Loading...
1/*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30#include <linux/ceph/libceph.h>
31#include <linux/ceph/osd_client.h>
32#include <linux/ceph/mon_client.h>
33#include <linux/ceph/decode.h>
34#include <linux/parser.h>
35
36#include <linux/kernel.h>
37#include <linux/device.h>
38#include <linux/module.h>
39#include <linux/fs.h>
40#include <linux/blkdev.h>
41
42#include "rbd_types.h"
43
44#define DRV_NAME "rbd"
45#define DRV_NAME_LONG "rbd (rados block device)"
46
47#define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
48
49#define RBD_MAX_MD_NAME_LEN (96 + sizeof(RBD_SUFFIX))
50#define RBD_MAX_POOL_NAME_LEN 64
51#define RBD_MAX_SNAP_NAME_LEN 32
52#define RBD_MAX_OPT_LEN 1024
53
54#define RBD_SNAP_HEAD_NAME "-"
55
56#define DEV_NAME_LEN 32
57
58#define RBD_NOTIFY_TIMEOUT_DEFAULT 10
59
60/*
61 * block device image metadata (in-memory version)
62 */
63struct rbd_image_header {
64 u64 image_size;
65 char block_name[32];
66 __u8 obj_order;
67 __u8 crypt_type;
68 __u8 comp_type;
69 struct rw_semaphore snap_rwsem;
70 struct ceph_snap_context *snapc;
71 size_t snap_names_len;
72 u64 snap_seq;
73 u32 total_snaps;
74
75 char *snap_names;
76 u64 *snap_sizes;
77
78 u64 obj_version;
79};
80
81struct rbd_options {
82 int notify_timeout;
83};
84
85/*
86 * an instance of the client. multiple devices may share a client.
87 */
88struct rbd_client {
89 struct ceph_client *client;
90 struct rbd_options *rbd_opts;
91 struct kref kref;
92 struct list_head node;
93};
94
95struct rbd_req_coll;
96
97/*
98 * a single io request
99 */
100struct rbd_request {
101 struct request *rq; /* blk layer request */
102 struct bio *bio; /* cloned bio */
103 struct page **pages; /* list of used pages */
104 u64 len;
105 int coll_index;
106 struct rbd_req_coll *coll;
107};
108
109struct rbd_req_status {
110 int done;
111 int rc;
112 u64 bytes;
113};
114
115/*
116 * a collection of requests
117 */
118struct rbd_req_coll {
119 int total;
120 int num_done;
121 struct kref kref;
122 struct rbd_req_status status[0];
123};
124
125struct rbd_snap {
126 struct device dev;
127 const char *name;
128 size_t size;
129 struct list_head node;
130 u64 id;
131};
132
133/*
134 * a single device
135 */
136struct rbd_device {
137 int id; /* blkdev unique id */
138
139 int major; /* blkdev assigned major */
140 struct gendisk *disk; /* blkdev's gendisk and rq */
141 struct request_queue *q;
142
143 struct ceph_client *client;
144 struct rbd_client *rbd_client;
145
146 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
147
148 spinlock_t lock; /* queue lock */
149
150 struct rbd_image_header header;
151 char obj[RBD_MAX_OBJ_NAME_LEN]; /* rbd image name */
152 int obj_len;
153 char obj_md_name[RBD_MAX_MD_NAME_LEN]; /* hdr nm. */
154 char pool_name[RBD_MAX_POOL_NAME_LEN];
155 int poolid;
156
157 struct ceph_osd_event *watch_event;
158 struct ceph_osd_request *watch_request;
159
160 char snap_name[RBD_MAX_SNAP_NAME_LEN];
161 u32 cur_snap; /* index+1 of current snapshot within snap context
162 0 - for the head */
163 int read_only;
164
165 struct list_head node;
166
167 /* list of snapshots */
168 struct list_head snaps;
169
170 /* sysfs related */
171 struct device dev;
172};
173
174static struct bus_type rbd_bus_type = {
175 .name = "rbd",
176};
177
178static spinlock_t node_lock; /* protects client get/put */
179
180static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
181static LIST_HEAD(rbd_dev_list); /* devices */
182static LIST_HEAD(rbd_client_list); /* clients */
183
184static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
185static void rbd_dev_release(struct device *dev);
186static ssize_t rbd_snap_rollback(struct device *dev,
187 struct device_attribute *attr,
188 const char *buf,
189 size_t size);
190static ssize_t rbd_snap_add(struct device *dev,
191 struct device_attribute *attr,
192 const char *buf,
193 size_t count);
194static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
195 struct rbd_snap *snap);;
196
197
198static struct rbd_device *dev_to_rbd(struct device *dev)
199{
200 return container_of(dev, struct rbd_device, dev);
201}
202
203static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
204{
205 return get_device(&rbd_dev->dev);
206}
207
208static void rbd_put_dev(struct rbd_device *rbd_dev)
209{
210 put_device(&rbd_dev->dev);
211}
212
213static int __rbd_update_snaps(struct rbd_device *rbd_dev);
214
215static int rbd_open(struct block_device *bdev, fmode_t mode)
216{
217 struct gendisk *disk = bdev->bd_disk;
218 struct rbd_device *rbd_dev = disk->private_data;
219
220 rbd_get_dev(rbd_dev);
221
222 set_device_ro(bdev, rbd_dev->read_only);
223
224 if ((mode & FMODE_WRITE) && rbd_dev->read_only)
225 return -EROFS;
226
227 return 0;
228}
229
230static int rbd_release(struct gendisk *disk, fmode_t mode)
231{
232 struct rbd_device *rbd_dev = disk->private_data;
233
234 rbd_put_dev(rbd_dev);
235
236 return 0;
237}
238
239static const struct block_device_operations rbd_bd_ops = {
240 .owner = THIS_MODULE,
241 .open = rbd_open,
242 .release = rbd_release,
243};
244
245/*
246 * Initialize an rbd client instance.
247 * We own *opt.
248 */
249static struct rbd_client *rbd_client_create(struct ceph_options *opt,
250 struct rbd_options *rbd_opts)
251{
252 struct rbd_client *rbdc;
253 int ret = -ENOMEM;
254
255 dout("rbd_client_create\n");
256 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
257 if (!rbdc)
258 goto out_opt;
259
260 kref_init(&rbdc->kref);
261 INIT_LIST_HEAD(&rbdc->node);
262
263 rbdc->client = ceph_create_client(opt, rbdc);
264 if (IS_ERR(rbdc->client))
265 goto out_rbdc;
266 opt = NULL; /* Now rbdc->client is responsible for opt */
267
268 ret = ceph_open_session(rbdc->client);
269 if (ret < 0)
270 goto out_err;
271
272 rbdc->rbd_opts = rbd_opts;
273
274 spin_lock(&node_lock);
275 list_add_tail(&rbdc->node, &rbd_client_list);
276 spin_unlock(&node_lock);
277
278 dout("rbd_client_create created %p\n", rbdc);
279 return rbdc;
280
281out_err:
282 ceph_destroy_client(rbdc->client);
283out_rbdc:
284 kfree(rbdc);
285out_opt:
286 if (opt)
287 ceph_destroy_options(opt);
288 return ERR_PTR(ret);
289}
290
291/*
292 * Find a ceph client with specific addr and configuration.
293 */
294static struct rbd_client *__rbd_client_find(struct ceph_options *opt)
295{
296 struct rbd_client *client_node;
297
298 if (opt->flags & CEPH_OPT_NOSHARE)
299 return NULL;
300
301 list_for_each_entry(client_node, &rbd_client_list, node)
302 if (ceph_compare_options(opt, client_node->client) == 0)
303 return client_node;
304 return NULL;
305}
306
307/*
308 * mount options
309 */
310enum {
311 Opt_notify_timeout,
312 Opt_last_int,
313 /* int args above */
314 Opt_last_string,
315 /* string args above */
316};
317
318static match_table_t rbdopt_tokens = {
319 {Opt_notify_timeout, "notify_timeout=%d"},
320 /* int args above */
321 /* string args above */
322 {-1, NULL}
323};
324
325static int parse_rbd_opts_token(char *c, void *private)
326{
327 struct rbd_options *rbdopt = private;
328 substring_t argstr[MAX_OPT_ARGS];
329 int token, intval, ret;
330
331 token = match_token((char *)c, rbdopt_tokens, argstr);
332 if (token < 0)
333 return -EINVAL;
334
335 if (token < Opt_last_int) {
336 ret = match_int(&argstr[0], &intval);
337 if (ret < 0) {
338 pr_err("bad mount option arg (not int) "
339 "at '%s'\n", c);
340 return ret;
341 }
342 dout("got int token %d val %d\n", token, intval);
343 } else if (token > Opt_last_int && token < Opt_last_string) {
344 dout("got string token %d val %s\n", token,
345 argstr[0].from);
346 } else {
347 dout("got token %d\n", token);
348 }
349
350 switch (token) {
351 case Opt_notify_timeout:
352 rbdopt->notify_timeout = intval;
353 break;
354 default:
355 BUG_ON(token);
356 }
357 return 0;
358}
359
360/*
361 * Get a ceph client with specific addr and configuration, if one does
362 * not exist create it.
363 */
364static int rbd_get_client(struct rbd_device *rbd_dev, const char *mon_addr,
365 char *options)
366{
367 struct rbd_client *rbdc;
368 struct ceph_options *opt;
369 int ret;
370 struct rbd_options *rbd_opts;
371
372 rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
373 if (!rbd_opts)
374 return -ENOMEM;
375
376 rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
377
378 ret = ceph_parse_options(&opt, options, mon_addr,
379 mon_addr + strlen(mon_addr), parse_rbd_opts_token, rbd_opts);
380 if (ret < 0)
381 goto done_err;
382
383 spin_lock(&node_lock);
384 rbdc = __rbd_client_find(opt);
385 if (rbdc) {
386 ceph_destroy_options(opt);
387
388 /* using an existing client */
389 kref_get(&rbdc->kref);
390 rbd_dev->rbd_client = rbdc;
391 rbd_dev->client = rbdc->client;
392 spin_unlock(&node_lock);
393 return 0;
394 }
395 spin_unlock(&node_lock);
396
397 rbdc = rbd_client_create(opt, rbd_opts);
398 if (IS_ERR(rbdc)) {
399 ret = PTR_ERR(rbdc);
400 goto done_err;
401 }
402
403 rbd_dev->rbd_client = rbdc;
404 rbd_dev->client = rbdc->client;
405 return 0;
406done_err:
407 kfree(rbd_opts);
408 return ret;
409}
410
411/*
412 * Destroy ceph client
413 */
414static void rbd_client_release(struct kref *kref)
415{
416 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
417
418 dout("rbd_release_client %p\n", rbdc);
419 spin_lock(&node_lock);
420 list_del(&rbdc->node);
421 spin_unlock(&node_lock);
422
423 ceph_destroy_client(rbdc->client);
424 kfree(rbdc->rbd_opts);
425 kfree(rbdc);
426}
427
428/*
429 * Drop reference to ceph client node. If it's not referenced anymore, release
430 * it.
431 */
432static void rbd_put_client(struct rbd_device *rbd_dev)
433{
434 kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
435 rbd_dev->rbd_client = NULL;
436 rbd_dev->client = NULL;
437}
438
439/*
440 * Destroy requests collection
441 */
442static void rbd_coll_release(struct kref *kref)
443{
444 struct rbd_req_coll *coll =
445 container_of(kref, struct rbd_req_coll, kref);
446
447 dout("rbd_coll_release %p\n", coll);
448 kfree(coll);
449}
450
451/*
452 * Create a new header structure, translate header format from the on-disk
453 * header.
454 */
455static int rbd_header_from_disk(struct rbd_image_header *header,
456 struct rbd_image_header_ondisk *ondisk,
457 int allocated_snaps,
458 gfp_t gfp_flags)
459{
460 int i;
461 u32 snap_count = le32_to_cpu(ondisk->snap_count);
462 int ret = -ENOMEM;
463
464 init_rwsem(&header->snap_rwsem);
465 header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
466 header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
467 snap_count *
468 sizeof(struct rbd_image_snap_ondisk),
469 gfp_flags);
470 if (!header->snapc)
471 return -ENOMEM;
472 if (snap_count) {
473 header->snap_names = kmalloc(header->snap_names_len,
474 GFP_KERNEL);
475 if (!header->snap_names)
476 goto err_snapc;
477 header->snap_sizes = kmalloc(snap_count * sizeof(u64),
478 GFP_KERNEL);
479 if (!header->snap_sizes)
480 goto err_names;
481 } else {
482 header->snap_names = NULL;
483 header->snap_sizes = NULL;
484 }
485 memcpy(header->block_name, ondisk->block_name,
486 sizeof(ondisk->block_name));
487
488 header->image_size = le64_to_cpu(ondisk->image_size);
489 header->obj_order = ondisk->options.order;
490 header->crypt_type = ondisk->options.crypt_type;
491 header->comp_type = ondisk->options.comp_type;
492
493 atomic_set(&header->snapc->nref, 1);
494 header->snap_seq = le64_to_cpu(ondisk->snap_seq);
495 header->snapc->num_snaps = snap_count;
496 header->total_snaps = snap_count;
497
498 if (snap_count &&
499 allocated_snaps == snap_count) {
500 for (i = 0; i < snap_count; i++) {
501 header->snapc->snaps[i] =
502 le64_to_cpu(ondisk->snaps[i].id);
503 header->snap_sizes[i] =
504 le64_to_cpu(ondisk->snaps[i].image_size);
505 }
506
507 /* copy snapshot names */
508 memcpy(header->snap_names, &ondisk->snaps[i],
509 header->snap_names_len);
510 }
511
512 return 0;
513
514err_names:
515 kfree(header->snap_names);
516err_snapc:
517 kfree(header->snapc);
518 return ret;
519}
520
521static int snap_index(struct rbd_image_header *header, int snap_num)
522{
523 return header->total_snaps - snap_num;
524}
525
526static u64 cur_snap_id(struct rbd_device *rbd_dev)
527{
528 struct rbd_image_header *header = &rbd_dev->header;
529
530 if (!rbd_dev->cur_snap)
531 return 0;
532
533 return header->snapc->snaps[snap_index(header, rbd_dev->cur_snap)];
534}
535
536static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
537 u64 *seq, u64 *size)
538{
539 int i;
540 char *p = header->snap_names;
541
542 for (i = 0; i < header->total_snaps; i++, p += strlen(p) + 1) {
543 if (strcmp(snap_name, p) == 0)
544 break;
545 }
546 if (i == header->total_snaps)
547 return -ENOENT;
548 if (seq)
549 *seq = header->snapc->snaps[i];
550
551 if (size)
552 *size = header->snap_sizes[i];
553
554 return i;
555}
556
557static int rbd_header_set_snap(struct rbd_device *dev,
558 const char *snap_name,
559 u64 *size)
560{
561 struct rbd_image_header *header = &dev->header;
562 struct ceph_snap_context *snapc = header->snapc;
563 int ret = -ENOENT;
564
565 down_write(&header->snap_rwsem);
566
567 if (!snap_name ||
568 !*snap_name ||
569 strcmp(snap_name, "-") == 0 ||
570 strcmp(snap_name, RBD_SNAP_HEAD_NAME) == 0) {
571 if (header->total_snaps)
572 snapc->seq = header->snap_seq;
573 else
574 snapc->seq = 0;
575 dev->cur_snap = 0;
576 dev->read_only = 0;
577 if (size)
578 *size = header->image_size;
579 } else {
580 ret = snap_by_name(header, snap_name, &snapc->seq, size);
581 if (ret < 0)
582 goto done;
583
584 dev->cur_snap = header->total_snaps - ret;
585 dev->read_only = 1;
586 }
587
588 ret = 0;
589done:
590 up_write(&header->snap_rwsem);
591 return ret;
592}
593
594static void rbd_header_free(struct rbd_image_header *header)
595{
596 kfree(header->snapc);
597 kfree(header->snap_names);
598 kfree(header->snap_sizes);
599}
600
601/*
602 * get the actual striped segment name, offset and length
603 */
604static u64 rbd_get_segment(struct rbd_image_header *header,
605 const char *block_name,
606 u64 ofs, u64 len,
607 char *seg_name, u64 *segofs)
608{
609 u64 seg = ofs >> header->obj_order;
610
611 if (seg_name)
612 snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
613 "%s.%012llx", block_name, seg);
614
615 ofs = ofs & ((1 << header->obj_order) - 1);
616 len = min_t(u64, len, (1 << header->obj_order) - ofs);
617
618 if (segofs)
619 *segofs = ofs;
620
621 return len;
622}
623
624static int rbd_get_num_segments(struct rbd_image_header *header,
625 u64 ofs, u64 len)
626{
627 u64 start_seg = ofs >> header->obj_order;
628 u64 end_seg = (ofs + len - 1) >> header->obj_order;
629 return end_seg - start_seg + 1;
630}
631
632/*
633 * returns the size of an object in the image
634 */
635static u64 rbd_obj_bytes(struct rbd_image_header *header)
636{
637 return 1 << header->obj_order;
638}
639
640/*
641 * bio helpers
642 */
643
644static void bio_chain_put(struct bio *chain)
645{
646 struct bio *tmp;
647
648 while (chain) {
649 tmp = chain;
650 chain = chain->bi_next;
651 bio_put(tmp);
652 }
653}
654
655/*
656 * zeros a bio chain, starting at specific offset
657 */
658static void zero_bio_chain(struct bio *chain, int start_ofs)
659{
660 struct bio_vec *bv;
661 unsigned long flags;
662 void *buf;
663 int i;
664 int pos = 0;
665
666 while (chain) {
667 bio_for_each_segment(bv, chain, i) {
668 if (pos + bv->bv_len > start_ofs) {
669 int remainder = max(start_ofs - pos, 0);
670 buf = bvec_kmap_irq(bv, &flags);
671 memset(buf + remainder, 0,
672 bv->bv_len - remainder);
673 bvec_kunmap_irq(buf, &flags);
674 }
675 pos += bv->bv_len;
676 }
677
678 chain = chain->bi_next;
679 }
680}
681
682/*
683 * bio_chain_clone - clone a chain of bios up to a certain length.
684 * might return a bio_pair that will need to be released.
685 */
686static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
687 struct bio_pair **bp,
688 int len, gfp_t gfpmask)
689{
690 struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
691 int total = 0;
692
693 if (*bp) {
694 bio_pair_release(*bp);
695 *bp = NULL;
696 }
697
698 while (old_chain && (total < len)) {
699 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
700 if (!tmp)
701 goto err_out;
702
703 if (total + old_chain->bi_size > len) {
704 struct bio_pair *bp;
705
706 /*
707 * this split can only happen with a single paged bio,
708 * split_bio will BUG_ON if this is not the case
709 */
710 dout("bio_chain_clone split! total=%d remaining=%d"
711 "bi_size=%d\n",
712 (int)total, (int)len-total,
713 (int)old_chain->bi_size);
714
715 /* split the bio. We'll release it either in the next
716 call, or it will have to be released outside */
717 bp = bio_split(old_chain, (len - total) / 512ULL);
718 if (!bp)
719 goto err_out;
720
721 __bio_clone(tmp, &bp->bio1);
722
723 *next = &bp->bio2;
724 } else {
725 __bio_clone(tmp, old_chain);
726 *next = old_chain->bi_next;
727 }
728
729 tmp->bi_bdev = NULL;
730 gfpmask &= ~__GFP_WAIT;
731 tmp->bi_next = NULL;
732
733 if (!new_chain) {
734 new_chain = tail = tmp;
735 } else {
736 tail->bi_next = tmp;
737 tail = tmp;
738 }
739 old_chain = old_chain->bi_next;
740
741 total += tmp->bi_size;
742 }
743
744 BUG_ON(total < len);
745
746 if (tail)
747 tail->bi_next = NULL;
748
749 *old = old_chain;
750
751 return new_chain;
752
753err_out:
754 dout("bio_chain_clone with err\n");
755 bio_chain_put(new_chain);
756 return NULL;
757}
758
759/*
760 * helpers for osd request op vectors.
761 */
762static int rbd_create_rw_ops(struct ceph_osd_req_op **ops,
763 int num_ops,
764 int opcode,
765 u32 payload_len)
766{
767 *ops = kzalloc(sizeof(struct ceph_osd_req_op) * (num_ops + 1),
768 GFP_NOIO);
769 if (!*ops)
770 return -ENOMEM;
771 (*ops)[0].op = opcode;
772 /*
773 * op extent offset and length will be set later on
774 * in calc_raw_layout()
775 */
776 (*ops)[0].payload_len = payload_len;
777 return 0;
778}
779
780static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
781{
782 kfree(ops);
783}
784
785static void rbd_coll_end_req_index(struct request *rq,
786 struct rbd_req_coll *coll,
787 int index,
788 int ret, u64 len)
789{
790 struct request_queue *q;
791 int min, max, i;
792
793 dout("rbd_coll_end_req_index %p index %d ret %d len %lld\n",
794 coll, index, ret, len);
795
796 if (!rq)
797 return;
798
799 if (!coll) {
800 blk_end_request(rq, ret, len);
801 return;
802 }
803
804 q = rq->q;
805
806 spin_lock_irq(q->queue_lock);
807 coll->status[index].done = 1;
808 coll->status[index].rc = ret;
809 coll->status[index].bytes = len;
810 max = min = coll->num_done;
811 while (max < coll->total && coll->status[max].done)
812 max++;
813
814 for (i = min; i<max; i++) {
815 __blk_end_request(rq, coll->status[i].rc,
816 coll->status[i].bytes);
817 coll->num_done++;
818 kref_put(&coll->kref, rbd_coll_release);
819 }
820 spin_unlock_irq(q->queue_lock);
821}
822
823static void rbd_coll_end_req(struct rbd_request *req,
824 int ret, u64 len)
825{
826 rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
827}
828
829/*
830 * Send ceph osd request
831 */
832static int rbd_do_request(struct request *rq,
833 struct rbd_device *dev,
834 struct ceph_snap_context *snapc,
835 u64 snapid,
836 const char *obj, u64 ofs, u64 len,
837 struct bio *bio,
838 struct page **pages,
839 int num_pages,
840 int flags,
841 struct ceph_osd_req_op *ops,
842 int num_reply,
843 struct rbd_req_coll *coll,
844 int coll_index,
845 void (*rbd_cb)(struct ceph_osd_request *req,
846 struct ceph_msg *msg),
847 struct ceph_osd_request **linger_req,
848 u64 *ver)
849{
850 struct ceph_osd_request *req;
851 struct ceph_file_layout *layout;
852 int ret;
853 u64 bno;
854 struct timespec mtime = CURRENT_TIME;
855 struct rbd_request *req_data;
856 struct ceph_osd_request_head *reqhead;
857 struct rbd_image_header *header = &dev->header;
858
859 req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
860 if (!req_data) {
861 if (coll)
862 rbd_coll_end_req_index(rq, coll, coll_index,
863 -ENOMEM, len);
864 return -ENOMEM;
865 }
866
867 if (coll) {
868 req_data->coll = coll;
869 req_data->coll_index = coll_index;
870 }
871
872 dout("rbd_do_request obj=%s ofs=%lld len=%lld\n", obj, len, ofs);
873
874 down_read(&header->snap_rwsem);
875
876 req = ceph_osdc_alloc_request(&dev->client->osdc, flags,
877 snapc,
878 ops,
879 false,
880 GFP_NOIO, pages, bio);
881 if (!req) {
882 up_read(&header->snap_rwsem);
883 ret = -ENOMEM;
884 goto done_pages;
885 }
886
887 req->r_callback = rbd_cb;
888
889 req_data->rq = rq;
890 req_data->bio = bio;
891 req_data->pages = pages;
892 req_data->len = len;
893
894 req->r_priv = req_data;
895
896 reqhead = req->r_request->front.iov_base;
897 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
898
899 strncpy(req->r_oid, obj, sizeof(req->r_oid));
900 req->r_oid_len = strlen(req->r_oid);
901
902 layout = &req->r_file_layout;
903 memset(layout, 0, sizeof(*layout));
904 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
905 layout->fl_stripe_count = cpu_to_le32(1);
906 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
907 layout->fl_pg_preferred = cpu_to_le32(-1);
908 layout->fl_pg_pool = cpu_to_le32(dev->poolid);
909 ceph_calc_raw_layout(&dev->client->osdc, layout, snapid,
910 ofs, &len, &bno, req, ops);
911
912 ceph_osdc_build_request(req, ofs, &len,
913 ops,
914 snapc,
915 &mtime,
916 req->r_oid, req->r_oid_len);
917 up_read(&header->snap_rwsem);
918
919 if (linger_req) {
920 ceph_osdc_set_request_linger(&dev->client->osdc, req);
921 *linger_req = req;
922 }
923
924 ret = ceph_osdc_start_request(&dev->client->osdc, req, false);
925 if (ret < 0)
926 goto done_err;
927
928 if (!rbd_cb) {
929 ret = ceph_osdc_wait_request(&dev->client->osdc, req);
930 if (ver)
931 *ver = le64_to_cpu(req->r_reassert_version.version);
932 dout("reassert_ver=%lld\n",
933 le64_to_cpu(req->r_reassert_version.version));
934 ceph_osdc_put_request(req);
935 }
936 return ret;
937
938done_err:
939 bio_chain_put(req_data->bio);
940 ceph_osdc_put_request(req);
941done_pages:
942 rbd_coll_end_req(req_data, ret, len);
943 kfree(req_data);
944 return ret;
945}
946
947/*
948 * Ceph osd op callback
949 */
950static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
951{
952 struct rbd_request *req_data = req->r_priv;
953 struct ceph_osd_reply_head *replyhead;
954 struct ceph_osd_op *op;
955 __s32 rc;
956 u64 bytes;
957 int read_op;
958
959 /* parse reply */
960 replyhead = msg->front.iov_base;
961 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
962 op = (void *)(replyhead + 1);
963 rc = le32_to_cpu(replyhead->result);
964 bytes = le64_to_cpu(op->extent.length);
965 read_op = (le32_to_cpu(op->op) == CEPH_OSD_OP_READ);
966
967 dout("rbd_req_cb bytes=%lld readop=%d rc=%d\n", bytes, read_op, rc);
968
969 if (rc == -ENOENT && read_op) {
970 zero_bio_chain(req_data->bio, 0);
971 rc = 0;
972 } else if (rc == 0 && read_op && bytes < req_data->len) {
973 zero_bio_chain(req_data->bio, bytes);
974 bytes = req_data->len;
975 }
976
977 rbd_coll_end_req(req_data, rc, bytes);
978
979 if (req_data->bio)
980 bio_chain_put(req_data->bio);
981
982 ceph_osdc_put_request(req);
983 kfree(req_data);
984}
985
986static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
987{
988 ceph_osdc_put_request(req);
989}
990
991/*
992 * Do a synchronous ceph osd operation
993 */
994static int rbd_req_sync_op(struct rbd_device *dev,
995 struct ceph_snap_context *snapc,
996 u64 snapid,
997 int opcode,
998 int flags,
999 struct ceph_osd_req_op *orig_ops,
1000 int num_reply,
1001 const char *obj,
1002 u64 ofs, u64 len,
1003 char *buf,
1004 struct ceph_osd_request **linger_req,
1005 u64 *ver)
1006{
1007 int ret;
1008 struct page **pages;
1009 int num_pages;
1010 struct ceph_osd_req_op *ops = orig_ops;
1011 u32 payload_len;
1012
1013 num_pages = calc_pages_for(ofs , len);
1014 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1015 if (IS_ERR(pages))
1016 return PTR_ERR(pages);
1017
1018 if (!orig_ops) {
1019 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? len : 0);
1020 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1021 if (ret < 0)
1022 goto done;
1023
1024 if ((flags & CEPH_OSD_FLAG_WRITE) && buf) {
1025 ret = ceph_copy_to_page_vector(pages, buf, ofs, len);
1026 if (ret < 0)
1027 goto done_ops;
1028 }
1029 }
1030
1031 ret = rbd_do_request(NULL, dev, snapc, snapid,
1032 obj, ofs, len, NULL,
1033 pages, num_pages,
1034 flags,
1035 ops,
1036 2,
1037 NULL, 0,
1038 NULL,
1039 linger_req, ver);
1040 if (ret < 0)
1041 goto done_ops;
1042
1043 if ((flags & CEPH_OSD_FLAG_READ) && buf)
1044 ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1045
1046done_ops:
1047 if (!orig_ops)
1048 rbd_destroy_ops(ops);
1049done:
1050 ceph_release_page_vector(pages, num_pages);
1051 return ret;
1052}
1053
1054/*
1055 * Do an asynchronous ceph osd operation
1056 */
1057static int rbd_do_op(struct request *rq,
1058 struct rbd_device *rbd_dev ,
1059 struct ceph_snap_context *snapc,
1060 u64 snapid,
1061 int opcode, int flags, int num_reply,
1062 u64 ofs, u64 len,
1063 struct bio *bio,
1064 struct rbd_req_coll *coll,
1065 int coll_index)
1066{
1067 char *seg_name;
1068 u64 seg_ofs;
1069 u64 seg_len;
1070 int ret;
1071 struct ceph_osd_req_op *ops;
1072 u32 payload_len;
1073
1074 seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1075 if (!seg_name)
1076 return -ENOMEM;
1077
1078 seg_len = rbd_get_segment(&rbd_dev->header,
1079 rbd_dev->header.block_name,
1080 ofs, len,
1081 seg_name, &seg_ofs);
1082
1083 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1084
1085 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1086 if (ret < 0)
1087 goto done;
1088
1089 /* we've taken care of segment sizes earlier when we
1090 cloned the bios. We should never have a segment
1091 truncated at this point */
1092 BUG_ON(seg_len < len);
1093
1094 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1095 seg_name, seg_ofs, seg_len,
1096 bio,
1097 NULL, 0,
1098 flags,
1099 ops,
1100 num_reply,
1101 coll, coll_index,
1102 rbd_req_cb, 0, NULL);
1103
1104 rbd_destroy_ops(ops);
1105done:
1106 kfree(seg_name);
1107 return ret;
1108}
1109
1110/*
1111 * Request async osd write
1112 */
1113static int rbd_req_write(struct request *rq,
1114 struct rbd_device *rbd_dev,
1115 struct ceph_snap_context *snapc,
1116 u64 ofs, u64 len,
1117 struct bio *bio,
1118 struct rbd_req_coll *coll,
1119 int coll_index)
1120{
1121 return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1122 CEPH_OSD_OP_WRITE,
1123 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1124 2,
1125 ofs, len, bio, coll, coll_index);
1126}
1127
1128/*
1129 * Request async osd read
1130 */
1131static int rbd_req_read(struct request *rq,
1132 struct rbd_device *rbd_dev,
1133 u64 snapid,
1134 u64 ofs, u64 len,
1135 struct bio *bio,
1136 struct rbd_req_coll *coll,
1137 int coll_index)
1138{
1139 return rbd_do_op(rq, rbd_dev, NULL,
1140 (snapid ? snapid : CEPH_NOSNAP),
1141 CEPH_OSD_OP_READ,
1142 CEPH_OSD_FLAG_READ,
1143 2,
1144 ofs, len, bio, coll, coll_index);
1145}
1146
1147/*
1148 * Request sync osd read
1149 */
1150static int rbd_req_sync_read(struct rbd_device *dev,
1151 struct ceph_snap_context *snapc,
1152 u64 snapid,
1153 const char *obj,
1154 u64 ofs, u64 len,
1155 char *buf,
1156 u64 *ver)
1157{
1158 return rbd_req_sync_op(dev, NULL,
1159 (snapid ? snapid : CEPH_NOSNAP),
1160 CEPH_OSD_OP_READ,
1161 CEPH_OSD_FLAG_READ,
1162 NULL,
1163 1, obj, ofs, len, buf, NULL, ver);
1164}
1165
1166/*
1167 * Request sync osd watch
1168 */
1169static int rbd_req_sync_notify_ack(struct rbd_device *dev,
1170 u64 ver,
1171 u64 notify_id,
1172 const char *obj)
1173{
1174 struct ceph_osd_req_op *ops;
1175 struct page **pages = NULL;
1176 int ret;
1177
1178 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1179 if (ret < 0)
1180 return ret;
1181
1182 ops[0].watch.ver = cpu_to_le64(dev->header.obj_version);
1183 ops[0].watch.cookie = notify_id;
1184 ops[0].watch.flag = 0;
1185
1186 ret = rbd_do_request(NULL, dev, NULL, CEPH_NOSNAP,
1187 obj, 0, 0, NULL,
1188 pages, 0,
1189 CEPH_OSD_FLAG_READ,
1190 ops,
1191 1,
1192 NULL, 0,
1193 rbd_simple_req_cb, 0, NULL);
1194
1195 rbd_destroy_ops(ops);
1196 return ret;
1197}
1198
1199static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1200{
1201 struct rbd_device *dev = (struct rbd_device *)data;
1202 int rc;
1203
1204 if (!dev)
1205 return;
1206
1207 dout("rbd_watch_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1208 notify_id, (int)opcode);
1209 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1210 rc = __rbd_update_snaps(dev);
1211 mutex_unlock(&ctl_mutex);
1212 if (rc)
1213 pr_warning(DRV_NAME "%d got notification but failed to update"
1214 " snaps: %d\n", dev->major, rc);
1215
1216 rbd_req_sync_notify_ack(dev, ver, notify_id, dev->obj_md_name);
1217}
1218
1219/*
1220 * Request sync osd watch
1221 */
1222static int rbd_req_sync_watch(struct rbd_device *dev,
1223 const char *obj,
1224 u64 ver)
1225{
1226 struct ceph_osd_req_op *ops;
1227 struct ceph_osd_client *osdc = &dev->client->osdc;
1228
1229 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1230 if (ret < 0)
1231 return ret;
1232
1233 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1234 (void *)dev, &dev->watch_event);
1235 if (ret < 0)
1236 goto fail;
1237
1238 ops[0].watch.ver = cpu_to_le64(ver);
1239 ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1240 ops[0].watch.flag = 1;
1241
1242 ret = rbd_req_sync_op(dev, NULL,
1243 CEPH_NOSNAP,
1244 0,
1245 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1246 ops,
1247 1, obj, 0, 0, NULL,
1248 &dev->watch_request, NULL);
1249
1250 if (ret < 0)
1251 goto fail_event;
1252
1253 rbd_destroy_ops(ops);
1254 return 0;
1255
1256fail_event:
1257 ceph_osdc_cancel_event(dev->watch_event);
1258 dev->watch_event = NULL;
1259fail:
1260 rbd_destroy_ops(ops);
1261 return ret;
1262}
1263
1264/*
1265 * Request sync osd unwatch
1266 */
1267static int rbd_req_sync_unwatch(struct rbd_device *dev,
1268 const char *obj)
1269{
1270 struct ceph_osd_req_op *ops;
1271
1272 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1273 if (ret < 0)
1274 return ret;
1275
1276 ops[0].watch.ver = 0;
1277 ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1278 ops[0].watch.flag = 0;
1279
1280 ret = rbd_req_sync_op(dev, NULL,
1281 CEPH_NOSNAP,
1282 0,
1283 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1284 ops,
1285 1, obj, 0, 0, NULL, NULL, NULL);
1286
1287 rbd_destroy_ops(ops);
1288 ceph_osdc_cancel_event(dev->watch_event);
1289 dev->watch_event = NULL;
1290 return ret;
1291}
1292
1293struct rbd_notify_info {
1294 struct rbd_device *dev;
1295};
1296
1297static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1298{
1299 struct rbd_device *dev = (struct rbd_device *)data;
1300 if (!dev)
1301 return;
1302
1303 dout("rbd_notify_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1304 notify_id, (int)opcode);
1305}
1306
1307/*
1308 * Request sync osd notify
1309 */
1310static int rbd_req_sync_notify(struct rbd_device *dev,
1311 const char *obj)
1312{
1313 struct ceph_osd_req_op *ops;
1314 struct ceph_osd_client *osdc = &dev->client->osdc;
1315 struct ceph_osd_event *event;
1316 struct rbd_notify_info info;
1317 int payload_len = sizeof(u32) + sizeof(u32);
1318 int ret;
1319
1320 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY, payload_len);
1321 if (ret < 0)
1322 return ret;
1323
1324 info.dev = dev;
1325
1326 ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1327 (void *)&info, &event);
1328 if (ret < 0)
1329 goto fail;
1330
1331 ops[0].watch.ver = 1;
1332 ops[0].watch.flag = 1;
1333 ops[0].watch.cookie = event->cookie;
1334 ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1335 ops[0].watch.timeout = 12;
1336
1337 ret = rbd_req_sync_op(dev, NULL,
1338 CEPH_NOSNAP,
1339 0,
1340 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1341 ops,
1342 1, obj, 0, 0, NULL, NULL, NULL);
1343 if (ret < 0)
1344 goto fail_event;
1345
1346 ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1347 dout("ceph_osdc_wait_event returned %d\n", ret);
1348 rbd_destroy_ops(ops);
1349 return 0;
1350
1351fail_event:
1352 ceph_osdc_cancel_event(event);
1353fail:
1354 rbd_destroy_ops(ops);
1355 return ret;
1356}
1357
1358/*
1359 * Request sync osd rollback
1360 */
1361static int rbd_req_sync_rollback_obj(struct rbd_device *dev,
1362 u64 snapid,
1363 const char *obj)
1364{
1365 struct ceph_osd_req_op *ops;
1366 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_ROLLBACK, 0);
1367 if (ret < 0)
1368 return ret;
1369
1370 ops[0].snap.snapid = snapid;
1371
1372 ret = rbd_req_sync_op(dev, NULL,
1373 CEPH_NOSNAP,
1374 0,
1375 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1376 ops,
1377 1, obj, 0, 0, NULL, NULL, NULL);
1378
1379 rbd_destroy_ops(ops);
1380
1381 return ret;
1382}
1383
1384/*
1385 * Request sync osd read
1386 */
1387static int rbd_req_sync_exec(struct rbd_device *dev,
1388 const char *obj,
1389 const char *cls,
1390 const char *method,
1391 const char *data,
1392 int len,
1393 u64 *ver)
1394{
1395 struct ceph_osd_req_op *ops;
1396 int cls_len = strlen(cls);
1397 int method_len = strlen(method);
1398 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_CALL,
1399 cls_len + method_len + len);
1400 if (ret < 0)
1401 return ret;
1402
1403 ops[0].cls.class_name = cls;
1404 ops[0].cls.class_len = (__u8)cls_len;
1405 ops[0].cls.method_name = method;
1406 ops[0].cls.method_len = (__u8)method_len;
1407 ops[0].cls.argc = 0;
1408 ops[0].cls.indata = data;
1409 ops[0].cls.indata_len = len;
1410
1411 ret = rbd_req_sync_op(dev, NULL,
1412 CEPH_NOSNAP,
1413 0,
1414 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1415 ops,
1416 1, obj, 0, 0, NULL, NULL, ver);
1417
1418 rbd_destroy_ops(ops);
1419
1420 dout("cls_exec returned %d\n", ret);
1421 return ret;
1422}
1423
1424static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1425{
1426 struct rbd_req_coll *coll =
1427 kzalloc(sizeof(struct rbd_req_coll) +
1428 sizeof(struct rbd_req_status) * num_reqs,
1429 GFP_ATOMIC);
1430
1431 if (!coll)
1432 return NULL;
1433 coll->total = num_reqs;
1434 kref_init(&coll->kref);
1435 return coll;
1436}
1437
1438/*
1439 * block device queue callback
1440 */
1441static void rbd_rq_fn(struct request_queue *q)
1442{
1443 struct rbd_device *rbd_dev = q->queuedata;
1444 struct request *rq;
1445 struct bio_pair *bp = NULL;
1446
1447 rq = blk_fetch_request(q);
1448
1449 while (1) {
1450 struct bio *bio;
1451 struct bio *rq_bio, *next_bio = NULL;
1452 bool do_write;
1453 int size, op_size = 0;
1454 u64 ofs;
1455 int num_segs, cur_seg = 0;
1456 struct rbd_req_coll *coll;
1457
1458 /* peek at request from block layer */
1459 if (!rq)
1460 break;
1461
1462 dout("fetched request\n");
1463
1464 /* filter out block requests we don't understand */
1465 if ((rq->cmd_type != REQ_TYPE_FS)) {
1466 __blk_end_request_all(rq, 0);
1467 goto next;
1468 }
1469
1470 /* deduce our operation (read, write) */
1471 do_write = (rq_data_dir(rq) == WRITE);
1472
1473 size = blk_rq_bytes(rq);
1474 ofs = blk_rq_pos(rq) * 512ULL;
1475 rq_bio = rq->bio;
1476 if (do_write && rbd_dev->read_only) {
1477 __blk_end_request_all(rq, -EROFS);
1478 goto next;
1479 }
1480
1481 spin_unlock_irq(q->queue_lock);
1482
1483 dout("%s 0x%x bytes at 0x%llx\n",
1484 do_write ? "write" : "read",
1485 size, blk_rq_pos(rq) * 512ULL);
1486
1487 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1488 coll = rbd_alloc_coll(num_segs);
1489 if (!coll) {
1490 spin_lock_irq(q->queue_lock);
1491 __blk_end_request_all(rq, -ENOMEM);
1492 goto next;
1493 }
1494
1495 do {
1496 /* a bio clone to be passed down to OSD req */
1497 dout("rq->bio->bi_vcnt=%d\n", rq->bio->bi_vcnt);
1498 op_size = rbd_get_segment(&rbd_dev->header,
1499 rbd_dev->header.block_name,
1500 ofs, size,
1501 NULL, NULL);
1502 kref_get(&coll->kref);
1503 bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1504 op_size, GFP_ATOMIC);
1505 if (!bio) {
1506 rbd_coll_end_req_index(rq, coll, cur_seg,
1507 -ENOMEM, op_size);
1508 goto next_seg;
1509 }
1510
1511
1512 /* init OSD command: write or read */
1513 if (do_write)
1514 rbd_req_write(rq, rbd_dev,
1515 rbd_dev->header.snapc,
1516 ofs,
1517 op_size, bio,
1518 coll, cur_seg);
1519 else
1520 rbd_req_read(rq, rbd_dev,
1521 cur_snap_id(rbd_dev),
1522 ofs,
1523 op_size, bio,
1524 coll, cur_seg);
1525
1526next_seg:
1527 size -= op_size;
1528 ofs += op_size;
1529
1530 cur_seg++;
1531 rq_bio = next_bio;
1532 } while (size > 0);
1533 kref_put(&coll->kref, rbd_coll_release);
1534
1535 if (bp)
1536 bio_pair_release(bp);
1537 spin_lock_irq(q->queue_lock);
1538next:
1539 rq = blk_fetch_request(q);
1540 }
1541}
1542
1543/*
1544 * a queue callback. Makes sure that we don't create a bio that spans across
1545 * multiple osd objects. One exception would be with a single page bios,
1546 * which we handle later at bio_chain_clone
1547 */
1548static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1549 struct bio_vec *bvec)
1550{
1551 struct rbd_device *rbd_dev = q->queuedata;
1552 unsigned int chunk_sectors = 1 << (rbd_dev->header.obj_order - 9);
1553 sector_t sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1554 unsigned int bio_sectors = bmd->bi_size >> 9;
1555 int max;
1556
1557 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
1558 + bio_sectors)) << 9;
1559 if (max < 0)
1560 max = 0; /* bio_add cannot handle a negative return */
1561 if (max <= bvec->bv_len && bio_sectors == 0)
1562 return bvec->bv_len;
1563 return max;
1564}
1565
1566static void rbd_free_disk(struct rbd_device *rbd_dev)
1567{
1568 struct gendisk *disk = rbd_dev->disk;
1569
1570 if (!disk)
1571 return;
1572
1573 rbd_header_free(&rbd_dev->header);
1574
1575 if (disk->flags & GENHD_FL_UP)
1576 del_gendisk(disk);
1577 if (disk->queue)
1578 blk_cleanup_queue(disk->queue);
1579 put_disk(disk);
1580}
1581
1582/*
1583 * reload the ondisk the header
1584 */
1585static int rbd_read_header(struct rbd_device *rbd_dev,
1586 struct rbd_image_header *header)
1587{
1588 ssize_t rc;
1589 struct rbd_image_header_ondisk *dh;
1590 int snap_count = 0;
1591 u64 snap_names_len = 0;
1592 u64 ver;
1593
1594 while (1) {
1595 int len = sizeof(*dh) +
1596 snap_count * sizeof(struct rbd_image_snap_ondisk) +
1597 snap_names_len;
1598
1599 rc = -ENOMEM;
1600 dh = kmalloc(len, GFP_KERNEL);
1601 if (!dh)
1602 return -ENOMEM;
1603
1604 rc = rbd_req_sync_read(rbd_dev,
1605 NULL, CEPH_NOSNAP,
1606 rbd_dev->obj_md_name,
1607 0, len,
1608 (char *)dh, &ver);
1609 if (rc < 0)
1610 goto out_dh;
1611
1612 rc = rbd_header_from_disk(header, dh, snap_count, GFP_KERNEL);
1613 if (rc < 0)
1614 goto out_dh;
1615
1616 if (snap_count != header->total_snaps) {
1617 snap_count = header->total_snaps;
1618 snap_names_len = header->snap_names_len;
1619 rbd_header_free(header);
1620 kfree(dh);
1621 continue;
1622 }
1623 break;
1624 }
1625 header->obj_version = ver;
1626
1627out_dh:
1628 kfree(dh);
1629 return rc;
1630}
1631
1632/*
1633 * create a snapshot
1634 */
1635static int rbd_header_add_snap(struct rbd_device *dev,
1636 const char *snap_name,
1637 gfp_t gfp_flags)
1638{
1639 int name_len = strlen(snap_name);
1640 u64 new_snapid;
1641 int ret;
1642 void *data, *p, *e;
1643 u64 ver;
1644
1645 /* we should create a snapshot only if we're pointing at the head */
1646 if (dev->cur_snap)
1647 return -EINVAL;
1648
1649 ret = ceph_monc_create_snapid(&dev->client->monc, dev->poolid,
1650 &new_snapid);
1651 dout("created snapid=%lld\n", new_snapid);
1652 if (ret < 0)
1653 return ret;
1654
1655 data = kmalloc(name_len + 16, gfp_flags);
1656 if (!data)
1657 return -ENOMEM;
1658
1659 p = data;
1660 e = data + name_len + 16;
1661
1662 ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1663 ceph_encode_64_safe(&p, e, new_snapid, bad);
1664
1665 ret = rbd_req_sync_exec(dev, dev->obj_md_name, "rbd", "snap_add",
1666 data, p - data, &ver);
1667
1668 kfree(data);
1669
1670 if (ret < 0)
1671 return ret;
1672
1673 dev->header.snapc->seq = new_snapid;
1674
1675 return 0;
1676bad:
1677 return -ERANGE;
1678}
1679
1680static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1681{
1682 struct rbd_snap *snap;
1683
1684 while (!list_empty(&rbd_dev->snaps)) {
1685 snap = list_first_entry(&rbd_dev->snaps, struct rbd_snap, node);
1686 __rbd_remove_snap_dev(rbd_dev, snap);
1687 }
1688}
1689
1690/*
1691 * only read the first part of the ondisk header, without the snaps info
1692 */
1693static int __rbd_update_snaps(struct rbd_device *rbd_dev)
1694{
1695 int ret;
1696 struct rbd_image_header h;
1697 u64 snap_seq;
1698 int follow_seq = 0;
1699
1700 ret = rbd_read_header(rbd_dev, &h);
1701 if (ret < 0)
1702 return ret;
1703
1704 /* resized? */
1705 set_capacity(rbd_dev->disk, h.image_size / 512ULL);
1706
1707 down_write(&rbd_dev->header.snap_rwsem);
1708
1709 snap_seq = rbd_dev->header.snapc->seq;
1710 if (rbd_dev->header.total_snaps &&
1711 rbd_dev->header.snapc->snaps[0] == snap_seq)
1712 /* pointing at the head, will need to follow that
1713 if head moves */
1714 follow_seq = 1;
1715
1716 kfree(rbd_dev->header.snapc);
1717 kfree(rbd_dev->header.snap_names);
1718 kfree(rbd_dev->header.snap_sizes);
1719
1720 rbd_dev->header.total_snaps = h.total_snaps;
1721 rbd_dev->header.snapc = h.snapc;
1722 rbd_dev->header.snap_names = h.snap_names;
1723 rbd_dev->header.snap_names_len = h.snap_names_len;
1724 rbd_dev->header.snap_sizes = h.snap_sizes;
1725 if (follow_seq)
1726 rbd_dev->header.snapc->seq = rbd_dev->header.snapc->snaps[0];
1727 else
1728 rbd_dev->header.snapc->seq = snap_seq;
1729
1730 ret = __rbd_init_snaps_header(rbd_dev);
1731
1732 up_write(&rbd_dev->header.snap_rwsem);
1733
1734 return ret;
1735}
1736
1737static int rbd_init_disk(struct rbd_device *rbd_dev)
1738{
1739 struct gendisk *disk;
1740 struct request_queue *q;
1741 int rc;
1742 u64 total_size = 0;
1743
1744 /* contact OSD, request size info about the object being mapped */
1745 rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1746 if (rc)
1747 return rc;
1748
1749 /* no need to lock here, as rbd_dev is not registered yet */
1750 rc = __rbd_init_snaps_header(rbd_dev);
1751 if (rc)
1752 return rc;
1753
1754 rc = rbd_header_set_snap(rbd_dev, rbd_dev->snap_name, &total_size);
1755 if (rc)
1756 return rc;
1757
1758 /* create gendisk info */
1759 rc = -ENOMEM;
1760 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1761 if (!disk)
1762 goto out;
1763
1764 snprintf(disk->disk_name, sizeof(disk->disk_name), DRV_NAME "%d",
1765 rbd_dev->id);
1766 disk->major = rbd_dev->major;
1767 disk->first_minor = 0;
1768 disk->fops = &rbd_bd_ops;
1769 disk->private_data = rbd_dev;
1770
1771 /* init rq */
1772 rc = -ENOMEM;
1773 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1774 if (!q)
1775 goto out_disk;
1776
1777 /* set io sizes to object size */
1778 blk_queue_max_hw_sectors(q, rbd_obj_bytes(&rbd_dev->header) / 512ULL);
1779 blk_queue_max_segment_size(q, rbd_obj_bytes(&rbd_dev->header));
1780 blk_queue_io_min(q, rbd_obj_bytes(&rbd_dev->header));
1781 blk_queue_io_opt(q, rbd_obj_bytes(&rbd_dev->header));
1782
1783 blk_queue_merge_bvec(q, rbd_merge_bvec);
1784 disk->queue = q;
1785
1786 q->queuedata = rbd_dev;
1787
1788 rbd_dev->disk = disk;
1789 rbd_dev->q = q;
1790
1791 /* finally, announce the disk to the world */
1792 set_capacity(disk, total_size / 512ULL);
1793 add_disk(disk);
1794
1795 pr_info("%s: added with size 0x%llx\n",
1796 disk->disk_name, (unsigned long long)total_size);
1797 return 0;
1798
1799out_disk:
1800 put_disk(disk);
1801out:
1802 return rc;
1803}
1804
1805/*
1806 sysfs
1807*/
1808
1809static ssize_t rbd_size_show(struct device *dev,
1810 struct device_attribute *attr, char *buf)
1811{
1812 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1813
1814 return sprintf(buf, "%llu\n", (unsigned long long)rbd_dev->header.image_size);
1815}
1816
1817static ssize_t rbd_major_show(struct device *dev,
1818 struct device_attribute *attr, char *buf)
1819{
1820 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1821
1822 return sprintf(buf, "%d\n", rbd_dev->major);
1823}
1824
1825static ssize_t rbd_client_id_show(struct device *dev,
1826 struct device_attribute *attr, char *buf)
1827{
1828 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1829
1830 return sprintf(buf, "client%lld\n", ceph_client_id(rbd_dev->client));
1831}
1832
1833static ssize_t rbd_pool_show(struct device *dev,
1834 struct device_attribute *attr, char *buf)
1835{
1836 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1837
1838 return sprintf(buf, "%s\n", rbd_dev->pool_name);
1839}
1840
1841static ssize_t rbd_name_show(struct device *dev,
1842 struct device_attribute *attr, char *buf)
1843{
1844 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1845
1846 return sprintf(buf, "%s\n", rbd_dev->obj);
1847}
1848
1849static ssize_t rbd_snap_show(struct device *dev,
1850 struct device_attribute *attr,
1851 char *buf)
1852{
1853 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1854
1855 return sprintf(buf, "%s\n", rbd_dev->snap_name);
1856}
1857
1858static ssize_t rbd_image_refresh(struct device *dev,
1859 struct device_attribute *attr,
1860 const char *buf,
1861 size_t size)
1862{
1863 struct rbd_device *rbd_dev = dev_to_rbd(dev);
1864 int rc;
1865 int ret = size;
1866
1867 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1868
1869 rc = __rbd_update_snaps(rbd_dev);
1870 if (rc < 0)
1871 ret = rc;
1872
1873 mutex_unlock(&ctl_mutex);
1874 return ret;
1875}
1876
1877static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1878static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1879static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1880static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1881static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1882static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1883static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1884static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1885static DEVICE_ATTR(rollback_snap, S_IWUSR, NULL, rbd_snap_rollback);
1886
1887static struct attribute *rbd_attrs[] = {
1888 &dev_attr_size.attr,
1889 &dev_attr_major.attr,
1890 &dev_attr_client_id.attr,
1891 &dev_attr_pool.attr,
1892 &dev_attr_name.attr,
1893 &dev_attr_current_snap.attr,
1894 &dev_attr_refresh.attr,
1895 &dev_attr_create_snap.attr,
1896 &dev_attr_rollback_snap.attr,
1897 NULL
1898};
1899
1900static struct attribute_group rbd_attr_group = {
1901 .attrs = rbd_attrs,
1902};
1903
1904static const struct attribute_group *rbd_attr_groups[] = {
1905 &rbd_attr_group,
1906 NULL
1907};
1908
1909static void rbd_sysfs_dev_release(struct device *dev)
1910{
1911}
1912
1913static struct device_type rbd_device_type = {
1914 .name = "rbd",
1915 .groups = rbd_attr_groups,
1916 .release = rbd_sysfs_dev_release,
1917};
1918
1919
1920/*
1921 sysfs - snapshots
1922*/
1923
1924static ssize_t rbd_snap_size_show(struct device *dev,
1925 struct device_attribute *attr,
1926 char *buf)
1927{
1928 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1929
1930 return sprintf(buf, "%lld\n", (long long)snap->size);
1931}
1932
1933static ssize_t rbd_snap_id_show(struct device *dev,
1934 struct device_attribute *attr,
1935 char *buf)
1936{
1937 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1938
1939 return sprintf(buf, "%lld\n", (long long)snap->id);
1940}
1941
1942static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1943static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
1944
1945static struct attribute *rbd_snap_attrs[] = {
1946 &dev_attr_snap_size.attr,
1947 &dev_attr_snap_id.attr,
1948 NULL,
1949};
1950
1951static struct attribute_group rbd_snap_attr_group = {
1952 .attrs = rbd_snap_attrs,
1953};
1954
1955static void rbd_snap_dev_release(struct device *dev)
1956{
1957 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1958 kfree(snap->name);
1959 kfree(snap);
1960}
1961
1962static const struct attribute_group *rbd_snap_attr_groups[] = {
1963 &rbd_snap_attr_group,
1964 NULL
1965};
1966
1967static struct device_type rbd_snap_device_type = {
1968 .groups = rbd_snap_attr_groups,
1969 .release = rbd_snap_dev_release,
1970};
1971
1972static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
1973 struct rbd_snap *snap)
1974{
1975 list_del(&snap->node);
1976 device_unregister(&snap->dev);
1977}
1978
1979static int rbd_register_snap_dev(struct rbd_device *rbd_dev,
1980 struct rbd_snap *snap,
1981 struct device *parent)
1982{
1983 struct device *dev = &snap->dev;
1984 int ret;
1985
1986 dev->type = &rbd_snap_device_type;
1987 dev->parent = parent;
1988 dev->release = rbd_snap_dev_release;
1989 dev_set_name(dev, "snap_%s", snap->name);
1990 ret = device_register(dev);
1991
1992 return ret;
1993}
1994
1995static int __rbd_add_snap_dev(struct rbd_device *rbd_dev,
1996 int i, const char *name,
1997 struct rbd_snap **snapp)
1998{
1999 int ret;
2000 struct rbd_snap *snap = kzalloc(sizeof(*snap), GFP_KERNEL);
2001 if (!snap)
2002 return -ENOMEM;
2003 snap->name = kstrdup(name, GFP_KERNEL);
2004 snap->size = rbd_dev->header.snap_sizes[i];
2005 snap->id = rbd_dev->header.snapc->snaps[i];
2006 if (device_is_registered(&rbd_dev->dev)) {
2007 ret = rbd_register_snap_dev(rbd_dev, snap,
2008 &rbd_dev->dev);
2009 if (ret < 0)
2010 goto err;
2011 }
2012 *snapp = snap;
2013 return 0;
2014err:
2015 kfree(snap->name);
2016 kfree(snap);
2017 return ret;
2018}
2019
2020/*
2021 * search for the previous snap in a null delimited string list
2022 */
2023const char *rbd_prev_snap_name(const char *name, const char *start)
2024{
2025 if (name < start + 2)
2026 return NULL;
2027
2028 name -= 2;
2029 while (*name) {
2030 if (name == start)
2031 return start;
2032 name--;
2033 }
2034 return name + 1;
2035}
2036
2037/*
2038 * compare the old list of snapshots that we have to what's in the header
2039 * and update it accordingly. Note that the header holds the snapshots
2040 * in a reverse order (from newest to oldest) and we need to go from
2041 * older to new so that we don't get a duplicate snap name when
2042 * doing the process (e.g., removed snapshot and recreated a new
2043 * one with the same name.
2044 */
2045static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2046{
2047 const char *name, *first_name;
2048 int i = rbd_dev->header.total_snaps;
2049 struct rbd_snap *snap, *old_snap = NULL;
2050 int ret;
2051 struct list_head *p, *n;
2052
2053 first_name = rbd_dev->header.snap_names;
2054 name = first_name + rbd_dev->header.snap_names_len;
2055
2056 list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2057 u64 cur_id;
2058
2059 old_snap = list_entry(p, struct rbd_snap, node);
2060
2061 if (i)
2062 cur_id = rbd_dev->header.snapc->snaps[i - 1];
2063
2064 if (!i || old_snap->id < cur_id) {
2065 /* old_snap->id was skipped, thus was removed */
2066 __rbd_remove_snap_dev(rbd_dev, old_snap);
2067 continue;
2068 }
2069 if (old_snap->id == cur_id) {
2070 /* we have this snapshot already */
2071 i--;
2072 name = rbd_prev_snap_name(name, first_name);
2073 continue;
2074 }
2075 for (; i > 0;
2076 i--, name = rbd_prev_snap_name(name, first_name)) {
2077 if (!name) {
2078 WARN_ON(1);
2079 return -EINVAL;
2080 }
2081 cur_id = rbd_dev->header.snapc->snaps[i];
2082 /* snapshot removal? handle it above */
2083 if (cur_id >= old_snap->id)
2084 break;
2085 /* a new snapshot */
2086 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2087 if (ret < 0)
2088 return ret;
2089
2090 /* note that we add it backward so using n and not p */
2091 list_add(&snap->node, n);
2092 p = &snap->node;
2093 }
2094 }
2095 /* we're done going over the old snap list, just add what's left */
2096 for (; i > 0; i--) {
2097 name = rbd_prev_snap_name(name, first_name);
2098 if (!name) {
2099 WARN_ON(1);
2100 return -EINVAL;
2101 }
2102 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2103 if (ret < 0)
2104 return ret;
2105 list_add(&snap->node, &rbd_dev->snaps);
2106 }
2107
2108 return 0;
2109}
2110
2111
2112static void rbd_root_dev_release(struct device *dev)
2113{
2114}
2115
2116static struct device rbd_root_dev = {
2117 .init_name = "rbd",
2118 .release = rbd_root_dev_release,
2119};
2120
2121static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2122{
2123 int ret = -ENOMEM;
2124 struct device *dev;
2125 struct rbd_snap *snap;
2126
2127 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2128 dev = &rbd_dev->dev;
2129
2130 dev->bus = &rbd_bus_type;
2131 dev->type = &rbd_device_type;
2132 dev->parent = &rbd_root_dev;
2133 dev->release = rbd_dev_release;
2134 dev_set_name(dev, "%d", rbd_dev->id);
2135 ret = device_register(dev);
2136 if (ret < 0)
2137 goto done_free;
2138
2139 list_for_each_entry(snap, &rbd_dev->snaps, node) {
2140 ret = rbd_register_snap_dev(rbd_dev, snap,
2141 &rbd_dev->dev);
2142 if (ret < 0)
2143 break;
2144 }
2145
2146 mutex_unlock(&ctl_mutex);
2147 return 0;
2148done_free:
2149 mutex_unlock(&ctl_mutex);
2150 return ret;
2151}
2152
2153static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2154{
2155 device_unregister(&rbd_dev->dev);
2156}
2157
2158static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2159{
2160 int ret, rc;
2161
2162 do {
2163 ret = rbd_req_sync_watch(rbd_dev, rbd_dev->obj_md_name,
2164 rbd_dev->header.obj_version);
2165 if (ret == -ERANGE) {
2166 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2167 rc = __rbd_update_snaps(rbd_dev);
2168 mutex_unlock(&ctl_mutex);
2169 if (rc < 0)
2170 return rc;
2171 }
2172 } while (ret == -ERANGE);
2173
2174 return ret;
2175}
2176
2177static ssize_t rbd_add(struct bus_type *bus,
2178 const char *buf,
2179 size_t count)
2180{
2181 struct ceph_osd_client *osdc;
2182 struct rbd_device *rbd_dev;
2183 ssize_t rc = -ENOMEM;
2184 int irc, new_id = 0;
2185 struct list_head *tmp;
2186 char *mon_dev_name;
2187 char *options;
2188
2189 if (!try_module_get(THIS_MODULE))
2190 return -ENODEV;
2191
2192 mon_dev_name = kmalloc(RBD_MAX_OPT_LEN, GFP_KERNEL);
2193 if (!mon_dev_name)
2194 goto err_out_mod;
2195
2196 options = kmalloc(RBD_MAX_OPT_LEN, GFP_KERNEL);
2197 if (!options)
2198 goto err_mon_dev;
2199
2200 /* new rbd_device object */
2201 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2202 if (!rbd_dev)
2203 goto err_out_opt;
2204
2205 /* static rbd_device initialization */
2206 spin_lock_init(&rbd_dev->lock);
2207 INIT_LIST_HEAD(&rbd_dev->node);
2208 INIT_LIST_HEAD(&rbd_dev->snaps);
2209
2210 /* generate unique id: find highest unique id, add one */
2211 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2212
2213 list_for_each(tmp, &rbd_dev_list) {
2214 struct rbd_device *rbd_dev;
2215
2216 rbd_dev = list_entry(tmp, struct rbd_device, node);
2217 if (rbd_dev->id >= new_id)
2218 new_id = rbd_dev->id + 1;
2219 }
2220
2221 rbd_dev->id = new_id;
2222
2223 /* add to global list */
2224 list_add_tail(&rbd_dev->node, &rbd_dev_list);
2225
2226 /* parse add command */
2227 if (sscanf(buf, "%" __stringify(RBD_MAX_OPT_LEN) "s "
2228 "%" __stringify(RBD_MAX_OPT_LEN) "s "
2229 "%" __stringify(RBD_MAX_POOL_NAME_LEN) "s "
2230 "%" __stringify(RBD_MAX_OBJ_NAME_LEN) "s"
2231 "%" __stringify(RBD_MAX_SNAP_NAME_LEN) "s",
2232 mon_dev_name, options, rbd_dev->pool_name,
2233 rbd_dev->obj, rbd_dev->snap_name) < 4) {
2234 rc = -EINVAL;
2235 goto err_out_slot;
2236 }
2237
2238 if (rbd_dev->snap_name[0] == 0)
2239 rbd_dev->snap_name[0] = '-';
2240
2241 rbd_dev->obj_len = strlen(rbd_dev->obj);
2242 snprintf(rbd_dev->obj_md_name, sizeof(rbd_dev->obj_md_name), "%s%s",
2243 rbd_dev->obj, RBD_SUFFIX);
2244
2245 /* initialize rest of new object */
2246 snprintf(rbd_dev->name, DEV_NAME_LEN, DRV_NAME "%d", rbd_dev->id);
2247 rc = rbd_get_client(rbd_dev, mon_dev_name, options);
2248 if (rc < 0)
2249 goto err_out_slot;
2250
2251 mutex_unlock(&ctl_mutex);
2252
2253 /* pick the pool */
2254 osdc = &rbd_dev->client->osdc;
2255 rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2256 if (rc < 0)
2257 goto err_out_client;
2258 rbd_dev->poolid = rc;
2259
2260 /* register our block device */
2261 irc = register_blkdev(0, rbd_dev->name);
2262 if (irc < 0) {
2263 rc = irc;
2264 goto err_out_client;
2265 }
2266 rbd_dev->major = irc;
2267
2268 rc = rbd_bus_add_dev(rbd_dev);
2269 if (rc)
2270 goto err_out_blkdev;
2271
2272 /* set up and announce blkdev mapping */
2273 rc = rbd_init_disk(rbd_dev);
2274 if (rc)
2275 goto err_out_bus;
2276
2277 rc = rbd_init_watch_dev(rbd_dev);
2278 if (rc)
2279 goto err_out_bus;
2280
2281 return count;
2282
2283err_out_bus:
2284 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2285 list_del_init(&rbd_dev->node);
2286 mutex_unlock(&ctl_mutex);
2287
2288 /* this will also clean up rest of rbd_dev stuff */
2289
2290 rbd_bus_del_dev(rbd_dev);
2291 kfree(options);
2292 kfree(mon_dev_name);
2293 return rc;
2294
2295err_out_blkdev:
2296 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2297err_out_client:
2298 rbd_put_client(rbd_dev);
2299 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2300err_out_slot:
2301 list_del_init(&rbd_dev->node);
2302 mutex_unlock(&ctl_mutex);
2303
2304 kfree(rbd_dev);
2305err_out_opt:
2306 kfree(options);
2307err_mon_dev:
2308 kfree(mon_dev_name);
2309err_out_mod:
2310 dout("Error adding device %s\n", buf);
2311 module_put(THIS_MODULE);
2312 return rc;
2313}
2314
2315static struct rbd_device *__rbd_get_dev(unsigned long id)
2316{
2317 struct list_head *tmp;
2318 struct rbd_device *rbd_dev;
2319
2320 list_for_each(tmp, &rbd_dev_list) {
2321 rbd_dev = list_entry(tmp, struct rbd_device, node);
2322 if (rbd_dev->id == id)
2323 return rbd_dev;
2324 }
2325 return NULL;
2326}
2327
2328static void rbd_dev_release(struct device *dev)
2329{
2330 struct rbd_device *rbd_dev =
2331 container_of(dev, struct rbd_device, dev);
2332
2333 if (rbd_dev->watch_request)
2334 ceph_osdc_unregister_linger_request(&rbd_dev->client->osdc,
2335 rbd_dev->watch_request);
2336 if (rbd_dev->watch_event)
2337 rbd_req_sync_unwatch(rbd_dev, rbd_dev->obj_md_name);
2338
2339 rbd_put_client(rbd_dev);
2340
2341 /* clean up and free blkdev */
2342 rbd_free_disk(rbd_dev);
2343 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2344 kfree(rbd_dev);
2345
2346 /* release module ref */
2347 module_put(THIS_MODULE);
2348}
2349
2350static ssize_t rbd_remove(struct bus_type *bus,
2351 const char *buf,
2352 size_t count)
2353{
2354 struct rbd_device *rbd_dev = NULL;
2355 int target_id, rc;
2356 unsigned long ul;
2357 int ret = count;
2358
2359 rc = strict_strtoul(buf, 10, &ul);
2360 if (rc)
2361 return rc;
2362
2363 /* convert to int; abort if we lost anything in the conversion */
2364 target_id = (int) ul;
2365 if (target_id != ul)
2366 return -EINVAL;
2367
2368 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2369
2370 rbd_dev = __rbd_get_dev(target_id);
2371 if (!rbd_dev) {
2372 ret = -ENOENT;
2373 goto done;
2374 }
2375
2376 list_del_init(&rbd_dev->node);
2377
2378 __rbd_remove_all_snaps(rbd_dev);
2379 rbd_bus_del_dev(rbd_dev);
2380
2381done:
2382 mutex_unlock(&ctl_mutex);
2383 return ret;
2384}
2385
2386static ssize_t rbd_snap_add(struct device *dev,
2387 struct device_attribute *attr,
2388 const char *buf,
2389 size_t count)
2390{
2391 struct rbd_device *rbd_dev = dev_to_rbd(dev);
2392 int ret;
2393 char *name = kmalloc(count + 1, GFP_KERNEL);
2394 if (!name)
2395 return -ENOMEM;
2396
2397 snprintf(name, count, "%s", buf);
2398
2399 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2400
2401 ret = rbd_header_add_snap(rbd_dev,
2402 name, GFP_KERNEL);
2403 if (ret < 0)
2404 goto err_unlock;
2405
2406 ret = __rbd_update_snaps(rbd_dev);
2407 if (ret < 0)
2408 goto err_unlock;
2409
2410 /* shouldn't hold ctl_mutex when notifying.. notify might
2411 trigger a watch callback that would need to get that mutex */
2412 mutex_unlock(&ctl_mutex);
2413
2414 /* make a best effort, don't error if failed */
2415 rbd_req_sync_notify(rbd_dev, rbd_dev->obj_md_name);
2416
2417 ret = count;
2418 kfree(name);
2419 return ret;
2420
2421err_unlock:
2422 mutex_unlock(&ctl_mutex);
2423 kfree(name);
2424 return ret;
2425}
2426
2427static ssize_t rbd_snap_rollback(struct device *dev,
2428 struct device_attribute *attr,
2429 const char *buf,
2430 size_t count)
2431{
2432 struct rbd_device *rbd_dev = dev_to_rbd(dev);
2433 int ret;
2434 u64 snapid;
2435 u64 cur_ofs;
2436 char *seg_name = NULL;
2437 char *snap_name = kmalloc(count + 1, GFP_KERNEL);
2438 ret = -ENOMEM;
2439 if (!snap_name)
2440 return ret;
2441
2442 /* parse snaps add command */
2443 snprintf(snap_name, count, "%s", buf);
2444 seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
2445 if (!seg_name)
2446 goto done;
2447
2448 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2449
2450 ret = snap_by_name(&rbd_dev->header, snap_name, &snapid, NULL);
2451 if (ret < 0)
2452 goto done_unlock;
2453
2454 dout("snapid=%lld\n", snapid);
2455
2456 cur_ofs = 0;
2457 while (cur_ofs < rbd_dev->header.image_size) {
2458 cur_ofs += rbd_get_segment(&rbd_dev->header,
2459 rbd_dev->obj,
2460 cur_ofs, (u64)-1,
2461 seg_name, NULL);
2462 dout("seg_name=%s\n", seg_name);
2463
2464 ret = rbd_req_sync_rollback_obj(rbd_dev, snapid, seg_name);
2465 if (ret < 0)
2466 pr_warning("could not roll back obj %s err=%d\n",
2467 seg_name, ret);
2468 }
2469
2470 ret = __rbd_update_snaps(rbd_dev);
2471 if (ret < 0)
2472 goto done_unlock;
2473
2474 ret = count;
2475
2476done_unlock:
2477 mutex_unlock(&ctl_mutex);
2478done:
2479 kfree(seg_name);
2480 kfree(snap_name);
2481
2482 return ret;
2483}
2484
2485static struct bus_attribute rbd_bus_attrs[] = {
2486 __ATTR(add, S_IWUSR, NULL, rbd_add),
2487 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
2488 __ATTR_NULL
2489};
2490
2491/*
2492 * create control files in sysfs
2493 * /sys/bus/rbd/...
2494 */
2495static int rbd_sysfs_init(void)
2496{
2497 int ret;
2498
2499 rbd_bus_type.bus_attrs = rbd_bus_attrs;
2500
2501 ret = bus_register(&rbd_bus_type);
2502 if (ret < 0)
2503 return ret;
2504
2505 ret = device_register(&rbd_root_dev);
2506
2507 return ret;
2508}
2509
2510static void rbd_sysfs_cleanup(void)
2511{
2512 device_unregister(&rbd_root_dev);
2513 bus_unregister(&rbd_bus_type);
2514}
2515
2516int __init rbd_init(void)
2517{
2518 int rc;
2519
2520 rc = rbd_sysfs_init();
2521 if (rc)
2522 return rc;
2523 spin_lock_init(&node_lock);
2524 pr_info("loaded " DRV_NAME_LONG "\n");
2525 return 0;
2526}
2527
2528void __exit rbd_exit(void)
2529{
2530 rbd_sysfs_cleanup();
2531}
2532
2533module_init(rbd_init);
2534module_exit(rbd_exit);
2535
2536MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2537MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2538MODULE_DESCRIPTION("rados block device");
2539
2540/* following authorship retained from original osdblk.c */
2541MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2542
2543MODULE_LICENSE("GPL");
1/*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30#include <linux/ceph/libceph.h>
31#include <linux/ceph/osd_client.h>
32#include <linux/ceph/mon_client.h>
33#include <linux/ceph/decode.h>
34#include <linux/parser.h>
35
36#include <linux/kernel.h>
37#include <linux/device.h>
38#include <linux/module.h>
39#include <linux/fs.h>
40#include <linux/blkdev.h>
41
42#include "rbd_types.h"
43
44/*
45 * The basic unit of block I/O is a sector. It is interpreted in a
46 * number of contexts in Linux (blk, bio, genhd), but the default is
47 * universally 512 bytes. These symbols are just slightly more
48 * meaningful than the bare numbers they represent.
49 */
50#define SECTOR_SHIFT 9
51#define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
52
53#define RBD_DRV_NAME "rbd"
54#define RBD_DRV_NAME_LONG "rbd (rados block device)"
55
56#define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
57
58#define RBD_MAX_MD_NAME_LEN (RBD_MAX_OBJ_NAME_LEN + sizeof(RBD_SUFFIX))
59#define RBD_MAX_POOL_NAME_LEN 64
60#define RBD_MAX_SNAP_NAME_LEN 32
61#define RBD_MAX_OPT_LEN 1024
62
63#define RBD_SNAP_HEAD_NAME "-"
64
65/*
66 * An RBD device name will be "rbd#", where the "rbd" comes from
67 * RBD_DRV_NAME above, and # is a unique integer identifier.
68 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
69 * enough to hold all possible device names.
70 */
71#define DEV_NAME_LEN 32
72#define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
73
74#define RBD_NOTIFY_TIMEOUT_DEFAULT 10
75
76/*
77 * block device image metadata (in-memory version)
78 */
79struct rbd_image_header {
80 u64 image_size;
81 char block_name[32];
82 __u8 obj_order;
83 __u8 crypt_type;
84 __u8 comp_type;
85 struct ceph_snap_context *snapc;
86 size_t snap_names_len;
87 u64 snap_seq;
88 u32 total_snaps;
89
90 char *snap_names;
91 u64 *snap_sizes;
92
93 u64 obj_version;
94};
95
96struct rbd_options {
97 int notify_timeout;
98};
99
100/*
101 * an instance of the client. multiple devices may share an rbd client.
102 */
103struct rbd_client {
104 struct ceph_client *client;
105 struct rbd_options *rbd_opts;
106 struct kref kref;
107 struct list_head node;
108};
109
110/*
111 * a request completion status
112 */
113struct rbd_req_status {
114 int done;
115 int rc;
116 u64 bytes;
117};
118
119/*
120 * a collection of requests
121 */
122struct rbd_req_coll {
123 int total;
124 int num_done;
125 struct kref kref;
126 struct rbd_req_status status[0];
127};
128
129/*
130 * a single io request
131 */
132struct rbd_request {
133 struct request *rq; /* blk layer request */
134 struct bio *bio; /* cloned bio */
135 struct page **pages; /* list of used pages */
136 u64 len;
137 int coll_index;
138 struct rbd_req_coll *coll;
139};
140
141struct rbd_snap {
142 struct device dev;
143 const char *name;
144 u64 size;
145 struct list_head node;
146 u64 id;
147};
148
149/*
150 * a single device
151 */
152struct rbd_device {
153 int id; /* blkdev unique id */
154
155 int major; /* blkdev assigned major */
156 struct gendisk *disk; /* blkdev's gendisk and rq */
157 struct request_queue *q;
158
159 struct rbd_client *rbd_client;
160
161 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
162
163 spinlock_t lock; /* queue lock */
164
165 struct rbd_image_header header;
166 char obj[RBD_MAX_OBJ_NAME_LEN]; /* rbd image name */
167 int obj_len;
168 char obj_md_name[RBD_MAX_MD_NAME_LEN]; /* hdr nm. */
169 char pool_name[RBD_MAX_POOL_NAME_LEN];
170 int poolid;
171
172 struct ceph_osd_event *watch_event;
173 struct ceph_osd_request *watch_request;
174
175 /* protects updating the header */
176 struct rw_semaphore header_rwsem;
177 char snap_name[RBD_MAX_SNAP_NAME_LEN];
178 u64 snap_id; /* current snapshot id */
179 int read_only;
180
181 struct list_head node;
182
183 /* list of snapshots */
184 struct list_head snaps;
185
186 /* sysfs related */
187 struct device dev;
188};
189
190static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
191
192static LIST_HEAD(rbd_dev_list); /* devices */
193static DEFINE_SPINLOCK(rbd_dev_list_lock);
194
195static LIST_HEAD(rbd_client_list); /* clients */
196static DEFINE_SPINLOCK(rbd_client_list_lock);
197
198static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
199static void rbd_dev_release(struct device *dev);
200static ssize_t rbd_snap_add(struct device *dev,
201 struct device_attribute *attr,
202 const char *buf,
203 size_t count);
204static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
205 struct rbd_snap *snap);
206
207static ssize_t rbd_add(struct bus_type *bus, const char *buf,
208 size_t count);
209static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
210 size_t count);
211
212static struct bus_attribute rbd_bus_attrs[] = {
213 __ATTR(add, S_IWUSR, NULL, rbd_add),
214 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
215 __ATTR_NULL
216};
217
218static struct bus_type rbd_bus_type = {
219 .name = "rbd",
220 .bus_attrs = rbd_bus_attrs,
221};
222
223static void rbd_root_dev_release(struct device *dev)
224{
225}
226
227static struct device rbd_root_dev = {
228 .init_name = "rbd",
229 .release = rbd_root_dev_release,
230};
231
232
233static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
234{
235 return get_device(&rbd_dev->dev);
236}
237
238static void rbd_put_dev(struct rbd_device *rbd_dev)
239{
240 put_device(&rbd_dev->dev);
241}
242
243static int __rbd_refresh_header(struct rbd_device *rbd_dev);
244
245static int rbd_open(struct block_device *bdev, fmode_t mode)
246{
247 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
248
249 rbd_get_dev(rbd_dev);
250
251 set_device_ro(bdev, rbd_dev->read_only);
252
253 if ((mode & FMODE_WRITE) && rbd_dev->read_only)
254 return -EROFS;
255
256 return 0;
257}
258
259static int rbd_release(struct gendisk *disk, fmode_t mode)
260{
261 struct rbd_device *rbd_dev = disk->private_data;
262
263 rbd_put_dev(rbd_dev);
264
265 return 0;
266}
267
268static const struct block_device_operations rbd_bd_ops = {
269 .owner = THIS_MODULE,
270 .open = rbd_open,
271 .release = rbd_release,
272};
273
274/*
275 * Initialize an rbd client instance.
276 * We own *opt.
277 */
278static struct rbd_client *rbd_client_create(struct ceph_options *opt,
279 struct rbd_options *rbd_opts)
280{
281 struct rbd_client *rbdc;
282 int ret = -ENOMEM;
283
284 dout("rbd_client_create\n");
285 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
286 if (!rbdc)
287 goto out_opt;
288
289 kref_init(&rbdc->kref);
290 INIT_LIST_HEAD(&rbdc->node);
291
292 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
293
294 rbdc->client = ceph_create_client(opt, rbdc, 0, 0);
295 if (IS_ERR(rbdc->client))
296 goto out_mutex;
297 opt = NULL; /* Now rbdc->client is responsible for opt */
298
299 ret = ceph_open_session(rbdc->client);
300 if (ret < 0)
301 goto out_err;
302
303 rbdc->rbd_opts = rbd_opts;
304
305 spin_lock(&rbd_client_list_lock);
306 list_add_tail(&rbdc->node, &rbd_client_list);
307 spin_unlock(&rbd_client_list_lock);
308
309 mutex_unlock(&ctl_mutex);
310
311 dout("rbd_client_create created %p\n", rbdc);
312 return rbdc;
313
314out_err:
315 ceph_destroy_client(rbdc->client);
316out_mutex:
317 mutex_unlock(&ctl_mutex);
318 kfree(rbdc);
319out_opt:
320 if (opt)
321 ceph_destroy_options(opt);
322 return ERR_PTR(ret);
323}
324
325/*
326 * Find a ceph client with specific addr and configuration.
327 */
328static struct rbd_client *__rbd_client_find(struct ceph_options *opt)
329{
330 struct rbd_client *client_node;
331
332 if (opt->flags & CEPH_OPT_NOSHARE)
333 return NULL;
334
335 list_for_each_entry(client_node, &rbd_client_list, node)
336 if (ceph_compare_options(opt, client_node->client) == 0)
337 return client_node;
338 return NULL;
339}
340
341/*
342 * mount options
343 */
344enum {
345 Opt_notify_timeout,
346 Opt_last_int,
347 /* int args above */
348 Opt_last_string,
349 /* string args above */
350};
351
352static match_table_t rbdopt_tokens = {
353 {Opt_notify_timeout, "notify_timeout=%d"},
354 /* int args above */
355 /* string args above */
356 {-1, NULL}
357};
358
359static int parse_rbd_opts_token(char *c, void *private)
360{
361 struct rbd_options *rbdopt = private;
362 substring_t argstr[MAX_OPT_ARGS];
363 int token, intval, ret;
364
365 token = match_token(c, rbdopt_tokens, argstr);
366 if (token < 0)
367 return -EINVAL;
368
369 if (token < Opt_last_int) {
370 ret = match_int(&argstr[0], &intval);
371 if (ret < 0) {
372 pr_err("bad mount option arg (not int) "
373 "at '%s'\n", c);
374 return ret;
375 }
376 dout("got int token %d val %d\n", token, intval);
377 } else if (token > Opt_last_int && token < Opt_last_string) {
378 dout("got string token %d val %s\n", token,
379 argstr[0].from);
380 } else {
381 dout("got token %d\n", token);
382 }
383
384 switch (token) {
385 case Opt_notify_timeout:
386 rbdopt->notify_timeout = intval;
387 break;
388 default:
389 BUG_ON(token);
390 }
391 return 0;
392}
393
394/*
395 * Get a ceph client with specific addr and configuration, if one does
396 * not exist create it.
397 */
398static struct rbd_client *rbd_get_client(const char *mon_addr,
399 size_t mon_addr_len,
400 char *options)
401{
402 struct rbd_client *rbdc;
403 struct ceph_options *opt;
404 struct rbd_options *rbd_opts;
405
406 rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
407 if (!rbd_opts)
408 return ERR_PTR(-ENOMEM);
409
410 rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
411
412 opt = ceph_parse_options(options, mon_addr,
413 mon_addr + mon_addr_len,
414 parse_rbd_opts_token, rbd_opts);
415 if (IS_ERR(opt)) {
416 kfree(rbd_opts);
417 return ERR_CAST(opt);
418 }
419
420 spin_lock(&rbd_client_list_lock);
421 rbdc = __rbd_client_find(opt);
422 if (rbdc) {
423 /* using an existing client */
424 kref_get(&rbdc->kref);
425 spin_unlock(&rbd_client_list_lock);
426
427 ceph_destroy_options(opt);
428 kfree(rbd_opts);
429
430 return rbdc;
431 }
432 spin_unlock(&rbd_client_list_lock);
433
434 rbdc = rbd_client_create(opt, rbd_opts);
435
436 if (IS_ERR(rbdc))
437 kfree(rbd_opts);
438
439 return rbdc;
440}
441
442/*
443 * Destroy ceph client
444 *
445 * Caller must hold rbd_client_list_lock.
446 */
447static void rbd_client_release(struct kref *kref)
448{
449 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
450
451 dout("rbd_release_client %p\n", rbdc);
452 spin_lock(&rbd_client_list_lock);
453 list_del(&rbdc->node);
454 spin_unlock(&rbd_client_list_lock);
455
456 ceph_destroy_client(rbdc->client);
457 kfree(rbdc->rbd_opts);
458 kfree(rbdc);
459}
460
461/*
462 * Drop reference to ceph client node. If it's not referenced anymore, release
463 * it.
464 */
465static void rbd_put_client(struct rbd_device *rbd_dev)
466{
467 kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
468 rbd_dev->rbd_client = NULL;
469}
470
471/*
472 * Destroy requests collection
473 */
474static void rbd_coll_release(struct kref *kref)
475{
476 struct rbd_req_coll *coll =
477 container_of(kref, struct rbd_req_coll, kref);
478
479 dout("rbd_coll_release %p\n", coll);
480 kfree(coll);
481}
482
483/*
484 * Create a new header structure, translate header format from the on-disk
485 * header.
486 */
487static int rbd_header_from_disk(struct rbd_image_header *header,
488 struct rbd_image_header_ondisk *ondisk,
489 u32 allocated_snaps,
490 gfp_t gfp_flags)
491{
492 u32 i, snap_count;
493
494 if (memcmp(ondisk, RBD_HEADER_TEXT, sizeof(RBD_HEADER_TEXT)))
495 return -ENXIO;
496
497 snap_count = le32_to_cpu(ondisk->snap_count);
498 if (snap_count > (UINT_MAX - sizeof(struct ceph_snap_context))
499 / sizeof (*ondisk))
500 return -EINVAL;
501 header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
502 snap_count * sizeof(u64),
503 gfp_flags);
504 if (!header->snapc)
505 return -ENOMEM;
506
507 header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
508 if (snap_count) {
509 header->snap_names = kmalloc(header->snap_names_len,
510 gfp_flags);
511 if (!header->snap_names)
512 goto err_snapc;
513 header->snap_sizes = kmalloc(snap_count * sizeof(u64),
514 gfp_flags);
515 if (!header->snap_sizes)
516 goto err_names;
517 } else {
518 header->snap_names = NULL;
519 header->snap_sizes = NULL;
520 }
521 memcpy(header->block_name, ondisk->block_name,
522 sizeof(ondisk->block_name));
523
524 header->image_size = le64_to_cpu(ondisk->image_size);
525 header->obj_order = ondisk->options.order;
526 header->crypt_type = ondisk->options.crypt_type;
527 header->comp_type = ondisk->options.comp_type;
528
529 atomic_set(&header->snapc->nref, 1);
530 header->snap_seq = le64_to_cpu(ondisk->snap_seq);
531 header->snapc->num_snaps = snap_count;
532 header->total_snaps = snap_count;
533
534 if (snap_count && allocated_snaps == snap_count) {
535 for (i = 0; i < snap_count; i++) {
536 header->snapc->snaps[i] =
537 le64_to_cpu(ondisk->snaps[i].id);
538 header->snap_sizes[i] =
539 le64_to_cpu(ondisk->snaps[i].image_size);
540 }
541
542 /* copy snapshot names */
543 memcpy(header->snap_names, &ondisk->snaps[i],
544 header->snap_names_len);
545 }
546
547 return 0;
548
549err_names:
550 kfree(header->snap_names);
551err_snapc:
552 kfree(header->snapc);
553 return -ENOMEM;
554}
555
556static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
557 u64 *seq, u64 *size)
558{
559 int i;
560 char *p = header->snap_names;
561
562 for (i = 0; i < header->total_snaps; i++) {
563 if (!strcmp(snap_name, p)) {
564
565 /* Found it. Pass back its id and/or size */
566
567 if (seq)
568 *seq = header->snapc->snaps[i];
569 if (size)
570 *size = header->snap_sizes[i];
571 return i;
572 }
573 p += strlen(p) + 1; /* Skip ahead to the next name */
574 }
575 return -ENOENT;
576}
577
578static int rbd_header_set_snap(struct rbd_device *dev, u64 *size)
579{
580 struct rbd_image_header *header = &dev->header;
581 struct ceph_snap_context *snapc = header->snapc;
582 int ret = -ENOENT;
583
584 BUILD_BUG_ON(sizeof (dev->snap_name) < sizeof (RBD_SNAP_HEAD_NAME));
585
586 down_write(&dev->header_rwsem);
587
588 if (!memcmp(dev->snap_name, RBD_SNAP_HEAD_NAME,
589 sizeof (RBD_SNAP_HEAD_NAME))) {
590 if (header->total_snaps)
591 snapc->seq = header->snap_seq;
592 else
593 snapc->seq = 0;
594 dev->snap_id = CEPH_NOSNAP;
595 dev->read_only = 0;
596 if (size)
597 *size = header->image_size;
598 } else {
599 ret = snap_by_name(header, dev->snap_name, &snapc->seq, size);
600 if (ret < 0)
601 goto done;
602 dev->snap_id = snapc->seq;
603 dev->read_only = 1;
604 }
605
606 ret = 0;
607done:
608 up_write(&dev->header_rwsem);
609 return ret;
610}
611
612static void rbd_header_free(struct rbd_image_header *header)
613{
614 kfree(header->snapc);
615 kfree(header->snap_names);
616 kfree(header->snap_sizes);
617}
618
619/*
620 * get the actual striped segment name, offset and length
621 */
622static u64 rbd_get_segment(struct rbd_image_header *header,
623 const char *block_name,
624 u64 ofs, u64 len,
625 char *seg_name, u64 *segofs)
626{
627 u64 seg = ofs >> header->obj_order;
628
629 if (seg_name)
630 snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
631 "%s.%012llx", block_name, seg);
632
633 ofs = ofs & ((1 << header->obj_order) - 1);
634 len = min_t(u64, len, (1 << header->obj_order) - ofs);
635
636 if (segofs)
637 *segofs = ofs;
638
639 return len;
640}
641
642static int rbd_get_num_segments(struct rbd_image_header *header,
643 u64 ofs, u64 len)
644{
645 u64 start_seg = ofs >> header->obj_order;
646 u64 end_seg = (ofs + len - 1) >> header->obj_order;
647 return end_seg - start_seg + 1;
648}
649
650/*
651 * returns the size of an object in the image
652 */
653static u64 rbd_obj_bytes(struct rbd_image_header *header)
654{
655 return 1 << header->obj_order;
656}
657
658/*
659 * bio helpers
660 */
661
662static void bio_chain_put(struct bio *chain)
663{
664 struct bio *tmp;
665
666 while (chain) {
667 tmp = chain;
668 chain = chain->bi_next;
669 bio_put(tmp);
670 }
671}
672
673/*
674 * zeros a bio chain, starting at specific offset
675 */
676static void zero_bio_chain(struct bio *chain, int start_ofs)
677{
678 struct bio_vec *bv;
679 unsigned long flags;
680 void *buf;
681 int i;
682 int pos = 0;
683
684 while (chain) {
685 bio_for_each_segment(bv, chain, i) {
686 if (pos + bv->bv_len > start_ofs) {
687 int remainder = max(start_ofs - pos, 0);
688 buf = bvec_kmap_irq(bv, &flags);
689 memset(buf + remainder, 0,
690 bv->bv_len - remainder);
691 bvec_kunmap_irq(buf, &flags);
692 }
693 pos += bv->bv_len;
694 }
695
696 chain = chain->bi_next;
697 }
698}
699
700/*
701 * bio_chain_clone - clone a chain of bios up to a certain length.
702 * might return a bio_pair that will need to be released.
703 */
704static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
705 struct bio_pair **bp,
706 int len, gfp_t gfpmask)
707{
708 struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
709 int total = 0;
710
711 if (*bp) {
712 bio_pair_release(*bp);
713 *bp = NULL;
714 }
715
716 while (old_chain && (total < len)) {
717 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
718 if (!tmp)
719 goto err_out;
720
721 if (total + old_chain->bi_size > len) {
722 struct bio_pair *bp;
723
724 /*
725 * this split can only happen with a single paged bio,
726 * split_bio will BUG_ON if this is not the case
727 */
728 dout("bio_chain_clone split! total=%d remaining=%d"
729 "bi_size=%d\n",
730 (int)total, (int)len-total,
731 (int)old_chain->bi_size);
732
733 /* split the bio. We'll release it either in the next
734 call, or it will have to be released outside */
735 bp = bio_split(old_chain, (len - total) / SECTOR_SIZE);
736 if (!bp)
737 goto err_out;
738
739 __bio_clone(tmp, &bp->bio1);
740
741 *next = &bp->bio2;
742 } else {
743 __bio_clone(tmp, old_chain);
744 *next = old_chain->bi_next;
745 }
746
747 tmp->bi_bdev = NULL;
748 gfpmask &= ~__GFP_WAIT;
749 tmp->bi_next = NULL;
750
751 if (!new_chain) {
752 new_chain = tail = tmp;
753 } else {
754 tail->bi_next = tmp;
755 tail = tmp;
756 }
757 old_chain = old_chain->bi_next;
758
759 total += tmp->bi_size;
760 }
761
762 BUG_ON(total < len);
763
764 if (tail)
765 tail->bi_next = NULL;
766
767 *old = old_chain;
768
769 return new_chain;
770
771err_out:
772 dout("bio_chain_clone with err\n");
773 bio_chain_put(new_chain);
774 return NULL;
775}
776
777/*
778 * helpers for osd request op vectors.
779 */
780static int rbd_create_rw_ops(struct ceph_osd_req_op **ops,
781 int num_ops,
782 int opcode,
783 u32 payload_len)
784{
785 *ops = kzalloc(sizeof(struct ceph_osd_req_op) * (num_ops + 1),
786 GFP_NOIO);
787 if (!*ops)
788 return -ENOMEM;
789 (*ops)[0].op = opcode;
790 /*
791 * op extent offset and length will be set later on
792 * in calc_raw_layout()
793 */
794 (*ops)[0].payload_len = payload_len;
795 return 0;
796}
797
798static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
799{
800 kfree(ops);
801}
802
803static void rbd_coll_end_req_index(struct request *rq,
804 struct rbd_req_coll *coll,
805 int index,
806 int ret, u64 len)
807{
808 struct request_queue *q;
809 int min, max, i;
810
811 dout("rbd_coll_end_req_index %p index %d ret %d len %lld\n",
812 coll, index, ret, len);
813
814 if (!rq)
815 return;
816
817 if (!coll) {
818 blk_end_request(rq, ret, len);
819 return;
820 }
821
822 q = rq->q;
823
824 spin_lock_irq(q->queue_lock);
825 coll->status[index].done = 1;
826 coll->status[index].rc = ret;
827 coll->status[index].bytes = len;
828 max = min = coll->num_done;
829 while (max < coll->total && coll->status[max].done)
830 max++;
831
832 for (i = min; i<max; i++) {
833 __blk_end_request(rq, coll->status[i].rc,
834 coll->status[i].bytes);
835 coll->num_done++;
836 kref_put(&coll->kref, rbd_coll_release);
837 }
838 spin_unlock_irq(q->queue_lock);
839}
840
841static void rbd_coll_end_req(struct rbd_request *req,
842 int ret, u64 len)
843{
844 rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
845}
846
847/*
848 * Send ceph osd request
849 */
850static int rbd_do_request(struct request *rq,
851 struct rbd_device *dev,
852 struct ceph_snap_context *snapc,
853 u64 snapid,
854 const char *obj, u64 ofs, u64 len,
855 struct bio *bio,
856 struct page **pages,
857 int num_pages,
858 int flags,
859 struct ceph_osd_req_op *ops,
860 int num_reply,
861 struct rbd_req_coll *coll,
862 int coll_index,
863 void (*rbd_cb)(struct ceph_osd_request *req,
864 struct ceph_msg *msg),
865 struct ceph_osd_request **linger_req,
866 u64 *ver)
867{
868 struct ceph_osd_request *req;
869 struct ceph_file_layout *layout;
870 int ret;
871 u64 bno;
872 struct timespec mtime = CURRENT_TIME;
873 struct rbd_request *req_data;
874 struct ceph_osd_request_head *reqhead;
875 struct ceph_osd_client *osdc;
876
877 req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
878 if (!req_data) {
879 if (coll)
880 rbd_coll_end_req_index(rq, coll, coll_index,
881 -ENOMEM, len);
882 return -ENOMEM;
883 }
884
885 if (coll) {
886 req_data->coll = coll;
887 req_data->coll_index = coll_index;
888 }
889
890 dout("rbd_do_request obj=%s ofs=%lld len=%lld\n", obj, len, ofs);
891
892 down_read(&dev->header_rwsem);
893
894 osdc = &dev->rbd_client->client->osdc;
895 req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
896 false, GFP_NOIO, pages, bio);
897 if (!req) {
898 up_read(&dev->header_rwsem);
899 ret = -ENOMEM;
900 goto done_pages;
901 }
902
903 req->r_callback = rbd_cb;
904
905 req_data->rq = rq;
906 req_data->bio = bio;
907 req_data->pages = pages;
908 req_data->len = len;
909
910 req->r_priv = req_data;
911
912 reqhead = req->r_request->front.iov_base;
913 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
914
915 strncpy(req->r_oid, obj, sizeof(req->r_oid));
916 req->r_oid_len = strlen(req->r_oid);
917
918 layout = &req->r_file_layout;
919 memset(layout, 0, sizeof(*layout));
920 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
921 layout->fl_stripe_count = cpu_to_le32(1);
922 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
923 layout->fl_pg_pool = cpu_to_le32(dev->poolid);
924 ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
925 req, ops);
926
927 ceph_osdc_build_request(req, ofs, &len,
928 ops,
929 snapc,
930 &mtime,
931 req->r_oid, req->r_oid_len);
932 up_read(&dev->header_rwsem);
933
934 if (linger_req) {
935 ceph_osdc_set_request_linger(osdc, req);
936 *linger_req = req;
937 }
938
939 ret = ceph_osdc_start_request(osdc, req, false);
940 if (ret < 0)
941 goto done_err;
942
943 if (!rbd_cb) {
944 ret = ceph_osdc_wait_request(osdc, req);
945 if (ver)
946 *ver = le64_to_cpu(req->r_reassert_version.version);
947 dout("reassert_ver=%lld\n",
948 le64_to_cpu(req->r_reassert_version.version));
949 ceph_osdc_put_request(req);
950 }
951 return ret;
952
953done_err:
954 bio_chain_put(req_data->bio);
955 ceph_osdc_put_request(req);
956done_pages:
957 rbd_coll_end_req(req_data, ret, len);
958 kfree(req_data);
959 return ret;
960}
961
962/*
963 * Ceph osd op callback
964 */
965static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
966{
967 struct rbd_request *req_data = req->r_priv;
968 struct ceph_osd_reply_head *replyhead;
969 struct ceph_osd_op *op;
970 __s32 rc;
971 u64 bytes;
972 int read_op;
973
974 /* parse reply */
975 replyhead = msg->front.iov_base;
976 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
977 op = (void *)(replyhead + 1);
978 rc = le32_to_cpu(replyhead->result);
979 bytes = le64_to_cpu(op->extent.length);
980 read_op = (le16_to_cpu(op->op) == CEPH_OSD_OP_READ);
981
982 dout("rbd_req_cb bytes=%lld readop=%d rc=%d\n", bytes, read_op, rc);
983
984 if (rc == -ENOENT && read_op) {
985 zero_bio_chain(req_data->bio, 0);
986 rc = 0;
987 } else if (rc == 0 && read_op && bytes < req_data->len) {
988 zero_bio_chain(req_data->bio, bytes);
989 bytes = req_data->len;
990 }
991
992 rbd_coll_end_req(req_data, rc, bytes);
993
994 if (req_data->bio)
995 bio_chain_put(req_data->bio);
996
997 ceph_osdc_put_request(req);
998 kfree(req_data);
999}
1000
1001static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1002{
1003 ceph_osdc_put_request(req);
1004}
1005
1006/*
1007 * Do a synchronous ceph osd operation
1008 */
1009static int rbd_req_sync_op(struct rbd_device *dev,
1010 struct ceph_snap_context *snapc,
1011 u64 snapid,
1012 int opcode,
1013 int flags,
1014 struct ceph_osd_req_op *orig_ops,
1015 int num_reply,
1016 const char *obj,
1017 u64 ofs, u64 len,
1018 char *buf,
1019 struct ceph_osd_request **linger_req,
1020 u64 *ver)
1021{
1022 int ret;
1023 struct page **pages;
1024 int num_pages;
1025 struct ceph_osd_req_op *ops = orig_ops;
1026 u32 payload_len;
1027
1028 num_pages = calc_pages_for(ofs , len);
1029 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1030 if (IS_ERR(pages))
1031 return PTR_ERR(pages);
1032
1033 if (!orig_ops) {
1034 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? len : 0);
1035 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1036 if (ret < 0)
1037 goto done;
1038
1039 if ((flags & CEPH_OSD_FLAG_WRITE) && buf) {
1040 ret = ceph_copy_to_page_vector(pages, buf, ofs, len);
1041 if (ret < 0)
1042 goto done_ops;
1043 }
1044 }
1045
1046 ret = rbd_do_request(NULL, dev, snapc, snapid,
1047 obj, ofs, len, NULL,
1048 pages, num_pages,
1049 flags,
1050 ops,
1051 2,
1052 NULL, 0,
1053 NULL,
1054 linger_req, ver);
1055 if (ret < 0)
1056 goto done_ops;
1057
1058 if ((flags & CEPH_OSD_FLAG_READ) && buf)
1059 ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1060
1061done_ops:
1062 if (!orig_ops)
1063 rbd_destroy_ops(ops);
1064done:
1065 ceph_release_page_vector(pages, num_pages);
1066 return ret;
1067}
1068
1069/*
1070 * Do an asynchronous ceph osd operation
1071 */
1072static int rbd_do_op(struct request *rq,
1073 struct rbd_device *rbd_dev ,
1074 struct ceph_snap_context *snapc,
1075 u64 snapid,
1076 int opcode, int flags, int num_reply,
1077 u64 ofs, u64 len,
1078 struct bio *bio,
1079 struct rbd_req_coll *coll,
1080 int coll_index)
1081{
1082 char *seg_name;
1083 u64 seg_ofs;
1084 u64 seg_len;
1085 int ret;
1086 struct ceph_osd_req_op *ops;
1087 u32 payload_len;
1088
1089 seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1090 if (!seg_name)
1091 return -ENOMEM;
1092
1093 seg_len = rbd_get_segment(&rbd_dev->header,
1094 rbd_dev->header.block_name,
1095 ofs, len,
1096 seg_name, &seg_ofs);
1097
1098 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1099
1100 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1101 if (ret < 0)
1102 goto done;
1103
1104 /* we've taken care of segment sizes earlier when we
1105 cloned the bios. We should never have a segment
1106 truncated at this point */
1107 BUG_ON(seg_len < len);
1108
1109 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1110 seg_name, seg_ofs, seg_len,
1111 bio,
1112 NULL, 0,
1113 flags,
1114 ops,
1115 num_reply,
1116 coll, coll_index,
1117 rbd_req_cb, 0, NULL);
1118
1119 rbd_destroy_ops(ops);
1120done:
1121 kfree(seg_name);
1122 return ret;
1123}
1124
1125/*
1126 * Request async osd write
1127 */
1128static int rbd_req_write(struct request *rq,
1129 struct rbd_device *rbd_dev,
1130 struct ceph_snap_context *snapc,
1131 u64 ofs, u64 len,
1132 struct bio *bio,
1133 struct rbd_req_coll *coll,
1134 int coll_index)
1135{
1136 return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1137 CEPH_OSD_OP_WRITE,
1138 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1139 2,
1140 ofs, len, bio, coll, coll_index);
1141}
1142
1143/*
1144 * Request async osd read
1145 */
1146static int rbd_req_read(struct request *rq,
1147 struct rbd_device *rbd_dev,
1148 u64 snapid,
1149 u64 ofs, u64 len,
1150 struct bio *bio,
1151 struct rbd_req_coll *coll,
1152 int coll_index)
1153{
1154 return rbd_do_op(rq, rbd_dev, NULL,
1155 snapid,
1156 CEPH_OSD_OP_READ,
1157 CEPH_OSD_FLAG_READ,
1158 2,
1159 ofs, len, bio, coll, coll_index);
1160}
1161
1162/*
1163 * Request sync osd read
1164 */
1165static int rbd_req_sync_read(struct rbd_device *dev,
1166 struct ceph_snap_context *snapc,
1167 u64 snapid,
1168 const char *obj,
1169 u64 ofs, u64 len,
1170 char *buf,
1171 u64 *ver)
1172{
1173 return rbd_req_sync_op(dev, NULL,
1174 snapid,
1175 CEPH_OSD_OP_READ,
1176 CEPH_OSD_FLAG_READ,
1177 NULL,
1178 1, obj, ofs, len, buf, NULL, ver);
1179}
1180
1181/*
1182 * Request sync osd watch
1183 */
1184static int rbd_req_sync_notify_ack(struct rbd_device *dev,
1185 u64 ver,
1186 u64 notify_id,
1187 const char *obj)
1188{
1189 struct ceph_osd_req_op *ops;
1190 struct page **pages = NULL;
1191 int ret;
1192
1193 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1194 if (ret < 0)
1195 return ret;
1196
1197 ops[0].watch.ver = cpu_to_le64(dev->header.obj_version);
1198 ops[0].watch.cookie = notify_id;
1199 ops[0].watch.flag = 0;
1200
1201 ret = rbd_do_request(NULL, dev, NULL, CEPH_NOSNAP,
1202 obj, 0, 0, NULL,
1203 pages, 0,
1204 CEPH_OSD_FLAG_READ,
1205 ops,
1206 1,
1207 NULL, 0,
1208 rbd_simple_req_cb, 0, NULL);
1209
1210 rbd_destroy_ops(ops);
1211 return ret;
1212}
1213
1214static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1215{
1216 struct rbd_device *dev = (struct rbd_device *)data;
1217 int rc;
1218
1219 if (!dev)
1220 return;
1221
1222 dout("rbd_watch_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1223 notify_id, (int)opcode);
1224 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1225 rc = __rbd_refresh_header(dev);
1226 mutex_unlock(&ctl_mutex);
1227 if (rc)
1228 pr_warning(RBD_DRV_NAME "%d got notification but failed to "
1229 " update snaps: %d\n", dev->major, rc);
1230
1231 rbd_req_sync_notify_ack(dev, ver, notify_id, dev->obj_md_name);
1232}
1233
1234/*
1235 * Request sync osd watch
1236 */
1237static int rbd_req_sync_watch(struct rbd_device *dev,
1238 const char *obj,
1239 u64 ver)
1240{
1241 struct ceph_osd_req_op *ops;
1242 struct ceph_osd_client *osdc = &dev->rbd_client->client->osdc;
1243
1244 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1245 if (ret < 0)
1246 return ret;
1247
1248 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1249 (void *)dev, &dev->watch_event);
1250 if (ret < 0)
1251 goto fail;
1252
1253 ops[0].watch.ver = cpu_to_le64(ver);
1254 ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1255 ops[0].watch.flag = 1;
1256
1257 ret = rbd_req_sync_op(dev, NULL,
1258 CEPH_NOSNAP,
1259 0,
1260 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1261 ops,
1262 1, obj, 0, 0, NULL,
1263 &dev->watch_request, NULL);
1264
1265 if (ret < 0)
1266 goto fail_event;
1267
1268 rbd_destroy_ops(ops);
1269 return 0;
1270
1271fail_event:
1272 ceph_osdc_cancel_event(dev->watch_event);
1273 dev->watch_event = NULL;
1274fail:
1275 rbd_destroy_ops(ops);
1276 return ret;
1277}
1278
1279/*
1280 * Request sync osd unwatch
1281 */
1282static int rbd_req_sync_unwatch(struct rbd_device *dev,
1283 const char *obj)
1284{
1285 struct ceph_osd_req_op *ops;
1286
1287 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1288 if (ret < 0)
1289 return ret;
1290
1291 ops[0].watch.ver = 0;
1292 ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1293 ops[0].watch.flag = 0;
1294
1295 ret = rbd_req_sync_op(dev, NULL,
1296 CEPH_NOSNAP,
1297 0,
1298 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1299 ops,
1300 1, obj, 0, 0, NULL, NULL, NULL);
1301
1302 rbd_destroy_ops(ops);
1303 ceph_osdc_cancel_event(dev->watch_event);
1304 dev->watch_event = NULL;
1305 return ret;
1306}
1307
1308struct rbd_notify_info {
1309 struct rbd_device *dev;
1310};
1311
1312static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1313{
1314 struct rbd_device *dev = (struct rbd_device *)data;
1315 if (!dev)
1316 return;
1317
1318 dout("rbd_notify_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1319 notify_id, (int)opcode);
1320}
1321
1322/*
1323 * Request sync osd notify
1324 */
1325static int rbd_req_sync_notify(struct rbd_device *dev,
1326 const char *obj)
1327{
1328 struct ceph_osd_req_op *ops;
1329 struct ceph_osd_client *osdc = &dev->rbd_client->client->osdc;
1330 struct ceph_osd_event *event;
1331 struct rbd_notify_info info;
1332 int payload_len = sizeof(u32) + sizeof(u32);
1333 int ret;
1334
1335 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY, payload_len);
1336 if (ret < 0)
1337 return ret;
1338
1339 info.dev = dev;
1340
1341 ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1342 (void *)&info, &event);
1343 if (ret < 0)
1344 goto fail;
1345
1346 ops[0].watch.ver = 1;
1347 ops[0].watch.flag = 1;
1348 ops[0].watch.cookie = event->cookie;
1349 ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1350 ops[0].watch.timeout = 12;
1351
1352 ret = rbd_req_sync_op(dev, NULL,
1353 CEPH_NOSNAP,
1354 0,
1355 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1356 ops,
1357 1, obj, 0, 0, NULL, NULL, NULL);
1358 if (ret < 0)
1359 goto fail_event;
1360
1361 ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1362 dout("ceph_osdc_wait_event returned %d\n", ret);
1363 rbd_destroy_ops(ops);
1364 return 0;
1365
1366fail_event:
1367 ceph_osdc_cancel_event(event);
1368fail:
1369 rbd_destroy_ops(ops);
1370 return ret;
1371}
1372
1373/*
1374 * Request sync osd read
1375 */
1376static int rbd_req_sync_exec(struct rbd_device *dev,
1377 const char *obj,
1378 const char *cls,
1379 const char *method,
1380 const char *data,
1381 int len,
1382 u64 *ver)
1383{
1384 struct ceph_osd_req_op *ops;
1385 int cls_len = strlen(cls);
1386 int method_len = strlen(method);
1387 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_CALL,
1388 cls_len + method_len + len);
1389 if (ret < 0)
1390 return ret;
1391
1392 ops[0].cls.class_name = cls;
1393 ops[0].cls.class_len = (__u8)cls_len;
1394 ops[0].cls.method_name = method;
1395 ops[0].cls.method_len = (__u8)method_len;
1396 ops[0].cls.argc = 0;
1397 ops[0].cls.indata = data;
1398 ops[0].cls.indata_len = len;
1399
1400 ret = rbd_req_sync_op(dev, NULL,
1401 CEPH_NOSNAP,
1402 0,
1403 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1404 ops,
1405 1, obj, 0, 0, NULL, NULL, ver);
1406
1407 rbd_destroy_ops(ops);
1408
1409 dout("cls_exec returned %d\n", ret);
1410 return ret;
1411}
1412
1413static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1414{
1415 struct rbd_req_coll *coll =
1416 kzalloc(sizeof(struct rbd_req_coll) +
1417 sizeof(struct rbd_req_status) * num_reqs,
1418 GFP_ATOMIC);
1419
1420 if (!coll)
1421 return NULL;
1422 coll->total = num_reqs;
1423 kref_init(&coll->kref);
1424 return coll;
1425}
1426
1427/*
1428 * block device queue callback
1429 */
1430static void rbd_rq_fn(struct request_queue *q)
1431{
1432 struct rbd_device *rbd_dev = q->queuedata;
1433 struct request *rq;
1434 struct bio_pair *bp = NULL;
1435
1436 while ((rq = blk_fetch_request(q))) {
1437 struct bio *bio;
1438 struct bio *rq_bio, *next_bio = NULL;
1439 bool do_write;
1440 int size, op_size = 0;
1441 u64 ofs;
1442 int num_segs, cur_seg = 0;
1443 struct rbd_req_coll *coll;
1444
1445 /* peek at request from block layer */
1446 if (!rq)
1447 break;
1448
1449 dout("fetched request\n");
1450
1451 /* filter out block requests we don't understand */
1452 if ((rq->cmd_type != REQ_TYPE_FS)) {
1453 __blk_end_request_all(rq, 0);
1454 continue;
1455 }
1456
1457 /* deduce our operation (read, write) */
1458 do_write = (rq_data_dir(rq) == WRITE);
1459
1460 size = blk_rq_bytes(rq);
1461 ofs = blk_rq_pos(rq) * SECTOR_SIZE;
1462 rq_bio = rq->bio;
1463 if (do_write && rbd_dev->read_only) {
1464 __blk_end_request_all(rq, -EROFS);
1465 continue;
1466 }
1467
1468 spin_unlock_irq(q->queue_lock);
1469
1470 dout("%s 0x%x bytes at 0x%llx\n",
1471 do_write ? "write" : "read",
1472 size, blk_rq_pos(rq) * SECTOR_SIZE);
1473
1474 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1475 coll = rbd_alloc_coll(num_segs);
1476 if (!coll) {
1477 spin_lock_irq(q->queue_lock);
1478 __blk_end_request_all(rq, -ENOMEM);
1479 continue;
1480 }
1481
1482 do {
1483 /* a bio clone to be passed down to OSD req */
1484 dout("rq->bio->bi_vcnt=%d\n", rq->bio->bi_vcnt);
1485 op_size = rbd_get_segment(&rbd_dev->header,
1486 rbd_dev->header.block_name,
1487 ofs, size,
1488 NULL, NULL);
1489 kref_get(&coll->kref);
1490 bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1491 op_size, GFP_ATOMIC);
1492 if (!bio) {
1493 rbd_coll_end_req_index(rq, coll, cur_seg,
1494 -ENOMEM, op_size);
1495 goto next_seg;
1496 }
1497
1498
1499 /* init OSD command: write or read */
1500 if (do_write)
1501 rbd_req_write(rq, rbd_dev,
1502 rbd_dev->header.snapc,
1503 ofs,
1504 op_size, bio,
1505 coll, cur_seg);
1506 else
1507 rbd_req_read(rq, rbd_dev,
1508 rbd_dev->snap_id,
1509 ofs,
1510 op_size, bio,
1511 coll, cur_seg);
1512
1513next_seg:
1514 size -= op_size;
1515 ofs += op_size;
1516
1517 cur_seg++;
1518 rq_bio = next_bio;
1519 } while (size > 0);
1520 kref_put(&coll->kref, rbd_coll_release);
1521
1522 if (bp)
1523 bio_pair_release(bp);
1524 spin_lock_irq(q->queue_lock);
1525 }
1526}
1527
1528/*
1529 * a queue callback. Makes sure that we don't create a bio that spans across
1530 * multiple osd objects. One exception would be with a single page bios,
1531 * which we handle later at bio_chain_clone
1532 */
1533static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1534 struct bio_vec *bvec)
1535{
1536 struct rbd_device *rbd_dev = q->queuedata;
1537 unsigned int chunk_sectors;
1538 sector_t sector;
1539 unsigned int bio_sectors;
1540 int max;
1541
1542 chunk_sectors = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1543 sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1544 bio_sectors = bmd->bi_size >> SECTOR_SHIFT;
1545
1546 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
1547 + bio_sectors)) << SECTOR_SHIFT;
1548 if (max < 0)
1549 max = 0; /* bio_add cannot handle a negative return */
1550 if (max <= bvec->bv_len && bio_sectors == 0)
1551 return bvec->bv_len;
1552 return max;
1553}
1554
1555static void rbd_free_disk(struct rbd_device *rbd_dev)
1556{
1557 struct gendisk *disk = rbd_dev->disk;
1558
1559 if (!disk)
1560 return;
1561
1562 rbd_header_free(&rbd_dev->header);
1563
1564 if (disk->flags & GENHD_FL_UP)
1565 del_gendisk(disk);
1566 if (disk->queue)
1567 blk_cleanup_queue(disk->queue);
1568 put_disk(disk);
1569}
1570
1571/*
1572 * reload the ondisk the header
1573 */
1574static int rbd_read_header(struct rbd_device *rbd_dev,
1575 struct rbd_image_header *header)
1576{
1577 ssize_t rc;
1578 struct rbd_image_header_ondisk *dh;
1579 u32 snap_count = 0;
1580 u64 ver;
1581 size_t len;
1582
1583 /*
1584 * First reads the fixed-size header to determine the number
1585 * of snapshots, then re-reads it, along with all snapshot
1586 * records as well as their stored names.
1587 */
1588 len = sizeof (*dh);
1589 while (1) {
1590 dh = kmalloc(len, GFP_KERNEL);
1591 if (!dh)
1592 return -ENOMEM;
1593
1594 rc = rbd_req_sync_read(rbd_dev,
1595 NULL, CEPH_NOSNAP,
1596 rbd_dev->obj_md_name,
1597 0, len,
1598 (char *)dh, &ver);
1599 if (rc < 0)
1600 goto out_dh;
1601
1602 rc = rbd_header_from_disk(header, dh, snap_count, GFP_KERNEL);
1603 if (rc < 0) {
1604 if (rc == -ENXIO)
1605 pr_warning("unrecognized header format"
1606 " for image %s", rbd_dev->obj);
1607 goto out_dh;
1608 }
1609
1610 if (snap_count == header->total_snaps)
1611 break;
1612
1613 snap_count = header->total_snaps;
1614 len = sizeof (*dh) +
1615 snap_count * sizeof(struct rbd_image_snap_ondisk) +
1616 header->snap_names_len;
1617
1618 rbd_header_free(header);
1619 kfree(dh);
1620 }
1621 header->obj_version = ver;
1622
1623out_dh:
1624 kfree(dh);
1625 return rc;
1626}
1627
1628/*
1629 * create a snapshot
1630 */
1631static int rbd_header_add_snap(struct rbd_device *dev,
1632 const char *snap_name,
1633 gfp_t gfp_flags)
1634{
1635 int name_len = strlen(snap_name);
1636 u64 new_snapid;
1637 int ret;
1638 void *data, *p, *e;
1639 u64 ver;
1640 struct ceph_mon_client *monc;
1641
1642 /* we should create a snapshot only if we're pointing at the head */
1643 if (dev->snap_id != CEPH_NOSNAP)
1644 return -EINVAL;
1645
1646 monc = &dev->rbd_client->client->monc;
1647 ret = ceph_monc_create_snapid(monc, dev->poolid, &new_snapid);
1648 dout("created snapid=%lld\n", new_snapid);
1649 if (ret < 0)
1650 return ret;
1651
1652 data = kmalloc(name_len + 16, gfp_flags);
1653 if (!data)
1654 return -ENOMEM;
1655
1656 p = data;
1657 e = data + name_len + 16;
1658
1659 ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1660 ceph_encode_64_safe(&p, e, new_snapid, bad);
1661
1662 ret = rbd_req_sync_exec(dev, dev->obj_md_name, "rbd", "snap_add",
1663 data, p - data, &ver);
1664
1665 kfree(data);
1666
1667 if (ret < 0)
1668 return ret;
1669
1670 down_write(&dev->header_rwsem);
1671 dev->header.snapc->seq = new_snapid;
1672 up_write(&dev->header_rwsem);
1673
1674 return 0;
1675bad:
1676 return -ERANGE;
1677}
1678
1679static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1680{
1681 struct rbd_snap *snap;
1682
1683 while (!list_empty(&rbd_dev->snaps)) {
1684 snap = list_first_entry(&rbd_dev->snaps, struct rbd_snap, node);
1685 __rbd_remove_snap_dev(rbd_dev, snap);
1686 }
1687}
1688
1689/*
1690 * only read the first part of the ondisk header, without the snaps info
1691 */
1692static int __rbd_refresh_header(struct rbd_device *rbd_dev)
1693{
1694 int ret;
1695 struct rbd_image_header h;
1696 u64 snap_seq;
1697 int follow_seq = 0;
1698
1699 ret = rbd_read_header(rbd_dev, &h);
1700 if (ret < 0)
1701 return ret;
1702
1703 /* resized? */
1704 set_capacity(rbd_dev->disk, h.image_size / SECTOR_SIZE);
1705
1706 down_write(&rbd_dev->header_rwsem);
1707
1708 snap_seq = rbd_dev->header.snapc->seq;
1709 if (rbd_dev->header.total_snaps &&
1710 rbd_dev->header.snapc->snaps[0] == snap_seq)
1711 /* pointing at the head, will need to follow that
1712 if head moves */
1713 follow_seq = 1;
1714
1715 kfree(rbd_dev->header.snapc);
1716 kfree(rbd_dev->header.snap_names);
1717 kfree(rbd_dev->header.snap_sizes);
1718
1719 rbd_dev->header.total_snaps = h.total_snaps;
1720 rbd_dev->header.snapc = h.snapc;
1721 rbd_dev->header.snap_names = h.snap_names;
1722 rbd_dev->header.snap_names_len = h.snap_names_len;
1723 rbd_dev->header.snap_sizes = h.snap_sizes;
1724 if (follow_seq)
1725 rbd_dev->header.snapc->seq = rbd_dev->header.snapc->snaps[0];
1726 else
1727 rbd_dev->header.snapc->seq = snap_seq;
1728
1729 ret = __rbd_init_snaps_header(rbd_dev);
1730
1731 up_write(&rbd_dev->header_rwsem);
1732
1733 return ret;
1734}
1735
1736static int rbd_init_disk(struct rbd_device *rbd_dev)
1737{
1738 struct gendisk *disk;
1739 struct request_queue *q;
1740 int rc;
1741 u64 segment_size;
1742 u64 total_size = 0;
1743
1744 /* contact OSD, request size info about the object being mapped */
1745 rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1746 if (rc)
1747 return rc;
1748
1749 /* no need to lock here, as rbd_dev is not registered yet */
1750 rc = __rbd_init_snaps_header(rbd_dev);
1751 if (rc)
1752 return rc;
1753
1754 rc = rbd_header_set_snap(rbd_dev, &total_size);
1755 if (rc)
1756 return rc;
1757
1758 /* create gendisk info */
1759 rc = -ENOMEM;
1760 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1761 if (!disk)
1762 goto out;
1763
1764 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1765 rbd_dev->id);
1766 disk->major = rbd_dev->major;
1767 disk->first_minor = 0;
1768 disk->fops = &rbd_bd_ops;
1769 disk->private_data = rbd_dev;
1770
1771 /* init rq */
1772 rc = -ENOMEM;
1773 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1774 if (!q)
1775 goto out_disk;
1776
1777 /* We use the default size, but let's be explicit about it. */
1778 blk_queue_physical_block_size(q, SECTOR_SIZE);
1779
1780 /* set io sizes to object size */
1781 segment_size = rbd_obj_bytes(&rbd_dev->header);
1782 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1783 blk_queue_max_segment_size(q, segment_size);
1784 blk_queue_io_min(q, segment_size);
1785 blk_queue_io_opt(q, segment_size);
1786
1787 blk_queue_merge_bvec(q, rbd_merge_bvec);
1788 disk->queue = q;
1789
1790 q->queuedata = rbd_dev;
1791
1792 rbd_dev->disk = disk;
1793 rbd_dev->q = q;
1794
1795 /* finally, announce the disk to the world */
1796 set_capacity(disk, total_size / SECTOR_SIZE);
1797 add_disk(disk);
1798
1799 pr_info("%s: added with size 0x%llx\n",
1800 disk->disk_name, (unsigned long long)total_size);
1801 return 0;
1802
1803out_disk:
1804 put_disk(disk);
1805out:
1806 return rc;
1807}
1808
1809/*
1810 sysfs
1811*/
1812
1813static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1814{
1815 return container_of(dev, struct rbd_device, dev);
1816}
1817
1818static ssize_t rbd_size_show(struct device *dev,
1819 struct device_attribute *attr, char *buf)
1820{
1821 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1822
1823 return sprintf(buf, "%llu\n", (unsigned long long)rbd_dev->header.image_size);
1824}
1825
1826static ssize_t rbd_major_show(struct device *dev,
1827 struct device_attribute *attr, char *buf)
1828{
1829 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1830
1831 return sprintf(buf, "%d\n", rbd_dev->major);
1832}
1833
1834static ssize_t rbd_client_id_show(struct device *dev,
1835 struct device_attribute *attr, char *buf)
1836{
1837 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1838
1839 return sprintf(buf, "client%lld\n",
1840 ceph_client_id(rbd_dev->rbd_client->client));
1841}
1842
1843static ssize_t rbd_pool_show(struct device *dev,
1844 struct device_attribute *attr, char *buf)
1845{
1846 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1847
1848 return sprintf(buf, "%s\n", rbd_dev->pool_name);
1849}
1850
1851static ssize_t rbd_name_show(struct device *dev,
1852 struct device_attribute *attr, char *buf)
1853{
1854 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1855
1856 return sprintf(buf, "%s\n", rbd_dev->obj);
1857}
1858
1859static ssize_t rbd_snap_show(struct device *dev,
1860 struct device_attribute *attr,
1861 char *buf)
1862{
1863 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1864
1865 return sprintf(buf, "%s\n", rbd_dev->snap_name);
1866}
1867
1868static ssize_t rbd_image_refresh(struct device *dev,
1869 struct device_attribute *attr,
1870 const char *buf,
1871 size_t size)
1872{
1873 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1874 int rc;
1875 int ret = size;
1876
1877 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1878
1879 rc = __rbd_refresh_header(rbd_dev);
1880 if (rc < 0)
1881 ret = rc;
1882
1883 mutex_unlock(&ctl_mutex);
1884 return ret;
1885}
1886
1887static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1888static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1889static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1890static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1891static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1892static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1893static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1894static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1895
1896static struct attribute *rbd_attrs[] = {
1897 &dev_attr_size.attr,
1898 &dev_attr_major.attr,
1899 &dev_attr_client_id.attr,
1900 &dev_attr_pool.attr,
1901 &dev_attr_name.attr,
1902 &dev_attr_current_snap.attr,
1903 &dev_attr_refresh.attr,
1904 &dev_attr_create_snap.attr,
1905 NULL
1906};
1907
1908static struct attribute_group rbd_attr_group = {
1909 .attrs = rbd_attrs,
1910};
1911
1912static const struct attribute_group *rbd_attr_groups[] = {
1913 &rbd_attr_group,
1914 NULL
1915};
1916
1917static void rbd_sysfs_dev_release(struct device *dev)
1918{
1919}
1920
1921static struct device_type rbd_device_type = {
1922 .name = "rbd",
1923 .groups = rbd_attr_groups,
1924 .release = rbd_sysfs_dev_release,
1925};
1926
1927
1928/*
1929 sysfs - snapshots
1930*/
1931
1932static ssize_t rbd_snap_size_show(struct device *dev,
1933 struct device_attribute *attr,
1934 char *buf)
1935{
1936 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1937
1938 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
1939}
1940
1941static ssize_t rbd_snap_id_show(struct device *dev,
1942 struct device_attribute *attr,
1943 char *buf)
1944{
1945 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1946
1947 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
1948}
1949
1950static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1951static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
1952
1953static struct attribute *rbd_snap_attrs[] = {
1954 &dev_attr_snap_size.attr,
1955 &dev_attr_snap_id.attr,
1956 NULL,
1957};
1958
1959static struct attribute_group rbd_snap_attr_group = {
1960 .attrs = rbd_snap_attrs,
1961};
1962
1963static void rbd_snap_dev_release(struct device *dev)
1964{
1965 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1966 kfree(snap->name);
1967 kfree(snap);
1968}
1969
1970static const struct attribute_group *rbd_snap_attr_groups[] = {
1971 &rbd_snap_attr_group,
1972 NULL
1973};
1974
1975static struct device_type rbd_snap_device_type = {
1976 .groups = rbd_snap_attr_groups,
1977 .release = rbd_snap_dev_release,
1978};
1979
1980static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
1981 struct rbd_snap *snap)
1982{
1983 list_del(&snap->node);
1984 device_unregister(&snap->dev);
1985}
1986
1987static int rbd_register_snap_dev(struct rbd_device *rbd_dev,
1988 struct rbd_snap *snap,
1989 struct device *parent)
1990{
1991 struct device *dev = &snap->dev;
1992 int ret;
1993
1994 dev->type = &rbd_snap_device_type;
1995 dev->parent = parent;
1996 dev->release = rbd_snap_dev_release;
1997 dev_set_name(dev, "snap_%s", snap->name);
1998 ret = device_register(dev);
1999
2000 return ret;
2001}
2002
2003static int __rbd_add_snap_dev(struct rbd_device *rbd_dev,
2004 int i, const char *name,
2005 struct rbd_snap **snapp)
2006{
2007 int ret;
2008 struct rbd_snap *snap = kzalloc(sizeof(*snap), GFP_KERNEL);
2009 if (!snap)
2010 return -ENOMEM;
2011 snap->name = kstrdup(name, GFP_KERNEL);
2012 snap->size = rbd_dev->header.snap_sizes[i];
2013 snap->id = rbd_dev->header.snapc->snaps[i];
2014 if (device_is_registered(&rbd_dev->dev)) {
2015 ret = rbd_register_snap_dev(rbd_dev, snap,
2016 &rbd_dev->dev);
2017 if (ret < 0)
2018 goto err;
2019 }
2020 *snapp = snap;
2021 return 0;
2022err:
2023 kfree(snap->name);
2024 kfree(snap);
2025 return ret;
2026}
2027
2028/*
2029 * search for the previous snap in a null delimited string list
2030 */
2031const char *rbd_prev_snap_name(const char *name, const char *start)
2032{
2033 if (name < start + 2)
2034 return NULL;
2035
2036 name -= 2;
2037 while (*name) {
2038 if (name == start)
2039 return start;
2040 name--;
2041 }
2042 return name + 1;
2043}
2044
2045/*
2046 * compare the old list of snapshots that we have to what's in the header
2047 * and update it accordingly. Note that the header holds the snapshots
2048 * in a reverse order (from newest to oldest) and we need to go from
2049 * older to new so that we don't get a duplicate snap name when
2050 * doing the process (e.g., removed snapshot and recreated a new
2051 * one with the same name.
2052 */
2053static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2054{
2055 const char *name, *first_name;
2056 int i = rbd_dev->header.total_snaps;
2057 struct rbd_snap *snap, *old_snap = NULL;
2058 int ret;
2059 struct list_head *p, *n;
2060
2061 first_name = rbd_dev->header.snap_names;
2062 name = first_name + rbd_dev->header.snap_names_len;
2063
2064 list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2065 u64 cur_id;
2066
2067 old_snap = list_entry(p, struct rbd_snap, node);
2068
2069 if (i)
2070 cur_id = rbd_dev->header.snapc->snaps[i - 1];
2071
2072 if (!i || old_snap->id < cur_id) {
2073 /* old_snap->id was skipped, thus was removed */
2074 __rbd_remove_snap_dev(rbd_dev, old_snap);
2075 continue;
2076 }
2077 if (old_snap->id == cur_id) {
2078 /* we have this snapshot already */
2079 i--;
2080 name = rbd_prev_snap_name(name, first_name);
2081 continue;
2082 }
2083 for (; i > 0;
2084 i--, name = rbd_prev_snap_name(name, first_name)) {
2085 if (!name) {
2086 WARN_ON(1);
2087 return -EINVAL;
2088 }
2089 cur_id = rbd_dev->header.snapc->snaps[i];
2090 /* snapshot removal? handle it above */
2091 if (cur_id >= old_snap->id)
2092 break;
2093 /* a new snapshot */
2094 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2095 if (ret < 0)
2096 return ret;
2097
2098 /* note that we add it backward so using n and not p */
2099 list_add(&snap->node, n);
2100 p = &snap->node;
2101 }
2102 }
2103 /* we're done going over the old snap list, just add what's left */
2104 for (; i > 0; i--) {
2105 name = rbd_prev_snap_name(name, first_name);
2106 if (!name) {
2107 WARN_ON(1);
2108 return -EINVAL;
2109 }
2110 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2111 if (ret < 0)
2112 return ret;
2113 list_add(&snap->node, &rbd_dev->snaps);
2114 }
2115
2116 return 0;
2117}
2118
2119static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2120{
2121 int ret;
2122 struct device *dev;
2123 struct rbd_snap *snap;
2124
2125 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2126 dev = &rbd_dev->dev;
2127
2128 dev->bus = &rbd_bus_type;
2129 dev->type = &rbd_device_type;
2130 dev->parent = &rbd_root_dev;
2131 dev->release = rbd_dev_release;
2132 dev_set_name(dev, "%d", rbd_dev->id);
2133 ret = device_register(dev);
2134 if (ret < 0)
2135 goto out;
2136
2137 list_for_each_entry(snap, &rbd_dev->snaps, node) {
2138 ret = rbd_register_snap_dev(rbd_dev, snap,
2139 &rbd_dev->dev);
2140 if (ret < 0)
2141 break;
2142 }
2143out:
2144 mutex_unlock(&ctl_mutex);
2145 return ret;
2146}
2147
2148static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2149{
2150 device_unregister(&rbd_dev->dev);
2151}
2152
2153static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2154{
2155 int ret, rc;
2156
2157 do {
2158 ret = rbd_req_sync_watch(rbd_dev, rbd_dev->obj_md_name,
2159 rbd_dev->header.obj_version);
2160 if (ret == -ERANGE) {
2161 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2162 rc = __rbd_refresh_header(rbd_dev);
2163 mutex_unlock(&ctl_mutex);
2164 if (rc < 0)
2165 return rc;
2166 }
2167 } while (ret == -ERANGE);
2168
2169 return ret;
2170}
2171
2172static atomic64_t rbd_id_max = ATOMIC64_INIT(0);
2173
2174/*
2175 * Get a unique rbd identifier for the given new rbd_dev, and add
2176 * the rbd_dev to the global list. The minimum rbd id is 1.
2177 */
2178static void rbd_id_get(struct rbd_device *rbd_dev)
2179{
2180 rbd_dev->id = atomic64_inc_return(&rbd_id_max);
2181
2182 spin_lock(&rbd_dev_list_lock);
2183 list_add_tail(&rbd_dev->node, &rbd_dev_list);
2184 spin_unlock(&rbd_dev_list_lock);
2185}
2186
2187/*
2188 * Remove an rbd_dev from the global list, and record that its
2189 * identifier is no longer in use.
2190 */
2191static void rbd_id_put(struct rbd_device *rbd_dev)
2192{
2193 struct list_head *tmp;
2194 int rbd_id = rbd_dev->id;
2195 int max_id;
2196
2197 BUG_ON(rbd_id < 1);
2198
2199 spin_lock(&rbd_dev_list_lock);
2200 list_del_init(&rbd_dev->node);
2201
2202 /*
2203 * If the id being "put" is not the current maximum, there
2204 * is nothing special we need to do.
2205 */
2206 if (rbd_id != atomic64_read(&rbd_id_max)) {
2207 spin_unlock(&rbd_dev_list_lock);
2208 return;
2209 }
2210
2211 /*
2212 * We need to update the current maximum id. Search the
2213 * list to find out what it is. We're more likely to find
2214 * the maximum at the end, so search the list backward.
2215 */
2216 max_id = 0;
2217 list_for_each_prev(tmp, &rbd_dev_list) {
2218 struct rbd_device *rbd_dev;
2219
2220 rbd_dev = list_entry(tmp, struct rbd_device, node);
2221 if (rbd_id > max_id)
2222 max_id = rbd_id;
2223 }
2224 spin_unlock(&rbd_dev_list_lock);
2225
2226 /*
2227 * The max id could have been updated by rbd_id_get(), in
2228 * which case it now accurately reflects the new maximum.
2229 * Be careful not to overwrite the maximum value in that
2230 * case.
2231 */
2232 atomic64_cmpxchg(&rbd_id_max, rbd_id, max_id);
2233}
2234
2235/*
2236 * Skips over white space at *buf, and updates *buf to point to the
2237 * first found non-space character (if any). Returns the length of
2238 * the token (string of non-white space characters) found. Note
2239 * that *buf must be terminated with '\0'.
2240 */
2241static inline size_t next_token(const char **buf)
2242{
2243 /*
2244 * These are the characters that produce nonzero for
2245 * isspace() in the "C" and "POSIX" locales.
2246 */
2247 const char *spaces = " \f\n\r\t\v";
2248
2249 *buf += strspn(*buf, spaces); /* Find start of token */
2250
2251 return strcspn(*buf, spaces); /* Return token length */
2252}
2253
2254/*
2255 * Finds the next token in *buf, and if the provided token buffer is
2256 * big enough, copies the found token into it. The result, if
2257 * copied, is guaranteed to be terminated with '\0'. Note that *buf
2258 * must be terminated with '\0' on entry.
2259 *
2260 * Returns the length of the token found (not including the '\0').
2261 * Return value will be 0 if no token is found, and it will be >=
2262 * token_size if the token would not fit.
2263 *
2264 * The *buf pointer will be updated to point beyond the end of the
2265 * found token. Note that this occurs even if the token buffer is
2266 * too small to hold it.
2267 */
2268static inline size_t copy_token(const char **buf,
2269 char *token,
2270 size_t token_size)
2271{
2272 size_t len;
2273
2274 len = next_token(buf);
2275 if (len < token_size) {
2276 memcpy(token, *buf, len);
2277 *(token + len) = '\0';
2278 }
2279 *buf += len;
2280
2281 return len;
2282}
2283
2284/*
2285 * This fills in the pool_name, obj, obj_len, snap_name, obj_len,
2286 * rbd_dev, rbd_md_name, and name fields of the given rbd_dev, based
2287 * on the list of monitor addresses and other options provided via
2288 * /sys/bus/rbd/add.
2289 */
2290static int rbd_add_parse_args(struct rbd_device *rbd_dev,
2291 const char *buf,
2292 const char **mon_addrs,
2293 size_t *mon_addrs_size,
2294 char *options,
2295 size_t options_size)
2296{
2297 size_t len;
2298
2299 /* The first four tokens are required */
2300
2301 len = next_token(&buf);
2302 if (!len)
2303 return -EINVAL;
2304 *mon_addrs_size = len + 1;
2305 *mon_addrs = buf;
2306
2307 buf += len;
2308
2309 len = copy_token(&buf, options, options_size);
2310 if (!len || len >= options_size)
2311 return -EINVAL;
2312
2313 len = copy_token(&buf, rbd_dev->pool_name, sizeof (rbd_dev->pool_name));
2314 if (!len || len >= sizeof (rbd_dev->pool_name))
2315 return -EINVAL;
2316
2317 len = copy_token(&buf, rbd_dev->obj, sizeof (rbd_dev->obj));
2318 if (!len || len >= sizeof (rbd_dev->obj))
2319 return -EINVAL;
2320
2321 /* We have the object length in hand, save it. */
2322
2323 rbd_dev->obj_len = len;
2324
2325 BUILD_BUG_ON(RBD_MAX_MD_NAME_LEN
2326 < RBD_MAX_OBJ_NAME_LEN + sizeof (RBD_SUFFIX));
2327 sprintf(rbd_dev->obj_md_name, "%s%s", rbd_dev->obj, RBD_SUFFIX);
2328
2329 /*
2330 * The snapshot name is optional, but it's an error if it's
2331 * too long. If no snapshot is supplied, fill in the default.
2332 */
2333 len = copy_token(&buf, rbd_dev->snap_name, sizeof (rbd_dev->snap_name));
2334 if (!len)
2335 memcpy(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
2336 sizeof (RBD_SNAP_HEAD_NAME));
2337 else if (len >= sizeof (rbd_dev->snap_name))
2338 return -EINVAL;
2339
2340 return 0;
2341}
2342
2343static ssize_t rbd_add(struct bus_type *bus,
2344 const char *buf,
2345 size_t count)
2346{
2347 struct rbd_device *rbd_dev;
2348 const char *mon_addrs = NULL;
2349 size_t mon_addrs_size = 0;
2350 char *options = NULL;
2351 struct ceph_osd_client *osdc;
2352 int rc = -ENOMEM;
2353
2354 if (!try_module_get(THIS_MODULE))
2355 return -ENODEV;
2356
2357 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2358 if (!rbd_dev)
2359 goto err_nomem;
2360 options = kmalloc(count, GFP_KERNEL);
2361 if (!options)
2362 goto err_nomem;
2363
2364 /* static rbd_device initialization */
2365 spin_lock_init(&rbd_dev->lock);
2366 INIT_LIST_HEAD(&rbd_dev->node);
2367 INIT_LIST_HEAD(&rbd_dev->snaps);
2368 init_rwsem(&rbd_dev->header_rwsem);
2369
2370 init_rwsem(&rbd_dev->header_rwsem);
2371
2372 /* generate unique id: find highest unique id, add one */
2373 rbd_id_get(rbd_dev);
2374
2375 /* Fill in the device name, now that we have its id. */
2376 BUILD_BUG_ON(DEV_NAME_LEN
2377 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
2378 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->id);
2379
2380 /* parse add command */
2381 rc = rbd_add_parse_args(rbd_dev, buf, &mon_addrs, &mon_addrs_size,
2382 options, count);
2383 if (rc)
2384 goto err_put_id;
2385
2386 rbd_dev->rbd_client = rbd_get_client(mon_addrs, mon_addrs_size - 1,
2387 options);
2388 if (IS_ERR(rbd_dev->rbd_client)) {
2389 rc = PTR_ERR(rbd_dev->rbd_client);
2390 goto err_put_id;
2391 }
2392
2393 /* pick the pool */
2394 osdc = &rbd_dev->rbd_client->client->osdc;
2395 rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2396 if (rc < 0)
2397 goto err_out_client;
2398 rbd_dev->poolid = rc;
2399
2400 /* register our block device */
2401 rc = register_blkdev(0, rbd_dev->name);
2402 if (rc < 0)
2403 goto err_out_client;
2404 rbd_dev->major = rc;
2405
2406 rc = rbd_bus_add_dev(rbd_dev);
2407 if (rc)
2408 goto err_out_blkdev;
2409
2410 /*
2411 * At this point cleanup in the event of an error is the job
2412 * of the sysfs code (initiated by rbd_bus_del_dev()).
2413 *
2414 * Set up and announce blkdev mapping.
2415 */
2416 rc = rbd_init_disk(rbd_dev);
2417 if (rc)
2418 goto err_out_bus;
2419
2420 rc = rbd_init_watch_dev(rbd_dev);
2421 if (rc)
2422 goto err_out_bus;
2423
2424 return count;
2425
2426err_out_bus:
2427 /* this will also clean up rest of rbd_dev stuff */
2428
2429 rbd_bus_del_dev(rbd_dev);
2430 kfree(options);
2431 return rc;
2432
2433err_out_blkdev:
2434 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2435err_out_client:
2436 rbd_put_client(rbd_dev);
2437err_put_id:
2438 rbd_id_put(rbd_dev);
2439err_nomem:
2440 kfree(options);
2441 kfree(rbd_dev);
2442
2443 dout("Error adding device %s\n", buf);
2444 module_put(THIS_MODULE);
2445
2446 return (ssize_t) rc;
2447}
2448
2449static struct rbd_device *__rbd_get_dev(unsigned long id)
2450{
2451 struct list_head *tmp;
2452 struct rbd_device *rbd_dev;
2453
2454 spin_lock(&rbd_dev_list_lock);
2455 list_for_each(tmp, &rbd_dev_list) {
2456 rbd_dev = list_entry(tmp, struct rbd_device, node);
2457 if (rbd_dev->id == id) {
2458 spin_unlock(&rbd_dev_list_lock);
2459 return rbd_dev;
2460 }
2461 }
2462 spin_unlock(&rbd_dev_list_lock);
2463 return NULL;
2464}
2465
2466static void rbd_dev_release(struct device *dev)
2467{
2468 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2469
2470 if (rbd_dev->watch_request) {
2471 struct ceph_client *client = rbd_dev->rbd_client->client;
2472
2473 ceph_osdc_unregister_linger_request(&client->osdc,
2474 rbd_dev->watch_request);
2475 }
2476 if (rbd_dev->watch_event)
2477 rbd_req_sync_unwatch(rbd_dev, rbd_dev->obj_md_name);
2478
2479 rbd_put_client(rbd_dev);
2480
2481 /* clean up and free blkdev */
2482 rbd_free_disk(rbd_dev);
2483 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2484
2485 /* done with the id, and with the rbd_dev */
2486 rbd_id_put(rbd_dev);
2487 kfree(rbd_dev);
2488
2489 /* release module ref */
2490 module_put(THIS_MODULE);
2491}
2492
2493static ssize_t rbd_remove(struct bus_type *bus,
2494 const char *buf,
2495 size_t count)
2496{
2497 struct rbd_device *rbd_dev = NULL;
2498 int target_id, rc;
2499 unsigned long ul;
2500 int ret = count;
2501
2502 rc = strict_strtoul(buf, 10, &ul);
2503 if (rc)
2504 return rc;
2505
2506 /* convert to int; abort if we lost anything in the conversion */
2507 target_id = (int) ul;
2508 if (target_id != ul)
2509 return -EINVAL;
2510
2511 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2512
2513 rbd_dev = __rbd_get_dev(target_id);
2514 if (!rbd_dev) {
2515 ret = -ENOENT;
2516 goto done;
2517 }
2518
2519 __rbd_remove_all_snaps(rbd_dev);
2520 rbd_bus_del_dev(rbd_dev);
2521
2522done:
2523 mutex_unlock(&ctl_mutex);
2524 return ret;
2525}
2526
2527static ssize_t rbd_snap_add(struct device *dev,
2528 struct device_attribute *attr,
2529 const char *buf,
2530 size_t count)
2531{
2532 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2533 int ret;
2534 char *name = kmalloc(count + 1, GFP_KERNEL);
2535 if (!name)
2536 return -ENOMEM;
2537
2538 snprintf(name, count, "%s", buf);
2539
2540 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2541
2542 ret = rbd_header_add_snap(rbd_dev,
2543 name, GFP_KERNEL);
2544 if (ret < 0)
2545 goto err_unlock;
2546
2547 ret = __rbd_refresh_header(rbd_dev);
2548 if (ret < 0)
2549 goto err_unlock;
2550
2551 /* shouldn't hold ctl_mutex when notifying.. notify might
2552 trigger a watch callback that would need to get that mutex */
2553 mutex_unlock(&ctl_mutex);
2554
2555 /* make a best effort, don't error if failed */
2556 rbd_req_sync_notify(rbd_dev, rbd_dev->obj_md_name);
2557
2558 ret = count;
2559 kfree(name);
2560 return ret;
2561
2562err_unlock:
2563 mutex_unlock(&ctl_mutex);
2564 kfree(name);
2565 return ret;
2566}
2567
2568/*
2569 * create control files in sysfs
2570 * /sys/bus/rbd/...
2571 */
2572static int rbd_sysfs_init(void)
2573{
2574 int ret;
2575
2576 ret = device_register(&rbd_root_dev);
2577 if (ret < 0)
2578 return ret;
2579
2580 ret = bus_register(&rbd_bus_type);
2581 if (ret < 0)
2582 device_unregister(&rbd_root_dev);
2583
2584 return ret;
2585}
2586
2587static void rbd_sysfs_cleanup(void)
2588{
2589 bus_unregister(&rbd_bus_type);
2590 device_unregister(&rbd_root_dev);
2591}
2592
2593int __init rbd_init(void)
2594{
2595 int rc;
2596
2597 rc = rbd_sysfs_init();
2598 if (rc)
2599 return rc;
2600 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
2601 return 0;
2602}
2603
2604void __exit rbd_exit(void)
2605{
2606 rbd_sysfs_cleanup();
2607}
2608
2609module_init(rbd_init);
2610module_exit(rbd_exit);
2611
2612MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2613MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2614MODULE_DESCRIPTION("rados block device");
2615
2616/* following authorship retained from original osdblk.c */
2617MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2618
2619MODULE_LICENSE("GPL");