_token(char *c, void *private)
 326{
 327	struct rbd_options *rbdopt = private;
 328	substring_t argstr[MAX_OPT_ARGS];
 329	int token, intval, ret;
 330
 331	token = match_token((char *)c, rbdopt_tokens, argstr);
 332	if (token < 0)
 333		return -EINVAL;
 334
 335	if (token < Opt_last_int) {
 336		ret = match_int(&argstr[0], &intval);
 337		if (ret < 0) {
 338			pr_err("bad mount option arg (not int) "
 339			       "at '%s'\n", c);
 340			return ret;
 341		}
 342		dout("got int token %d val %d\n", token, intval);
 343	} else if (token > Opt_last_int && token < Opt_last_string) {
 344		dout("got string token %d val %s\n", token,
 345		     argstr[0].from);
 
 
 346	} else {
 347		dout("got token %d\n", token);
 348	}
 349
 350	switch (token) {
 351	case Opt_notify_timeout:
 352		rbdopt->notify_timeout = intval;
 
 
 
 353		break;
 354	default:
 355		BUG_ON(token);
 
 356	}
 357	return 0;
 358}
 359
 360/*
 361 * Get a ceph client with specific addr and configuration, if one does
 362 * not exist create it.
 
 363 */
 364static int rbd_get_client(struct rbd_device *rbd_dev, const char *mon_addr,
 365			  char *options)
 366{
 367	struct rbd_client *rbdc;
 368	struct ceph_options *opt;
 369	int ret;
 370	struct rbd_options *rbd_opts;
 371
 372	rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
 373	if (!rbd_opts)
 374		return -ENOMEM;
 375
 376	rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
 377
 378	ret = ceph_parse_options(&opt, options, mon_addr,
 379				 mon_addr + strlen(mon_addr), parse_rbd_opts_token, rbd_opts);
 380	if (ret < 0)
 381		goto done_err;
 382
 383	spin_lock(&node_lock);
 384	rbdc = __rbd_client_find(opt);
 385	if (rbdc) {
 386		ceph_destroy_options(opt);
 387
 388		/* using an existing client */
 389		kref_get(&rbdc->kref);
 390		rbd_dev->rbd_client = rbdc;
 391		rbd_dev->client = rbdc->client;
 392		spin_unlock(&node_lock);
 393		return 0;
 394	}
 395	spin_unlock(&node_lock);
 396
 397	rbdc = rbd_client_create(opt, rbd_opts);
 398	if (IS_ERR(rbdc)) {
 399		ret = PTR_ERR(rbdc);
 400		goto done_err;
 401	}
 402
 403	rbd_dev->rbd_client = rbdc;
 404	rbd_dev->client = rbdc->client;
 405	return 0;
 406done_err:
 407	kfree(rbd_opts);
 408	return ret;
 409}
 410
 411/*
 412 * Destroy ceph client
 
 
 413 */
 414static void rbd_client_release(struct kref *kref)
 415{
 416	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
 417
 418	dout("rbd_release_client %p\n", rbdc);
 419	spin_lock(&node_lock);
 420	list_del(&rbdc->node);
 421	spin_unlock(&node_lock);
 422
 423	ceph_destroy_client(rbdc->client);
 424	kfree(rbdc->rbd_opts);
 425	kfree(rbdc);
 426}
 427
 428/*
 429 * Drop reference to ceph client node. If it's not referenced anymore, release
 430 * it.
 431 */
 432static void rbd_put_client(struct rbd_device *rbd_dev)
 433{
 434	kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
 435	rbd_dev->rbd_client = NULL;
 436	rbd_dev->client = NULL;
 437}
 438
 439/*
 440 * Destroy requests collection
 441 */
 442static void rbd_coll_release(struct kref *kref)
 
 
 443{
 444	struct rbd_req_coll *coll =
 445		container_of(kref, struct rbd_req_coll, kref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	dout("rbd_coll_release %p\n", coll);
 448	kfree(coll);
 
 
 
 
 
 
 
 449}
 450
 451/*
 452 * Create a new header structure, translate header format from the on-disk
 453 * header.
 454 */
 455static int rbd_header_from_disk(struct rbd_image_header *header,
 456				 struct rbd_image_header_ondisk *ondisk,
 457				 int allocated_snaps,
 458				 gfp_t gfp_flags)
 459{
 460	int i;
 461	u32 snap_count = le32_to_cpu(ondisk->snap_count);
 
 
 
 
 
 
 462	int ret = -ENOMEM;
 
 463
 464	init_rwsem(&header->snap_rwsem);
 465	header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
 466	header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
 467				snap_count *
 468				 sizeof(struct rbd_image_snap_ondisk),
 469				gfp_flags);
 470	if (!header->snapc)
 471		return -ENOMEM;
 472	if (snap_count) {
 473		header->snap_names = kmalloc(header->snap_names_len,
 474					     GFP_KERNEL);
 475		if (!header->snap_names)
 476			goto err_snapc;
 477		header->snap_sizes = kmalloc(snap_count * sizeof(u64),
 478					     GFP_KERNEL);
 479		if (!header->snap_sizes)
 480			goto err_names;
 481	} else {
 482		header->snap_names = NULL;
 483		header->snap_sizes = NULL;
 484	}
 485	memcpy(header->block_name, ondisk->block_name,
 486	       sizeof(ondisk->block_name));
 487
 488	header->image_size = le64_to_cpu(ondisk->image_size);
 489	header->obj_order = ondisk->options.order;
 490	header->crypt_type = ondisk->options.crypt_type;
 491	header->comp_type = ondisk->options.comp_type;
 492
 493	atomic_set(&header->snapc->nref, 1);
 494	header->snap_seq = le64_to_cpu(ondisk->snap_seq);
 495	header->snapc->num_snaps = snap_count;
 496	header->total_snaps = snap_count;
 497
 498	if (snap_count &&
 499	    allocated_snaps == snap_count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500		for (i = 0; i < snap_count; i++) {
 501			header->snapc->snaps[i] =
 502				le64_to_cpu(ondisk->snaps[i].id);
 503			header->snap_sizes[i] =
 504				le64_to_cpu(ondisk->snaps[i].image_size);
 505		}
 
 
 
 506
 507		/* copy snapshot names */
 508		memcpy(header->snap_names, &ondisk->snaps[i],
 509			header->snap_names_len);
 
 
 
 
 
 
 
 
 
 
 510	}
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 512	return 0;
 
 
 
 
 
 
 
 513
 514err_names:
 515	kfree(header->snap_names);
 516err_snapc:
 517	kfree(header->snapc);
 518	return ret;
 519}
 520
 521static int snap_index(struct rbd_image_header *header, int snap_num)
 522{
 523	return header->total_snaps - snap_num;
 
 
 
 
 
 
 
 
 
 
 524}
 525
 526static u64 cur_snap_id(struct rbd_device *rbd_dev)
 
 
 
 
 527{
 528	struct rbd_image_header *header = &rbd_dev->header;
 
 529
 530	if (!rbd_dev->cur_snap)
 531		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533	return header->snapc->snaps[snap_index(header, rbd_dev->cur_snap)];
 534}
 535
 536static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
 537			u64 *seq, u64 *size)
 538{
 539	int i;
 540	char *p = header->snap_names;
 541
 542	for (i = 0; i < header->total_snaps; i++, p += strlen(p) + 1) {
 543		if (strcmp(snap_name, p) == 0)
 544			break;
 545	}
 546	if (i == header->total_snaps)
 547		return -ENOENT;
 548	if (seq)
 549		*seq = header->snapc->snaps[i];
 550
 551	if (size)
 552		*size = header->snap_sizes[i];
 
 
 
 
 
 
 553
 554	return i;
 
 
 
 
 555}
 556
 557static int rbd_header_set_snap(struct rbd_device *dev,
 558			       const char *snap_name,
 559			       u64 *size)
 560{
 561	struct rbd_image_header *header = &dev->header;
 562	struct ceph_snap_context *snapc = header->snapc;
 563	int ret = -ENOENT;
 
 
 564
 565	down_write(&header->snap_rwsem);
 
 
 566
 567	if (!snap_name ||
 568	    !*snap_name ||
 569	    strcmp(snap_name, "-") == 0 ||
 570	    strcmp(snap_name, RBD_SNAP_HEAD_NAME) == 0) {
 571		if (header->total_snaps)
 572			snapc->seq = header->snap_seq;
 573		else
 574			snapc->seq = 0;
 575		dev->cur_snap = 0;
 576		dev->read_only = 0;
 577		if (size)
 578			*size = header->image_size;
 579	} else {
 580		ret = snap_by_name(header, snap_name, &snapc->seq, size);
 581		if (ret < 0)
 582			goto done;
 583
 584		dev->cur_snap = header->total_snaps - ret;
 585		dev->read_only = 1;
 
 
 
 586	}
 
 
 587
 588	ret = 0;
 589done:
 590	up_write(&header->snap_rwsem);
 591	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592}
 593
 594static void rbd_header_free(struct rbd_image_header *header)
 595{
 596	kfree(header->snapc);
 597	kfree(header->snap_names);
 598	kfree(header->snap_sizes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 599}
 600
 601/*
 602 * get the actual striped segment name, offset and length
 603 */
 604static u64 rbd_get_segment(struct rbd_image_header *header,
 605			   const char *block_name,
 606			   u64 ofs, u64 len,
 607			   char *seg_name, u64 *segofs)
 608{
 609	u64 seg = ofs >> header->obj_order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610
 611	if (seg_name)
 612		snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
 613			 "%s.%012llx", block_name, seg);
 614
 615	ofs = ofs & ((1 << header->obj_order) - 1);
 616	len = min_t(u64, len, (1 << header->obj_order) - ofs);
 617
 618	if (segofs)
 619		*segofs = ofs;
 
 620
 621	return len;
 622}
 623
 624static int rbd_get_num_segments(struct rbd_image_header *header,
 625				u64 ofs, u64 len)
 626{
 627	u64 start_seg = ofs >> header->obj_order;
 628	u64 end_seg = (ofs + len - 1) >> header->obj_order;
 629	return end_seg - start_seg + 1;
 
 
 
 
 
 
 630}
 631
 632/*
 633 * returns the size of an object in the image
 634 */
 635static u64 rbd_obj_bytes(struct rbd_image_header *header)
 636{
 637	return 1 << header->obj_order;
 638}
 639
 640/*
 641 * bio helpers
 642 */
 643
 644static void bio_chain_put(struct bio *chain)
 645{
 646	struct bio *tmp;
 647
 648	while (chain) {
 649		tmp = chain;
 650		chain = chain->bi_next;
 651		bio_put(tmp);
 652	}
 653}
 654
 655/*
 656 * zeros a bio chain, starting at specific offset
 657 */
 658static void zero_bio_chain(struct bio *chain, int start_ofs)
 659{
 660	struct bio_vec *bv;
 
 661	unsigned long flags;
 662	void *buf;
 663	int i;
 664	int pos = 0;
 665
 666	while (chain) {
 667		bio_for_each_segment(bv, chain, i) {
 668			if (pos + bv->bv_len > start_ofs) {
 669				int remainder = max(start_ofs - pos, 0);
 670				buf = bvec_kmap_irq(bv, &flags);
 671				memset(buf + remainder, 0,
 672				       bv->bv_len - remainder);
 
 673				bvec_kunmap_irq(buf, &flags);
 674			}
 675			pos += bv->bv_len;
 676		}
 677
 678		chain = chain->bi_next;
 679	}
 680}
 681
 682/*
 683 * bio_chain_clone - clone a chain of bios up to a certain length.
 684 * might return a bio_pair that will need to be released.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685 */
 686static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
 687				   struct bio_pair **bp,
 688				   int len, gfp_t gfpmask)
 689{
 690	struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
 691	int total = 0;
 692
 693	if (*bp) {
 694		bio_pair_release(*bp);
 695		*bp = NULL;
 696	}
 
 697
 698	while (old_chain && (total < len)) {
 699		tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
 700		if (!tmp)
 701			goto err_out;
 
 702
 703		if (total + old_chain->bi_size > len) {
 704			struct bio_pair *bp;
 
 
 705
 706			/*
 707			 * this split can only happen with a single paged bio,
 708			 * split_bio will BUG_ON if this is not the case
 709			 */
 710			dout("bio_chain_clone split! total=%d remaining=%d"
 711			     "bi_size=%d\n",
 712			     (int)total, (int)len-total,
 713			     (int)old_chain->bi_size);
 714
 715			/* split the bio. We'll release it either in the next
 716			   call, or it will have to be released outside */
 717			bp = bio_split(old_chain, (len - total) / 512ULL);
 718			if (!bp)
 719				goto err_out;
 720
 721			__bio_clone(tmp, &bp->bio1);
 
 
 
 
 722
 723			*next = &bp->bio2;
 724		} else {
 725			__bio_clone(tmp, old_chain);
 726			*next = old_chain->bi_next;
 727		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 728
 729		tmp->bi_bdev = NULL;
 730		gfpmask &= ~__GFP_WAIT;
 731		tmp->bi_next = NULL;
 
 
 732
 733		if (!new_chain) {
 734			new_chain = tail = tmp;
 735		} else {
 736			tail->bi_next = tmp;
 737			tail = tmp;
 738		}
 739		old_chain = old_chain->bi_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741		total += tmp->bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742	}
 
 743
 744	BUG_ON(total < len);
 
 
 
 745
 746	if (tail)
 747		tail->bi_next = NULL;
 748
 749	*old = old_chain;
 
 750
 751	return new_chain;
 752
 753err_out:
 754	dout("bio_chain_clone with err\n");
 755	bio_chain_put(new_chain);
 756	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757}
 758
 759/*
 760 * helpers for osd request op vectors.
 
 
 761 */
 762static int rbd_create_rw_ops(struct ceph_osd_req_op **ops,
 763			    int num_ops,
 764			    int opcode,
 765			    u32 payload_len)
 766{
 767	*ops = kzalloc(sizeof(struct ceph_osd_req_op) * (num_ops + 1),
 768		       GFP_NOIO);
 769	if (!*ops)
 770		return -ENOMEM;
 771	(*ops)[0].op = opcode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772	/*
 773	 * op extent offset and length will be set later on
 774	 * in calc_raw_layout()
 
 
 
 
 775	 */
 776	(*ops)[0].payload_len = payload_len;
 777	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 778}
 779
 780static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
 781{
 782	kfree(ops);
 
 
 
 
 
 783}
 784
 785static void rbd_coll_end_req_index(struct request *rq,
 786				   struct rbd_req_coll *coll,
 787				   int index,
 788				   int ret, u64 len)
 789{
 790	struct request_queue *q;
 791	int min, max, i;
 792
 793	dout("rbd_coll_end_req_index %p index %d ret %d len %lld\n",
 794	     coll, index, ret, len);
 795
 796	if (!rq)
 797		return;
 
 
 
 798
 799	if (!coll) {
 800		blk_end_request(rq, ret, len);
 801		return;
 
 802	}
 803
 804	q = rq->q;
 
 
 
 
 
 
 
 
 
 
 805
 806	spin_lock_irq(q->queue_lock);
 807	coll->status[index].done = 1;
 808	coll->status[index].rc = ret;
 809	coll->status[index].bytes = len;
 810	max = min = coll->num_done;
 811	while (max < coll->total && coll->status[max].done)
 812		max++;
 813
 814	for (i = min; i<max; i++) {
 815		__blk_end_request(rq, coll->status[i].rc,
 816				  coll->status[i].bytes);
 817		coll->num_done++;
 818		kref_put(&coll->kref, rbd_coll_release);
 819	}
 820	spin_unlock_irq(q->queue_lock);
 821}
 822
 823static void rbd_coll_end_req(struct rbd_request *req,
 824			     int ret, u64 len)
 825{
 826	rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
 827}
 828
 829/*
 830 * Send ceph osd request
 831 */
 832static int rbd_do_request(struct request *rq,
 833			  struct rbd_device *dev,
 834			  struct ceph_snap_context *snapc,
 835			  u64 snapid,
 836			  const char *obj, u64 ofs, u64 len,
 837			  struct bio *bio,
 838			  struct page **pages,
 839			  int num_pages,
 840			  int flags,
 841			  struct ceph_osd_req_op *ops,
 842			  int num_reply,
 843			  struct rbd_req_coll *coll,
 844			  int coll_index,
 845			  void (*rbd_cb)(struct ceph_osd_request *req,
 846					 struct ceph_msg *msg),
 847			  struct ceph_osd_request **linger_req,
 848			  u64 *ver)
 849{
 850	struct ceph_osd_request *req;
 851	struct ceph_file_layout *layout;
 852	int ret;
 853	u64 bno;
 854	struct timespec mtime = CURRENT_TIME;
 855	struct rbd_request *req_data;
 856	struct ceph_osd_request_head *reqhead;
 857	struct rbd_image_header *header = &dev->header;
 858
 859	req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
 860	if (!req_data) {
 861		if (coll)
 862			rbd_coll_end_req_index(rq, coll, coll_index,
 863					       -ENOMEM, len);
 864		return -ENOMEM;
 
 
 865	}
 866
 867	if (coll) {
 868		req_data->coll = coll;
 869		req_data->coll_index = coll_index;
 870	}
 871
 872	dout("rbd_do_request obj=%s ofs=%lld len=%lld\n", obj, len, ofs);
 873
 874	down_read(&header->snap_rwsem);
 875
 876	req = ceph_osdc_alloc_request(&dev->client->osdc, flags,
 877				      snapc,
 878				      ops,
 879				      false,
 880				      GFP_NOIO, pages, bio);
 881	if (!req) {
 882		up_read(&header->snap_rwsem);
 883		ret = -ENOMEM;
 884		goto done_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	}
 886
 887	req->r_callback = rbd_cb;
 
 
 888
 889	req_data->rq = rq;
 890	req_data->bio = bio;
 891	req_data->pages = pages;
 892	req_data->len = len;
 
 893
 894	req->r_priv = req_data;
 895
 896	reqhead = req->r_request->front.iov_base;
 897	reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
 
 
 898
 899	strncpy(req->r_oid, obj, sizeof(req->r_oid));
 900	req->r_oid_len = strlen(req->r_oid);
 
 
 
 
 901
 902	layout = &req->r_file_layout;
 903	memset(layout, 0, sizeof(*layout));
 904	layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
 905	layout->fl_stripe_count = cpu_to_le32(1);
 906	layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
 907	layout->fl_pg_preferred = cpu_to_le32(-1);
 908	layout->fl_pg_pool = cpu_to_le32(dev->poolid);
 909	ceph_calc_raw_layout(&dev->client->osdc, layout, snapid,
 910			     ofs, &len, &bno, req, ops);
 911
 912	ceph_osdc_build_request(req, ofs, &len,
 913				ops,
 914				snapc,
 915				&mtime,
 916				req->r_oid, req->r_oid_len);
 917	up_read(&header->snap_rwsem);
 918
 919	if (linger_req) {
 920		ceph_osdc_set_request_linger(&dev->client->osdc, req);
 921		*linger_req = req;
 922	}
 
 
 
 
 
 
 
 
 
 
 
 923
 924	ret = ceph_osdc_start_request(&dev->client->osdc, req, false);
 925	if (ret < 0)
 926		goto done_err;
 927
 928	if (!rbd_cb) {
 929		ret = ceph_osdc_wait_request(&dev->client->osdc, req);
 930		if (ver)
 931			*ver = le64_to_cpu(req->r_reassert_version.version);
 932		dout("reassert_ver=%lld\n",
 933		     le64_to_cpu(req->r_reassert_version.version));
 934		ceph_osdc_put_request(req);
 935	}
 936	return ret;
 937
 938done_err:
 939	bio_chain_put(req_data->bio);
 940	ceph_osdc_put_request(req);
 941done_pages:
 942	rbd_coll_end_req(req_data, ret, len);
 943	kfree(req_data);
 944	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945}
 946
 947/*
 948 * Ceph osd op callback
 
 
 949 */
 950static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
 
 951{
 952	struct rbd_request *req_data = req->r_priv;
 953	struct ceph_osd_reply_head *replyhead;
 954	struct ceph_osd_op *op;
 955	__s32 rc;
 956	u64 bytes;
 957	int read_op;
 958
 959	/* parse reply */
 960	replyhead = msg->front.iov_base;
 961	WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
 962	op = (void *)(replyhead + 1);
 963	rc = le32_to_cpu(replyhead->result);
 964	bytes = le64_to_cpu(op->extent.length);
 965	read_op = (le32_to_cpu(op->op) == CEPH_OSD_OP_READ);
 966
 967	dout("rbd_req_cb bytes=%lld readop=%d rc=%d\n", bytes, read_op, rc);
 968
 969	if (rc == -ENOENT && read_op) {
 970		zero_bio_chain(req_data->bio, 0);
 971		rc = 0;
 972	} else if (rc == 0 && read_op && bytes < req_data->len) {
 973		zero_bio_chain(req_data->bio, bytes);
 974		bytes = req_data->len;
 975	}
 976
 977	rbd_coll_end_req(req_data, rc, bytes);
 
 
 978
 979	if (req_data->bio)
 980		bio_chain_put(req_data->bio);
 981
 982	ceph_osdc_put_request(req);
 983	kfree(req_data);
 984}
 985
 986static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
 
 987{
 988	ceph_osdc_put_request(req);
 989}
 990
 991/*
 992 * Do a synchronous ceph osd operation
 993 */
 994static int rbd_req_sync_op(struct rbd_device *dev,
 995			   struct ceph_snap_context *snapc,
 996			   u64 snapid,
 997			   int opcode,
 998			   int flags,
 999			   struct ceph_osd_req_op *orig_ops,
1000			   int num_reply,
1001			   const char *obj,
1002			   u64 ofs, u64 len,
1003			   char *buf,
1004			   struct ceph_osd_request **linger_req,
1005			   u64 *ver)
1006{
1007	int ret;
1008	struct page **pages;
1009	int num_pages;
1010	struct ceph_osd_req_op *ops = orig_ops;
1011	u32 payload_len;
1012
1013	num_pages = calc_pages_for(ofs , len);
1014	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1015	if (IS_ERR(pages))
1016		return PTR_ERR(pages);
1017
1018	if (!orig_ops) {
1019		payload_len = (flags & CEPH_OSD_FLAG_WRITE ? len : 0);
1020		ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1021		if (ret < 0)
1022			goto done;
1023
1024		if ((flags & CEPH_OSD_FLAG_WRITE) && buf) {
1025			ret = ceph_copy_to_page_vector(pages, buf, ofs, len);
1026			if (ret < 0)
1027				goto done_ops;
1028		}
1029	}
1030
1031	ret = rbd_do_request(NULL, dev, snapc, snapid,
1032			  obj, ofs, len, NULL,
1033			  pages, num_pages,
1034			  flags,
1035			  ops,
1036			  2,
1037			  NULL, 0,
1038			  NULL,
1039			  linger_req, ver);
1040	if (ret < 0)
1041		goto done_ops;
1042
1043	if ((flags & CEPH_OSD_FLAG_READ) && buf)
1044		ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1045
1046done_ops:
1047	if (!orig_ops)
1048		rbd_destroy_ops(ops);
1049done:
1050	ceph_release_page_vector(pages, num_pages);
1051	return ret;
1052}
1053
1054/*
1055 * Do an asynchronous ceph osd operation
1056 */
1057static int rbd_do_op(struct request *rq,
1058		     struct rbd_device *rbd_dev ,
1059		     struct ceph_snap_context *snapc,
1060		     u64 snapid,
1061		     int opcode, int flags, int num_reply,
1062		     u64 ofs, u64 len,
1063		     struct bio *bio,
1064		     struct rbd_req_coll *coll,
1065		     int coll_index)
1066{
1067	char *seg_name;
1068	u64 seg_ofs;
1069	u64 seg_len;
1070	int ret;
1071	struct ceph_osd_req_op *ops;
1072	u32 payload_len;
1073
1074	seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1075	if (!seg_name)
1076		return -ENOMEM;
1077
1078	seg_len = rbd_get_segment(&rbd_dev->header,
1079				  rbd_dev->header.block_name,
1080				  ofs, len,
1081				  seg_name, &seg_ofs);
1082
1083	payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
 
1084
1085	ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1086	if (ret < 0)
1087		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	/* we've taken care of segment sizes earlier when we
1090	   cloned the bios. We should never have a segment
1091	   truncated at this point */
1092	BUG_ON(seg_len < len);
1093
1094	ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1095			     seg_name, seg_ofs, seg_len,
1096			     bio,
1097			     NULL, 0,
1098			     flags,
1099			     ops,
1100			     num_reply,
1101			     coll, coll_index,
1102			     rbd_req_cb, 0, NULL);
1103
1104	rbd_destroy_ops(ops);
1105done:
1106	kfree(seg_name);
1107	return ret;
 
 
 
1108}
1109
1110/*
1111 * Request async osd write
 
 
 
1112 */
1113static int rbd_req_write(struct request *rq,
1114			 struct rbd_device *rbd_dev,
1115			 struct ceph_snap_context *snapc,
1116			 u64 ofs, u64 len,
1117			 struct bio *bio,
1118			 struct rbd_req_coll *coll,
1119			 int coll_index)
1120{
1121	return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1122			 CEPH_OSD_OP_WRITE,
1123			 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1124			 2,
1125			 ofs, len, bio, coll, coll_index);
 
 
 
 
 
 
 
 
 
 
1126}
1127
1128/*
1129 * Request async osd read
 
 
 
 
 
 
 
 
 
 
1130 */
1131static int rbd_req_read(struct request *rq,
1132			 struct rbd_device *rbd_dev,
1133			 u64 snapid,
1134			 u64 ofs, u64 len,
1135			 struct bio *bio,
1136			 struct rbd_req_coll *coll,
1137			 int coll_index)
1138{
1139	return rbd_do_op(rq, rbd_dev, NULL,
1140			 (snapid ? snapid : CEPH_NOSNAP),
1141			 CEPH_OSD_OP_READ,
1142			 CEPH_OSD_FLAG_READ,
1143			 2,
1144			 ofs, len, bio, coll, coll_index);
 
 
 
 
 
 
 
 
 
1145}
1146
1147/*
1148 * Request sync osd read
 
 
1149 */
1150static int rbd_req_sync_read(struct rbd_device *dev,
1151			  struct ceph_snap_context *snapc,
1152			  u64 snapid,
1153			  const char *obj,
1154			  u64 ofs, u64 len,
1155			  char *buf,
1156			  u64 *ver)
1157{
1158	return rbd_req_sync_op(dev, NULL,
1159			       (snapid ? snapid : CEPH_NOSNAP),
1160			       CEPH_OSD_OP_READ,
1161			       CEPH_OSD_FLAG_READ,
1162			       NULL,
1163			       1, obj, ofs, len, buf, NULL, ver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164}
1165
1166/*
1167 * Request sync osd watch
1168 */
1169static int rbd_req_sync_notify_ack(struct rbd_device *dev,
1170				   u64 ver,
1171				   u64 notify_id,
1172				   const char *obj)
1173{
1174	struct ceph_osd_req_op *ops;
1175	struct page **pages = NULL;
1176	int ret;
1177
1178	ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1179	if (ret < 0)
1180		return ret;
1181
1182	ops[0].watch.ver = cpu_to_le64(dev->header.obj_version);
1183	ops[0].watch.cookie = notify_id;
1184	ops[0].watch.flag = 0;
1185
1186	ret = rbd_do_request(NULL, dev, NULL, CEPH_NOSNAP,
1187			  obj, 0, 0, NULL,
1188			  pages, 0,
1189			  CEPH_OSD_FLAG_READ,
1190			  ops,
1191			  1,
1192			  NULL, 0,
1193			  rbd_simple_req_cb, 0, NULL);
1194
1195	rbd_destroy_ops(ops);
1196	return ret;
 
 
 
 
 
 
 
 
 
 
 
1197}
1198
1199static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
 
 
1200{
1201	struct rbd_device *dev = (struct rbd_device *)data;
1202	int rc;
1203
1204	if (!dev)
1205		return;
1206
1207	dout("rbd_watch_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1208		notify_id, (int)opcode);
1209	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1210	rc = __rbd_update_snaps(dev);
1211	mutex_unlock(&ctl_mutex);
1212	if (rc)
1213		pr_warning(DRV_NAME "%d got notification but failed to update"
1214			   " snaps: %d\n", dev->major, rc);
1215
1216	rbd_req_sync_notify_ack(dev, ver, notify_id, dev->obj_md_name);
1217}
1218
1219/*
1220 * Request sync osd watch
1221 */
1222static int rbd_req_sync_watch(struct rbd_device *dev,
1223			      const char *obj,
1224			      u64 ver)
1225{
1226	struct ceph_osd_req_op *ops;
1227	struct ceph_osd_client *osdc = &dev->client->osdc;
1228
1229	int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1230	if (ret < 0)
1231		return ret;
1232
1233	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1234				     (void *)dev, &dev->watch_event);
1235	if (ret < 0)
1236		goto fail;
 
 
1237
1238	ops[0].watch.ver = cpu_to_le64(ver);
1239	ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1240	ops[0].watch.flag = 1;
1241
1242	ret = rbd_req_sync_op(dev, NULL,
1243			      CEPH_NOSNAP,
1244			      0,
1245			      CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1246			      ops,
1247			      1, obj, 0, 0, NULL,
1248			      &dev->watch_request, NULL);
1249
1250	if (ret < 0)
1251		goto fail_event;
1252
1253	rbd_destroy_ops(ops);
1254	return 0;
 
 
 
1255
1256fail_event:
1257	ceph_osdc_cancel_event(dev->watch_event);
1258	dev->watch_event = NULL;
1259fail:
1260	rbd_destroy_ops(ops);
1261	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262}
1263
1264/*
1265 * Request sync osd unwatch
1266 */
1267static int rbd_req_sync_unwatch(struct rbd_device *dev,
1268				const char *obj)
1269{
1270	struct ceph_osd_req_op *ops;
 
 
1271
1272	int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1273	if (ret < 0)
1274		return ret;
 
 
 
 
 
1275
1276	ops[0].watch.ver = 0;
1277	ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1278	ops[0].watch.flag = 0;
1279
1280	ret = rbd_req_sync_op(dev, NULL,
1281			      CEPH_NOSNAP,
1282			      0,
1283			      CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1284			      ops,
1285			      1, obj, 0, 0, NULL, NULL, NULL);
1286
1287	rbd_destroy_ops(ops);
1288	ceph_osdc_cancel_event(dev->watch_event);
1289	dev->watch_event = NULL;
1290	return ret;
 
 
 
 
 
 
 
 
 
1291}
1292
1293struct rbd_notify_info {
1294	struct rbd_device *dev;
1295};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296
1297static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298{
1299	struct rbd_device *dev = (struct rbd_device *)data;
1300	if (!dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301		return;
 
 
1302
1303	dout("rbd_notify_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1304		notify_id, (int)opcode);
 
 
1305}
1306
1307/*
1308 * Request sync osd notify
 
 
 
 
 
 
 
 
 
 
 
1309 */
1310static int rbd_req_sync_notify(struct rbd_device *dev,
1311		          const char *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312{
1313	struct ceph_osd_req_op *ops;
1314	struct ceph_osd_client *osdc = &dev->client->osdc;
1315	struct ceph_osd_event *event;
1316	struct rbd_notify_info info;
1317	int payload_len = sizeof(u32) + sizeof(u32);
 
1318	int ret;
1319
1320	ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY, payload_len);
1321	if (ret < 0)
1322		return ret;
 
 
 
 
 
 
 
 
 
 
1323
1324	info.dev = dev;
 
 
 
 
1325
1326	ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1327				     (void *)&info, &event);
1328	if (ret < 0)
1329		goto fail;
 
 
 
 
 
 
 
 
1330
1331	ops[0].watch.ver = 1;
1332	ops[0].watch.flag = 1;
1333	ops[0].watch.cookie = event->cookie;
1334	ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1335	ops[0].watch.timeout = 12;
1336
1337	ret = rbd_req_sync_op(dev, NULL,
1338			       CEPH_NOSNAP,
1339			       0,
1340			       CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1341			       ops,
1342			       1, obj, 0, 0, NULL, NULL, NULL);
1343	if (ret < 0)
1344		goto fail_event;
1345
1346	ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1347	dout("ceph_osdc_wait_event returned %d\n", ret);
1348	rbd_destroy_ops(ops);
1349	return 0;
 
1350
1351fail_event:
1352	ceph_osdc_cancel_event(event);
1353fail:
1354	rbd_destroy_ops(ops);
1355	return ret;
1356}
1357
1358/*
1359 * Request sync osd rollback
1360 */
1361static int rbd_req_sync_rollback_obj(struct rbd_device *dev,
1362				     u64 snapid,
1363				     const char *obj)
1364{
1365	struct ceph_osd_req_op *ops;
1366	int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_ROLLBACK, 0);
1367	if (ret < 0)
1368		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370	ops[0].snap.snapid = snapid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372	ret = rbd_req_sync_op(dev, NULL,
1373			       CEPH_NOSNAP,
1374			       0,
1375			       CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1376			       ops,
1377			       1, obj, 0, 0, NULL, NULL, NULL);
1378
1379	rbd_destroy_ops(ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380
1381	return ret;
1382}
1383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384/*
1385 * Request sync osd read
 
1386 */
1387static int rbd_req_sync_exec(struct rbd_device *dev,
1388			     const char *obj,
1389			     const char *cls,
1390			     const char *method,
1391			     const char *data,
1392			     int len,
1393			     u64 *ver)
1394{
1395	struct ceph_osd_req_op *ops;
1396	int cls_len = strlen(cls);
1397	int method_len = strlen(method);
1398	int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_CALL,
1399				    cls_len + method_len + len);
1400	if (ret < 0)
1401		return ret;
1402
1403	ops[0].cls.class_name = cls;
1404	ops[0].cls.class_len = (__u8)cls_len;
1405	ops[0].cls.method_name = method;
1406	ops[0].cls.method_len = (__u8)method_len;
1407	ops[0].cls.argc = 0;
1408	ops[0].cls.indata = data;
1409	ops[0].cls.indata_len = len;
1410
1411	ret = rbd_req_sync_op(dev, NULL,
1412			       CEPH_NOSNAP,
1413			       0,
1414			       CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1415			       ops,
1416			       1, obj, 0, 0, NULL, NULL, ver);
 
1417
1418	rbd_destroy_ops(ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419
1420	dout("cls_exec returned %d\n", ret);
1421	return ret;
1422}
1423
1424static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1425{
1426	struct rbd_req_coll *coll =
1427			kzalloc(sizeof(struct rbd_req_coll) +
1428			        sizeof(struct rbd_req_status) * num_reqs,
1429				GFP_ATOMIC);
1430
1431	if (!coll)
1432		return NULL;
1433	coll->total = num_reqs;
1434	kref_init(&coll->kref);
1435	return coll;
 
 
 
 
1436}
1437
1438/*
1439 * block device queue callback
 
1440 */
1441static void rbd_rq_fn(struct request_queue *q)
 
 
 
 
 
 
 
1442{
1443	struct rbd_device *rbd_dev = q->queuedata;
1444	struct request *rq;
1445	struct bio_pair *bp = NULL;
 
 
1446
1447	rq = blk_fetch_request(q);
 
 
 
 
 
 
 
 
 
 
1448
1449	while (1) {
1450		struct bio *bio;
1451		struct bio *rq_bio, *next_bio = NULL;
1452		bool do_write;
1453		int size, op_size = 0;
1454		u64 ofs;
1455		int num_segs, cur_seg = 0;
1456		struct rbd_req_coll *coll;
1457
1458		/* peek at request from block layer */
1459		if (!rq)
1460			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461
1462		dout("fetched request\n");
 
 
1463
1464		/* filter out block requests we don't understand */
1465		if ((rq->cmd_type != REQ_TYPE_FS)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466			__blk_end_request_all(rq, 0);
1467			goto next;
1468		}
1469
1470		/* deduce our operation (read, write) */
1471		do_write = (rq_data_dir(rq) == WRITE);
1472
1473		size = blk_rq_bytes(rq);
1474		ofs = blk_rq_pos(rq) * 512ULL;
1475		rq_bio = rq->bio;
1476		if (do_write && rbd_dev->read_only) {
1477			__blk_end_request_all(rq, -EROFS);
1478			goto next;
 
1479		}
1480
1481		spin_unlock_irq(q->queue_lock);
1482
1483		dout("%s 0x%x bytes at 0x%llx\n",
1484		     do_write ? "write" : "read",
1485		     size, blk_rq_pos(rq) * 512ULL);
1486
1487		num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1488		coll = rbd_alloc_coll(num_segs);
1489		if (!coll) {
1490			spin_lock_irq(q->queue_lock);
1491			__blk_end_request_all(rq, -ENOMEM);
1492			goto next;
1493		}
1494
1495		do {
1496			/* a bio clone to be passed down to OSD req */
1497			dout("rq->bio->bi_vcnt=%d\n", rq->bio->bi_vcnt);
1498			op_size = rbd_get_segment(&rbd_dev->header,
1499						  rbd_dev->header.block_name,
1500						  ofs, size,
1501						  NULL, NULL);
1502			kref_get(&coll->kref);
1503			bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1504					      op_size, GFP_ATOMIC);
1505			if (!bio) {
1506				rbd_coll_end_req_index(rq, coll, cur_seg,
1507						       -ENOMEM, op_size);
1508				goto next_seg;
1509			}
1510
 
 
 
 
 
 
1511
1512			/* init OSD command: write or read */
1513			if (do_write)
1514				rbd_req_write(rq, rbd_dev,
1515					      rbd_dev->header.snapc,
1516					      ofs,
1517					      op_size, bio,
1518					      coll, cur_seg);
1519			else
1520				rbd_req_read(rq, rbd_dev,
1521					     cur_snap_id(rbd_dev),
1522					     ofs,
1523					     op_size, bio,
1524					     coll, cur_seg);
1525
1526next_seg:
1527			size -= op_size;
1528			ofs += op_size;
1529
1530			cur_seg++;
1531			rq_bio = next_bio;
1532		} while (size > 0);
1533		kref_put(&coll->kref, rbd_coll_release);
1534
1535		if (bp)
1536			bio_pair_release(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537		spin_lock_irq(q->queue_lock);
1538next:
1539		rq = blk_fetch_request(q);
 
 
 
 
 
1540	}
1541}
1542
1543/*
1544 * a queue callback. Makes sure that we don't create a bio that spans across
1545 * multiple osd objects. One exception would be with a single page bios,
1546 * which we handle later at bio_chain_clone
1547 */
1548static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1549			  struct bio_vec *bvec)
1550{
1551	struct rbd_device *rbd_dev = q->queuedata;
1552	unsigned int chunk_sectors = 1 << (rbd_dev->header.obj_order - 9);
1553	sector_t sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1554	unsigned int bio_sectors = bmd->bi_size >> 9;
1555	int max;
1556
1557	max =  (chunk_sectors - ((sector & (chunk_sectors - 1))
1558				 + bio_sectors)) << 9;
1559	if (max < 0)
1560		max = 0; /* bio_add cannot handle a negative return */
1561	if (max <= bvec->bv_len && bio_sectors == 0)
1562		return bvec->bv_len;
1563	return max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564}
1565
1566static void rbd_free_disk(struct rbd_device *rbd_dev)
1567{
1568	struct gendisk *disk = rbd_dev->disk;
1569
1570	if (!disk)
1571		return;
1572
1573	rbd_header_free(&rbd_dev->header);
1574
1575	if (disk->flags & GENHD_FL_UP)
1576		del_gendisk(disk);
1577	if (disk->queue)
1578		blk_cleanup_queue(disk->queue);
 
1579	put_disk(disk);
1580}
1581
1582/*
1583 * reload the ondisk the header 
1584 */
1585static int rbd_read_header(struct rbd_device *rbd_dev,
1586			   struct rbd_image_header *header)
1587{
1588	ssize_t rc;
1589	struct rbd_image_header_ondisk *dh;
1590	int snap_count = 0;
1591	u64 snap_names_len = 0;
1592	u64 ver;
1593
1594	while (1) {
1595		int len = sizeof(*dh) +
1596			  snap_count * sizeof(struct rbd_image_snap_ondisk) +
1597			  snap_names_len;
1598
1599		rc = -ENOMEM;
1600		dh = kmalloc(len, GFP_KERNEL);
1601		if (!dh)
1602			return -ENOMEM;
1603
1604		rc = rbd_req_sync_read(rbd_dev,
1605				       NULL, CEPH_NOSNAP,
1606				       rbd_dev->obj_md_name,
1607				       0, len,
1608				       (char *)dh, &ver);
1609		if (rc < 0)
1610			goto out_dh;
1611
1612		rc = rbd_header_from_disk(header, dh, snap_count, GFP_KERNEL);
1613		if (rc < 0)
1614			goto out_dh;
1615
1616		if (snap_count != header->total_snaps) {
1617			snap_count = header->total_snaps;
1618			snap_names_len = header->snap_names_len;
1619			rbd_header_free(header);
1620			kfree(dh);
1621			continue;
1622		}
1623		break;
1624	}
1625	header->obj_version = ver;
1626
1627out_dh:
1628	kfree(dh);
1629	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630}
1631
1632/*
1633 * create a snapshot
1634 */
1635static int rbd_header_add_snap(struct rbd_device *dev,
1636			       const char *snap_name,
1637			       gfp_t gfp_flags)
1638{
1639	int name_len = strlen(snap_name);
1640	u64 new_snapid;
 
 
1641	int ret;
1642	void *data, *p, *e;
1643	u64 ver;
1644
1645	/* we should create a snapshot only if we're pointing at the head */
1646	if (dev->cur_snap)
1647		return -EINVAL;
 
 
 
 
 
 
1648
1649	ret = ceph_monc_create_snapid(&dev->client->monc, dev->poolid,
1650				      &new_snapid);
1651	dout("created snapid=%lld\n", new_snapid);
1652	if (ret < 0)
1653		return ret;
1654
1655	data = kmalloc(name_len + 16, gfp_flags);
1656	if (!data)
1657		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658
1659	p = data;
1660	e = data + name_len + 16;
 
 
1661
1662	ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1663	ceph_encode_64_safe(&p, e, new_snapid, bad);
 
1664
1665	ret = rbd_req_sync_exec(dev, dev->obj_md_name, "rbd", "snap_add",
1666				data, p - data, &ver);
1667
1668	kfree(data);
 
 
 
 
 
 
1669
1670	if (ret < 0)
1671		return ret;
1672
1673	dev->header.snapc->seq =  new_snapid;
 
 
1674
1675	return 0;
1676bad:
1677	return -ERANGE;
1678}
1679
1680static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1681{
1682	struct rbd_snap *snap;
 
1683
1684	while (!list_empty(&rbd_dev->snaps)) {
1685		snap = list_first_entry(&rbd_dev->snaps, struct rbd_snap, node);
1686		__rbd_remove_snap_dev(rbd_dev, snap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687	}
1688}
1689
1690/*
1691 * only read the first part of the ondisk header, without the snaps info
1692 */
1693static int __rbd_update_snaps(struct rbd_device *rbd_dev)
1694{
 
1695	int ret;
1696	struct rbd_image_header h;
1697	u64 snap_seq;
1698	int follow_seq = 0;
1699
1700	ret = rbd_read_header(rbd_dev, &h);
1701	if (ret < 0)
1702		return ret;
1703
1704	/* resized? */
1705	set_capacity(rbd_dev->disk, h.image_size / 512ULL);
1706
1707	down_write(&rbd_dev->header.snap_rwsem);
1708
1709	snap_seq = rbd_dev->header.snapc->seq;
1710	if (rbd_dev->header.total_snaps &&
1711	    rbd_dev->header.snapc->snaps[0] == snap_seq)
1712		/* pointing at the head, will need to follow that
1713		   if head moves */
1714		follow_seq = 1;
1715
1716	kfree(rbd_dev->header.snapc);
1717	kfree(rbd_dev->header.snap_names);
1718	kfree(rbd_dev->header.snap_sizes);
1719
1720	rbd_dev->header.total_snaps = h.total_snaps;
1721	rbd_dev->header.snapc = h.snapc;
1722	rbd_dev->header.snap_names = h.snap_names;
1723	rbd_dev->header.snap_names_len = h.snap_names_len;
1724	rbd_dev->header.snap_sizes = h.snap_sizes;
1725	if (follow_seq)
1726		rbd_dev->header.snapc->seq = rbd_dev->header.snapc->snaps[0];
1727	else
1728		rbd_dev->header.snapc->seq = snap_seq;
1729
1730	ret = __rbd_init_snaps_header(rbd_dev);
1731
1732	up_write(&rbd_dev->header.snap_rwsem);
 
 
 
 
 
1733
1734	return ret;
1735}
1736
1737static int rbd_init_disk(struct rbd_device *rbd_dev)
1738{
1739	struct gendisk *disk;
1740	struct request_queue *q;
1741	int rc;
1742	u64 total_size = 0;
1743
1744	/* contact OSD, request size info about the object being mapped */
1745	rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1746	if (rc)
1747		return rc;
1748
1749	/* no need to lock here, as rbd_dev is not registered yet */
1750	rc = __rbd_init_snaps_header(rbd_dev);
1751	if (rc)
1752		return rc;
1753
1754	rc = rbd_header_set_snap(rbd_dev, rbd_dev->snap_name, &total_size);
1755	if (rc)
1756		return rc;
1757
1758	/* create gendisk info */
1759	rc = -ENOMEM;
1760	disk = alloc_disk(RBD_MINORS_PER_MAJOR);
 
1761	if (!disk)
1762		goto out;
1763
1764	snprintf(disk->disk_name, sizeof(disk->disk_name), DRV_NAME "%d",
1765		 rbd_dev->id);
1766	disk->major = rbd_dev->major;
1767	disk->first_minor = 0;
 
 
1768	disk->fops = &rbd_bd_ops;
1769	disk->private_data = rbd_dev;
1770
1771	/* init rq */
1772	rc = -ENOMEM;
1773	q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1774	if (!q)
1775		goto out_disk;
1776
 
 
 
1777	/* set io sizes to object size */
1778	blk_queue_max_hw_sectors(q, rbd_obj_bytes(&rbd_dev->header) / 512ULL);
1779	blk_queue_max_segment_size(q, rbd_obj_bytes(&rbd_dev->header));
1780	blk_queue_io_min(q, rbd_obj_bytes(&rbd_dev->header));
1781	blk_queue_io_opt(q, rbd_obj_bytes(&rbd_dev->header));
 
1782
1783	blk_queue_merge_bvec(q, rbd_merge_bvec);
1784	disk->queue = q;
1785
1786	q->queuedata = rbd_dev;
1787
1788	rbd_dev->disk = disk;
1789	rbd_dev->q = q;
1790
1791	/* finally, announce the disk to the world */
1792	set_capacity(disk, total_size / 512ULL);
1793	add_disk(disk);
1794
1795	pr_info("%s: added with size 0x%llx\n",
1796		disk->disk_name, (unsigned long long)total_size);
1797	return 0;
1798
1799out_disk:
1800	put_disk(disk);
1801out:
1802	return rc;
1803}
1804
1805/*
1806  sysfs
1807*/
1808
 
 
 
 
 
1809static ssize_t rbd_size_show(struct device *dev,
1810			     struct device_attribute *attr, char *buf)
1811{
1812	struct rbd_device *rbd_dev = dev_to_rbd(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
1813
1814	return sprintf(buf, "%llu\n", (unsigned long long)rbd_dev->header.image_size);
 
1815}
1816
1817static ssize_t rbd_major_show(struct device *dev,
1818			      struct device_attribute *attr, char *buf)
1819{
1820	struct rbd_device *rbd_dev = dev_to_rbd(dev);
 
 
 
 
 
 
 
 
 
 
 
1821
1822	return sprintf(buf, "%d\n", rbd_dev->major);
1823}
1824
1825static ssize_t rbd_client_id_show(struct device *dev,
1826				  struct device_attribute *attr, char *buf)
1827{
1828	struct rbd_device *rbd_dev = dev_to_rbd(dev);
1829
1830	return sprintf(buf, "client%lld\n", ceph_client_id(rbd_dev->client));
 
1831}
1832
1833static ssize_t rbd_pool_show(struct device *dev,
1834			     struct device_attribute *attr, char *buf)
1835{
1836	struct rbd_device *rbd_dev = dev_to_rbd(dev);
 
 
 
 
 
 
 
 
1837
1838	return sprintf(buf, "%s\n", rbd_dev->pool_name);
 
1839}
1840
1841static ssize_t rbd_name_show(struct device *dev,
1842			     struct device_attribute *attr, char *buf)
1843{
1844	struct rbd_device *rbd_dev = dev_to_rbd(dev);
 
 
 
 
 
 
 
 
 
 
 
1845
1846	return sprintf(buf, "%s\n", rbd_dev->obj);
1847}
1848
 
 
 
 
1849static ssize_t rbd_snap_show(struct device *dev,
1850			     struct device_attribute *attr,
1851			     char *buf)
1852{
1853	struct rbd_device *rbd_dev = dev_to_rbd(dev);
1854
1855	return sprintf(buf, "%s\n", rbd_dev->snap_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856}
1857
1858static ssize_t rbd_image_refresh(struct device *dev,
1859				 struct device_attribute *attr,
1860				 const char *buf,
1861				 size_t size)
1862{
1863	struct rbd_device *rbd_dev = dev_to_rbd(dev);
1864	int rc;
1865	int ret = size;
1866
1867	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1868
1869	rc = __rbd_update_snaps(rbd_dev);
1870	if (rc < 0)
1871		ret = rc;
1872
1873	mutex_unlock(&ctl_mutex);
1874	return ret;
1875}
1876
1877static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
 
1878static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
 
1879static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1880static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
 
1881static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
 
1882static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1883static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1884static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1885static DEVICE_ATTR(rollback_snap, S_IWUSR, NULL, rbd_snap_rollback);
1886
1887static struct attribute *rbd_attrs[] = {
1888	&dev_attr_size.attr,
 
1889	&dev_attr_major.attr,
 
1890	&dev_attr_client_id.attr,
1891	&dev_attr_pool.attr,
 
1892	&dev_attr_name.attr,
 
1893	&dev_attr_current_snap.attr,
 
1894	&dev_attr_refresh.attr,
1895	&dev_attr_create_snap.attr,
1896	&dev_attr_rollback_snap.attr,
1897	NULL
1898};
1899
1900static struct attribute_group rbd_attr_group = {
1901	.attrs = rbd_attrs,
1902};
1903
1904static const struct attribute_group *rbd_attr_groups[] = {
1905	&rbd_attr_group,
1906	NULL
1907};
1908
1909static void rbd_sysfs_dev_release(struct device *dev)
1910{
1911}
1912
1913static struct device_type rbd_device_type = {
1914	.name		= "rbd",
1915	.groups		= rbd_attr_groups,
1916	.release	= rbd_sysfs_dev_release,
1917};
1918
 
 
 
1919
1920/*
1921  sysfs - snapshots
1922*/
 
 
 
 
 
 
1923
1924static ssize_t rbd_snap_size_show(struct device *dev,
1925				  struct device_attribute *attr,
1926				  char *buf)
1927{
1928	struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
 
 
 
 
 
1929
1930	return sprintf(buf, "%lld\n", (long long)snap->size);
1931}
1932
1933static ssize_t rbd_snap_id_show(struct device *dev,
1934				struct device_attribute *attr,
1935				char *buf)
1936{
1937	struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1938
1939	return sprintf(buf, "%lld\n", (long long)snap->id);
 
 
 
 
1940}
1941
1942static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1943static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
 
 
1944
1945static struct attribute *rbd_snap_attrs[] = {
1946	&dev_attr_snap_size.attr,
1947	&dev_attr_snap_id.attr,
1948	NULL,
1949};
1950
1951static struct attribute_group rbd_snap_attr_group = {
1952	.attrs = rbd_snap_attrs,
1953};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954
1955static void rbd_snap_dev_release(struct device *dev)
1956{
1957	struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1958	kfree(snap->name);
1959	kfree(snap);
1960}
1961
1962static const struct attribute_group *rbd_snap_attr_groups[] = {
1963	&rbd_snap_attr_group,
1964	NULL
1965};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966
1967static struct device_type rbd_snap_device_type = {
1968	.groups		= rbd_snap_attr_groups,
1969	.release	= rbd_snap_dev_release,
1970};
 
1971
1972static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
1973				  struct rbd_snap *snap)
 
 
 
 
 
 
1974{
1975	list_del(&snap->node);
1976	device_unregister(&snap->dev);
 
1977}
1978
1979static int rbd_register_snap_dev(struct rbd_device *rbd_dev,
1980				  struct rbd_snap *snap,
1981				  struct device *parent)
1982{
1983	struct device *dev = &snap->dev;
1984	int ret;
 
1985
1986	dev->type = &rbd_snap_device_type;
1987	dev->parent = parent;
1988	dev->release = rbd_snap_dev_release;
1989	dev_set_name(dev, "snap_%s", snap->name);
1990	ret = device_register(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991
1992	return ret;
1993}
1994
1995static int __rbd_add_snap_dev(struct rbd_device *rbd_dev,
1996			      int i, const char *name,
1997			      struct rbd_snap **snapp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998{
 
 
 
 
 
 
 
 
 
 
1999	int ret;
2000	struct rbd_snap *snap = kzalloc(sizeof(*snap), GFP_KERNEL);
2001	if (!snap)
 
2002		return -ENOMEM;
2003	snap->name = kstrdup(name, GFP_KERNEL);
2004	snap->size = rbd_dev->header.snap_sizes[i];
2005	snap->id = rbd_dev->header.snapc->snaps[i];
2006	if (device_is_registered(&rbd_dev->dev)) {
2007		ret = rbd_register_snap_dev(rbd_dev, snap,
2008					     &rbd_dev->dev);
2009		if (ret < 0)
2010			goto err;
 
2011	}
2012	*snapp = snap;
2013	return 0;
2014err:
2015	kfree(snap->name);
2016	kfree(snap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017	return ret;
2018}
2019
2020/*
2021 * search for the previous snap in a null delimited string list
2022 */
2023const char *rbd_prev_snap_name(const char *name, const char *start)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024{
2025	if (name < start + 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026		return NULL;
2027
2028	name -= 2;
2029	while (*name) {
2030		if (name == start)
2031			return start;
2032		name--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033	}
2034	return name + 1;
 
 
 
 
 
 
 
 
 
 
 
 
2035}
2036
2037/*
2038 * compare the old list of snapshots that we have to what's in the header
2039 * and update it accordingly. Note that the header holds the snapshots
2040 * in a reverse order (from newest to oldest) and we need to go from
2041 * older to new so that we don't get a duplicate snap name when
2042 * doing the process (e.g., removed snapshot and recreated a new
2043 * one with the same name.
 
 
 
 
2044 */
2045static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2046{
2047	const char *name, *first_name;
2048	int i = rbd_dev->header.total_snaps;
2049	struct rbd_snap *snap, *old_snap = NULL;
 
 
2050	int ret;
2051	struct list_head *p, *n;
2052
2053	first_name = rbd_dev->header.snap_names;
2054	name = first_name + rbd_dev->header.snap_names_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2057		u64 cur_id;
2058
2059		old_snap = list_entry(p, struct rbd_snap, node);
 
 
 
 
 
 
 
2060
2061		if (i)
2062			cur_id = rbd_dev->header.snapc->snaps[i - 1];
2063
2064		if (!i || old_snap->id < cur_id) {
2065			/* old_snap->id was skipped, thus was removed */
2066			__rbd_remove_snap_dev(rbd_dev, old_snap);
2067			continue;
2068		}
2069		if (old_snap->id == cur_id) {
2070			/* we have this snapshot already */
2071			i--;
2072			name = rbd_prev_snap_name(name, first_name);
2073			continue;
2074		}
2075		for (; i > 0;
2076		     i--, name = rbd_prev_snap_name(name, first_name)) {
2077			if (!name) {
2078				WARN_ON(1);
2079				return -EINVAL;
2080			}
2081			cur_id = rbd_dev->header.snapc->snaps[i];
2082			/* snapshot removal? handle it above */
2083			if (cur_id >= old_snap->id)
2084				break;
2085			/* a new snapshot */
2086			ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2087			if (ret < 0)
2088				return ret;
2089
2090			/* note that we add it backward so using n and not p */
2091			list_add(&snap->node, n);
2092			p = &snap->node;
2093		}
2094	}
2095	/* we're done going over the old snap list, just add what's left */
2096	for (; i > 0; i--) {
2097		name = rbd_prev_snap_name(name, first_name);
2098		if (!name) {
2099			WARN_ON(1);
2100			return -EINVAL;
2101		}
2102		ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2103		if (ret < 0)
2104			return ret;
2105		list_add(&snap->node, &rbd_dev->snaps);
2106	}
2107
 
 
 
 
2108	return 0;
 
 
 
 
 
2109}
2110
 
 
 
 
 
 
 
 
 
 
 
2111
2112static void rbd_root_dev_release(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114}
2115
2116static struct device rbd_root_dev = {
2117	.init_name =    "rbd",
2118	.release =      rbd_root_dev_release,
2119};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2120
2121static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2122{
2123	int ret = -ENOMEM;
2124	struct device *dev;
2125	struct rbd_snap *snap;
2126
2127	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2128	dev = &rbd_dev->dev;
2129
2130	dev->bus = &rbd_bus_type;
2131	dev->type = &rbd_device_type;
2132	dev->parent = &rbd_root_dev;
2133	dev->release = rbd_dev_release;
2134	dev_set_name(dev, "%d", rbd_dev->id);
2135	ret = device_register(dev);
2136	if (ret < 0)
2137		goto done_free;
2138
2139	list_for_each_entry(snap, &rbd_dev->snaps, node) {
2140		ret = rbd_register_snap_dev(rbd_dev, snap,
2141					     &rbd_dev->dev);
2142		if (ret < 0)
2143			break;
2144	}
2145
2146	mutex_unlock(&ctl_mutex);
2147	return 0;
2148done_free:
2149	mutex_unlock(&ctl_mutex);
2150	return ret;
2151}
2152
2153static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2154{
2155	device_unregister(&rbd_dev->dev);
2156}
2157
2158static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
 
 
 
 
2159{
2160	int ret, rc;
2161
2162	do {
2163		ret = rbd_req_sync_watch(rbd_dev, rbd_dev->obj_md_name,
2164					 rbd_dev->header.obj_version);
2165		if (ret == -ERANGE) {
2166			mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2167			rc = __rbd_update_snaps(rbd_dev);
2168			mutex_unlock(&ctl_mutex);
2169			if (rc < 0)
2170				return rc;
2171		}
2172	} while (ret == -ERANGE);
2173
2174	return ret;
 
 
 
 
 
 
 
 
2175}
2176
2177static ssize_t rbd_add(struct bus_type *bus,
2178		       const char *buf,
2179		       size_t count)
 
 
2180{
2181	struct ceph_osd_client *osdc;
2182	struct rbd_device *rbd_dev;
2183	ssize_t rc = -ENOMEM;
2184	int irc, new_id = 0;
2185	struct list_head *tmp;
2186	char *mon_dev_name;
2187	char *options;
2188
2189	if (!try_module_get(THIS_MODULE))
2190		return -ENODEV;
2191
2192	mon_dev_name = kmalloc(RBD_MAX_OPT_LEN, GFP_KERNEL);
2193	if (!mon_dev_name)
2194		goto err_out_mod;
2195
2196	options = kmalloc(RBD_MAX_OPT_LEN, GFP_KERNEL);
2197	if (!options)
2198		goto err_mon_dev;
2199
2200	/* new rbd_device object */
2201	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2202	if (!rbd_dev)
2203		goto err_out_opt;
 
 
 
 
 
 
 
 
 
2204
2205	/* static rbd_device initialization */
2206	spin_lock_init(&rbd_dev->lock);
2207	INIT_LIST_HEAD(&rbd_dev->node);
2208	INIT_LIST_HEAD(&rbd_dev->snaps);
2209
2210	/* generate unique id: find highest unique id, add one */
2211	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2212
2213	list_for_each(tmp, &rbd_dev_list) {
2214		struct rbd_device *rbd_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2215
2216		rbd_dev = list_entry(tmp, struct rbd_device, node);
2217		if (rbd_dev->id >= new_id)
2218			new_id = rbd_dev->id + 1;
 
2219	}
 
2220
2221	rbd_dev->id = new_id;
 
2222
2223	/* add to global list */
2224	list_add_tail(&rbd_dev->node, &rbd_dev_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226	/* parse add command */
2227	if (sscanf(buf, "%" __stringify(RBD_MAX_OPT_LEN) "s "
2228		   "%" __stringify(RBD_MAX_OPT_LEN) "s "
2229		   "%" __stringify(RBD_MAX_POOL_NAME_LEN) "s "
2230		   "%" __stringify(RBD_MAX_OBJ_NAME_LEN) "s"
2231		   "%" __stringify(RBD_MAX_SNAP_NAME_LEN) "s",
2232		   mon_dev_name, options, rbd_dev->pool_name,
2233		   rbd_dev->obj, rbd_dev->snap_name) < 4) {
2234		rc = -EINVAL;
2235		goto err_out_slot;
2236	}
2237
2238	if (rbd_dev->snap_name[0] == 0)
2239		rbd_dev->snap_name[0] = '-';
2240
2241	rbd_dev->obj_len = strlen(rbd_dev->obj);
2242	snprintf(rbd_dev->obj_md_name, sizeof(rbd_dev->obj_md_name), "%s%s",
2243		 rbd_dev->obj, RBD_SUFFIX);
2244
2245	/* initialize rest of new object */
2246	snprintf(rbd_dev->name, DEV_NAME_LEN, DRV_NAME "%d", rbd_dev->id);
2247	rc = rbd_get_client(rbd_dev, mon_dev_name, options);
2248	if (rc < 0)
2249		goto err_out_slot;
2250
2251	mutex_unlock(&ctl_mutex);
 
2252
2253	/* pick the pool */
2254	osdc = &rbd_dev->client->osdc;
2255	rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2256	if (rc < 0)
2257		goto err_out_client;
2258	rbd_dev->poolid = rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259
2260	/* register our block device */
2261	irc = register_blkdev(0, rbd_dev->name);
2262	if (irc < 0) {
2263		rc = irc;
2264		goto err_out_client;
 
2265	}
2266	rbd_dev->major = irc;
 
 
2267
2268	rc = rbd_bus_add_dev(rbd_dev);
2269	if (rc)
2270		goto err_out_blkdev;
 
 
 
 
 
2271
2272	/* set up and announce blkdev mapping */
2273	rc = rbd_init_disk(rbd_dev);
2274	if (rc)
2275		goto err_out_bus;
 
 
 
 
 
 
 
2276
2277	rc = rbd_init_watch_dev(rbd_dev);
2278	if (rc)
2279		goto err_out_bus;
 
 
 
 
2280
2281	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282
2283err_out_bus:
2284	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2285	list_del_init(&rbd_dev->node);
2286	mutex_unlock(&ctl_mutex);
2287
2288	/* this will also clean up rest of rbd_dev stuff */
 
 
2289
2290	rbd_bus_del_dev(rbd_dev);
 
 
 
 
 
 
 
 
2291	kfree(options);
2292	kfree(mon_dev_name);
2293	return rc;
2294
2295err_out_blkdev:
2296	unregister_blkdev(rbd_dev->major, rbd_dev->name);
2297err_out_client:
2298	rbd_put_client(rbd_dev);
2299	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2300err_out_slot:
2301	list_del_init(&rbd_dev->node);
2302	mutex_unlock(&ctl_mutex);
2303
2304	kfree(rbd_dev);
2305err_out_opt:
 
 
 
 
2306	kfree(options);
2307err_mon_dev:
2308	kfree(mon_dev_name);
2309err_out_mod:
2310	dout("Error adding device %s\n", buf);
2311	module_put(THIS_MODULE);
2312	return rc;
2313}
2314
2315static struct rbd_device *__rbd_get_dev(unsigned long id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316{
2317	struct list_head *tmp;
2318	struct rbd_device *rbd_dev;
 
 
 
2319
2320	list_for_each(tmp, &rbd_dev_list) {
2321		rbd_dev = list_entry(tmp, struct rbd_device, node);
2322		if (rbd_dev->id == id)
2323			return rbd_dev;
 
 
 
 
 
 
2324	}
2325	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2326}
2327
2328static void rbd_dev_release(struct device *dev)
 
 
 
 
2329{
2330	struct rbd_device *rbd_dev =
2331			container_of(dev, struct rbd_device, dev);
2332
2333	if (rbd_dev->watch_request)
2334		ceph_osdc_unregister_linger_request(&rbd_dev->client->osdc,
2335						    rbd_dev->watch_request);
2336	if (rbd_dev->watch_event)
2337		rbd_req_sync_unwatch(rbd_dev, rbd_dev->obj_md_name);
2338
2339	rbd_put_client(rbd_dev);
 
2340
2341	/* clean up and free blkdev */
2342	rbd_free_disk(rbd_dev);
2343	unregister_blkdev(rbd_dev->major, rbd_dev->name);
2344	kfree(rbd_dev);
2345
2346	/* release module ref */
2347	module_put(THIS_MODULE);
 
 
 
 
2348}
2349
2350static ssize_t rbd_remove(struct bus_type *bus,
2351			  const char *buf,
2352			  size_t count)
2353{
2354	struct rbd_device *rbd_dev = NULL;
2355	int target_id, rc;
2356	unsigned long ul;
2357	int ret = count;
2358
2359	rc = strict_strtoul(buf, 10, &ul);
2360	if (rc)
2361		return rc;
2362
2363	/* convert to int; abort if we lost anything in the conversion */
2364	target_id = (int) ul;
2365	if (target_id != ul)
2366		return -EINVAL;
 
 
 
2367
2368	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2369
2370	rbd_dev = __rbd_get_dev(target_id);
2371	if (!rbd_dev) {
2372		ret = -ENOENT;
2373		goto done;
2374	}
 
2375
2376	list_del_init(&rbd_dev->node);
2377
2378	__rbd_remove_all_snaps(rbd_dev);
2379	rbd_bus_del_dev(rbd_dev);
 
2380
2381done:
2382	mutex_unlock(&ctl_mutex);
2383	return ret;
2384}
2385
2386static ssize_t rbd_snap_add(struct device *dev,
2387			    struct device_attribute *attr,
2388			    const char *buf,
2389			    size_t count)
2390{
2391	struct rbd_device *rbd_dev = dev_to_rbd(dev);
 
 
2392	int ret;
2393	char *name = kmalloc(count + 1, GFP_KERNEL);
2394	if (!name)
2395		return -ENOMEM;
2396
2397	snprintf(name, count, "%s", buf);
 
 
 
 
 
 
 
 
2398
2399	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 
 
 
2400
2401	ret = rbd_header_add_snap(rbd_dev,
2402				  name, GFP_KERNEL);
2403	if (ret < 0)
2404		goto err_unlock;
 
 
2405
2406	ret = __rbd_update_snaps(rbd_dev);
2407	if (ret < 0)
2408		goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409
2410	/* shouldn't hold ctl_mutex when notifying.. notify might
2411	   trigger a watch callback that would need to get that mutex */
2412	mutex_unlock(&ctl_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2413
2414	/* make a best effort, don't error if failed */
2415	rbd_req_sync_notify(rbd_dev, rbd_dev->obj_md_name);
 
 
 
 
 
2416
2417	ret = count;
2418	kfree(name);
2419	return ret;
2420
2421err_unlock:
2422	mutex_unlock(&ctl_mutex);
2423	kfree(name);
 
 
 
 
 
 
 
 
2424	return ret;
2425}
2426
2427static ssize_t rbd_snap_rollback(struct device *dev,
2428				 struct device_attribute *attr,
2429				 const char *buf,
2430				 size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431{
2432	struct rbd_device *rbd_dev = dev_to_rbd(dev);
2433	int ret;
2434	u64 snapid;
2435	u64 cur_ofs;
2436	char *seg_name = NULL;
2437	char *snap_name = kmalloc(count + 1, GFP_KERNEL);
2438	ret = -ENOMEM;
2439	if (!snap_name)
 
 
 
2440		return ret;
 
 
2441
2442	/* parse snaps add command */
2443	snprintf(snap_name, count, "%s", buf);
2444	seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
2445	if (!seg_name)
2446		goto done;
 
 
 
 
2447
2448	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 
 
 
 
 
2449
2450	ret = snap_by_name(&rbd_dev->header, snap_name, &snapid, NULL);
2451	if (ret < 0)
2452		goto done_unlock;
2453
2454	dout("snapid=%lld\n", snapid);
 
 
 
 
 
 
 
 
 
 
 
 
2455
2456	cur_ofs = 0;
2457	while (cur_ofs < rbd_dev->header.image_size) {
2458		cur_ofs += rbd_get_segment(&rbd_dev->header,
2459					   rbd_dev->obj,
2460					   cur_ofs, (u64)-1,
2461					   seg_name, NULL);
2462		dout("seg_name=%s\n", seg_name);
2463
2464		ret = rbd_req_sync_rollback_obj(rbd_dev, snapid, seg_name);
2465		if (ret < 0)
2466			pr_warning("could not roll back obj %s err=%d\n",
2467				   seg_name, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468	}
2469
2470	ret = __rbd_update_snaps(rbd_dev);
2471	if (ret < 0)
2472		goto done_unlock;
 
 
 
2473
2474	ret = count;
2475
2476done_unlock:
2477	mutex_unlock(&ctl_mutex);
2478done:
2479	kfree(seg_name);
2480	kfree(snap_name);
 
2481
2482	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2483}
2484
2485static struct bus_attribute rbd_bus_attrs[] = {
2486	__ATTR(add, S_IWUSR, NULL, rbd_add),
2487	__ATTR(remove, S_IWUSR, NULL, rbd_remove),
2488	__ATTR_NULL
2489};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490
2491/*
2492 * create control files in sysfs
2493 * /sys/bus/rbd/...
2494 */
2495static int rbd_sysfs_init(void)
2496{
2497	int ret;
2498
2499	rbd_bus_type.bus_attrs = rbd_bus_attrs;
2500
2501	ret = bus_register(&rbd_bus_type);
2502	 if (ret < 0)
2503		return ret;
2504
2505	ret = device_register(&rbd_root_dev);
 
 
2506
2507	return ret;
2508}
2509
2510static void rbd_sysfs_cleanup(void)
2511{
2512	device_unregister(&rbd_root_dev);
2513	bus_unregister(&rbd_bus_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514}
2515
2516int __init rbd_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517{
2518	int rc;
2519
2520	rc = rbd_sysfs_init();
 
 
 
 
 
2521	if (rc)
2522		return rc;
2523	spin_lock_init(&node_lock);
2524	pr_info("loaded " DRV_NAME_LONG "\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525	return 0;
 
 
 
 
 
 
 
2526}
2527
2528void __exit rbd_exit(void)
2529{
2530	rbd_sysfs_cleanup();
 
 
 
2531}
2532
2533module_init(rbd_init);
2534module_exit(rbd_exit);
2535
 
2536MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2537MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2538MODULE_DESCRIPTION("rados block device");
2539
2540/* following authorship retained from original osdblk.c */
2541MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2542
 
2543MODULE_LICENSE("GPL");
v3.15
   1
   2/*
   3   rbd.c -- Export ceph rados objects as a Linux block device
   4
   5
   6   based on drivers/block/osdblk.c:
   7
   8   Copyright 2009 Red Hat, Inc.
   9
  10   This program is free software; you can redistribute it and/or modify
  11   it under the terms of the GNU General Public License as published by
  12   the Free Software Foundation.
  13
  14   This program is distributed in the hope that it will be useful,
  15   but WITHOUT ANY WARRANTY; without even the implied warranty of
  16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17   GNU General Public License for more details.
  18
  19   You should have received a copy of the GNU General Public License
  20   along with this program; see the file COPYING.  If not, write to
  21   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  22
  23
  24
  25   For usage instructions, please refer to:
  26
  27                 Documentation/ABI/testing/sysfs-bus-rbd
  28
  29 */
  30
  31#include <linux/ceph/libceph.h>
  32#include <linux/ceph/osd_client.h>
  33#include <linux/ceph/mon_client.h>
  34#include <linux/ceph/decode.h>
  35#include <linux/parser.h>
  36#include <linux/bsearch.h>
  37
  38#include <linux/kernel.h>
  39#include <linux/device.h>
  40#include <linux/module.h>
  41#include <linux/fs.h>
  42#include <linux/blkdev.h>
  43#include <linux/slab.h>
  44#include <linux/idr.h>
  45
  46#include "rbd_types.h"
  47
  48#define RBD_DEBUG	/* Activate rbd_assert() calls */
  49
  50/*
  51 * The basic unit of block I/O is a sector.  It is interpreted in a
  52 * number of contexts in Linux (blk, bio, genhd), but the default is
  53 * universally 512 bytes.  These symbols are just slightly more
  54 * meaningful than the bare numbers they represent.
  55 */
  56#define	SECTOR_SHIFT	9
  57#define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
  58
  59/*
  60 * Increment the given counter and return its updated value.
  61 * If the counter is already 0 it will not be incremented.
  62 * If the counter is already at its maximum value returns
  63 * -EINVAL without updating it.
  64 */
  65static int atomic_inc_return_safe(atomic_t *v)
  66{
  67	unsigned int counter;
  68
  69	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
  70	if (counter <= (unsigned int)INT_MAX)
  71		return (int)counter;
  72
  73	atomic_dec(v);
  74
  75	return -EINVAL;
  76}
  77
  78/* Decrement the counter.  Return the resulting value, or -EINVAL */
  79static int atomic_dec_return_safe(atomic_t *v)
  80{
  81	int counter;
  82
  83	counter = atomic_dec_return(v);
  84	if (counter >= 0)
  85		return counter;
  86
  87	atomic_inc(v);
  88
  89	return -EINVAL;
  90}
  91
  92#define RBD_DRV_NAME "rbd"
  93
  94#define RBD_MINORS_PER_MAJOR		256
  95#define RBD_SINGLE_MAJOR_PART_SHIFT	4
  96
  97#define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
  98#define RBD_MAX_SNAP_NAME_LEN	\
  99			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
 100
 101#define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
 
 
 
 102
 103#define RBD_SNAP_HEAD_NAME	"-"
 104
 105#define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
 106
 107/* This allows a single page to hold an image name sent by OSD */
 108#define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
 109#define RBD_IMAGE_ID_LEN_MAX	64
 110
 111#define RBD_OBJ_PREFIX_LEN_MAX	64
 112
 113/* Feature bits */
 114
 115#define RBD_FEATURE_LAYERING	(1<<0)
 116#define RBD_FEATURE_STRIPINGV2	(1<<1)
 117#define RBD_FEATURES_ALL \
 118	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
 119
 120/* Features supported by this (client software) implementation. */
 121
 122#define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
 123
 124/*
 125 * An RBD device name will be "rbd#", where the "rbd" comes from
 126 * RBD_DRV_NAME above, and # is a unique integer identifier.
 127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
 128 * enough to hold all possible device names.
 129 */
 130#define DEV_NAME_LEN		32
 131#define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
 132
 133/*
 134 * block device image metadata (in-memory version)
 135 */
 136struct rbd_image_header {
 137	/* These six fields never change for a given rbd image */
 138	char *object_prefix;
 139	__u8 obj_order;
 140	__u8 crypt_type;
 141	__u8 comp_type;
 142	u64 stripe_unit;
 143	u64 stripe_count;
 144	u64 features;		/* Might be changeable someday? */
 145
 146	/* The remaining fields need to be updated occasionally */
 147	u64 image_size;
 148	struct ceph_snap_context *snapc;
 149	char *snap_names;	/* format 1 only */
 150	u64 *snap_sizes;	/* format 1 only */
 151};
 152
 153/*
 154 * An rbd image specification.
 155 *
 156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
 157 * identify an image.  Each rbd_dev structure includes a pointer to
 158 * an rbd_spec structure that encapsulates this identity.
 159 *
 160 * Each of the id's in an rbd_spec has an associated name.  For a
 161 * user-mapped image, the names are supplied and the id's associated
 162 * with them are looked up.  For a layered image, a parent image is
 163 * defined by the tuple, and the names are looked up.
 164 *
 165 * An rbd_dev structure contains a parent_spec pointer which is
 166 * non-null if the image it represents is a child in a layered
 167 * image.  This pointer will refer to the rbd_spec structure used
 168 * by the parent rbd_dev for its own identity (i.e., the structure
 169 * is shared between the parent and child).
 170 *
 171 * Since these structures are populated once, during the discovery
 172 * phase of image construction, they are effectively immutable so
 173 * we make no effort to synchronize access to them.
 174 *
 175 * Note that code herein does not assume the image name is known (it
 176 * could be a null pointer).
 177 */
 178struct rbd_spec {
 179	u64		pool_id;
 180	const char	*pool_name;
 181
 182	const char	*image_id;
 183	const char	*image_name;
 184
 185	u64		snap_id;
 186	const char	*snap_name;
 187
 188	struct kref	kref;
 189};
 190
 191/*
 192 * an instance of the client.  multiple devices may share an rbd client.
 193 */
 194struct rbd_client {
 195	struct ceph_client	*client;
 
 196	struct kref		kref;
 197	struct list_head	node;
 198};
 199
 200struct rbd_img_request;
 201typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
 202
 203#define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
 204
 205struct rbd_obj_request;
 206typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
 207
 208enum obj_request_type {
 209	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
 
 
 
 210};
 211
 212enum obj_req_flags {
 213	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
 214	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
 215	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
 216	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
 217};
 218
 219struct rbd_obj_request {
 220	const char		*object_name;
 221	u64			offset;		/* object start byte */
 222	u64			length;		/* bytes from offset */
 223	unsigned long		flags;
 224
 225	/*
 226	 * An object request associated with an image will have its
 227	 * img_data flag set; a standalone object request will not.
 228	 *
 229	 * A standalone object request will have which == BAD_WHICH
 230	 * and a null obj_request pointer.
 231	 *
 232	 * An object request initiated in support of a layered image
 233	 * object (to check for its existence before a write) will
 234	 * have which == BAD_WHICH and a non-null obj_request pointer.
 235	 *
 236	 * Finally, an object request for rbd image data will have
 237	 * which != BAD_WHICH, and will have a non-null img_request
 238	 * pointer.  The value of which will be in the range
 239	 * 0..(img_request->obj_request_count-1).
 240	 */
 241	union {
 242		struct rbd_obj_request	*obj_request;	/* STAT op */
 243		struct {
 244			struct rbd_img_request	*img_request;
 245			u64			img_offset;
 246			/* links for img_request->obj_requests list */
 247			struct list_head	links;
 248		};
 249	};
 250	u32			which;		/* posn image request list */
 251
 252	enum obj_request_type	type;
 253	union {
 254		struct bio	*bio_list;
 255		struct {
 256			struct page	**pages;
 257			u32		page_count;
 258		};
 259	};
 260	struct page		**copyup_pages;
 261	u32			copyup_page_count;
 262
 263	struct ceph_osd_request	*osd_req;
 264
 265	u64			xferred;	/* bytes transferred */
 266	int			result;
 267
 268	rbd_obj_callback_t	callback;
 269	struct completion	completion;
 270
 271	struct kref		kref;
 
 272};
 273
 274enum img_req_flags {
 275	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
 276	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
 277	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
 278};
 279
 280struct rbd_img_request {
 281	struct rbd_device	*rbd_dev;
 282	u64			offset;	/* starting image byte offset */
 283	u64			length;	/* byte count from offset */
 284	unsigned long		flags;
 285	union {
 286		u64			snap_id;	/* for reads */
 287		struct ceph_snap_context *snapc;	/* for writes */
 288	};
 289	union {
 290		struct request		*rq;		/* block request */
 291		struct rbd_obj_request	*obj_request;	/* obj req initiator */
 292	};
 293	struct page		**copyup_pages;
 294	u32			copyup_page_count;
 295	spinlock_t		completion_lock;/* protects next_completion */
 296	u32			next_completion;
 297	rbd_img_callback_t	callback;
 298	u64			xferred;/* aggregate bytes transferred */
 299	int			result;	/* first nonzero obj_request result */
 300
 301	u32			obj_request_count;
 302	struct list_head	obj_requests;	/* rbd_obj_request structs */
 303
 304	struct kref		kref;
 305};
 306
 307#define for_each_obj_request(ireq, oreq) \
 308	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
 309#define for_each_obj_request_from(ireq, oreq) \
 310	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
 311#define for_each_obj_request_safe(ireq, oreq, n) \
 312	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
 313
 314struct rbd_mapping {
 315	u64                     size;
 316	u64                     features;
 317	bool			read_only;
 318};
 319
 320/*
 321 * a single device
 322 */
 323struct rbd_device {
 324	int			dev_id;		/* blkdev unique id */
 325
 326	int			major;		/* blkdev assigned major */
 327	int			minor;
 328	struct gendisk		*disk;		/* blkdev's gendisk and rq */
 
 329
 330	u32			image_format;	/* Either 1 or 2 */
 331	struct rbd_client	*rbd_client;
 332
 333	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
 334
 335	spinlock_t		lock;		/* queue, flags, open_count */
 336
 337	struct rbd_image_header	header;
 338	unsigned long		flags;		/* possibly lock protected */
 339	struct rbd_spec		*spec;
 340
 341	char			*header_name;
 342
 343	struct ceph_file_layout	layout;
 344
 345	struct ceph_osd_event   *watch_event;
 346	struct rbd_obj_request	*watch_request;
 347
 348	struct rbd_spec		*parent_spec;
 349	u64			parent_overlap;
 350	atomic_t		parent_ref;
 351	struct rbd_device	*parent;
 352
 353	/* protects updating the header */
 354	struct rw_semaphore     header_rwsem;
 355
 356	struct rbd_mapping	mapping;
 357
 358	struct list_head	node;
 
 359
 360	/* sysfs related */
 361	struct device		dev;
 362	unsigned long		open_count;	/* protected by lock */
 363};
 364
 365/*
 366 * Flag bits for rbd_dev->flags.  If atomicity is required,
 367 * rbd_dev->lock is used to protect access.
 368 *
 369 * Currently, only the "removing" flag (which is coupled with the
 370 * "open_count" field) requires atomic access.
 371 */
 372enum rbd_dev_flags {
 373	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
 374	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
 375};
 376
 377static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
 378
 
 379static LIST_HEAD(rbd_dev_list);    /* devices */
 380static DEFINE_SPINLOCK(rbd_dev_list_lock);
 381
 382static LIST_HEAD(rbd_client_list);		/* clients */
 383static DEFINE_SPINLOCK(rbd_client_list_lock);
 384
 385/* Slab caches for frequently-allocated structures */
 
 
 
 
 
 
 
 
 386
 387static struct kmem_cache	*rbd_img_request_cache;
 388static struct kmem_cache	*rbd_obj_request_cache;
 389static struct kmem_cache	*rbd_segment_name_cache;
 390
 391static int rbd_major;
 392static DEFINE_IDA(rbd_dev_id_ida);
 393
 394/*
 395 * Default to false for now, as single-major requires >= 0.75 version of
 396 * userspace rbd utility.
 397 */
 398static bool single_major = false;
 399module_param(single_major, bool, S_IRUGO);
 400MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
 401
 402static int rbd_img_request_submit(struct rbd_img_request *img_request);
 403
 404static void rbd_dev_device_release(struct device *dev);
 405
 406static ssize_t rbd_add(struct bus_type *bus, const char *buf,
 407		       size_t count);
 408static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
 409			  size_t count);
 410static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
 411				    size_t count);
 412static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
 413				       size_t count);
 414static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
 415static void rbd_spec_put(struct rbd_spec *spec);
 416
 417static int rbd_dev_id_to_minor(int dev_id)
 418{
 419	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
 420}
 421
 422static int minor_to_rbd_dev_id(int minor)
 423{
 424	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
 425}
 426
 427static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
 428static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
 429static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
 430static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
 431
 432static struct attribute *rbd_bus_attrs[] = {
 433	&bus_attr_add.attr,
 434	&bus_attr_remove.attr,
 435	&bus_attr_add_single_major.attr,
 436	&bus_attr_remove_single_major.attr,
 437	NULL,
 438};
 439
 440static umode_t rbd_bus_is_visible(struct kobject *kobj,
 441				  struct attribute *attr, int index)
 442{
 443	if (!single_major &&
 444	    (attr == &bus_attr_add_single_major.attr ||
 445	     attr == &bus_attr_remove_single_major.attr))
 446		return 0;
 447
 448	return attr->mode;
 449}
 450
 451static const struct attribute_group rbd_bus_group = {
 452	.attrs = rbd_bus_attrs,
 453	.is_visible = rbd_bus_is_visible,
 454};
 455__ATTRIBUTE_GROUPS(rbd_bus);
 456
 457static struct bus_type rbd_bus_type = {
 458	.name		= "rbd",
 459	.bus_groups	= rbd_bus_groups,
 460};
 461
 462static void rbd_root_dev_release(struct device *dev)
 463{
 464}
 
 465
 466static struct device rbd_root_dev = {
 467	.init_name =    "rbd",
 468	.release =      rbd_root_dev_release,
 469};
 470
 471static __printf(2, 3)
 472void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
 473{
 474	struct va_format vaf;
 475	va_list args;
 476
 477	va_start(args, fmt);
 478	vaf.fmt = fmt;
 479	vaf.va = &args;
 480
 481	if (!rbd_dev)
 482		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
 483	else if (rbd_dev->disk)
 484		printk(KERN_WARNING "%s: %s: %pV\n",
 485			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
 486	else if (rbd_dev->spec && rbd_dev->spec->image_name)
 487		printk(KERN_WARNING "%s: image %s: %pV\n",
 488			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
 489	else if (rbd_dev->spec && rbd_dev->spec->image_id)
 490		printk(KERN_WARNING "%s: id %s: %pV\n",
 491			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
 492	else	/* punt */
 493		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
 494			RBD_DRV_NAME, rbd_dev, &vaf);
 495	va_end(args);
 496}
 497
 498#ifdef RBD_DEBUG
 499#define rbd_assert(expr)						\
 500		if (unlikely(!(expr))) {				\
 501			printk(KERN_ERR "\nAssertion failure in %s() "	\
 502						"at line %d:\n\n"	\
 503					"\trbd_assert(%s);\n\n",	\
 504					__func__, __LINE__, #expr);	\
 505			BUG();						\
 506		}
 507#else /* !RBD_DEBUG */
 508#  define rbd_assert(expr)	((void) 0)
 509#endif /* !RBD_DEBUG */
 510
 511static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
 512static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
 513static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
 514
 515static int rbd_dev_refresh(struct rbd_device *rbd_dev);
 516static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
 517static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
 518static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
 519					u64 snap_id);
 520static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
 521				u8 *order, u64 *snap_size);
 522static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
 523		u64 *snap_features);
 524static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
 525
 526static int rbd_open(struct block_device *bdev, fmode_t mode)
 527{
 528	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
 529	bool removing = false;
 530
 531	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
 532		return -EROFS;
 533
 534	spin_lock_irq(&rbd_dev->lock);
 535	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
 536		removing = true;
 537	else
 538		rbd_dev->open_count++;
 539	spin_unlock_irq(&rbd_dev->lock);
 540	if (removing)
 541		return -ENOENT;
 542
 543	(void) get_device(&rbd_dev->dev);
 544	set_device_ro(bdev, rbd_dev->mapping.read_only);
 545
 546	return 0;
 547}
 548
 549static void rbd_release(struct gendisk *disk, fmode_t mode)
 550{
 551	struct rbd_device *rbd_dev = disk->private_data;
 552	unsigned long open_count_before;
 553
 554	spin_lock_irq(&rbd_dev->lock);
 555	open_count_before = rbd_dev->open_count--;
 556	spin_unlock_irq(&rbd_dev->lock);
 557	rbd_assert(open_count_before > 0);
 558
 559	put_device(&rbd_dev->dev);
 560}
 561
 562static const struct block_device_operations rbd_bd_ops = {
 563	.owner			= THIS_MODULE,
 564	.open			= rbd_open,
 565	.release		= rbd_release,
 566};
 567
 568/*
 569 * Initialize an rbd client instance.  Success or not, this function
 570 * consumes ceph_opts.  Caller holds client_mutex.
 571 */
 572static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
 
 573{
 574	struct rbd_client *rbdc;
 575	int ret = -ENOMEM;
 576
 577	dout("%s:\n", __func__);
 578	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
 579	if (!rbdc)
 580		goto out_opt;
 581
 582	kref_init(&rbdc->kref);
 583	INIT_LIST_HEAD(&rbdc->node);
 584
 585	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
 586	if (IS_ERR(rbdc->client))
 587		goto out_rbdc;
 588	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
 589
 590	ret = ceph_open_session(rbdc->client);
 591	if (ret < 0)
 592		goto out_client;
 
 
 593
 594	spin_lock(&rbd_client_list_lock);
 595	list_add_tail(&rbdc->node, &rbd_client_list);
 596	spin_unlock(&rbd_client_list_lock);
 597
 598	dout("%s: rbdc %p\n", __func__, rbdc);
 
 599
 600	return rbdc;
 601out_client:
 602	ceph_destroy_client(rbdc->client);
 603out_rbdc:
 604	kfree(rbdc);
 605out_opt:
 606	if (ceph_opts)
 607		ceph_destroy_options(ceph_opts);
 608	dout("%s: error %d\n", __func__, ret);
 609
 610	return ERR_PTR(ret);
 611}
 612
 613static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
 614{
 615	kref_get(&rbdc->kref);
 616
 617	return rbdc;
 618}
 619
 620/*
 621 * Find a ceph client with specific addr and configuration.  If
 622 * found, bump its reference count.
 623 */
 624static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
 625{
 626	struct rbd_client *client_node;
 627	bool found = false;
 628
 629	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
 630		return NULL;
 631
 632	spin_lock(&rbd_client_list_lock);
 633	list_for_each_entry(client_node, &rbd_client_list, node) {
 634		if (!ceph_compare_options(ceph_opts, client_node->client)) {
 635			__rbd_get_client(client_node);
 636
 637			found = true;
 638			break;
 639		}
 640	}
 641	spin_unlock(&rbd_client_list_lock);
 642
 643	return found ? client_node : NULL;
 644}
 645
 646/*
 647 * mount options
 648 */
 649enum {
 
 650	Opt_last_int,
 651	/* int args above */
 652	Opt_last_string,
 653	/* string args above */
 654	Opt_read_only,
 655	Opt_read_write,
 656	/* Boolean args above */
 657	Opt_last_bool,
 658};
 659
 660static match_table_t rbd_opts_tokens = {
 
 661	/* int args above */
 662	/* string args above */
 663	{Opt_read_only, "read_only"},
 664	{Opt_read_only, "ro"},		/* Alternate spelling */
 665	{Opt_read_write, "read_write"},
 666	{Opt_read_write, "rw"},		/* Alternate spelling */
 667	/* Boolean args above */
 668	{-1, NULL}
 669};
 670
 671struct rbd_options {
 672	bool	read_only;
 673};
 674
 675#define RBD_READ_ONLY_DEFAULT	false
 676
 677static int parse_rbd_opts_token(char *c, void *private)
 678{
 679	struct rbd_options *rbd_opts = private;
 680	substring_t argstr[MAX_OPT_ARGS];
 681	int token, intval, ret;
 682
 683	token = match_token(c, rbd_opts_tokens, argstr);
 684	if (token < 0)
 685		return -EINVAL;
 686
 687	if (token < Opt_last_int) {
 688		ret = match_int(&argstr[0], &intval);
 689		if (ret < 0) {
 690			pr_err("bad mount option arg (not int) "
 691			       "at '%s'\n", c);
 692			return ret;
 693		}
 694		dout("got int token %d val %d\n", token, intval);
 695	} else if (token > Opt_last_int && token < Opt_last_string) {
 696		dout("got string token %d val %s\n", token,
 697		     argstr[0].from);
 698	} else if (token > Opt_last_string && token < Opt_last_bool) {
 699		dout("got Boolean token %d\n", token);
 700	} else {
 701		dout("got token %d\n", token);
 702	}
 703
 704	switch (token) {
 705	case Opt_read_only:
 706		rbd_opts->read_only = true;
 707		break;
 708	case Opt_read_write:
 709		rbd_opts->read_only = false;
 710		break;
 711	default:
 712		rbd_assert(false);
 713		break;
 714	}
 715	return 0;
 716}
 717
 718/*
 719 * Get a ceph client with specific addr and configuration, if one does
 720 * not exist create it.  Either way, ceph_opts is consumed by this
 721 * function.
 722 */
 723static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
 
 724{
 725	struct rbd_client *rbdc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726
 727	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
 728	rbdc = rbd_client_find(ceph_opts);
 729	if (rbdc)	/* using an existing client */
 730		ceph_destroy_options(ceph_opts);
 731	else
 732		rbdc = rbd_client_create(ceph_opts);
 733	mutex_unlock(&client_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 734
 735	return rbdc;
 
 
 
 
 
 736}
 737
 738/*
 739 * Destroy ceph client
 740 *
 741 * Caller must hold rbd_client_list_lock.
 742 */
 743static void rbd_client_release(struct kref *kref)
 744{
 745	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
 746
 747	dout("%s: rbdc %p\n", __func__, rbdc);
 748	spin_lock(&rbd_client_list_lock);
 749	list_del(&rbdc->node);
 750	spin_unlock(&rbd_client_list_lock);
 751
 752	ceph_destroy_client(rbdc->client);
 
 753	kfree(rbdc);
 754}
 755
 756/*
 757 * Drop reference to ceph client node. If it's not referenced anymore, release
 758 * it.
 759 */
 760static void rbd_put_client(struct rbd_client *rbdc)
 761{
 762	if (rbdc)
 763		kref_put(&rbdc->kref, rbd_client_release);
 
 764}
 765
 766static bool rbd_image_format_valid(u32 image_format)
 767{
 768	return image_format == 1 || image_format == 2;
 769}
 770
 771static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
 772{
 773	size_t size;
 774	u32 snap_count;
 775
 776	/* The header has to start with the magic rbd header text */
 777	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
 778		return false;
 779
 780	/* The bio layer requires at least sector-sized I/O */
 781
 782	if (ondisk->options.order < SECTOR_SHIFT)
 783		return false;
 784
 785	/* If we use u64 in a few spots we may be able to loosen this */
 786
 787	if (ondisk->options.order > 8 * sizeof (int) - 1)
 788		return false;
 789
 790	/*
 791	 * The size of a snapshot header has to fit in a size_t, and
 792	 * that limits the number of snapshots.
 793	 */
 794	snap_count = le32_to_cpu(ondisk->snap_count);
 795	size = SIZE_MAX - sizeof (struct ceph_snap_context);
 796	if (snap_count > size / sizeof (__le64))
 797		return false;
 798
 799	/*
 800	 * Not only that, but the size of the entire the snapshot
 801	 * header must also be representable in a size_t.
 802	 */
 803	size -= snap_count * sizeof (__le64);
 804	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
 805		return false;
 806
 807	return true;
 808}
 809
 810/*
 811 * Fill an rbd image header with information from the given format 1
 812 * on-disk header.
 813 */
 814static int rbd_header_from_disk(struct rbd_device *rbd_dev,
 815				 struct rbd_image_header_ondisk *ondisk)
 
 
 816{
 817	struct rbd_image_header *header = &rbd_dev->header;
 818	bool first_time = header->object_prefix == NULL;
 819	struct ceph_snap_context *snapc;
 820	char *object_prefix = NULL;
 821	char *snap_names = NULL;
 822	u64 *snap_sizes = NULL;
 823	u32 snap_count;
 824	size_t size;
 825	int ret = -ENOMEM;
 826	u32 i;
 827
 828	/* Allocate this now to avoid having to handle failure below */
 829
 830	if (first_time) {
 831		size_t len;
 832
 833		len = strnlen(ondisk->object_prefix,
 834				sizeof (ondisk->object_prefix));
 835		object_prefix = kmalloc(len + 1, GFP_KERNEL);
 836		if (!object_prefix)
 837			return -ENOMEM;
 838		memcpy(object_prefix, ondisk->object_prefix, len);
 839		object_prefix[len] = '\0';
 
 
 
 
 
 
 
 
 840	}
 
 
 841
 842	/* Allocate the snapshot context and fill it in */
 
 
 
 
 
 
 
 
 843
 844	snap_count = le32_to_cpu(ondisk->snap_count);
 845	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
 846	if (!snapc)
 847		goto out_err;
 848	snapc->seq = le64_to_cpu(ondisk->snap_seq);
 849	if (snap_count) {
 850		struct rbd_image_snap_ondisk *snaps;
 851		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
 852
 853		/* We'll keep a copy of the snapshot names... */
 854
 855		if (snap_names_len > (u64)SIZE_MAX)
 856			goto out_2big;
 857		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
 858		if (!snap_names)
 859			goto out_err;
 860
 861		/* ...as well as the array of their sizes. */
 862
 863		size = snap_count * sizeof (*header->snap_sizes);
 864		snap_sizes = kmalloc(size, GFP_KERNEL);
 865		if (!snap_sizes)
 866			goto out_err;
 867
 868		/*
 869		 * Copy the names, and fill in each snapshot's id
 870		 * and size.
 871		 *
 872		 * Note that rbd_dev_v1_header_info() guarantees the
 873		 * ondisk buffer we're working with has
 874		 * snap_names_len bytes beyond the end of the
 875		 * snapshot id array, this memcpy() is safe.
 876		 */
 877		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
 878		snaps = ondisk->snaps;
 879		for (i = 0; i < snap_count; i++) {
 880			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
 881			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
 
 
 882		}
 883	}
 884
 885	/* We won't fail any more, fill in the header */
 886
 887	if (first_time) {
 888		header->object_prefix = object_prefix;
 889		header->obj_order = ondisk->options.order;
 890		header->crypt_type = ondisk->options.crypt_type;
 891		header->comp_type = ondisk->options.comp_type;
 892		/* The rest aren't used for format 1 images */
 893		header->stripe_unit = 0;
 894		header->stripe_count = 0;
 895		header->features = 0;
 896	} else {
 897		ceph_put_snap_context(header->snapc);
 898		kfree(header->snap_names);
 899		kfree(header->snap_sizes);
 900	}
 901
 902	/* The remaining fields always get updated (when we refresh) */
 903
 904	header->image_size = le64_to_cpu(ondisk->image_size);
 905	header->snapc = snapc;
 906	header->snap_names = snap_names;
 907	header->snap_sizes = snap_sizes;
 908
 909	/* Make sure mapping size is consistent with header info */
 910
 911	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
 912		if (rbd_dev->mapping.size != header->image_size)
 913			rbd_dev->mapping.size = header->image_size;
 914
 915	return 0;
 916out_2big:
 917	ret = -EIO;
 918out_err:
 919	kfree(snap_sizes);
 920	kfree(snap_names);
 921	ceph_put_snap_context(snapc);
 922	kfree(object_prefix);
 923
 
 
 
 
 924	return ret;
 925}
 926
 927static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
 928{
 929	const char *snap_name;
 930
 931	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
 932
 933	/* Skip over names until we find the one we are looking for */
 934
 935	snap_name = rbd_dev->header.snap_names;
 936	while (which--)
 937		snap_name += strlen(snap_name) + 1;
 938
 939	return kstrdup(snap_name, GFP_KERNEL);
 940}
 941
 942/*
 943 * Snapshot id comparison function for use with qsort()/bsearch().
 944 * Note that result is for snapshots in *descending* order.
 945 */
 946static int snapid_compare_reverse(const void *s1, const void *s2)
 947{
 948	u64 snap_id1 = *(u64 *)s1;
 949	u64 snap_id2 = *(u64 *)s2;
 950
 951	if (snap_id1 < snap_id2)
 952		return 1;
 953	return snap_id1 == snap_id2 ? 0 : -1;
 954}
 955
 956/*
 957 * Search a snapshot context to see if the given snapshot id is
 958 * present.
 959 *
 960 * Returns the position of the snapshot id in the array if it's found,
 961 * or BAD_SNAP_INDEX otherwise.
 962 *
 963 * Note: The snapshot array is in kept sorted (by the osd) in
 964 * reverse order, highest snapshot id first.
 965 */
 966static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
 967{
 968	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
 969	u64 *found;
 970
 971	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
 972				sizeof (snap_id), snapid_compare_reverse);
 973
 974	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
 975}
 976
 977static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
 978					u64 snap_id)
 979{
 980	u32 which;
 981	const char *snap_name;
 982
 983	which = rbd_dev_snap_index(rbd_dev, snap_id);
 984	if (which == BAD_SNAP_INDEX)
 985		return ERR_PTR(-ENOENT);
 
 
 
 
 
 986
 987	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
 988	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
 989}
 990
 991static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
 992{
 993	if (snap_id == CEPH_NOSNAP)
 994		return RBD_SNAP_HEAD_NAME;
 995
 996	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
 997	if (rbd_dev->image_format == 1)
 998		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
 999
1000	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001}
1002
1003static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004				u64 *snap_size)
 
1005{
1006	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007	if (snap_id == CEPH_NOSNAP) {
1008		*snap_size = rbd_dev->header.image_size;
1009	} else if (rbd_dev->image_format == 1) {
1010		u32 which;
1011
1012		which = rbd_dev_snap_index(rbd_dev, snap_id);
1013		if (which == BAD_SNAP_INDEX)
1014			return -ENOENT;
1015
1016		*snap_size = rbd_dev->header.snap_sizes[which];
 
 
 
 
 
 
 
 
 
 
 
1017	} else {
1018		u64 size = 0;
1019		int ret;
 
1020
1021		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022		if (ret)
1023			return ret;
1024
1025		*snap_size = size;
1026	}
1027	return 0;
1028}
1029
1030static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031			u64 *snap_features)
1032{
1033	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034	if (snap_id == CEPH_NOSNAP) {
1035		*snap_features = rbd_dev->header.features;
1036	} else if (rbd_dev->image_format == 1) {
1037		*snap_features = 0;	/* No features for format 1 */
1038	} else {
1039		u64 features = 0;
1040		int ret;
1041
1042		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043		if (ret)
1044			return ret;
1045
1046		*snap_features = features;
1047	}
1048	return 0;
1049}
1050
1051static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052{
1053	u64 snap_id = rbd_dev->spec->snap_id;
1054	u64 size = 0;
1055	u64 features = 0;
1056	int ret;
1057
1058	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059	if (ret)
1060		return ret;
1061	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062	if (ret)
1063		return ret;
1064
1065	rbd_dev->mapping.size = size;
1066	rbd_dev->mapping.features = features;
1067
1068	return 0;
1069}
1070
1071static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
 
 
 
 
 
 
1072{
1073	rbd_dev->mapping.size = 0;
1074	rbd_dev->mapping.features = 0;
1075}
1076
1077static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078{
1079	char *name;
1080	u64 segment;
1081	int ret;
1082	char *name_format;
1083
1084	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085	if (!name)
1086		return NULL;
1087	segment = offset >> rbd_dev->header.obj_order;
1088	name_format = "%s.%012llx";
1089	if (rbd_dev->image_format == 2)
1090		name_format = "%s.%016llx";
1091	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092			rbd_dev->header.object_prefix, segment);
1093	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094		pr_err("error formatting segment name for #%llu (%d)\n",
1095			segment, ret);
1096		kfree(name);
1097		name = NULL;
1098	}
1099
1100	return name;
1101}
1102
1103static void rbd_segment_name_free(const char *name)
1104{
1105	/* The explicit cast here is needed to drop the const qualifier */
1106
1107	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108}
1109
1110static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111{
1112	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114	return offset & (segment_size - 1);
1115}
1116
1117static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118				u64 offset, u64 length)
1119{
1120	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122	offset &= segment_size - 1;
1123
1124	rbd_assert(length <= U64_MAX - offset);
1125	if (offset + length > segment_size)
1126		length = segment_size - offset;
1127
1128	return length;
1129}
1130
1131/*
1132 * returns the size of an object in the image
1133 */
1134static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135{
1136	return 1 << header->obj_order;
1137}
1138
1139/*
1140 * bio helpers
1141 */
1142
1143static void bio_chain_put(struct bio *chain)
1144{
1145	struct bio *tmp;
1146
1147	while (chain) {
1148		tmp = chain;
1149		chain = chain->bi_next;
1150		bio_put(tmp);
1151	}
1152}
1153
1154/*
1155 * zeros a bio chain, starting at specific offset
1156 */
1157static void zero_bio_chain(struct bio *chain, int start_ofs)
1158{
1159	struct bio_vec bv;
1160	struct bvec_iter iter;
1161	unsigned long flags;
1162	void *buf;
 
1163	int pos = 0;
1164
1165	while (chain) {
1166		bio_for_each_segment(bv, chain, iter) {
1167			if (pos + bv.bv_len > start_ofs) {
1168				int remainder = max(start_ofs - pos, 0);
1169				buf = bvec_kmap_irq(&bv, &flags);
1170				memset(buf + remainder, 0,
1171				       bv.bv_len - remainder);
1172				flush_dcache_page(bv.bv_page);
1173				bvec_kunmap_irq(buf, &flags);
1174			}
1175			pos += bv.bv_len;
1176		}
1177
1178		chain = chain->bi_next;
1179	}
1180}
1181
1182/*
1183 * similar to zero_bio_chain(), zeros data defined by a page array,
1184 * starting at the given byte offset from the start of the array and
1185 * continuing up to the given end offset.  The pages array is
1186 * assumed to be big enough to hold all bytes up to the end.
1187 */
1188static void zero_pages(struct page **pages, u64 offset, u64 end)
1189{
1190	struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192	rbd_assert(end > offset);
1193	rbd_assert(end - offset <= (u64)SIZE_MAX);
1194	while (offset < end) {
1195		size_t page_offset;
1196		size_t length;
1197		unsigned long flags;
1198		void *kaddr;
1199
1200		page_offset = offset & ~PAGE_MASK;
1201		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202		local_irq_save(flags);
1203		kaddr = kmap_atomic(*page);
1204		memset(kaddr + page_offset, 0, length);
1205		flush_dcache_page(*page);
1206		kunmap_atomic(kaddr);
1207		local_irq_restore(flags);
1208
1209		offset += length;
1210		page++;
1211	}
1212}
1213
1214/*
1215 * Clone a portion of a bio, starting at the given byte offset
1216 * and continuing for the number of bytes indicated.
1217 */
1218static struct bio *bio_clone_range(struct bio *bio_src,
1219					unsigned int offset,
1220					unsigned int len,
1221					gfp_t gfpmask)
1222{
1223	struct bio *bio;
1224
1225	bio = bio_clone(bio_src, gfpmask);
1226	if (!bio)
1227		return NULL;	/* ENOMEM */
1228
1229	bio_advance(bio, offset);
1230	bio->bi_iter.bi_size = len;
1231
1232	return bio;
1233}
1234
1235/*
1236 * Clone a portion of a bio chain, starting at the given byte offset
1237 * into the first bio in the source chain and continuing for the
1238 * number of bytes indicated.  The result is another bio chain of
1239 * exactly the given length, or a null pointer on error.
1240 *
1241 * The bio_src and offset parameters are both in-out.  On entry they
1242 * refer to the first source bio and the offset into that bio where
1243 * the start of data to be cloned is located.
1244 *
1245 * On return, bio_src is updated to refer to the bio in the source
1246 * chain that contains first un-cloned byte, and *offset will
1247 * contain the offset of that byte within that bio.
1248 */
1249static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250					unsigned int *offset,
1251					unsigned int len,
1252					gfp_t gfpmask)
1253{
1254	struct bio *bi = *bio_src;
1255	unsigned int off = *offset;
1256	struct bio *chain = NULL;
1257	struct bio **end;
1258
1259	/* Build up a chain of clone bios up to the limit */
1260
1261	if (!bi || off >= bi->bi_iter.bi_size || !len)
1262		return NULL;		/* Nothing to clone */
1263
1264	end = &chain;
1265	while (len) {
1266		unsigned int bi_size;
1267		struct bio *bio;
1268
1269		if (!bi) {
1270			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271			goto out_err;	/* EINVAL; ran out of bio's */
1272		}
1273		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275		if (!bio)
1276			goto out_err;	/* ENOMEM */
1277
1278		*end = bio;
1279		end = &bio->bi_next;
1280
1281		off += bi_size;
1282		if (off == bi->bi_iter.bi_size) {
1283			bi = bi->bi_next;
1284			off = 0;
1285		}
1286		len -= bi_size;
1287	}
1288	*bio_src = bi;
1289	*offset = off;
1290
1291	return chain;
1292out_err:
1293	bio_chain_put(chain);
1294
1295	return NULL;
1296}
1297
1298/*
1299 * The default/initial value for all object request flags is 0.  For
1300 * each flag, once its value is set to 1 it is never reset to 0
1301 * again.
1302 */
1303static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
 
 
1304{
1305	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306		struct rbd_device *rbd_dev;
1307
1308		rbd_dev = obj_request->img_request->rbd_dev;
1309		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310			obj_request);
1311	}
1312}
1313
1314static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315{
1316	smp_mb();
1317	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318}
1319
1320static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321{
1322	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323		struct rbd_device *rbd_dev = NULL;
1324
1325		if (obj_request_img_data_test(obj_request))
1326			rbd_dev = obj_request->img_request->rbd_dev;
1327		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328			obj_request);
1329	}
1330}
 
 
 
 
 
 
 
 
1331
1332static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333{
1334	smp_mb();
1335	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336}
1337
1338/*
1339 * This sets the KNOWN flag after (possibly) setting the EXISTS
1340 * flag.  The latter is set based on the "exists" value provided.
1341 *
1342 * Note that for our purposes once an object exists it never goes
1343 * away again.  It's possible that the response from two existence
1344 * checks are separated by the creation of the target object, and
1345 * the first ("doesn't exist") response arrives *after* the second
1346 * ("does exist").  In that case we ignore the second one.
1347 */
1348static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349				bool exists)
1350{
1351	if (exists)
1352		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354	smp_mb();
1355}
1356
1357static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358{
1359	smp_mb();
1360	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361}
1362
1363static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364{
1365	smp_mb();
1366	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367}
1368
1369static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370{
1371	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372		atomic_read(&obj_request->kref.refcount));
1373	kref_get(&obj_request->kref);
1374}
1375
1376static void rbd_obj_request_destroy(struct kref *kref);
1377static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378{
1379	rbd_assert(obj_request != NULL);
1380	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381		atomic_read(&obj_request->kref.refcount));
1382	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383}
1384
1385static bool img_request_child_test(struct rbd_img_request *img_request);
1386static void rbd_parent_request_destroy(struct kref *kref);
1387static void rbd_img_request_destroy(struct kref *kref);
1388static void rbd_img_request_put(struct rbd_img_request *img_request)
1389{
1390	rbd_assert(img_request != NULL);
1391	dout("%s: img %p (was %d)\n", __func__, img_request,
1392		atomic_read(&img_request->kref.refcount));
1393	if (img_request_child_test(img_request))
1394		kref_put(&img_request->kref, rbd_parent_request_destroy);
1395	else
1396		kref_put(&img_request->kref, rbd_img_request_destroy);
1397}
1398
1399static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400					struct rbd_obj_request *obj_request)
1401{
1402	rbd_assert(obj_request->img_request == NULL);
1403
1404	/* Image request now owns object's original reference */
1405	obj_request->img_request = img_request;
1406	obj_request->which = img_request->obj_request_count;
1407	rbd_assert(!obj_request_img_data_test(obj_request));
1408	obj_request_img_data_set(obj_request);
1409	rbd_assert(obj_request->which != BAD_WHICH);
1410	img_request->obj_request_count++;
1411	list_add_tail(&obj_request->links, &img_request->obj_requests);
1412	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413		obj_request->which);
1414}
1415
1416static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417					struct rbd_obj_request *obj_request)
1418{
1419	rbd_assert(obj_request->which != BAD_WHICH);
1420
1421	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422		obj_request->which);
1423	list_del(&obj_request->links);
1424	rbd_assert(img_request->obj_request_count > 0);
1425	img_request->obj_request_count--;
1426	rbd_assert(obj_request->which == img_request->obj_request_count);
1427	obj_request->which = BAD_WHICH;
1428	rbd_assert(obj_request_img_data_test(obj_request));
1429	rbd_assert(obj_request->img_request == img_request);
1430	obj_request->img_request = NULL;
1431	obj_request->callback = NULL;
1432	rbd_obj_request_put(obj_request);
1433}
1434
1435static bool obj_request_type_valid(enum obj_request_type type)
1436{
1437	switch (type) {
1438	case OBJ_REQUEST_NODATA:
1439	case OBJ_REQUEST_BIO:
1440	case OBJ_REQUEST_PAGES:
1441		return true;
1442	default:
1443		return false;
1444	}
1445}
1446
1447static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448				struct rbd_obj_request *obj_request)
1449{
1450	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451
1452	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453}
1454
1455static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456{
1457
1458	dout("%s: img %p\n", __func__, img_request);
1459
1460	/*
1461	 * If no error occurred, compute the aggregate transfer
1462	 * count for the image request.  We could instead use
1463	 * atomic64_cmpxchg() to update it as each object request
1464	 * completes; not clear which way is better off hand.
1465	 */
1466	if (!img_request->result) {
1467		struct rbd_obj_request *obj_request;
1468		u64 xferred = 0;
1469
1470		for_each_obj_request(img_request, obj_request)
1471			xferred += obj_request->xferred;
1472		img_request->xferred = xferred;
1473	}
1474
1475	if (img_request->callback)
1476		img_request->callback(img_request);
1477	else
1478		rbd_img_request_put(img_request);
1479}
1480
1481/* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482
1483static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484{
1485	dout("%s: obj %p\n", __func__, obj_request);
1486
1487	return wait_for_completion_interruptible(&obj_request->completion);
1488}
1489
1490/*
1491 * The default/initial value for all image request flags is 0.  Each
1492 * is conditionally set to 1 at image request initialization time
1493 * and currently never change thereafter.
1494 */
1495static void img_request_write_set(struct rbd_img_request *img_request)
1496{
1497	set_bit(IMG_REQ_WRITE, &img_request->flags);
1498	smp_mb();
1499}
1500
1501static bool img_request_write_test(struct rbd_img_request *img_request)
1502{
1503	smp_mb();
1504	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505}
1506
1507static void img_request_child_set(struct rbd_img_request *img_request)
1508{
1509	set_bit(IMG_REQ_CHILD, &img_request->flags);
1510	smp_mb();
1511}
1512
1513static void img_request_child_clear(struct rbd_img_request *img_request)
1514{
1515	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516	smp_mb();
1517}
1518
1519static bool img_request_child_test(struct rbd_img_request *img_request)
1520{
1521	smp_mb();
1522	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523}
1524
1525static void img_request_layered_set(struct rbd_img_request *img_request)
1526{
1527	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528	smp_mb();
1529}
1530
1531static void img_request_layered_clear(struct rbd_img_request *img_request)
1532{
1533	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534	smp_mb();
1535}
1536
1537static bool img_request_layered_test(struct rbd_img_request *img_request)
1538{
1539	smp_mb();
1540	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541}
1542
1543static void
1544rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545{
1546	u64 xferred = obj_request->xferred;
1547	u64 length = obj_request->length;
1548
1549	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550		obj_request, obj_request->img_request, obj_request->result,
1551		xferred, length);
1552	/*
1553	 * ENOENT means a hole in the image.  We zero-fill the entire
1554	 * length of the request.  A short read also implies zero-fill
1555	 * to the end of the request.  An error requires the whole
1556	 * length of the request to be reported finished with an error
1557	 * to the block layer.  In each case we update the xferred
1558	 * count to indicate the whole request was satisfied.
1559	 */
1560	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561	if (obj_request->result == -ENOENT) {
1562		if (obj_request->type == OBJ_REQUEST_BIO)
1563			zero_bio_chain(obj_request->bio_list, 0);
1564		else
1565			zero_pages(obj_request->pages, 0, length);
1566		obj_request->result = 0;
1567	} else if (xferred < length && !obj_request->result) {
1568		if (obj_request->type == OBJ_REQUEST_BIO)
1569			zero_bio_chain(obj_request->bio_list, xferred);
1570		else
1571			zero_pages(obj_request->pages, xferred, length);
1572	}
1573	obj_request->xferred = length;
1574	obj_request_done_set(obj_request);
1575}
1576
1577static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578{
1579	dout("%s: obj %p cb %p\n", __func__, obj_request,
1580		obj_request->callback);
1581	if (obj_request->callback)
1582		obj_request->callback(obj_request);
1583	else
1584		complete_all(&obj_request->completion);
1585}
1586
1587static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
 
 
 
1588{
1589	dout("%s: obj %p\n", __func__, obj_request);
1590	obj_request_done_set(obj_request);
1591}
 
 
1592
1593static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594{
1595	struct rbd_img_request *img_request = NULL;
1596	struct rbd_device *rbd_dev = NULL;
1597	bool layered = false;
1598
1599	if (obj_request_img_data_test(obj_request)) {
1600		img_request = obj_request->img_request;
1601		layered = img_request && img_request_layered_test(img_request);
1602		rbd_dev = img_request->rbd_dev;
1603	}
1604
1605	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606		obj_request, img_request, obj_request->result,
1607		obj_request->xferred, obj_request->length);
1608	if (layered && obj_request->result == -ENOENT &&
1609			obj_request->img_offset < rbd_dev->parent_overlap)
1610		rbd_img_parent_read(obj_request);
1611	else if (img_request)
1612		rbd_img_obj_request_read_callback(obj_request);
1613	else
1614		obj_request_done_set(obj_request);
1615}
1616
1617static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618{
1619	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620		obj_request->result, obj_request->length);
1621	/*
1622	 * There is no such thing as a successful short write.  Set
1623	 * it to our originally-requested length.
1624	 */
1625	obj_request->xferred = obj_request->length;
1626	obj_request_done_set(obj_request);
 
 
 
 
 
 
 
 
 
 
 
1627}
1628
1629/*
1630 * For a simple stat call there's nothing to do.  We'll do more if
1631 * this is part of a write sequence for a layered image.
1632 */
1633static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634{
1635	dout("%s: obj %p\n", __func__, obj_request);
1636	obj_request_done_set(obj_request);
1637}
1638
1639static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640				struct ceph_msg *msg)
1641{
1642	struct rbd_obj_request *obj_request = osd_req->r_priv;
1643	u16 opcode;
1644
1645	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646	rbd_assert(osd_req == obj_request->osd_req);
1647	if (obj_request_img_data_test(obj_request)) {
1648		rbd_assert(obj_request->img_request);
1649		rbd_assert(obj_request->which != BAD_WHICH);
1650	} else {
1651		rbd_assert(obj_request->which == BAD_WHICH);
1652	}
1653
1654	if (osd_req->r_result < 0)
1655		obj_request->result = osd_req->r_result;
1656
1657	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1658
1659	/*
1660	 * We support a 64-bit length, but ultimately it has to be
1661	 * passed to blk_end_request(), which takes an unsigned int.
1662	 */
1663	obj_request->xferred = osd_req->r_reply_op_len[0];
1664	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665
1666	opcode = osd_req->r_ops[0].op;
1667	switch (opcode) {
1668	case CEPH_OSD_OP_READ:
1669		rbd_osd_read_callback(obj_request);
1670		break;
1671	case CEPH_OSD_OP_SETALLOCHINT:
1672		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1673		/* fall through */
1674	case CEPH_OSD_OP_WRITE:
1675		rbd_osd_write_callback(obj_request);
1676		break;
1677	case CEPH_OSD_OP_STAT:
1678		rbd_osd_stat_callback(obj_request);
1679		break;
1680	case CEPH_OSD_OP_CALL:
1681	case CEPH_OSD_OP_NOTIFY_ACK:
1682	case CEPH_OSD_OP_WATCH:
1683		rbd_osd_trivial_callback(obj_request);
1684		break;
1685	default:
1686		rbd_warn(NULL, "%s: unsupported op %hu\n",
1687			obj_request->object_name, (unsigned short) opcode);
1688		break;
1689	}
1690
1691	if (obj_request_done_test(obj_request))
1692		rbd_obj_request_complete(obj_request);
1693}
1694
1695static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1696{
1697	struct rbd_img_request *img_request = obj_request->img_request;
1698	struct ceph_osd_request *osd_req = obj_request->osd_req;
1699	u64 snap_id;
1700
1701	rbd_assert(osd_req != NULL);
1702
1703	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1704	ceph_osdc_build_request(osd_req, obj_request->offset,
1705			NULL, snap_id, NULL);
1706}
1707
1708static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1709{
1710	struct rbd_img_request *img_request = obj_request->img_request;
1711	struct ceph_osd_request *osd_req = obj_request->osd_req;
1712	struct ceph_snap_context *snapc;
1713	struct timespec mtime = CURRENT_TIME;
1714
1715	rbd_assert(osd_req != NULL);
 
 
 
 
 
 
 
 
1716
1717	snapc = img_request ? img_request->snapc : NULL;
1718	ceph_osdc_build_request(osd_req, obj_request->offset,
1719			snapc, CEPH_NOSNAP, &mtime);
1720}
 
 
1721
1722/*
1723 * Create an osd request.  A read request has one osd op (read).
1724 * A write request has either one (watch) or two (hint+write) osd ops.
1725 * (All rbd data writes are prefixed with an allocation hint op, but
1726 * technically osd watch is a write request, hence this distinction.)
1727 */
1728static struct ceph_osd_request *rbd_osd_req_create(
1729					struct rbd_device *rbd_dev,
1730					bool write_request,
1731					unsigned int num_ops,
1732					struct rbd_obj_request *obj_request)
1733{
1734	struct ceph_snap_context *snapc = NULL;
1735	struct ceph_osd_client *osdc;
1736	struct ceph_osd_request *osd_req;
1737
1738	if (obj_request_img_data_test(obj_request)) {
1739		struct rbd_img_request *img_request = obj_request->img_request;
 
1740
1741		rbd_assert(write_request ==
1742				img_request_write_test(img_request));
1743		if (write_request)
1744			snapc = img_request->snapc;
 
 
 
1745	}
 
1746
1747	rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1748
1749	/* Allocate and initialize the request, for the num_ops ops */
1750
1751	osdc = &rbd_dev->rbd_client->client->osdc;
1752	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1753					  GFP_ATOMIC);
1754	if (!osd_req)
1755		return NULL;	/* ENOMEM */
1756
1757	if (write_request)
1758		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1759	else
1760		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1761
1762	osd_req->r_callback = rbd_osd_req_callback;
1763	osd_req->r_priv = obj_request;
1764
1765	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1766	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1767
1768	return osd_req;
1769}
1770
1771/*
1772 * Create a copyup osd request based on the information in the
1773 * object request supplied.  A copyup request has three osd ops,
1774 * a copyup method call, a hint op, and a write op.
1775 */
1776static struct ceph_osd_request *
1777rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778{
1779	struct rbd_img_request *img_request;
1780	struct ceph_snap_context *snapc;
1781	struct rbd_device *rbd_dev;
1782	struct ceph_osd_client *osdc;
1783	struct ceph_osd_request *osd_req;
 
1784
1785	rbd_assert(obj_request_img_data_test(obj_request));
1786	img_request = obj_request->img_request;
1787	rbd_assert(img_request);
1788	rbd_assert(img_request_write_test(img_request));
 
 
 
1789
1790	/* Allocate and initialize the request, for the three ops */
1791
1792	snapc = img_request->snapc;
1793	rbd_dev = img_request->rbd_dev;
1794	osdc = &rbd_dev->rbd_client->client->osdc;
1795	osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1796	if (!osd_req)
1797		return NULL;	/* ENOMEM */
 
1798
1799	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800	osd_req->r_callback = rbd_osd_req_callback;
1801	osd_req->r_priv = obj_request;
1802
1803	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1804	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1805
1806	return osd_req;
 
1807}
1808
1809
1810static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1811{
1812	ceph_osdc_put_request(osd_req);
1813}
1814
1815/* object_name is assumed to be a non-null pointer and NUL-terminated */
1816
1817static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1818						u64 offset, u64 length,
1819						enum obj_request_type type)
 
 
 
 
 
 
 
 
 
 
1820{
1821	struct rbd_obj_request *obj_request;
1822	size_t size;
1823	char *name;
 
 
1824
1825	rbd_assert(obj_request_type_valid(type));
 
 
 
1826
1827	size = strlen(object_name) + 1;
1828	name = kmalloc(size, GFP_KERNEL);
1829	if (!name)
1830		return NULL;
 
1831
1832	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1833	if (!obj_request) {
1834		kfree(name);
1835		return NULL;
 
1836	}
1837
1838	obj_request->object_name = memcpy(name, object_name, size);
1839	obj_request->offset = offset;
1840	obj_request->length = length;
1841	obj_request->flags = 0;
1842	obj_request->which = BAD_WHICH;
1843	obj_request->type = type;
1844	INIT_LIST_HEAD(&obj_request->links);
1845	init_completion(&obj_request->completion);
1846	kref_init(&obj_request->kref);
 
 
1847
1848	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1849		offset, length, (int)type, obj_request);
1850
1851	return obj_request;
 
 
 
 
 
1852}
1853
1854static void rbd_obj_request_destroy(struct kref *kref)
 
 
 
 
 
 
 
 
 
 
 
1855{
1856	struct rbd_obj_request *obj_request;
 
 
 
 
 
1857
1858	obj_request = container_of(kref, struct rbd_obj_request, kref);
 
 
1859
1860	dout("%s: obj %p\n", __func__, obj_request);
 
 
 
1861
1862	rbd_assert(obj_request->img_request == NULL);
1863	rbd_assert(obj_request->which == BAD_WHICH);
1864
1865	if (obj_request->osd_req)
1866		rbd_osd_req_destroy(obj_request->osd_req);
1867
1868	rbd_assert(obj_request_type_valid(obj_request->type));
1869	switch (obj_request->type) {
1870	case OBJ_REQUEST_NODATA:
1871		break;		/* Nothing to do */
1872	case OBJ_REQUEST_BIO:
1873		if (obj_request->bio_list)
1874			bio_chain_put(obj_request->bio_list);
1875		break;
1876	case OBJ_REQUEST_PAGES:
1877		if (obj_request->pages)
1878			ceph_release_page_vector(obj_request->pages,
1879						obj_request->page_count);
1880		break;
1881	}
1882
1883	kfree(obj_request->object_name);
1884	obj_request->object_name = NULL;
1885	kmem_cache_free(rbd_obj_request_cache, obj_request);
1886}
1887
1888/* It's OK to call this for a device with no parent */
 
 
 
 
 
 
 
 
1889
1890static void rbd_spec_put(struct rbd_spec *spec);
1891static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1892{
1893	rbd_dev_remove_parent(rbd_dev);
1894	rbd_spec_put(rbd_dev->parent_spec);
1895	rbd_dev->parent_spec = NULL;
1896	rbd_dev->parent_overlap = 0;
1897}
1898
1899/*
1900 * Parent image reference counting is used to determine when an
1901 * image's parent fields can be safely torn down--after there are no
1902 * more in-flight requests to the parent image.  When the last
1903 * reference is dropped, cleaning them up is safe.
1904 */
1905static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
 
 
 
 
 
 
1906{
1907	int counter;
1908
1909	if (!rbd_dev->parent_spec)
1910		return;
1911
1912	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1913	if (counter > 0)
1914		return;
1915
1916	/* Last reference; clean up parent data structures */
1917
1918	if (!counter)
1919		rbd_dev_unparent(rbd_dev);
1920	else
1921		rbd_warn(rbd_dev, "parent reference underflow\n");
1922}
1923
1924/*
1925 * If an image has a non-zero parent overlap, get a reference to its
1926 * parent.
1927 *
1928 * We must get the reference before checking for the overlap to
1929 * coordinate properly with zeroing the parent overlap in
1930 * rbd_dev_v2_parent_info() when an image gets flattened.  We
1931 * drop it again if there is no overlap.
1932 *
1933 * Returns true if the rbd device has a parent with a non-zero
1934 * overlap and a reference for it was successfully taken, or
1935 * false otherwise.
1936 */
1937static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
 
 
 
 
 
 
1938{
1939	int counter;
1940
1941	if (!rbd_dev->parent_spec)
1942		return false;
1943
1944	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1945	if (counter > 0 && rbd_dev->parent_overlap)
1946		return true;
1947
1948	/* Image was flattened, but parent is not yet torn down */
1949
1950	if (counter < 0)
1951		rbd_warn(rbd_dev, "parent reference overflow\n");
1952
1953	return false;
1954}
1955
1956/*
1957 * Caller is responsible for filling in the list of object requests
1958 * that comprises the image request, and the Linux request pointer
1959 * (if there is one).
1960 */
1961static struct rbd_img_request *rbd_img_request_create(
1962					struct rbd_device *rbd_dev,
1963					u64 offset, u64 length,
1964					bool write_request)
 
 
 
1965{
1966	struct rbd_img_request *img_request;
1967
1968	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1969	if (!img_request)
1970		return NULL;
1971
1972	if (write_request) {
1973		down_read(&rbd_dev->header_rwsem);
1974		ceph_get_snap_context(rbd_dev->header.snapc);
1975		up_read(&rbd_dev->header_rwsem);
1976	}
1977
1978	img_request->rq = NULL;
1979	img_request->rbd_dev = rbd_dev;
1980	img_request->offset = offset;
1981	img_request->length = length;
1982	img_request->flags = 0;
1983	if (write_request) {
1984		img_request_write_set(img_request);
1985		img_request->snapc = rbd_dev->header.snapc;
1986	} else {
1987		img_request->snap_id = rbd_dev->spec->snap_id;
1988	}
1989	if (rbd_dev_parent_get(rbd_dev))
1990		img_request_layered_set(img_request);
1991	spin_lock_init(&img_request->completion_lock);
1992	img_request->next_completion = 0;
1993	img_request->callback = NULL;
1994	img_request->result = 0;
1995	img_request->obj_request_count = 0;
1996	INIT_LIST_HEAD(&img_request->obj_requests);
1997	kref_init(&img_request->kref);
1998
1999	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2000		write_request ? "write" : "read", offset, length,
2001		img_request);
2002
2003	return img_request;
2004}
2005
2006static void rbd_img_request_destroy(struct kref *kref)
 
 
 
 
 
 
2007{
2008	struct rbd_img_request *img_request;
2009	struct rbd_obj_request *obj_request;
2010	struct rbd_obj_request *next_obj_request;
2011
2012	img_request = container_of(kref, struct rbd_img_request, kref);
 
 
2013
2014	dout("%s: img %p\n", __func__, img_request);
 
 
 
 
 
 
 
 
 
 
 
2015
2016	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2017		rbd_img_obj_request_del(img_request, obj_request);
2018	rbd_assert(img_request->obj_request_count == 0);
2019
2020	if (img_request_layered_test(img_request)) {
2021		img_request_layered_clear(img_request);
2022		rbd_dev_parent_put(img_request->rbd_dev);
2023	}
2024
2025	if (img_request_write_test(img_request))
2026		ceph_put_snap_context(img_request->snapc);
2027
2028	kmem_cache_free(rbd_img_request_cache, img_request);
2029}
2030
2031static struct rbd_img_request *rbd_parent_request_create(
2032					struct rbd_obj_request *obj_request,
2033					u64 img_offset, u64 length)
2034{
2035	struct rbd_img_request *parent_request;
2036	struct rbd_device *rbd_dev;
2037
2038	rbd_assert(obj_request->img_request);
2039	rbd_dev = obj_request->img_request->rbd_dev;
2040
2041	parent_request = rbd_img_request_create(rbd_dev->parent,
2042						img_offset, length, false);
2043	if (!parent_request)
2044		return NULL;
2045
2046	img_request_child_set(parent_request);
2047	rbd_obj_request_get(obj_request);
2048	parent_request->obj_request = obj_request;
2049
2050	return parent_request;
2051}
2052
2053static void rbd_parent_request_destroy(struct kref *kref)
 
 
 
 
 
2054{
2055	struct rbd_img_request *parent_request;
2056	struct rbd_obj_request *orig_request;
2057
2058	parent_request = container_of(kref, struct rbd_img_request, kref);
2059	orig_request = parent_request->obj_request;
 
2060
2061	parent_request->obj_request = NULL;
2062	rbd_obj_request_put(orig_request);
2063	img_request_child_clear(parent_request);
2064
2065	rbd_img_request_destroy(kref);
2066}
2067
2068static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2069{
2070	struct rbd_img_request *img_request;
2071	unsigned int xferred;
2072	int result;
2073	bool more;
 
 
 
 
 
2074
2075	rbd_assert(obj_request_img_data_test(obj_request));
2076	img_request = obj_request->img_request;
2077
2078	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2079	xferred = (unsigned int)obj_request->xferred;
2080	result = obj_request->result;
2081	if (result) {
2082		struct rbd_device *rbd_dev = img_request->rbd_dev;
2083
2084		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2085			img_request_write_test(img_request) ? "write" : "read",
2086			obj_request->length, obj_request->img_offset,
2087			obj_request->offset);
2088		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2089			result, xferred);
2090		if (!img_request->result)
2091			img_request->result = result;
2092	}
2093
2094	/* Image object requests don't own their page array */
2095
2096	if (obj_request->type == OBJ_REQUEST_PAGES) {
2097		obj_request->pages = NULL;
2098		obj_request->page_count = 0;
2099	}
2100
2101	if (img_request_child_test(img_request)) {
2102		rbd_assert(img_request->obj_request != NULL);
2103		more = obj_request->which < img_request->obj_request_count - 1;
2104	} else {
2105		rbd_assert(img_request->rq != NULL);
2106		more = blk_end_request(img_request->rq, result, xferred);
2107	}
2108
2109	return more;
2110}
2111
2112static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
 
 
 
 
2113{
2114	struct rbd_img_request *img_request;
2115	u32 which = obj_request->which;
2116	bool more = true;
2117
2118	rbd_assert(obj_request_img_data_test(obj_request));
2119	img_request = obj_request->img_request;
2120
2121	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2122	rbd_assert(img_request != NULL);
2123	rbd_assert(img_request->obj_request_count > 0);
2124	rbd_assert(which != BAD_WHICH);
2125	rbd_assert(which < img_request->obj_request_count);
2126
2127	spin_lock_irq(&img_request->completion_lock);
2128	if (which != img_request->next_completion)
2129		goto out;
2130
2131	for_each_obj_request_from(img_request, obj_request) {
2132		rbd_assert(more);
2133		rbd_assert(which < img_request->obj_request_count);
 
 
 
2134
2135		if (!obj_request_done_test(obj_request))
2136			break;
2137		more = rbd_img_obj_end_request(obj_request);
2138		which++;
2139	}
2140
2141	rbd_assert(more ^ (which == img_request->obj_request_count));
2142	img_request->next_completion = which;
2143out:
2144	spin_unlock_irq(&img_request->completion_lock);
2145
2146	if (!more)
2147		rbd_img_request_complete(img_request);
2148}
2149
2150/*
2151 * Split up an image request into one or more object requests, each
2152 * to a different object.  The "type" parameter indicates whether
2153 * "data_desc" is the pointer to the head of a list of bio
2154 * structures, or the base of a page array.  In either case this
2155 * function assumes data_desc describes memory sufficient to hold
2156 * all data described by the image request.
2157 */
2158static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159					enum obj_request_type type,
2160					void *data_desc)
2161{
2162	struct rbd_device *rbd_dev = img_request->rbd_dev;
2163	struct rbd_obj_request *obj_request = NULL;
2164	struct rbd_obj_request *next_obj_request;
2165	bool write_request = img_request_write_test(img_request);
2166	struct bio *bio_list = NULL;
2167	unsigned int bio_offset = 0;
2168	struct page **pages = NULL;
2169	u64 img_offset;
2170	u64 resid;
2171	u16 opcode;
2172
2173	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174		(int)type, data_desc);
2175
2176	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177	img_offset = img_request->offset;
2178	resid = img_request->length;
2179	rbd_assert(resid > 0);
2180
2181	if (type == OBJ_REQUEST_BIO) {
2182		bio_list = data_desc;
2183		rbd_assert(img_offset ==
2184			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2185	} else {
2186		rbd_assert(type == OBJ_REQUEST_PAGES);
2187		pages = data_desc;
2188	}
2189
2190	while (resid) {
2191		struct ceph_osd_request *osd_req;
2192		const char *object_name;
2193		u64 offset;
2194		u64 length;
2195		unsigned int which = 0;
2196
2197		object_name = rbd_segment_name(rbd_dev, img_offset);
2198		if (!object_name)
2199			goto out_unwind;
2200		offset = rbd_segment_offset(rbd_dev, img_offset);
2201		length = rbd_segment_length(rbd_dev, img_offset, resid);
2202		obj_request = rbd_obj_request_create(object_name,
2203						offset, length, type);
2204		/* object request has its own copy of the object name */
2205		rbd_segment_name_free(object_name);
2206		if (!obj_request)
2207			goto out_unwind;
2208
2209		/*
2210		 * set obj_request->img_request before creating the
2211		 * osd_request so that it gets the right snapc
2212		 */
2213		rbd_img_obj_request_add(img_request, obj_request);
2214
2215		if (type == OBJ_REQUEST_BIO) {
2216			unsigned int clone_size;
2217
2218			rbd_assert(length <= (u64)UINT_MAX);
2219			clone_size = (unsigned int)length;
2220			obj_request->bio_list =
2221					bio_chain_clone_range(&bio_list,
2222								&bio_offset,
2223								clone_size,
2224								GFP_ATOMIC);
2225			if (!obj_request->bio_list)
2226				goto out_unwind;
2227		} else {
2228			unsigned int page_count;
2229
2230			obj_request->pages = pages;
2231			page_count = (u32)calc_pages_for(offset, length);
2232			obj_request->page_count = page_count;
2233			if ((offset + length) & ~PAGE_MASK)
2234				page_count--;	/* more on last page */
2235			pages += page_count;
2236		}
2237
2238		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239					     (write_request ? 2 : 1),
2240					     obj_request);
2241		if (!osd_req)
2242			goto out_unwind;
2243		obj_request->osd_req = osd_req;
2244		obj_request->callback = rbd_img_obj_callback;
2245
2246		if (write_request) {
2247			osd_req_op_alloc_hint_init(osd_req, which,
2248					     rbd_obj_bytes(&rbd_dev->header),
2249					     rbd_obj_bytes(&rbd_dev->header));
2250			which++;
2251		}
2252
2253		osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2254				       0, 0);
2255		if (type == OBJ_REQUEST_BIO)
2256			osd_req_op_extent_osd_data_bio(osd_req, which,
2257					obj_request->bio_list, length);
2258		else
2259			osd_req_op_extent_osd_data_pages(osd_req, which,
2260					obj_request->pages, length,
2261					offset & ~PAGE_MASK, false, false);
2262
2263		if (write_request)
2264			rbd_osd_req_format_write(obj_request);
2265		else
2266			rbd_osd_req_format_read(obj_request);
2267
2268		obj_request->img_offset = img_offset;
2269
2270		img_offset += length;
2271		resid -= length;
2272	}
2273
2274	return 0;
2275
2276out_unwind:
2277	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2278		rbd_img_obj_request_del(img_request, obj_request);
2279
2280	return -ENOMEM;
2281}
2282
2283static void
2284rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2285{
2286	struct rbd_img_request *img_request;
2287	struct rbd_device *rbd_dev;
2288	struct page **pages;
2289	u32 page_count;
2290
2291	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2292	rbd_assert(obj_request_img_data_test(obj_request));
2293	img_request = obj_request->img_request;
2294	rbd_assert(img_request);
2295
2296	rbd_dev = img_request->rbd_dev;
2297	rbd_assert(rbd_dev);
2298
2299	pages = obj_request->copyup_pages;
2300	rbd_assert(pages != NULL);
2301	obj_request->copyup_pages = NULL;
2302	page_count = obj_request->copyup_page_count;
2303	rbd_assert(page_count);
2304	obj_request->copyup_page_count = 0;
2305	ceph_release_page_vector(pages, page_count);
2306
2307	/*
2308	 * We want the transfer count to reflect the size of the
2309	 * original write request.  There is no such thing as a
2310	 * successful short write, so if the request was successful
2311	 * we can just set it to the originally-requested length.
2312	 */
2313	if (!obj_request->result)
2314		obj_request->xferred = obj_request->length;
2315
2316	/* Finish up with the normal image object callback */
2317
2318	rbd_img_obj_callback(obj_request);
2319}
2320
2321static void
2322rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2323{
2324	struct rbd_obj_request *orig_request;
2325	struct ceph_osd_request *osd_req;
2326	struct ceph_osd_client *osdc;
2327	struct rbd_device *rbd_dev;
2328	struct page **pages;
2329	u32 page_count;
2330	int img_result;
2331	u64 parent_length;
2332	u64 offset;
2333	u64 length;
2334
2335	rbd_assert(img_request_child_test(img_request));
2336
2337	/* First get what we need from the image request */
2338
2339	pages = img_request->copyup_pages;
2340	rbd_assert(pages != NULL);
2341	img_request->copyup_pages = NULL;
2342	page_count = img_request->copyup_page_count;
2343	rbd_assert(page_count);
2344	img_request->copyup_page_count = 0;
2345
2346	orig_request = img_request->obj_request;
2347	rbd_assert(orig_request != NULL);
2348	rbd_assert(obj_request_type_valid(orig_request->type));
2349	img_result = img_request->result;
2350	parent_length = img_request->length;
2351	rbd_assert(parent_length == img_request->xferred);
2352	rbd_img_request_put(img_request);
2353
2354	rbd_assert(orig_request->img_request);
2355	rbd_dev = orig_request->img_request->rbd_dev;
2356	rbd_assert(rbd_dev);
2357
2358	/*
2359	 * If the overlap has become 0 (most likely because the
2360	 * image has been flattened) we need to free the pages
2361	 * and re-submit the original write request.
2362	 */
2363	if (!rbd_dev->parent_overlap) {
2364		struct ceph_osd_client *osdc;
2365
2366		ceph_release_page_vector(pages, page_count);
2367		osdc = &rbd_dev->rbd_client->client->osdc;
2368		img_result = rbd_obj_request_submit(osdc, orig_request);
2369		if (!img_result)
2370			return;
2371	}
2372
2373	if (img_result)
2374		goto out_err;
2375
2376	/*
2377	 * The original osd request is of no use to use any more.
2378	 * We need a new one that can hold the three ops in a copyup
2379	 * request.  Allocate the new copyup osd request for the
2380	 * original request, and release the old one.
2381	 */
2382	img_result = -ENOMEM;
2383	osd_req = rbd_osd_req_create_copyup(orig_request);
2384	if (!osd_req)
2385		goto out_err;
2386	rbd_osd_req_destroy(orig_request->osd_req);
2387	orig_request->osd_req = osd_req;
2388	orig_request->copyup_pages = pages;
2389	orig_request->copyup_page_count = page_count;
2390
2391	/* Initialize the copyup op */
2392
2393	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2394	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2395						false, false);
2396
2397	/* Then the hint op */
2398
2399	osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2400				   rbd_obj_bytes(&rbd_dev->header));
2401
2402	/* And the original write request op */
2403
2404	offset = orig_request->offset;
2405	length = orig_request->length;
2406	osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2407					offset, length, 0, 0);
2408	if (orig_request->type == OBJ_REQUEST_BIO)
2409		osd_req_op_extent_osd_data_bio(osd_req, 2,
2410					orig_request->bio_list, length);
2411	else
2412		osd_req_op_extent_osd_data_pages(osd_req, 2,
2413					orig_request->pages, length,
2414					offset & ~PAGE_MASK, false, false);
2415
2416	rbd_osd_req_format_write(orig_request);
2417
2418	/* All set, send it off. */
2419
2420	orig_request->callback = rbd_img_obj_copyup_callback;
2421	osdc = &rbd_dev->rbd_client->client->osdc;
2422	img_result = rbd_obj_request_submit(osdc, orig_request);
2423	if (!img_result)
2424		return;
2425out_err:
2426	/* Record the error code and complete the request */
2427
2428	orig_request->result = img_result;
2429	orig_request->xferred = 0;
2430	obj_request_done_set(orig_request);
2431	rbd_obj_request_complete(orig_request);
2432}
2433
2434/*
2435 * Read from the parent image the range of data that covers the
2436 * entire target of the given object request.  This is used for
2437 * satisfying a layered image write request when the target of an
2438 * object request from the image request does not exist.
2439 *
2440 * A page array big enough to hold the returned data is allocated
2441 * and supplied to rbd_img_request_fill() as the "data descriptor."
2442 * When the read completes, this page array will be transferred to
2443 * the original object request for the copyup operation.
2444 *
2445 * If an error occurs, record it as the result of the original
2446 * object request and mark it done so it gets completed.
2447 */
2448static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2449{
2450	struct rbd_img_request *img_request = NULL;
2451	struct rbd_img_request *parent_request = NULL;
2452	struct rbd_device *rbd_dev;
2453	u64 img_offset;
2454	u64 length;
2455	struct page **pages = NULL;
2456	u32 page_count;
2457	int result;
2458
2459	rbd_assert(obj_request_img_data_test(obj_request));
2460	rbd_assert(obj_request_type_valid(obj_request->type));
2461
2462	img_request = obj_request->img_request;
2463	rbd_assert(img_request != NULL);
2464	rbd_dev = img_request->rbd_dev;
2465	rbd_assert(rbd_dev->parent != NULL);
2466
2467	/*
2468	 * Determine the byte range covered by the object in the
2469	 * child image to which the original request was to be sent.
2470	 */
2471	img_offset = obj_request->img_offset - obj_request->offset;
2472	length = (u64)1 << rbd_dev->header.obj_order;
2473
2474	/*
2475	 * There is no defined parent data beyond the parent
2476	 * overlap, so limit what we read at that boundary if
2477	 * necessary.
2478	 */
2479	if (img_offset + length > rbd_dev->parent_overlap) {
2480		rbd_assert(img_offset < rbd_dev->parent_overlap);
2481		length = rbd_dev->parent_overlap - img_offset;
2482	}
2483
2484	/*
2485	 * Allocate a page array big enough to receive the data read
2486	 * from the parent.
2487	 */
2488	page_count = (u32)calc_pages_for(0, length);
2489	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2490	if (IS_ERR(pages)) {
2491		result = PTR_ERR(pages);
2492		pages = NULL;
2493		goto out_err;
2494	}
2495
2496	result = -ENOMEM;
2497	parent_request = rbd_parent_request_create(obj_request,
2498						img_offset, length);
2499	if (!parent_request)
2500		goto out_err;
2501
2502	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2503	if (result)
2504		goto out_err;
2505	parent_request->copyup_pages = pages;
2506	parent_request->copyup_page_count = page_count;
2507
2508	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2509	result = rbd_img_request_submit(parent_request);
2510	if (!result)
2511		return 0;
2512
2513	parent_request->copyup_pages = NULL;
2514	parent_request->copyup_page_count = 0;
2515	parent_request->obj_request = NULL;
2516	rbd_obj_request_put(obj_request);
2517out_err:
2518	if (pages)
2519		ceph_release_page_vector(pages, page_count);
2520	if (parent_request)
2521		rbd_img_request_put(parent_request);
2522	obj_request->result = result;
2523	obj_request->xferred = 0;
2524	obj_request_done_set(obj_request);
2525
2526	return result;
2527}
2528
2529static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2530{
2531	struct rbd_obj_request *orig_request;
2532	struct rbd_device *rbd_dev;
2533	int result;
2534
2535	rbd_assert(!obj_request_img_data_test(obj_request));
2536
2537	/*
2538	 * All we need from the object request is the original
2539	 * request and the result of the STAT op.  Grab those, then
2540	 * we're done with the request.
2541	 */
2542	orig_request = obj_request->obj_request;
2543	obj_request->obj_request = NULL;
2544	rbd_obj_request_put(orig_request);
2545	rbd_assert(orig_request);
2546	rbd_assert(orig_request->img_request);
2547
2548	result = obj_request->result;
2549	obj_request->result = 0;
2550
2551	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2552		obj_request, orig_request, result,
2553		obj_request->xferred, obj_request->length);
2554	rbd_obj_request_put(obj_request);
2555
2556	/*
2557	 * If the overlap has become 0 (most likely because the
2558	 * image has been flattened) we need to free the pages
2559	 * and re-submit the original write request.
2560	 */
2561	rbd_dev = orig_request->img_request->rbd_dev;
2562	if (!rbd_dev->parent_overlap) {
2563		struct ceph_osd_client *osdc;
2564
2565		osdc = &rbd_dev->rbd_client->client->osdc;
2566		result = rbd_obj_request_submit(osdc, orig_request);
2567		if (!result)
2568			return;
2569	}
2570
2571	/*
2572	 * Our only purpose here is to determine whether the object
2573	 * exists, and we don't want to treat the non-existence as
2574	 * an error.  If something else comes back, transfer the
2575	 * error to the original request and complete it now.
2576	 */
2577	if (!result) {
2578		obj_request_existence_set(orig_request, true);
2579	} else if (result == -ENOENT) {
2580		obj_request_existence_set(orig_request, false);
2581	} else if (result) {
2582		orig_request->result = result;
2583		goto out;
2584	}
2585
2586	/*
2587	 * Resubmit the original request now that we have recorded
2588	 * whether the target object exists.
2589	 */
2590	orig_request->result = rbd_img_obj_request_submit(orig_request);
2591out:
2592	if (orig_request->result)
2593		rbd_obj_request_complete(orig_request);
2594}
2595
2596static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2597{
2598	struct rbd_obj_request *stat_request;
2599	struct rbd_device *rbd_dev;
2600	struct ceph_osd_client *osdc;
2601	struct page **pages = NULL;
2602	u32 page_count;
2603	size_t size;
2604	int ret;
2605
2606	/*
2607	 * The response data for a STAT call consists of:
2608	 *     le64 length;
2609	 *     struct {
2610	 *         le32 tv_sec;
2611	 *         le32 tv_nsec;
2612	 *     } mtime;
2613	 */
2614	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2615	page_count = (u32)calc_pages_for(0, size);
2616	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2617	if (IS_ERR(pages))
2618		return PTR_ERR(pages);
2619
2620	ret = -ENOMEM;
2621	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2622							OBJ_REQUEST_PAGES);
2623	if (!stat_request)
2624		goto out;
2625
2626	rbd_obj_request_get(obj_request);
2627	stat_request->obj_request = obj_request;
2628	stat_request->pages = pages;
2629	stat_request->page_count = page_count;
2630
2631	rbd_assert(obj_request->img_request);
2632	rbd_dev = obj_request->img_request->rbd_dev;
2633	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2634						   stat_request);
2635	if (!stat_request->osd_req)
2636		goto out;
2637	stat_request->callback = rbd_img_obj_exists_callback;
2638
2639	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2640	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2641					false, false);
2642	rbd_osd_req_format_read(stat_request);
 
 
 
 
 
 
 
 
 
 
2643
2644	osdc = &rbd_dev->rbd_client->client->osdc;
2645	ret = rbd_obj_request_submit(osdc, stat_request);
2646out:
2647	if (ret)
2648		rbd_obj_request_put(obj_request);
2649
 
 
 
 
2650	return ret;
2651}
2652
2653static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
 
 
 
 
 
2654{
2655	struct rbd_img_request *img_request;
2656	struct rbd_device *rbd_dev;
2657	bool known;
2658
2659	rbd_assert(obj_request_img_data_test(obj_request));
2660
2661	img_request = obj_request->img_request;
2662	rbd_assert(img_request);
2663	rbd_dev = img_request->rbd_dev;
2664
2665	/*
2666	 * Only writes to layered images need special handling.
2667	 * Reads and non-layered writes are simple object requests.
2668	 * Layered writes that start beyond the end of the overlap
2669	 * with the parent have no parent data, so they too are
2670	 * simple object requests.  Finally, if the target object is
2671	 * known to already exist, its parent data has already been
2672	 * copied, so a write to the object can also be handled as a
2673	 * simple object request.
2674	 */
2675	if (!img_request_write_test(img_request) ||
2676		!img_request_layered_test(img_request) ||
2677		rbd_dev->parent_overlap <= obj_request->img_offset ||
2678		((known = obj_request_known_test(obj_request)) &&
2679			obj_request_exists_test(obj_request))) {
2680
2681		struct rbd_device *rbd_dev;
2682		struct ceph_osd_client *osdc;
2683
2684		rbd_dev = obj_request->img_request->rbd_dev;
2685		osdc = &rbd_dev->rbd_client->client->osdc;
2686
2687		return rbd_obj_request_submit(osdc, obj_request);
2688	}
2689
2690	/*
2691	 * It's a layered write.  The target object might exist but
2692	 * we may not know that yet.  If we know it doesn't exist,
2693	 * start by reading the data for the full target object from
2694	 * the parent so we can use it for a copyup to the target.
2695	 */
2696	if (known)
2697		return rbd_img_obj_parent_read_full(obj_request);
2698
2699	/* We don't know whether the target exists.  Go find out. */
2700
2701	return rbd_img_obj_exists_submit(obj_request);
2702}
2703
2704static int rbd_img_request_submit(struct rbd_img_request *img_request)
2705{
2706	struct rbd_obj_request *obj_request;
2707	struct rbd_obj_request *next_obj_request;
2708
2709	dout("%s: img %p\n", __func__, img_request);
2710	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2711		int ret;
2712
2713		ret = rbd_img_obj_request_submit(obj_request);
2714		if (ret)
2715			return ret;
2716	}
2717
2718	return 0;
2719}
2720
2721static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2722{
2723	struct rbd_obj_request *obj_request;
2724	struct rbd_device *rbd_dev;
2725	u64 obj_end;
2726	u64 img_xferred;
2727	int img_result;
2728
2729	rbd_assert(img_request_child_test(img_request));
2730
2731	/* First get what we need from the image request and release it */
2732
2733	obj_request = img_request->obj_request;
2734	img_xferred = img_request->xferred;
2735	img_result = img_request->result;
2736	rbd_img_request_put(img_request);
2737
2738	/*
2739	 * If the overlap has become 0 (most likely because the
2740	 * image has been flattened) we need to re-submit the
2741	 * original request.
2742	 */
2743	rbd_assert(obj_request);
2744	rbd_assert(obj_request->img_request);
2745	rbd_dev = obj_request->img_request->rbd_dev;
2746	if (!rbd_dev->parent_overlap) {
2747		struct ceph_osd_client *osdc;
2748
2749		osdc = &rbd_dev->rbd_client->client->osdc;
2750		img_result = rbd_obj_request_submit(osdc, obj_request);
2751		if (!img_result)
2752			return;
2753	}
2754
2755	obj_request->result = img_result;
2756	if (obj_request->result)
2757		goto out;
 
 
 
2758
2759	/*
2760	 * We need to zero anything beyond the parent overlap
2761	 * boundary.  Since rbd_img_obj_request_read_callback()
2762	 * will zero anything beyond the end of a short read, an
2763	 * easy way to do this is to pretend the data from the
2764	 * parent came up short--ending at the overlap boundary.
2765	 */
2766	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2767	obj_end = obj_request->img_offset + obj_request->length;
2768	if (obj_end > rbd_dev->parent_overlap) {
2769		u64 xferred = 0;
2770
2771		if (obj_request->img_offset < rbd_dev->parent_overlap)
2772			xferred = rbd_dev->parent_overlap -
2773					obj_request->img_offset;
2774
2775		obj_request->xferred = min(img_xferred, xferred);
2776	} else {
2777		obj_request->xferred = img_xferred;
2778	}
2779out:
2780	rbd_img_obj_request_read_callback(obj_request);
2781	rbd_obj_request_complete(obj_request);
2782}
2783
2784static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2785{
2786	struct rbd_img_request *img_request;
2787	int result;
2788
2789	rbd_assert(obj_request_img_data_test(obj_request));
2790	rbd_assert(obj_request->img_request != NULL);
2791	rbd_assert(obj_request->result == (s32) -ENOENT);
2792	rbd_assert(obj_request_type_valid(obj_request->type));
2793
2794	/* rbd_read_finish(obj_request, obj_request->length); */
2795	img_request = rbd_parent_request_create(obj_request,
2796						obj_request->img_offset,
2797						obj_request->length);
2798	result = -ENOMEM;
2799	if (!img_request)
2800		goto out_err;
2801
2802	if (obj_request->type == OBJ_REQUEST_BIO)
2803		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2804						obj_request->bio_list);
2805	else
2806		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2807						obj_request->pages);
2808	if (result)
2809		goto out_err;
2810
2811	img_request->callback = rbd_img_parent_read_callback;
2812	result = rbd_img_request_submit(img_request);
2813	if (result)
2814		goto out_err;
2815
2816	return;
2817out_err:
2818	if (img_request)
2819		rbd_img_request_put(img_request);
2820	obj_request->result = result;
2821	obj_request->xferred = 0;
2822	obj_request_done_set(obj_request);
2823}
2824
2825static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2826{
2827	struct rbd_obj_request *obj_request;
2828	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2829	int ret;
2830
2831	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2832							OBJ_REQUEST_NODATA);
2833	if (!obj_request)
2834		return -ENOMEM;
2835
2836	ret = -ENOMEM;
2837	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2838						  obj_request);
2839	if (!obj_request->osd_req)
2840		goto out;
2841
2842	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2843					notify_id, 0, 0);
2844	rbd_osd_req_format_read(obj_request);
2845
2846	ret = rbd_obj_request_submit(osdc, obj_request);
2847	if (ret)
2848		goto out;
2849	ret = rbd_obj_request_wait(obj_request);
2850out:
2851	rbd_obj_request_put(obj_request);
2852
2853	return ret;
2854}
2855
2856static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2857{
2858	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2859	int ret;
2860
2861	if (!rbd_dev)
2862		return;
2863
2864	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2865		rbd_dev->header_name, (unsigned long long)notify_id,
2866		(unsigned int)opcode);
2867	ret = rbd_dev_refresh(rbd_dev);
2868	if (ret)
2869		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2870
2871	rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2872}
2873
2874/*
2875 * Request sync osd watch/unwatch.  The value of "start" determines
2876 * whether a watch request is being initiated or torn down.
2877 */
2878static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
 
 
 
 
 
 
2879{
2880	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2881	struct rbd_obj_request *obj_request;
2882	int ret;
 
 
 
 
2883
2884	rbd_assert(start ^ !!rbd_dev->watch_event);
2885	rbd_assert(start ^ !!rbd_dev->watch_request);
 
 
 
 
 
2886
2887	if (start) {
2888		ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2889						&rbd_dev->watch_event);
2890		if (ret < 0)
2891			return ret;
2892		rbd_assert(rbd_dev->watch_event != NULL);
2893	}
2894
2895	ret = -ENOMEM;
2896	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2897							OBJ_REQUEST_NODATA);
2898	if (!obj_request)
2899		goto out_cancel;
2900
2901	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2902						  obj_request);
2903	if (!obj_request->osd_req)
2904		goto out_cancel;
2905
2906	if (start)
2907		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2908	else
2909		ceph_osdc_unregister_linger_request(osdc,
2910					rbd_dev->watch_request->osd_req);
2911
2912	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2913				rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2914	rbd_osd_req_format_write(obj_request);
2915
2916	ret = rbd_obj_request_submit(osdc, obj_request);
2917	if (ret)
2918		goto out_cancel;
2919	ret = rbd_obj_request_wait(obj_request);
2920	if (ret)
2921		goto out_cancel;
2922	ret = obj_request->result;
2923	if (ret)
2924		goto out_cancel;
2925
2926	/*
2927	 * A watch request is set to linger, so the underlying osd
2928	 * request won't go away until we unregister it.  We retain
2929	 * a pointer to the object request during that time (in
2930	 * rbd_dev->watch_request), so we'll keep a reference to
2931	 * it.  We'll drop that reference (below) after we've
2932	 * unregistered it.
2933	 */
2934	if (start) {
2935		rbd_dev->watch_request = obj_request;
2936
2937		return 0;
2938	}
2939
2940	/* We have successfully torn down the watch request */
2941
2942	rbd_obj_request_put(rbd_dev->watch_request);
2943	rbd_dev->watch_request = NULL;
2944out_cancel:
2945	/* Cancel the event if we're tearing down, or on error */
2946	ceph_osdc_cancel_event(rbd_dev->watch_event);
2947	rbd_dev->watch_event = NULL;
2948	if (obj_request)
2949		rbd_obj_request_put(obj_request);
2950
 
2951	return ret;
2952}
2953
2954static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2955{
2956	return __rbd_dev_header_watch_sync(rbd_dev, true);
2957}
 
 
2958
2959static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2960{
2961	int ret;
2962
2963	ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2964	if (ret) {
2965		rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2966			 ret);
2967	}
2968}
2969
2970/*
2971 * Synchronous osd object method call.  Returns the number of bytes
2972 * returned in the outbound buffer, or a negative error code.
2973 */
2974static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2975			     const char *object_name,
2976			     const char *class_name,
2977			     const char *method_name,
2978			     const void *outbound,
2979			     size_t outbound_size,
2980			     void *inbound,
2981			     size_t inbound_size)
2982{
2983	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2984	struct rbd_obj_request *obj_request;
2985	struct page **pages;
2986	u32 page_count;
2987	int ret;
2988
2989	/*
2990	 * Method calls are ultimately read operations.  The result
2991	 * should placed into the inbound buffer provided.  They
2992	 * also supply outbound data--parameters for the object
2993	 * method.  Currently if this is present it will be a
2994	 * snapshot id.
2995	 */
2996	page_count = (u32)calc_pages_for(0, inbound_size);
2997	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2998	if (IS_ERR(pages))
2999		return PTR_ERR(pages);
3000
3001	ret = -ENOMEM;
3002	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3003							OBJ_REQUEST_PAGES);
3004	if (!obj_request)
3005		goto out;
 
 
 
3006
3007	obj_request->pages = pages;
3008	obj_request->page_count = page_count;
3009
3010	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3011						  obj_request);
3012	if (!obj_request->osd_req)
3013		goto out;
3014
3015	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3016					class_name, method_name);
3017	if (outbound_size) {
3018		struct ceph_pagelist *pagelist;
3019
3020		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3021		if (!pagelist)
3022			goto out;
3023
3024		ceph_pagelist_init(pagelist);
3025		ceph_pagelist_append(pagelist, outbound, outbound_size);
3026		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3027						pagelist);
3028	}
3029	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3030					obj_request->pages, inbound_size,
3031					0, false, false);
3032	rbd_osd_req_format_read(obj_request);
3033
3034	ret = rbd_obj_request_submit(osdc, obj_request);
3035	if (ret)
3036		goto out;
3037	ret = rbd_obj_request_wait(obj_request);
3038	if (ret)
3039		goto out;
3040
3041	ret = obj_request->result;
3042	if (ret < 0)
3043		goto out;
3044
3045	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3046	ret = (int)obj_request->xferred;
3047	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3048out:
3049	if (obj_request)
3050		rbd_obj_request_put(obj_request);
3051	else
3052		ceph_release_page_vector(pages, page_count);
3053
3054	return ret;
3055}
3056
3057static void rbd_request_fn(struct request_queue *q)
3058		__releases(q->queue_lock) __acquires(q->queue_lock)
3059{
3060	struct rbd_device *rbd_dev = q->queuedata;
3061	bool read_only = rbd_dev->mapping.read_only;
3062	struct request *rq;
3063	int result;
3064
3065	while ((rq = blk_fetch_request(q))) {
3066		bool write_request = rq_data_dir(rq) == WRITE;
3067		struct rbd_img_request *img_request;
3068		u64 offset;
3069		u64 length;
3070
3071		/* Ignore any non-FS requests that filter through. */
3072
3073		if (rq->cmd_type != REQ_TYPE_FS) {
3074			dout("%s: non-fs request type %d\n", __func__,
3075				(int) rq->cmd_type);
3076			__blk_end_request_all(rq, 0);
3077			continue;
3078		}
3079
3080		/* Ignore/skip any zero-length requests */
 
3081
3082		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3083		length = (u64) blk_rq_bytes(rq);
3084
3085		if (!length) {
3086			dout("%s: zero-length request\n", __func__);
3087			__blk_end_request_all(rq, 0);
3088			continue;
3089		}
3090
3091		spin_unlock_irq(q->queue_lock);
3092
3093		/* Disallow writes to a read-only device */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094
3095		if (write_request) {
3096			result = -EROFS;
3097			if (read_only)
3098				goto end_request;
3099			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3100		}
3101
3102		/*
3103		 * Quit early if the mapped snapshot no longer
3104		 * exists.  It's still possible the snapshot will
3105		 * have disappeared by the time our request arrives
3106		 * at the osd, but there's no sense in sending it if
3107		 * we already know.
3108		 */
3109		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3110			dout("request for non-existent snapshot");
3111			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3112			result = -ENXIO;
3113			goto end_request;
3114		}
3115
3116		result = -EINVAL;
3117		if (offset && length > U64_MAX - offset + 1) {
3118			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3119				offset, length);
3120			goto end_request;	/* Shouldn't happen */
3121		}
 
 
3122
3123		result = -EIO;
3124		if (offset + length > rbd_dev->mapping.size) {
3125			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3126				offset, length, rbd_dev->mapping.size);
3127			goto end_request;
3128		}
3129
3130		result = -ENOMEM;
3131		img_request = rbd_img_request_create(rbd_dev, offset, length,
3132							write_request);
3133		if (!img_request)
3134			goto end_request;
3135
3136		img_request->rq = rq;
3137
3138		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3139						rq->bio);
3140		if (!result)
3141			result = rbd_img_request_submit(img_request);
3142		if (result)
3143			rbd_img_request_put(img_request);
3144end_request:
3145		spin_lock_irq(q->queue_lock);
3146		if (result < 0) {
3147			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3148				write_request ? "write" : "read",
3149				length, offset, result);
3150
3151			__blk_end_request_all(rq, result);
3152		}
3153	}
3154}
3155
3156/*
3157 * a queue callback. Makes sure that we don't create a bio that spans across
3158 * multiple osd objects. One exception would be with a single page bios,
3159 * which we handle later at bio_chain_clone_range()
3160 */
3161static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3162			  struct bio_vec *bvec)
3163{
3164	struct rbd_device *rbd_dev = q->queuedata;
3165	sector_t sector_offset;
3166	sector_t sectors_per_obj;
3167	sector_t obj_sector_offset;
3168	int ret;
3169
3170	/*
3171	 * Find how far into its rbd object the partition-relative
3172	 * bio start sector is to offset relative to the enclosing
3173	 * device.
3174	 */
3175	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3176	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3177	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3178
3179	/*
3180	 * Compute the number of bytes from that offset to the end
3181	 * of the object.  Account for what's already used by the bio.
3182	 */
3183	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3184	if (ret > bmd->bi_size)
3185		ret -= bmd->bi_size;
3186	else
3187		ret = 0;
3188
3189	/*
3190	 * Don't send back more than was asked for.  And if the bio
3191	 * was empty, let the whole thing through because:  "Note
3192	 * that a block device *must* allow a single page to be
3193	 * added to an empty bio."
3194	 */
3195	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3196	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3197		ret = (int) bvec->bv_len;
3198
3199	return ret;
3200}
3201
3202static void rbd_free_disk(struct rbd_device *rbd_dev)
3203{
3204	struct gendisk *disk = rbd_dev->disk;
3205
3206	if (!disk)
3207		return;
3208
3209	rbd_dev->disk = NULL;
3210	if (disk->flags & GENHD_FL_UP) {
 
3211		del_gendisk(disk);
3212		if (disk->queue)
3213			blk_cleanup_queue(disk->queue);
3214	}
3215	put_disk(disk);
3216}
3217
3218static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3219				const char *object_name,
3220				u64 offset, u64 length, void *buf)
3221
 
3222{
3223	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3224	struct rbd_obj_request *obj_request;
3225	struct page **pages = NULL;
3226	u32 page_count;
3227	size_t size;
3228	int ret;
 
 
 
 
 
 
 
 
 
3229
3230	page_count = (u32) calc_pages_for(offset, length);
3231	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3232	if (IS_ERR(pages))
3233		ret = PTR_ERR(pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3234
3235	ret = -ENOMEM;
3236	obj_request = rbd_obj_request_create(object_name, offset, length,
3237							OBJ_REQUEST_PAGES);
3238	if (!obj_request)
3239		goto out;
3240
3241	obj_request->pages = pages;
3242	obj_request->page_count = page_count;
3243
3244	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3245						  obj_request);
3246	if (!obj_request->osd_req)
3247		goto out;
3248
3249	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3250					offset, length, 0, 0);
3251	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3252					obj_request->pages,
3253					obj_request->length,
3254					obj_request->offset & ~PAGE_MASK,
3255					false, false);
3256	rbd_osd_req_format_read(obj_request);
3257
3258	ret = rbd_obj_request_submit(osdc, obj_request);
3259	if (ret)
3260		goto out;
3261	ret = rbd_obj_request_wait(obj_request);
3262	if (ret)
3263		goto out;
3264
3265	ret = obj_request->result;
3266	if (ret < 0)
3267		goto out;
3268
3269	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3270	size = (size_t) obj_request->xferred;
3271	ceph_copy_from_page_vector(pages, buf, 0, size);
3272	rbd_assert(size <= (size_t)INT_MAX);
3273	ret = (int)size;
3274out:
3275	if (obj_request)
3276		rbd_obj_request_put(obj_request);
3277	else
3278		ceph_release_page_vector(pages, page_count);
3279
3280	return ret;
3281}
3282
3283/*
3284 * Read the complete header for the given rbd device.  On successful
3285 * return, the rbd_dev->header field will contain up-to-date
3286 * information about the image.
3287 */
3288static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3289{
3290	struct rbd_image_header_ondisk *ondisk = NULL;
3291	u32 snap_count = 0;
3292	u64 names_size = 0;
3293	u32 want_count;
3294	int ret;
 
 
3295
3296	/*
3297	 * The complete header will include an array of its 64-bit
3298	 * snapshot ids, followed by the names of those snapshots as
3299	 * a contiguous block of NUL-terminated strings.  Note that
3300	 * the number of snapshots could change by the time we read
3301	 * it in, in which case we re-read it.
3302	 */
3303	do {
3304		size_t size;
3305
3306		kfree(ondisk);
 
 
 
 
3307
3308		size = sizeof (*ondisk);
3309		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3310		size += names_size;
3311		ondisk = kmalloc(size, GFP_KERNEL);
3312		if (!ondisk)
3313			return -ENOMEM;
3314
3315		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3316				       0, size, ondisk);
3317		if (ret < 0)
3318			goto out;
3319		if ((size_t)ret < size) {
3320			ret = -ENXIO;
3321			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3322				size, ret);
3323			goto out;
3324		}
3325		if (!rbd_dev_ondisk_valid(ondisk)) {
3326			ret = -ENXIO;
3327			rbd_warn(rbd_dev, "invalid header");
3328			goto out;
3329		}
3330
3331		names_size = le64_to_cpu(ondisk->snap_names_len);
3332		want_count = snap_count;
3333		snap_count = le32_to_cpu(ondisk->snap_count);
3334	} while (snap_count != want_count);
3335
3336	ret = rbd_header_from_disk(rbd_dev, ondisk);
3337out:
3338	kfree(ondisk);
3339
3340	return ret;
3341}
3342
3343/*
3344 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3345 * has disappeared from the (just updated) snapshot context.
3346 */
3347static void rbd_exists_validate(struct rbd_device *rbd_dev)
3348{
3349	u64 snap_id;
3350
3351	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3352		return;
3353
3354	snap_id = rbd_dev->spec->snap_id;
3355	if (snap_id == CEPH_NOSNAP)
3356		return;
3357
3358	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3359		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
 
3360}
3361
3362static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3363{
3364	sector_t size;
3365	bool removing;
3366
3367	/*
3368	 * Don't hold the lock while doing disk operations,
3369	 * or lock ordering will conflict with the bdev mutex via:
3370	 * rbd_add() -> blkdev_get() -> rbd_open()
3371	 */
3372	spin_lock_irq(&rbd_dev->lock);
3373	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3374	spin_unlock_irq(&rbd_dev->lock);
3375	/*
3376	 * If the device is being removed, rbd_dev->disk has
3377	 * been destroyed, so don't try to update its size
3378	 */
3379	if (!removing) {
3380		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3381		dout("setting size to %llu sectors", (unsigned long long)size);
3382		set_capacity(rbd_dev->disk, size);
3383		revalidate_disk(rbd_dev->disk);
3384	}
3385}
3386
3387static int rbd_dev_refresh(struct rbd_device *rbd_dev)
 
 
 
3388{
3389	u64 mapping_size;
3390	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
3391
3392	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3393	down_write(&rbd_dev->header_rwsem);
3394	mapping_size = rbd_dev->mapping.size;
3395	if (rbd_dev->image_format == 1)
3396		ret = rbd_dev_v1_header_info(rbd_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
3397	else
3398		ret = rbd_dev_v2_header_info(rbd_dev);
3399
3400	/* If it's a mapped snapshot, validate its EXISTS flag */
3401
3402	rbd_exists_validate(rbd_dev);
3403	up_write(&rbd_dev->header_rwsem);
3404
3405	if (mapping_size != rbd_dev->mapping.size) {
3406		rbd_dev_update_size(rbd_dev);
3407	}
3408
3409	return ret;
3410}
3411
3412static int rbd_init_disk(struct rbd_device *rbd_dev)
3413{
3414	struct gendisk *disk;
3415	struct request_queue *q;
3416	u64 segment_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417
3418	/* create gendisk info */
3419	disk = alloc_disk(single_major ?
3420			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3421			  RBD_MINORS_PER_MAJOR);
3422	if (!disk)
3423		return -ENOMEM;
3424
3425	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3426		 rbd_dev->dev_id);
3427	disk->major = rbd_dev->major;
3428	disk->first_minor = rbd_dev->minor;
3429	if (single_major)
3430		disk->flags |= GENHD_FL_EXT_DEVT;
3431	disk->fops = &rbd_bd_ops;
3432	disk->private_data = rbd_dev;
3433
3434	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
 
 
3435	if (!q)
3436		goto out_disk;
3437
3438	/* We use the default size, but let's be explicit about it. */
3439	blk_queue_physical_block_size(q, SECTOR_SIZE);
3440
3441	/* set io sizes to object size */
3442	segment_size = rbd_obj_bytes(&rbd_dev->header);
3443	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3444	blk_queue_max_segment_size(q, segment_size);
3445	blk_queue_io_min(q, segment_size);
3446	blk_queue_io_opt(q, segment_size);
3447
3448	blk_queue_merge_bvec(q, rbd_merge_bvec);
3449	disk->queue = q;
3450
3451	q->queuedata = rbd_dev;
3452
3453	rbd_dev->disk = disk;
 
3454
 
 
 
 
 
 
3455	return 0;
 
3456out_disk:
3457	put_disk(disk);
3458
3459	return -ENOMEM;
3460}
3461
3462/*
3463  sysfs
3464*/
3465
3466static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3467{
3468	return container_of(dev, struct rbd_device, dev);
3469}
3470
3471static ssize_t rbd_size_show(struct device *dev,
3472			     struct device_attribute *attr, char *buf)
3473{
3474	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476	return sprintf(buf, "%llu\n",
3477		(unsigned long long)rbd_dev->mapping.size);
3478}
3479
3480/*
3481 * Note this shows the features for whatever's mapped, which is not
3482 * necessarily the base image.
3483 */
3484static ssize_t rbd_features_show(struct device *dev,
3485			     struct device_attribute *attr, char *buf)
3486{
3487	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488
3489	return sprintf(buf, "0x%016llx\n",
3490			(unsigned long long)rbd_dev->mapping.features);
3491}
3492
3493static ssize_t rbd_major_show(struct device *dev,
3494			      struct device_attribute *attr, char *buf)
3495{
3496	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3497
3498	if (rbd_dev->major)
3499		return sprintf(buf, "%d\n", rbd_dev->major);
3500
3501	return sprintf(buf, "(none)\n");
3502}
3503
3504static ssize_t rbd_minor_show(struct device *dev,
3505			      struct device_attribute *attr, char *buf)
3506{
3507	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509	return sprintf(buf, "%d\n", rbd_dev->minor);
3510}
3511
3512static ssize_t rbd_client_id_show(struct device *dev,
3513				  struct device_attribute *attr, char *buf)
3514{
3515	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516
3517	return sprintf(buf, "client%lld\n",
3518			ceph_client_id(rbd_dev->rbd_client->client));
3519}
3520
3521static ssize_t rbd_pool_show(struct device *dev,
3522			     struct device_attribute *attr, char *buf)
3523{
3524	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525
3526	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3527}
3528
3529static ssize_t rbd_pool_id_show(struct device *dev,
3530			     struct device_attribute *attr, char *buf)
3531{
3532	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3533
3534	return sprintf(buf, "%llu\n",
3535			(unsigned long long) rbd_dev->spec->pool_id);
3536}
3537
3538static ssize_t rbd_name_show(struct device *dev,
3539			     struct device_attribute *attr, char *buf)
3540{
3541	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542
3543	if (rbd_dev->spec->image_name)
3544		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3545
3546	return sprintf(buf, "(unknown)\n");
3547}
3548
3549static ssize_t rbd_image_id_show(struct device *dev,
3550			     struct device_attribute *attr, char *buf)
3551{
3552	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553
3554	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3555}
3556
3557/*
3558 * Shows the name of the currently-mapped snapshot (or
3559 * RBD_SNAP_HEAD_NAME for the base image).
3560 */
3561static ssize_t rbd_snap_show(struct device *dev,
3562			     struct device_attribute *attr,
3563			     char *buf)
3564{
3565	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566
3567	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3568}
3569
3570/*
3571 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3572 * for the parent image.  If there is no parent, simply shows
3573 * "(no parent image)".
3574 */
3575static ssize_t rbd_parent_show(struct device *dev,
3576			     struct device_attribute *attr,
3577			     char *buf)
3578{
3579	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580	struct rbd_spec *spec = rbd_dev->parent_spec;
3581	int count;
3582	char *bufp = buf;
3583
3584	if (!spec)
3585		return sprintf(buf, "(no parent image)\n");
3586
3587	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3588			(unsigned long long) spec->pool_id, spec->pool_name);
3589	if (count < 0)
3590		return count;
3591	bufp += count;
3592
3593	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3594			spec->image_name ? spec->image_name : "(unknown)");
3595	if (count < 0)
3596		return count;
3597	bufp += count;
3598
3599	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3600			(unsigned long long) spec->snap_id, spec->snap_name);
3601	if (count < 0)
3602		return count;
3603	bufp += count;
3604
3605	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3606	if (count < 0)
3607		return count;
3608	bufp += count;
3609
3610	return (ssize_t) (bufp - buf);
3611}
3612
3613static ssize_t rbd_image_refresh(struct device *dev,
3614				 struct device_attribute *attr,
3615				 const char *buf,
3616				 size_t size)
3617{
3618	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3619	int ret;
 
 
 
3620
3621	ret = rbd_dev_refresh(rbd_dev);
3622	if (ret)
3623		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3624
3625	return ret < 0 ? ret : size;
 
3626}
3627
3628static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3629static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3630static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3631static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3632static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3633static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3634static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3635static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3636static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3637static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3638static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3639static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
 
3640
3641static struct attribute *rbd_attrs[] = {
3642	&dev_attr_size.attr,
3643	&dev_attr_features.attr,
3644	&dev_attr_major.attr,
3645	&dev_attr_minor.attr,
3646	&dev_attr_client_id.attr,
3647	&dev_attr_pool.attr,
3648	&dev_attr_pool_id.attr,
3649	&dev_attr_name.attr,
3650	&dev_attr_image_id.attr,
3651	&dev_attr_current_snap.attr,
3652	&dev_attr_parent.attr,
3653	&dev_attr_refresh.attr,
 
 
3654	NULL
3655};
3656
3657static struct attribute_group rbd_attr_group = {
3658	.attrs = rbd_attrs,
3659};
3660
3661static const struct attribute_group *rbd_attr_groups[] = {
3662	&rbd_attr_group,
3663	NULL
3664};
3665
3666static void rbd_sysfs_dev_release(struct device *dev)
3667{
3668}
3669
3670static struct device_type rbd_device_type = {
3671	.name		= "rbd",
3672	.groups		= rbd_attr_groups,
3673	.release	= rbd_sysfs_dev_release,
3674};
3675
3676static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3677{
3678	kref_get(&spec->kref);
3679
3680	return spec;
3681}
3682
3683static void rbd_spec_free(struct kref *kref);
3684static void rbd_spec_put(struct rbd_spec *spec)
3685{
3686	if (spec)
3687		kref_put(&spec->kref, rbd_spec_free);
3688}
3689
3690static struct rbd_spec *rbd_spec_alloc(void)
 
 
3691{
3692	struct rbd_spec *spec;
3693
3694	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3695	if (!spec)
3696		return NULL;
3697	kref_init(&spec->kref);
3698
3699	return spec;
3700}
3701
3702static void rbd_spec_free(struct kref *kref)
 
 
3703{
3704	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3705
3706	kfree(spec->pool_name);
3707	kfree(spec->image_id);
3708	kfree(spec->image_name);
3709	kfree(spec->snap_name);
3710	kfree(spec);
3711}
3712
3713static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3714				struct rbd_spec *spec)
3715{
3716	struct rbd_device *rbd_dev;
3717
3718	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3719	if (!rbd_dev)
3720		return NULL;
 
 
3721
3722	spin_lock_init(&rbd_dev->lock);
3723	rbd_dev->flags = 0;
3724	atomic_set(&rbd_dev->parent_ref, 0);
3725	INIT_LIST_HEAD(&rbd_dev->node);
3726	init_rwsem(&rbd_dev->header_rwsem);
3727
3728	rbd_dev->spec = spec;
3729	rbd_dev->rbd_client = rbdc;
3730
3731	/* Initialize the layout used for all rbd requests */
3732
3733	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3734	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3735	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3736	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3737
3738	return rbd_dev;
3739}
3740
3741static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3742{
3743	rbd_put_client(rbd_dev->rbd_client);
3744	rbd_spec_put(rbd_dev->spec);
3745	kfree(rbd_dev);
3746}
3747
3748/*
3749 * Get the size and object order for an image snapshot, or if
3750 * snap_id is CEPH_NOSNAP, gets this information for the base
3751 * image.
3752 */
3753static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3754				u8 *order, u64 *snap_size)
3755{
3756	__le64 snapid = cpu_to_le64(snap_id);
3757	int ret;
3758	struct {
3759		u8 order;
3760		__le64 size;
3761	} __attribute__ ((packed)) size_buf = { 0 };
3762
3763	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764				"rbd", "get_size",
3765				&snapid, sizeof (snapid),
3766				&size_buf, sizeof (size_buf));
3767	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3768	if (ret < 0)
3769		return ret;
3770	if (ret < sizeof (size_buf))
3771		return -ERANGE;
3772
3773	if (order) {
3774		*order = size_buf.order;
3775		dout("  order %u", (unsigned int)*order);
3776	}
3777	*snap_size = le64_to_cpu(size_buf.size);
3778
3779	dout("  snap_id 0x%016llx snap_size = %llu\n",
3780		(unsigned long long)snap_id,
3781		(unsigned long long)*snap_size);
3782
3783	return 0;
3784}
3785
3786static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3787{
3788	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3789					&rbd_dev->header.obj_order,
3790					&rbd_dev->header.image_size);
3791}
3792
3793static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
 
 
3794{
3795	void *reply_buf;
3796	int ret;
3797	void *p;
3798
3799	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3800	if (!reply_buf)
3801		return -ENOMEM;
3802
3803	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3804				"rbd", "get_object_prefix", NULL, 0,
3805				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3806	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3807	if (ret < 0)
3808		goto out;
3809
3810	p = reply_buf;
3811	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3812						p + ret, NULL, GFP_NOIO);
3813	ret = 0;
3814
3815	if (IS_ERR(rbd_dev->header.object_prefix)) {
3816		ret = PTR_ERR(rbd_dev->header.object_prefix);
3817		rbd_dev->header.object_prefix = NULL;
3818	} else {
3819		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3820	}
3821out:
3822	kfree(reply_buf);
3823
3824	return ret;
3825}
3826
3827static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3828		u64 *snap_features)
3829{
3830	__le64 snapid = cpu_to_le64(snap_id);
3831	struct {
3832		__le64 features;
3833		__le64 incompat;
3834	} __attribute__ ((packed)) features_buf = { 0 };
3835	u64 incompat;
3836	int ret;
3837
3838	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3839				"rbd", "get_features",
3840				&snapid, sizeof (snapid),
3841				&features_buf, sizeof (features_buf));
3842	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3843	if (ret < 0)
3844		return ret;
3845	if (ret < sizeof (features_buf))
3846		return -ERANGE;
3847
3848	incompat = le64_to_cpu(features_buf.incompat);
3849	if (incompat & ~RBD_FEATURES_SUPPORTED)
3850		return -ENXIO;
3851
3852	*snap_features = le64_to_cpu(features_buf.features);
3853
3854	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3855		(unsigned long long)snap_id,
3856		(unsigned long long)*snap_features,
3857		(unsigned long long)le64_to_cpu(features_buf.incompat));
3858
3859	return 0;
3860}
3861
3862static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3863{
3864	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3865						&rbd_dev->header.features);
3866}
3867
3868static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3869{
3870	struct rbd_spec *parent_spec;
3871	size_t size;
3872	void *reply_buf = NULL;
3873	__le64 snapid;
3874	void *p;
3875	void *end;
3876	u64 pool_id;
3877	char *image_id;
3878	u64 snap_id;
3879	u64 overlap;
3880	int ret;
3881
3882	parent_spec = rbd_spec_alloc();
3883	if (!parent_spec)
3884		return -ENOMEM;
3885
3886	size = sizeof (__le64) +				/* pool_id */
3887		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
3888		sizeof (__le64) +				/* snap_id */
3889		sizeof (__le64);				/* overlap */
3890	reply_buf = kmalloc(size, GFP_KERNEL);
3891	if (!reply_buf) {
3892		ret = -ENOMEM;
3893		goto out_err;
3894	}
3895
3896	snapid = cpu_to_le64(CEPH_NOSNAP);
3897	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3898				"rbd", "get_parent",
3899				&snapid, sizeof (snapid),
3900				reply_buf, size);
3901	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3902	if (ret < 0)
3903		goto out_err;
3904
3905	p = reply_buf;
3906	end = reply_buf + ret;
3907	ret = -ERANGE;
3908	ceph_decode_64_safe(&p, end, pool_id, out_err);
3909	if (pool_id == CEPH_NOPOOL) {
3910		/*
3911		 * Either the parent never existed, or we have
3912		 * record of it but the image got flattened so it no
3913		 * longer has a parent.  When the parent of a
3914		 * layered image disappears we immediately set the
3915		 * overlap to 0.  The effect of this is that all new
3916		 * requests will be treated as if the image had no
3917		 * parent.
3918		 */
3919		if (rbd_dev->parent_overlap) {
3920			rbd_dev->parent_overlap = 0;
3921			smp_mb();
3922			rbd_dev_parent_put(rbd_dev);
3923			pr_info("%s: clone image has been flattened\n",
3924				rbd_dev->disk->disk_name);
3925		}
3926
3927		goto out;	/* No parent?  No problem. */
3928	}
3929
3930	/* The ceph file layout needs to fit pool id in 32 bits */
3931
3932	ret = -EIO;
3933	if (pool_id > (u64)U32_MAX) {
3934		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3935			(unsigned long long)pool_id, U32_MAX);
3936		goto out_err;
3937	}
3938
3939	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3940	if (IS_ERR(image_id)) {
3941		ret = PTR_ERR(image_id);
3942		goto out_err;
3943	}
3944	ceph_decode_64_safe(&p, end, snap_id, out_err);
3945	ceph_decode_64_safe(&p, end, overlap, out_err);
3946
3947	/*
3948	 * The parent won't change (except when the clone is
3949	 * flattened, already handled that).  So we only need to
3950	 * record the parent spec we have not already done so.
3951	 */
3952	if (!rbd_dev->parent_spec) {
3953		parent_spec->pool_id = pool_id;
3954		parent_spec->image_id = image_id;
3955		parent_spec->snap_id = snap_id;
3956		rbd_dev->parent_spec = parent_spec;
3957		parent_spec = NULL;	/* rbd_dev now owns this */
3958	}
3959
3960	/*
3961	 * We always update the parent overlap.  If it's zero we
3962	 * treat it specially.
3963	 */
3964	rbd_dev->parent_overlap = overlap;
3965	smp_mb();
3966	if (!overlap) {
3967
3968		/* A null parent_spec indicates it's the initial probe */
3969
3970		if (parent_spec) {
3971			/*
3972			 * The overlap has become zero, so the clone
3973			 * must have been resized down to 0 at some
3974			 * point.  Treat this the same as a flatten.
3975			 */
3976			rbd_dev_parent_put(rbd_dev);
3977			pr_info("%s: clone image now standalone\n",
3978				rbd_dev->disk->disk_name);
3979		} else {
3980			/*
3981			 * For the initial probe, if we find the
3982			 * overlap is zero we just pretend there was
3983			 * no parent image.
3984			 */
3985			rbd_warn(rbd_dev, "ignoring parent of "
3986						"clone with overlap 0\n");
3987		}
3988	}
3989out:
3990	ret = 0;
3991out_err:
3992	kfree(reply_buf);
3993	rbd_spec_put(parent_spec);
3994
3995	return ret;
3996}
3997
3998static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3999{
4000	struct {
4001		__le64 stripe_unit;
4002		__le64 stripe_count;
4003	} __attribute__ ((packed)) striping_info_buf = { 0 };
4004	size_t size = sizeof (striping_info_buf);
4005	void *p;
4006	u64 obj_size;
4007	u64 stripe_unit;
4008	u64 stripe_count;
4009	int ret;
4010
4011	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4012				"rbd", "get_stripe_unit_count", NULL, 0,
4013				(char *)&striping_info_buf, size);
4014	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4015	if (ret < 0)
4016		return ret;
4017	if (ret < size)
4018		return -ERANGE;
4019
4020	/*
4021	 * We don't actually support the "fancy striping" feature
4022	 * (STRIPINGV2) yet, but if the striping sizes are the
4023	 * defaults the behavior is the same as before.  So find
4024	 * out, and only fail if the image has non-default values.
4025	 */
4026	ret = -EINVAL;
4027	obj_size = (u64)1 << rbd_dev->header.obj_order;
4028	p = &striping_info_buf;
4029	stripe_unit = ceph_decode_64(&p);
4030	if (stripe_unit != obj_size) {
4031		rbd_warn(rbd_dev, "unsupported stripe unit "
4032				"(got %llu want %llu)",
4033				stripe_unit, obj_size);
4034		return -EINVAL;
4035	}
4036	stripe_count = ceph_decode_64(&p);
4037	if (stripe_count != 1) {
4038		rbd_warn(rbd_dev, "unsupported stripe count "
4039				"(got %llu want 1)", stripe_count);
4040		return -EINVAL;
4041	}
4042	rbd_dev->header.stripe_unit = stripe_unit;
4043	rbd_dev->header.stripe_count = stripe_count;
4044
4045	return 0;
4046}
4047
4048static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4049{
4050	size_t image_id_size;
4051	char *image_id;
4052	void *p;
4053	void *end;
4054	size_t size;
4055	void *reply_buf = NULL;
4056	size_t len = 0;
4057	char *image_name = NULL;
4058	int ret;
4059
4060	rbd_assert(!rbd_dev->spec->image_name);
4061
4062	len = strlen(rbd_dev->spec->image_id);
4063	image_id_size = sizeof (__le32) + len;
4064	image_id = kmalloc(image_id_size, GFP_KERNEL);
4065	if (!image_id)
4066		return NULL;
4067
4068	p = image_id;
4069	end = image_id + image_id_size;
4070	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4071
4072	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4073	reply_buf = kmalloc(size, GFP_KERNEL);
4074	if (!reply_buf)
4075		goto out;
4076
4077	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4078				"rbd", "dir_get_name",
4079				image_id, image_id_size,
4080				reply_buf, size);
4081	if (ret < 0)
4082		goto out;
4083	p = reply_buf;
4084	end = reply_buf + ret;
4085
4086	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4087	if (IS_ERR(image_name))
4088		image_name = NULL;
4089	else
4090		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4091out:
4092	kfree(reply_buf);
4093	kfree(image_id);
4094
4095	return image_name;
4096}
4097
4098static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4099{
4100	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4101	const char *snap_name;
4102	u32 which = 0;
4103
4104	/* Skip over names until we find the one we are looking for */
4105
4106	snap_name = rbd_dev->header.snap_names;
4107	while (which < snapc->num_snaps) {
4108		if (!strcmp(name, snap_name))
4109			return snapc->snaps[which];
4110		snap_name += strlen(snap_name) + 1;
4111		which++;
4112	}
4113	return CEPH_NOSNAP;
4114}
4115
4116static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4117{
4118	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4119	u32 which;
4120	bool found = false;
4121	u64 snap_id;
4122
4123	for (which = 0; !found && which < snapc->num_snaps; which++) {
4124		const char *snap_name;
4125
4126		snap_id = snapc->snaps[which];
4127		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4128		if (IS_ERR(snap_name)) {
4129			/* ignore no-longer existing snapshots */
4130			if (PTR_ERR(snap_name) == -ENOENT)
4131				continue;
4132			else
4133				break;
4134		}
4135		found = !strcmp(name, snap_name);
4136		kfree(snap_name);
4137	}
4138	return found ? snap_id : CEPH_NOSNAP;
4139}
4140
4141/*
4142 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4143 * no snapshot by that name is found, or if an error occurs.
4144 */
4145static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146{
4147	if (rbd_dev->image_format == 1)
4148		return rbd_v1_snap_id_by_name(rbd_dev, name);
4149
4150	return rbd_v2_snap_id_by_name(rbd_dev, name);
4151}
4152
4153/*
4154 * When an rbd image has a parent image, it is identified by the
4155 * pool, image, and snapshot ids (not names).  This function fills
4156 * in the names for those ids.  (It's OK if we can't figure out the
4157 * name for an image id, but the pool and snapshot ids should always
4158 * exist and have names.)  All names in an rbd spec are dynamically
4159 * allocated.
4160 *
4161 * When an image being mapped (not a parent) is probed, we have the
4162 * pool name and pool id, image name and image id, and the snapshot
4163 * name.  The only thing we're missing is the snapshot id.
4164 */
4165static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4166{
4167	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4168	struct rbd_spec *spec = rbd_dev->spec;
4169	const char *pool_name;
4170	const char *image_name;
4171	const char *snap_name;
4172	int ret;
 
4173
4174	/*
4175	 * An image being mapped will have the pool name (etc.), but
4176	 * we need to look up the snapshot id.
4177	 */
4178	if (spec->pool_name) {
4179		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4180			u64 snap_id;
4181
4182			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4183			if (snap_id == CEPH_NOSNAP)
4184				return -ENOENT;
4185			spec->snap_id = snap_id;
4186		} else {
4187			spec->snap_id = CEPH_NOSNAP;
4188		}
4189
4190		return 0;
4191	}
4192
4193	/* Get the pool name; we have to make our own copy of this */
 
4194
4195	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4196	if (!pool_name) {
4197		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4198		return -EIO;
4199	}
4200	pool_name = kstrdup(pool_name, GFP_KERNEL);
4201	if (!pool_name)
4202		return -ENOMEM;
4203
4204	/* Fetch the image name; tolerate failure here */
 
4205
4206	image_name = rbd_dev_image_name(rbd_dev);
4207	if (!image_name)
4208		rbd_warn(rbd_dev, "unable to get image name");
4209
4210	/* Look up the snapshot name, and make a copy */
4211
4212	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4213	if (IS_ERR(snap_name)) {
4214		ret = PTR_ERR(snap_name);
4215		goto out_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4216	}
4217
4218	spec->pool_name = pool_name;
4219	spec->image_name = image_name;
4220	spec->snap_name = snap_name;
4221
4222	return 0;
4223out_err:
4224	kfree(image_name);
4225	kfree(pool_name);
4226
4227	return ret;
4228}
4229
4230static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4231{
4232	size_t size;
4233	int ret;
4234	void *reply_buf;
4235	void *p;
4236	void *end;
4237	u64 seq;
4238	u32 snap_count;
4239	struct ceph_snap_context *snapc;
4240	u32 i;
4241
4242	/*
4243	 * We'll need room for the seq value (maximum snapshot id),
4244	 * snapshot count, and array of that many snapshot ids.
4245	 * For now we have a fixed upper limit on the number we're
4246	 * prepared to receive.
4247	 */
4248	size = sizeof (__le64) + sizeof (__le32) +
4249			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4250	reply_buf = kzalloc(size, GFP_KERNEL);
4251	if (!reply_buf)
4252		return -ENOMEM;
4253
4254	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4255				"rbd", "get_snapcontext", NULL, 0,
4256				reply_buf, size);
4257	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4258	if (ret < 0)
4259		goto out;
4260
4261	p = reply_buf;
4262	end = reply_buf + ret;
4263	ret = -ERANGE;
4264	ceph_decode_64_safe(&p, end, seq, out);
4265	ceph_decode_32_safe(&p, end, snap_count, out);
4266
4267	/*
4268	 * Make sure the reported number of snapshot ids wouldn't go
4269	 * beyond the end of our buffer.  But before checking that,
4270	 * make sure the computed size of the snapshot context we
4271	 * allocate is representable in a size_t.
4272	 */
4273	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4274				 / sizeof (u64)) {
4275		ret = -EINVAL;
4276		goto out;
4277	}
4278	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4279		goto out;
4280	ret = 0;
4281
4282	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4283	if (!snapc) {
4284		ret = -ENOMEM;
4285		goto out;
4286	}
4287	snapc->seq = seq;
4288	for (i = 0; i < snap_count; i++)
4289		snapc->snaps[i] = ceph_decode_64(&p);
4290
4291	ceph_put_snap_context(rbd_dev->header.snapc);
4292	rbd_dev->header.snapc = snapc;
4293
4294	dout("  snap context seq = %llu, snap_count = %u\n",
4295		(unsigned long long)seq, (unsigned int)snap_count);
4296out:
4297	kfree(reply_buf);
4298
4299	return ret;
4300}
4301
4302static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4303					u64 snap_id)
4304{
4305	size_t size;
4306	void *reply_buf;
4307	__le64 snapid;
4308	int ret;
4309	void *p;
4310	void *end;
4311	char *snap_name;
4312
4313	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4314	reply_buf = kmalloc(size, GFP_KERNEL);
4315	if (!reply_buf)
4316		return ERR_PTR(-ENOMEM);
4317
4318	snapid = cpu_to_le64(snap_id);
4319	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4320				"rbd", "get_snapshot_name",
4321				&snapid, sizeof (snapid),
4322				reply_buf, size);
4323	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4324	if (ret < 0) {
4325		snap_name = ERR_PTR(ret);
4326		goto out;
4327	}
4328
4329	p = reply_buf;
4330	end = reply_buf + ret;
4331	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4332	if (IS_ERR(snap_name))
4333		goto out;
4334
4335	dout("  snap_id 0x%016llx snap_name = %s\n",
4336		(unsigned long long)snap_id, snap_name);
4337out:
4338	kfree(reply_buf);
4339
4340	return snap_name;
4341}
4342
4343static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4344{
4345	bool first_time = rbd_dev->header.object_prefix == NULL;
4346	int ret;
4347
4348	ret = rbd_dev_v2_image_size(rbd_dev);
4349	if (ret)
4350		return ret;
4351
4352	if (first_time) {
4353		ret = rbd_dev_v2_header_onetime(rbd_dev);
4354		if (ret)
4355			return ret;
4356	}
4357
4358	/*
4359	 * If the image supports layering, get the parent info.  We
4360	 * need to probe the first time regardless.  Thereafter we
4361	 * only need to if there's a parent, to see if it has
4362	 * disappeared due to the mapped image getting flattened.
4363	 */
4364	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4365			(first_time || rbd_dev->parent_spec)) {
4366		bool warn;
4367
4368		ret = rbd_dev_v2_parent_info(rbd_dev);
4369		if (ret)
4370			return ret;
4371
4372		/*
4373		 * Print a warning if this is the initial probe and
4374		 * the image has a parent.  Don't print it if the
4375		 * image now being probed is itself a parent.  We
4376		 * can tell at this point because we won't know its
4377		 * pool name yet (just its pool id).
4378		 */
4379		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4380		if (first_time && warn)
4381			rbd_warn(rbd_dev, "WARNING: kernel layering "
4382					"is EXPERIMENTAL!");
4383	}
4384
4385	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4386		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4387			rbd_dev->mapping.size = rbd_dev->header.image_size;
4388
4389	ret = rbd_dev_v2_snap_context(rbd_dev);
4390	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4391
4392	return ret;
4393}
4394
4395static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4396{
 
4397	struct device *dev;
4398	int ret;
4399
 
4400	dev = &rbd_dev->dev;
 
4401	dev->bus = &rbd_bus_type;
4402	dev->type = &rbd_device_type;
4403	dev->parent = &rbd_root_dev;
4404	dev->release = rbd_dev_device_release;
4405	dev_set_name(dev, "%d", rbd_dev->dev_id);
4406	ret = device_register(dev);
 
 
 
 
 
 
 
 
 
4407
 
 
 
 
4408	return ret;
4409}
4410
4411static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4412{
4413	device_unregister(&rbd_dev->dev);
4414}
4415
4416/*
4417 * Get a unique rbd identifier for the given new rbd_dev, and add
4418 * the rbd_dev to the global list.
4419 */
4420static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4421{
4422	int new_dev_id;
4423
4424	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4425				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4426				    GFP_KERNEL);
4427	if (new_dev_id < 0)
4428		return new_dev_id;
 
 
 
 
 
 
4429
4430	rbd_dev->dev_id = new_dev_id;
4431
4432	spin_lock(&rbd_dev_list_lock);
4433	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4434	spin_unlock(&rbd_dev_list_lock);
4435
4436	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4437
4438	return 0;
4439}
4440
4441/*
4442 * Remove an rbd_dev from the global list, and record that its
4443 * identifier is no longer in use.
4444 */
4445static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4446{
4447	spin_lock(&rbd_dev_list_lock);
4448	list_del_init(&rbd_dev->node);
4449	spin_unlock(&rbd_dev_list_lock);
 
 
 
 
 
 
 
4450
4451	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
 
 
4452
4453	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4454}
 
4455
4456/*
4457 * Skips over white space at *buf, and updates *buf to point to the
4458 * first found non-space character (if any). Returns the length of
4459 * the token (string of non-white space characters) found.  Note
4460 * that *buf must be terminated with '\0'.
4461 */
4462static inline size_t next_token(const char **buf)
4463{
4464        /*
4465        * These are the characters that produce nonzero for
4466        * isspace() in the "C" and "POSIX" locales.
4467        */
4468        const char *spaces = " \f\n\r\t\v";
4469
4470        *buf += strspn(*buf, spaces);	/* Find start of token */
 
 
 
4471
4472	return strcspn(*buf, spaces);   /* Return token length */
4473}
4474
4475/*
4476 * Finds the next token in *buf, and if the provided token buffer is
4477 * big enough, copies the found token into it.  The result, if
4478 * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4479 * must be terminated with '\0' on entry.
4480 *
4481 * Returns the length of the token found (not including the '\0').
4482 * Return value will be 0 if no token is found, and it will be >=
4483 * token_size if the token would not fit.
4484 *
4485 * The *buf pointer will be updated to point beyond the end of the
4486 * found token.  Note that this occurs even if the token buffer is
4487 * too small to hold it.
4488 */
4489static inline size_t copy_token(const char **buf,
4490				char *token,
4491				size_t token_size)
4492{
4493        size_t len;
4494
4495	len = next_token(buf);
4496	if (len < token_size) {
4497		memcpy(token, *buf, len);
4498		*(token + len) = '\0';
4499	}
4500	*buf += len;
4501
4502        return len;
4503}
4504
4505/*
4506 * Finds the next token in *buf, dynamically allocates a buffer big
4507 * enough to hold a copy of it, and copies the token into the new
4508 * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4509 * that a duplicate buffer is created even for a zero-length token.
4510 *
4511 * Returns a pointer to the newly-allocated duplicate, or a null
4512 * pointer if memory for the duplicate was not available.  If
4513 * the lenp argument is a non-null pointer, the length of the token
4514 * (not including the '\0') is returned in *lenp.
4515 *
4516 * If successful, the *buf pointer will be updated to point beyond
4517 * the end of the found token.
4518 *
4519 * Note: uses GFP_KERNEL for allocation.
4520 */
4521static inline char *dup_token(const char **buf, size_t *lenp)
4522{
4523	char *dup;
4524	size_t len;
4525
4526	len = next_token(buf);
4527	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4528	if (!dup)
4529		return NULL;
4530	*(dup + len) = '\0';
4531	*buf += len;
4532
4533	if (lenp)
4534		*lenp = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4535
4536	return dup;
4537}
4538
4539/*
4540 * Parse the options provided for an "rbd add" (i.e., rbd image
4541 * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4542 * and the data written is passed here via a NUL-terminated buffer.
4543 * Returns 0 if successful or an error code otherwise.
4544 *
4545 * The information extracted from these options is recorded in
4546 * the other parameters which return dynamically-allocated
4547 * structures:
4548 *  ceph_opts
4549 *      The address of a pointer that will refer to a ceph options
4550 *      structure.  Caller must release the returned pointer using
4551 *      ceph_destroy_options() when it is no longer needed.
4552 *  rbd_opts
4553 *	Address of an rbd options pointer.  Fully initialized by
4554 *	this function; caller must release with kfree().
4555 *  spec
4556 *	Address of an rbd image specification pointer.  Fully
4557 *	initialized by this function based on parsed options.
4558 *	Caller must release with rbd_spec_put().
4559 *
4560 * The options passed take this form:
4561 *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4562 * where:
4563 *  <mon_addrs>
4564 *      A comma-separated list of one or more monitor addresses.
4565 *      A monitor address is an ip address, optionally followed
4566 *      by a port number (separated by a colon).
4567 *        I.e.:  ip1[:port1][,ip2[:port2]...]
4568 *  <options>
4569 *      A comma-separated list of ceph and/or rbd options.
4570 *  <pool_name>
4571 *      The name of the rados pool containing the rbd image.
4572 *  <image_name>
4573 *      The name of the image in that pool to map.
4574 *  <snap_id>
4575 *      An optional snapshot id.  If provided, the mapping will
4576 *      present data from the image at the time that snapshot was
4577 *      created.  The image head is used if no snapshot id is
4578 *      provided.  Snapshot mappings are always read-only.
4579 */
4580static int rbd_add_parse_args(const char *buf,
4581				struct ceph_options **ceph_opts,
4582				struct rbd_options **opts,
4583				struct rbd_spec **rbd_spec)
4584{
4585	size_t len;
4586	char *options;
4587	const char *mon_addrs;
4588	char *snap_name;
4589	size_t mon_addrs_size;
4590	struct rbd_spec *spec = NULL;
4591	struct rbd_options *rbd_opts = NULL;
4592	struct ceph_options *copts;
4593	int ret;
4594
4595	/* The first four tokens are required */
4596
4597	len = next_token(&buf);
4598	if (!len) {
4599		rbd_warn(NULL, "no monitor address(es) provided");
4600		return -EINVAL;
4601	}
4602	mon_addrs = buf;
4603	mon_addrs_size = len + 1;
4604	buf += len;
4605
4606	ret = -EINVAL;
4607	options = dup_token(&buf, NULL);
4608	if (!options)
4609		return -ENOMEM;
4610	if (!*options) {
4611		rbd_warn(NULL, "no options provided");
4612		goto out_err;
4613	}
4614
4615	spec = rbd_spec_alloc();
4616	if (!spec)
4617		goto out_mem;
4618
4619	spec->pool_name = dup_token(&buf, NULL);
4620	if (!spec->pool_name)
4621		goto out_mem;
4622	if (!*spec->pool_name) {
4623		rbd_warn(NULL, "no pool name provided");
4624		goto out_err;
4625	}
4626
4627	spec->image_name = dup_token(&buf, NULL);
4628	if (!spec->image_name)
4629		goto out_mem;
4630	if (!*spec->image_name) {
4631		rbd_warn(NULL, "no image name provided");
4632		goto out_err;
4633	}
4634
4635	/*
4636	 * Snapshot name is optional; default is to use "-"
4637	 * (indicating the head/no snapshot).
4638	 */
4639	len = next_token(&buf);
4640	if (!len) {
4641		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4642		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4643	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4644		ret = -ENAMETOOLONG;
4645		goto out_err;
4646	}
4647	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4648	if (!snap_name)
4649		goto out_mem;
4650	*(snap_name + len) = '\0';
4651	spec->snap_name = snap_name;
4652
4653	/* Initialize all rbd options to the defaults */
 
 
 
4654
4655	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4656	if (!rbd_opts)
4657		goto out_mem;
4658
4659	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4660
4661	copts = ceph_parse_options(options, mon_addrs,
4662					mon_addrs + mon_addrs_size - 1,
4663					parse_rbd_opts_token, rbd_opts);
4664	if (IS_ERR(copts)) {
4665		ret = PTR_ERR(copts);
4666		goto out_err;
4667	}
4668	kfree(options);
 
 
4669
4670	*ceph_opts = copts;
4671	*opts = rbd_opts;
4672	*rbd_spec = spec;
 
 
 
 
 
4673
4674	return 0;
4675out_mem:
4676	ret = -ENOMEM;
4677out_err:
4678	kfree(rbd_opts);
4679	rbd_spec_put(spec);
4680	kfree(options);
4681
4682	return ret;
 
 
 
 
4683}
4684
4685/*
4686 * An rbd format 2 image has a unique identifier, distinct from the
4687 * name given to it by the user.  Internally, that identifier is
4688 * what's used to specify the names of objects related to the image.
4689 *
4690 * A special "rbd id" object is used to map an rbd image name to its
4691 * id.  If that object doesn't exist, then there is no v2 rbd image
4692 * with the supplied name.
4693 *
4694 * This function will record the given rbd_dev's image_id field if
4695 * it can be determined, and in that case will return 0.  If any
4696 * errors occur a negative errno will be returned and the rbd_dev's
4697 * image_id field will be unchanged (and should be NULL).
4698 */
4699static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4700{
4701	int ret;
4702	size_t size;
4703	char *object_name;
4704	void *response;
4705	char *image_id;
4706
4707	/*
4708	 * When probing a parent image, the image id is already
4709	 * known (and the image name likely is not).  There's no
4710	 * need to fetch the image id again in this case.  We
4711	 * do still need to set the image format though.
4712	 */
4713	if (rbd_dev->spec->image_id) {
4714		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4715
4716		return 0;
4717	}
4718
4719	/*
4720	 * First, see if the format 2 image id file exists, and if
4721	 * so, get the image's persistent id from it.
4722	 */
4723	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4724	object_name = kmalloc(size, GFP_NOIO);
4725	if (!object_name)
4726		return -ENOMEM;
4727	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4728	dout("rbd id object name is %s\n", object_name);
4729
4730	/* Response will be an encoded string, which includes a length */
4731
4732	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4733	response = kzalloc(size, GFP_NOIO);
4734	if (!response) {
4735		ret = -ENOMEM;
4736		goto out;
4737	}
4738
4739	/* If it doesn't exist we'll assume it's a format 1 image */
4740
4741	ret = rbd_obj_method_sync(rbd_dev, object_name,
4742				"rbd", "get_id", NULL, 0,
4743				response, RBD_IMAGE_ID_LEN_MAX);
4744	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4745	if (ret == -ENOENT) {
4746		image_id = kstrdup("", GFP_KERNEL);
4747		ret = image_id ? 0 : -ENOMEM;
4748		if (!ret)
4749			rbd_dev->image_format = 1;
4750	} else if (ret > sizeof (__le32)) {
4751		void *p = response;
4752
4753		image_id = ceph_extract_encoded_string(&p, p + ret,
4754						NULL, GFP_NOIO);
4755		ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4756		if (!ret)
4757			rbd_dev->image_format = 2;
4758	} else {
4759		ret = -EINVAL;
4760	}
4761
4762	if (!ret) {
4763		rbd_dev->spec->image_id = image_id;
4764		dout("image_id is %s\n", image_id);
4765	}
4766out:
4767	kfree(response);
4768	kfree(object_name);
4769
4770	return ret;
4771}
4772
4773/*
4774 * Undo whatever state changes are made by v1 or v2 header info
4775 * call.
4776 */
4777static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4778{
4779	struct rbd_image_header	*header;
 
4780
4781	/* Drop parent reference unless it's already been done (or none) */
 
 
 
 
4782
4783	if (rbd_dev->parent_overlap)
4784		rbd_dev_parent_put(rbd_dev);
4785
4786	/* Free dynamic fields from the header, then zero it out */
 
 
 
4787
4788	header = &rbd_dev->header;
4789	ceph_put_snap_context(header->snapc);
4790	kfree(header->snap_sizes);
4791	kfree(header->snap_names);
4792	kfree(header->object_prefix);
4793	memset(header, 0, sizeof (*header));
4794}
4795
4796static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
 
 
4797{
4798	int ret;
 
 
 
4799
4800	ret = rbd_dev_v2_object_prefix(rbd_dev);
4801	if (ret)
4802		goto out_err;
4803
4804	/*
4805	 * Get the and check features for the image.  Currently the
4806	 * features are assumed to never change.
4807	 */
4808	ret = rbd_dev_v2_features(rbd_dev);
4809	if (ret)
4810		goto out_err;
4811
4812	/* If the image supports fancy striping, get its parameters */
4813
4814	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4815		ret = rbd_dev_v2_striping_info(rbd_dev);
4816		if (ret < 0)
4817			goto out_err;
4818	}
4819	/* No support for crypto and compression type format 2 images */
4820
4821	return 0;
4822out_err:
4823	rbd_dev->header.features = 0;
4824	kfree(rbd_dev->header.object_prefix);
4825	rbd_dev->header.object_prefix = NULL;
4826
 
 
4827	return ret;
4828}
4829
4830static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
 
 
 
4831{
4832	struct rbd_device *parent = NULL;
4833	struct rbd_spec *parent_spec;
4834	struct rbd_client *rbdc;
4835	int ret;
 
 
 
4836
4837	if (!rbd_dev->parent_spec)
4838		return 0;
4839	/*
4840	 * We need to pass a reference to the client and the parent
4841	 * spec when creating the parent rbd_dev.  Images related by
4842	 * parent/child relationships always share both.
4843	 */
4844	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4845	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4846
4847	ret = -ENOMEM;
4848	parent = rbd_dev_create(rbdc, parent_spec);
4849	if (!parent)
4850		goto out_err;
4851
4852	ret = rbd_dev_image_probe(parent, false);
 
4853	if (ret < 0)
4854		goto out_err;
4855	rbd_dev->parent = parent;
4856	atomic_set(&rbd_dev->parent_ref, 1);
4857
4858	return 0;
4859out_err:
4860	if (parent) {
4861		rbd_dev_unparent(rbd_dev);
4862		kfree(rbd_dev->header_name);
4863		rbd_dev_destroy(parent);
4864	} else {
4865		rbd_put_client(rbdc);
4866		rbd_spec_put(parent_spec);
4867	}
4868
4869	return ret;
4870}
4871
4872static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4873{
4874	int ret;
4875
4876	/* Get an id and fill in device name. */
4877
4878	ret = rbd_dev_id_get(rbd_dev);
4879	if (ret)
4880		return ret;
4881
4882	BUILD_BUG_ON(DEV_NAME_LEN
4883			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4884	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4885
4886	/* Record our major and minor device numbers. */
4887
4888	if (!single_major) {
4889		ret = register_blkdev(0, rbd_dev->name);
4890		if (ret < 0)
4891			goto err_out_id;
4892
4893		rbd_dev->major = ret;
4894		rbd_dev->minor = 0;
4895	} else {
4896		rbd_dev->major = rbd_major;
4897		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4898	}
4899
4900	/* Set up the blkdev mapping. */
4901
4902	ret = rbd_init_disk(rbd_dev);
4903	if (ret)
4904		goto err_out_blkdev;
4905
4906	ret = rbd_dev_mapping_set(rbd_dev);
4907	if (ret)
4908		goto err_out_disk;
4909	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4910
4911	ret = rbd_bus_add_dev(rbd_dev);
4912	if (ret)
4913		goto err_out_mapping;
4914
4915	/* Everything's ready.  Announce the disk to the world. */
4916
4917	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4918	add_disk(rbd_dev->disk);
4919
4920	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4921		(unsigned long long) rbd_dev->mapping.size);
4922
 
 
4923	return ret;
4924
4925err_out_mapping:
4926	rbd_dev_mapping_clear(rbd_dev);
4927err_out_disk:
4928	rbd_free_disk(rbd_dev);
4929err_out_blkdev:
4930	if (!single_major)
4931		unregister_blkdev(rbd_dev->major, rbd_dev->name);
4932err_out_id:
4933	rbd_dev_id_put(rbd_dev);
4934	rbd_dev_mapping_clear(rbd_dev);
4935
4936	return ret;
4937}
4938
4939static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4940{
4941	struct rbd_spec *spec = rbd_dev->spec;
4942	size_t size;
4943
4944	/* Record the header object name for this rbd image. */
4945
4946	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4947
4948	if (rbd_dev->image_format == 1)
4949		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4950	else
4951		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4952
4953	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4954	if (!rbd_dev->header_name)
4955		return -ENOMEM;
4956
4957	if (rbd_dev->image_format == 1)
4958		sprintf(rbd_dev->header_name, "%s%s",
4959			spec->image_name, RBD_SUFFIX);
4960	else
4961		sprintf(rbd_dev->header_name, "%s%s",
4962			RBD_HEADER_PREFIX, spec->image_id);
4963	return 0;
4964}
4965
4966static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4967{
4968	rbd_dev_unprobe(rbd_dev);
4969	kfree(rbd_dev->header_name);
4970	rbd_dev->header_name = NULL;
4971	rbd_dev->image_format = 0;
4972	kfree(rbd_dev->spec->image_id);
4973	rbd_dev->spec->image_id = NULL;
4974
4975	rbd_dev_destroy(rbd_dev);
4976}
4977
4978/*
4979 * Probe for the existence of the header object for the given rbd
4980 * device.  If this image is the one being mapped (i.e., not a
4981 * parent), initiate a watch on its header object before using that
4982 * object to get detailed information about the rbd image.
4983 */
4984static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4985{
 
4986	int ret;
4987
4988	/*
4989	 * Get the id from the image id object.  Unless there's an
4990	 * error, rbd_dev->spec->image_id will be filled in with
4991	 * a dynamically-allocated string, and rbd_dev->image_format
4992	 * will be set to either 1 or 2.
4993	 */
4994	ret = rbd_dev_image_id(rbd_dev);
4995	if (ret)
4996		return ret;
4997	rbd_assert(rbd_dev->spec->image_id);
4998	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4999
5000	ret = rbd_dev_header_name(rbd_dev);
5001	if (ret)
5002		goto err_out_format;
5003
5004	if (mapping) {
5005		ret = rbd_dev_header_watch_sync(rbd_dev);
5006		if (ret)
5007			goto out_header_name;
5008	}
5009
5010	if (rbd_dev->image_format == 1)
5011		ret = rbd_dev_v1_header_info(rbd_dev);
5012	else
5013		ret = rbd_dev_v2_header_info(rbd_dev);
5014	if (ret)
5015		goto err_out_watch;
5016
5017	ret = rbd_dev_spec_update(rbd_dev);
5018	if (ret)
5019		goto err_out_probe;
5020
5021	ret = rbd_dev_probe_parent(rbd_dev);
5022	if (ret)
5023		goto err_out_probe;
5024
5025	dout("discovered format %u image, header name is %s\n",
5026		rbd_dev->image_format, rbd_dev->header_name);
 
5027
5028	return 0;
5029err_out_probe:
5030	rbd_dev_unprobe(rbd_dev);
5031err_out_watch:
5032	if (mapping)
5033		rbd_dev_header_unwatch_sync(rbd_dev);
5034out_header_name:
5035	kfree(rbd_dev->header_name);
5036	rbd_dev->header_name = NULL;
5037err_out_format:
5038	rbd_dev->image_format = 0;
5039	kfree(rbd_dev->spec->image_id);
5040	rbd_dev->spec->image_id = NULL;
5041
5042	dout("probe failed, returning %d\n", ret);
 
 
 
 
 
 
5043
5044	return ret;
5045}
5046
5047static ssize_t do_rbd_add(struct bus_type *bus,
5048			  const char *buf,
5049			  size_t count)
5050{
5051	struct rbd_device *rbd_dev = NULL;
5052	struct ceph_options *ceph_opts = NULL;
5053	struct rbd_options *rbd_opts = NULL;
5054	struct rbd_spec *spec = NULL;
5055	struct rbd_client *rbdc;
5056	struct ceph_osd_client *osdc;
5057	bool read_only;
5058	int rc = -ENOMEM;
5059
5060	if (!try_module_get(THIS_MODULE))
5061		return -ENODEV;
5062
5063	/* parse add command */
5064	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5065	if (rc < 0)
5066		goto err_out_module;
5067	read_only = rbd_opts->read_only;
5068	kfree(rbd_opts);
5069	rbd_opts = NULL;	/* done with this */
5070
5071	rbdc = rbd_get_client(ceph_opts);
5072	if (IS_ERR(rbdc)) {
5073		rc = PTR_ERR(rbdc);
5074		goto err_out_args;
5075	}
5076
5077	/* pick the pool */
5078	osdc = &rbdc->client->osdc;
5079	rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5080	if (rc < 0)
5081		goto err_out_client;
5082	spec->pool_id = (u64)rc;
5083
5084	/* The ceph file layout needs to fit pool id in 32 bits */
5085
5086	if (spec->pool_id > (u64)U32_MAX) {
5087		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5088				(unsigned long long)spec->pool_id, U32_MAX);
5089		rc = -EIO;
5090		goto err_out_client;
5091	}
5092
5093	rbd_dev = rbd_dev_create(rbdc, spec);
5094	if (!rbd_dev)
5095		goto err_out_client;
5096	rbdc = NULL;		/* rbd_dev now owns this */
5097	spec = NULL;		/* rbd_dev now owns this */
5098
5099	rc = rbd_dev_image_probe(rbd_dev, true);
5100	if (rc < 0)
5101		goto err_out_rbd_dev;
5102
5103	/* If we are mapping a snapshot it must be marked read-only */
5104
5105	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5106		read_only = true;
5107	rbd_dev->mapping.read_only = read_only;
5108
5109	rc = rbd_dev_device_setup(rbd_dev);
5110	if (rc) {
5111		/*
5112		 * rbd_dev_header_unwatch_sync() can't be moved into
5113		 * rbd_dev_image_release() without refactoring, see
5114		 * commit 1f3ef78861ac.
5115		 */
5116		rbd_dev_header_unwatch_sync(rbd_dev);
5117		rbd_dev_image_release(rbd_dev);
5118		goto err_out_module;
5119	}
5120
5121	return count;
5122
5123err_out_rbd_dev:
5124	rbd_dev_destroy(rbd_dev);
5125err_out_client:
5126	rbd_put_client(rbdc);
5127err_out_args:
5128	rbd_spec_put(spec);
5129err_out_module:
5130	module_put(THIS_MODULE);
5131
5132	dout("Error adding device %s\n", buf);
5133
5134	return (ssize_t)rc;
5135}
5136
5137static ssize_t rbd_add(struct bus_type *bus,
5138		       const char *buf,
5139		       size_t count)
5140{
5141	if (single_major)
5142		return -EINVAL;
5143
5144	return do_rbd_add(bus, buf, count);
5145}
5146
5147static ssize_t rbd_add_single_major(struct bus_type *bus,
5148				    const char *buf,
5149				    size_t count)
5150{
5151	return do_rbd_add(bus, buf, count);
5152}
5153
5154static void rbd_dev_device_release(struct device *dev)
5155{
5156	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157
5158	rbd_free_disk(rbd_dev);
5159	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5160	rbd_dev_mapping_clear(rbd_dev);
5161	if (!single_major)
5162		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5163	rbd_dev_id_put(rbd_dev);
5164	rbd_dev_mapping_clear(rbd_dev);
5165}
5166
5167static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5168{
5169	while (rbd_dev->parent) {
5170		struct rbd_device *first = rbd_dev;
5171		struct rbd_device *second = first->parent;
5172		struct rbd_device *third;
5173
5174		/*
5175		 * Follow to the parent with no grandparent and
5176		 * remove it.
5177		 */
5178		while (second && (third = second->parent)) {
5179			first = second;
5180			second = third;
5181		}
5182		rbd_assert(second);
5183		rbd_dev_image_release(second);
5184		first->parent = NULL;
5185		first->parent_overlap = 0;
5186
5187		rbd_assert(first->parent_spec);
5188		rbd_spec_put(first->parent_spec);
5189		first->parent_spec = NULL;
5190	}
5191}
5192
5193static ssize_t do_rbd_remove(struct bus_type *bus,
5194			     const char *buf,
5195			     size_t count)
5196{
5197	struct rbd_device *rbd_dev = NULL;
5198	struct list_head *tmp;
5199	int dev_id;
5200	unsigned long ul;
5201	bool already = false;
5202	int ret;
5203
5204	ret = kstrtoul(buf, 10, &ul);
5205	if (ret)
5206		return ret;
5207
5208	/* convert to int; abort if we lost anything in the conversion */
5209	dev_id = (int)ul;
5210	if (dev_id != ul)
5211		return -EINVAL;
5212
5213	ret = -ENOENT;
5214	spin_lock(&rbd_dev_list_lock);
5215	list_for_each(tmp, &rbd_dev_list) {
5216		rbd_dev = list_entry(tmp, struct rbd_device, node);
5217		if (rbd_dev->dev_id == dev_id) {
5218			ret = 0;
5219			break;
5220		}
5221	}
5222	if (!ret) {
5223		spin_lock_irq(&rbd_dev->lock);
5224		if (rbd_dev->open_count)
5225			ret = -EBUSY;
5226		else
5227			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5228							&rbd_dev->flags);
5229		spin_unlock_irq(&rbd_dev->lock);
5230	}
5231	spin_unlock(&rbd_dev_list_lock);
5232	if (ret < 0 || already)
5233		return ret;
5234
5235	rbd_dev_header_unwatch_sync(rbd_dev);
5236	/*
5237	 * flush remaining watch callbacks - these must be complete
5238	 * before the osd_client is shutdown
5239	 */
5240	dout("%s: flushing notifies", __func__);
5241	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5242
5243	/*
5244	 * Don't free anything from rbd_dev->disk until after all
5245	 * notifies are completely processed. Otherwise
5246	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5247	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5248	 */
5249	rbd_bus_del_dev(rbd_dev);
5250	rbd_dev_image_release(rbd_dev);
5251	module_put(THIS_MODULE);
5252
5253	return count;
5254}
5255
5256static ssize_t rbd_remove(struct bus_type *bus,
5257			  const char *buf,
5258			  size_t count)
5259{
5260	if (single_major)
5261		return -EINVAL;
5262
5263	return do_rbd_remove(bus, buf, count);
5264}
5265
5266static ssize_t rbd_remove_single_major(struct bus_type *bus,
5267				       const char *buf,
5268				       size_t count)
5269{
5270	return do_rbd_remove(bus, buf, count);
5271}
5272
5273/*
5274 * create control files in sysfs
5275 * /sys/bus/rbd/...
5276 */
5277static int rbd_sysfs_init(void)
5278{
5279	int ret;
5280
5281	ret = device_register(&rbd_root_dev);
5282	if (ret < 0)
 
 
5283		return ret;
5284
5285	ret = bus_register(&rbd_bus_type);
5286	if (ret < 0)
5287		device_unregister(&rbd_root_dev);
5288
5289	return ret;
5290}
5291
5292static void rbd_sysfs_cleanup(void)
5293{
 
5294	bus_unregister(&rbd_bus_type);
5295	device_unregister(&rbd_root_dev);
5296}
5297
5298static int rbd_slab_init(void)
5299{
5300	rbd_assert(!rbd_img_request_cache);
5301	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5302					sizeof (struct rbd_img_request),
5303					__alignof__(struct rbd_img_request),
5304					0, NULL);
5305	if (!rbd_img_request_cache)
5306		return -ENOMEM;
5307
5308	rbd_assert(!rbd_obj_request_cache);
5309	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5310					sizeof (struct rbd_obj_request),
5311					__alignof__(struct rbd_obj_request),
5312					0, NULL);
5313	if (!rbd_obj_request_cache)
5314		goto out_err;
5315
5316	rbd_assert(!rbd_segment_name_cache);
5317	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5318					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5319	if (rbd_segment_name_cache)
5320		return 0;
5321out_err:
5322	if (rbd_obj_request_cache) {
5323		kmem_cache_destroy(rbd_obj_request_cache);
5324		rbd_obj_request_cache = NULL;
5325	}
5326
5327	kmem_cache_destroy(rbd_img_request_cache);
5328	rbd_img_request_cache = NULL;
5329
5330	return -ENOMEM;
5331}
5332
5333static void rbd_slab_exit(void)
5334{
5335	rbd_assert(rbd_segment_name_cache);
5336	kmem_cache_destroy(rbd_segment_name_cache);
5337	rbd_segment_name_cache = NULL;
5338
5339	rbd_assert(rbd_obj_request_cache);
5340	kmem_cache_destroy(rbd_obj_request_cache);
5341	rbd_obj_request_cache = NULL;
5342
5343	rbd_assert(rbd_img_request_cache);
5344	kmem_cache_destroy(rbd_img_request_cache);
5345	rbd_img_request_cache = NULL;
5346}
5347
5348static int __init rbd_init(void)
5349{
5350	int rc;
5351
5352	if (!libceph_compatible(NULL)) {
5353		rbd_warn(NULL, "libceph incompatibility (quitting)");
5354		return -EINVAL;
5355	}
5356
5357	rc = rbd_slab_init();
5358	if (rc)
5359		return rc;
5360
5361	if (single_major) {
5362		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5363		if (rbd_major < 0) {
5364			rc = rbd_major;
5365			goto err_out_slab;
5366		}
5367	}
5368
5369	rc = rbd_sysfs_init();
5370	if (rc)
5371		goto err_out_blkdev;
5372
5373	if (single_major)
5374		pr_info("loaded (major %d)\n", rbd_major);
5375	else
5376		pr_info("loaded\n");
5377
5378	return 0;
5379
5380err_out_blkdev:
5381	if (single_major)
5382		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5383err_out_slab:
5384	rbd_slab_exit();
5385	return rc;
5386}
5387
5388static void __exit rbd_exit(void)
5389{
5390	rbd_sysfs_cleanup();
5391	if (single_major)
5392		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5393	rbd_slab_exit();
5394}
5395
5396module_init(rbd_init);
5397module_exit(rbd_exit);
5398
5399MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5400MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5401MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
 
 
5402/* following authorship retained from original osdblk.c */
5403MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5404
5405MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5406MODULE_LICENSE("GPL");