Linux Audio

Check our new training course

Loading...
v3.1
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/sysdev.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
  18
  19#define HPET_MASK			CLOCKSOURCE_MASK(32)
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC			1000000L
  24
  25#define HPET_DEV_USED_BIT		2
  26#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID			0x8
  28#define HPET_DEV_FSB_CAP		0x1000
  29#define HPET_DEV_PERI_CAP		0x2000
  30
  31#define HPET_MIN_CYCLES			128
  32#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
  34#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
  35
  36/*
  37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  38 */
  39unsigned long				hpet_address;
  40u8					hpet_blockid; /* OS timer block num */
  41u8					hpet_msi_disable;
  42
  43#ifdef CONFIG_PCI_MSI
  44static unsigned long			hpet_num_timers;
  45#endif
  46static void __iomem			*hpet_virt_address;
  47
  48struct hpet_dev {
  49	struct clock_event_device	evt;
  50	unsigned int			num;
  51	int				cpu;
  52	unsigned int			irq;
  53	unsigned int			flags;
  54	char				name[10];
  55};
  56
 
 
 
 
 
  57inline unsigned int hpet_readl(unsigned int a)
  58{
  59	return readl(hpet_virt_address + a);
  60}
  61
  62static inline void hpet_writel(unsigned int d, unsigned int a)
  63{
  64	writel(d, hpet_virt_address + a);
  65}
  66
  67#ifdef CONFIG_X86_64
  68#include <asm/pgtable.h>
  69#endif
  70
  71static inline void hpet_set_mapping(void)
  72{
  73	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  74#ifdef CONFIG_X86_64
  75	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  76#endif
  77}
  78
  79static inline void hpet_clear_mapping(void)
  80{
  81	iounmap(hpet_virt_address);
  82	hpet_virt_address = NULL;
  83}
  84
  85/*
  86 * HPET command line enable / disable
  87 */
  88static int boot_hpet_disable;
  89int hpet_force_user;
  90static int hpet_verbose;
  91
  92static int __init hpet_setup(char *str)
  93{
  94	if (str) {
 
 
 
 
  95		if (!strncmp("disable", str, 7))
  96			boot_hpet_disable = 1;
  97		if (!strncmp("force", str, 5))
  98			hpet_force_user = 1;
  99		if (!strncmp("verbose", str, 7))
 100			hpet_verbose = 1;
 
 101	}
 102	return 1;
 103}
 104__setup("hpet=", hpet_setup);
 105
 106static int __init disable_hpet(char *str)
 107{
 108	boot_hpet_disable = 1;
 109	return 1;
 110}
 111__setup("nohpet", disable_hpet);
 112
 113static inline int is_hpet_capable(void)
 114{
 115	return !boot_hpet_disable && hpet_address;
 116}
 117
 118/*
 119 * HPET timer interrupt enable / disable
 120 */
 121static int hpet_legacy_int_enabled;
 122
 123/**
 124 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 125 */
 126int is_hpet_enabled(void)
 127{
 128	return is_hpet_capable() && hpet_legacy_int_enabled;
 129}
 130EXPORT_SYMBOL_GPL(is_hpet_enabled);
 131
 132static void _hpet_print_config(const char *function, int line)
 133{
 134	u32 i, timers, l, h;
 135	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 136	l = hpet_readl(HPET_ID);
 137	h = hpet_readl(HPET_PERIOD);
 138	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 139	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 140	l = hpet_readl(HPET_CFG);
 141	h = hpet_readl(HPET_STATUS);
 142	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 143	l = hpet_readl(HPET_COUNTER);
 144	h = hpet_readl(HPET_COUNTER+4);
 145	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 146
 147	for (i = 0; i < timers; i++) {
 148		l = hpet_readl(HPET_Tn_CFG(i));
 149		h = hpet_readl(HPET_Tn_CFG(i)+4);
 150		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 151		       i, l, h);
 152		l = hpet_readl(HPET_Tn_CMP(i));
 153		h = hpet_readl(HPET_Tn_CMP(i)+4);
 154		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 155		       i, l, h);
 156		l = hpet_readl(HPET_Tn_ROUTE(i));
 157		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 158		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 159		       i, l, h);
 160	}
 161}
 162
 163#define hpet_print_config()					\
 164do {								\
 165	if (hpet_verbose)					\
 166		_hpet_print_config(__FUNCTION__, __LINE__);	\
 167} while (0)
 168
 169/*
 170 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 171 * timer 0 and timer 1 in case of RTC emulation.
 172 */
 173#ifdef CONFIG_HPET
 174
 175static void hpet_reserve_msi_timers(struct hpet_data *hd);
 176
 177static void hpet_reserve_platform_timers(unsigned int id)
 178{
 179	struct hpet __iomem *hpet = hpet_virt_address;
 180	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 181	unsigned int nrtimers, i;
 182	struct hpet_data hd;
 183
 184	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 185
 186	memset(&hd, 0, sizeof(hd));
 187	hd.hd_phys_address	= hpet_address;
 188	hd.hd_address		= hpet;
 189	hd.hd_nirqs		= nrtimers;
 190	hpet_reserve_timer(&hd, 0);
 191
 192#ifdef CONFIG_HPET_EMULATE_RTC
 193	hpet_reserve_timer(&hd, 1);
 194#endif
 195
 196	/*
 197	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 198	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 199	 * don't bother configuring *any* comparator interrupts.
 200	 */
 201	hd.hd_irq[0] = HPET_LEGACY_8254;
 202	hd.hd_irq[1] = HPET_LEGACY_RTC;
 203
 204	for (i = 2; i < nrtimers; timer++, i++) {
 205		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 206			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 207	}
 208
 209	hpet_reserve_msi_timers(&hd);
 210
 211	hpet_alloc(&hd);
 212
 213}
 214#else
 215static void hpet_reserve_platform_timers(unsigned int id) { }
 216#endif
 217
 218/*
 219 * Common hpet info
 220 */
 221static unsigned long hpet_freq;
 222
 223static void hpet_legacy_set_mode(enum clock_event_mode mode,
 224			  struct clock_event_device *evt);
 225static int hpet_legacy_next_event(unsigned long delta,
 226			   struct clock_event_device *evt);
 227
 228/*
 229 * The hpet clock event device
 230 */
 231static struct clock_event_device hpet_clockevent = {
 232	.name		= "hpet",
 233	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 234	.set_mode	= hpet_legacy_set_mode,
 235	.set_next_event = hpet_legacy_next_event,
 236	.irq		= 0,
 237	.rating		= 50,
 238};
 239
 240static void hpet_stop_counter(void)
 241{
 242	unsigned long cfg = hpet_readl(HPET_CFG);
 243	cfg &= ~HPET_CFG_ENABLE;
 244	hpet_writel(cfg, HPET_CFG);
 245}
 246
 247static void hpet_reset_counter(void)
 248{
 249	hpet_writel(0, HPET_COUNTER);
 250	hpet_writel(0, HPET_COUNTER + 4);
 251}
 252
 253static void hpet_start_counter(void)
 254{
 255	unsigned int cfg = hpet_readl(HPET_CFG);
 256	cfg |= HPET_CFG_ENABLE;
 257	hpet_writel(cfg, HPET_CFG);
 258}
 259
 260static void hpet_restart_counter(void)
 261{
 262	hpet_stop_counter();
 263	hpet_reset_counter();
 264	hpet_start_counter();
 265}
 266
 267static void hpet_resume_device(void)
 268{
 269	force_hpet_resume();
 270}
 271
 272static void hpet_resume_counter(struct clocksource *cs)
 273{
 274	hpet_resume_device();
 275	hpet_restart_counter();
 276}
 277
 278static void hpet_enable_legacy_int(void)
 279{
 280	unsigned int cfg = hpet_readl(HPET_CFG);
 281
 282	cfg |= HPET_CFG_LEGACY;
 283	hpet_writel(cfg, HPET_CFG);
 284	hpet_legacy_int_enabled = 1;
 285}
 286
 287static void hpet_legacy_clockevent_register(void)
 288{
 289	/* Start HPET legacy interrupts */
 290	hpet_enable_legacy_int();
 291
 292	/*
 293	 * Start hpet with the boot cpu mask and make it
 294	 * global after the IO_APIC has been initialized.
 295	 */
 296	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 297	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 298					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 299	global_clock_event = &hpet_clockevent;
 300	printk(KERN_DEBUG "hpet clockevent registered\n");
 301}
 302
 303static int hpet_setup_msi_irq(unsigned int irq);
 304
 305static void hpet_set_mode(enum clock_event_mode mode,
 306			  struct clock_event_device *evt, int timer)
 307{
 308	unsigned int cfg, cmp, now;
 309	uint64_t delta;
 310
 311	switch (mode) {
 312	case CLOCK_EVT_MODE_PERIODIC:
 313		hpet_stop_counter();
 314		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 315		delta >>= evt->shift;
 316		now = hpet_readl(HPET_COUNTER);
 317		cmp = now + (unsigned int) delta;
 318		cfg = hpet_readl(HPET_Tn_CFG(timer));
 319		/* Make sure we use edge triggered interrupts */
 320		cfg &= ~HPET_TN_LEVEL;
 321		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 322		       HPET_TN_SETVAL | HPET_TN_32BIT;
 323		hpet_writel(cfg, HPET_Tn_CFG(timer));
 324		hpet_writel(cmp, HPET_Tn_CMP(timer));
 325		udelay(1);
 326		/*
 327		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 328		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 329		 * bit is automatically cleared after the first write.
 330		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 331		 * Publication # 24674)
 332		 */
 333		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 334		hpet_start_counter();
 335		hpet_print_config();
 336		break;
 337
 338	case CLOCK_EVT_MODE_ONESHOT:
 339		cfg = hpet_readl(HPET_Tn_CFG(timer));
 340		cfg &= ~HPET_TN_PERIODIC;
 341		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 342		hpet_writel(cfg, HPET_Tn_CFG(timer));
 343		break;
 344
 345	case CLOCK_EVT_MODE_UNUSED:
 346	case CLOCK_EVT_MODE_SHUTDOWN:
 347		cfg = hpet_readl(HPET_Tn_CFG(timer));
 348		cfg &= ~HPET_TN_ENABLE;
 349		hpet_writel(cfg, HPET_Tn_CFG(timer));
 350		break;
 351
 352	case CLOCK_EVT_MODE_RESUME:
 353		if (timer == 0) {
 354			hpet_enable_legacy_int();
 355		} else {
 356			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 357			hpet_setup_msi_irq(hdev->irq);
 358			disable_irq(hdev->irq);
 359			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 360			enable_irq(hdev->irq);
 361		}
 362		hpet_print_config();
 363		break;
 364	}
 365}
 366
 367static int hpet_next_event(unsigned long delta,
 368			   struct clock_event_device *evt, int timer)
 369{
 370	u32 cnt;
 371	s32 res;
 372
 373	cnt = hpet_readl(HPET_COUNTER);
 374	cnt += (u32) delta;
 375	hpet_writel(cnt, HPET_Tn_CMP(timer));
 376
 377	/*
 378	 * HPETs are a complete disaster. The compare register is
 379	 * based on a equal comparison and neither provides a less
 380	 * than or equal functionality (which would require to take
 381	 * the wraparound into account) nor a simple count down event
 382	 * mode. Further the write to the comparator register is
 383	 * delayed internally up to two HPET clock cycles in certain
 384	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 385	 * longer delays. We worked around that by reading back the
 386	 * compare register, but that required another workaround for
 387	 * ICH9,10 chips where the first readout after write can
 388	 * return the old stale value. We already had a minimum
 389	 * programming delta of 5us enforced, but a NMI or SMI hitting
 390	 * between the counter readout and the comparator write can
 391	 * move us behind that point easily. Now instead of reading
 392	 * the compare register back several times, we make the ETIME
 393	 * decision based on the following: Return ETIME if the
 394	 * counter value after the write is less than HPET_MIN_CYCLES
 395	 * away from the event or if the counter is already ahead of
 396	 * the event. The minimum programming delta for the generic
 397	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 398	 */
 399	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 400
 401	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 402}
 403
 404static void hpet_legacy_set_mode(enum clock_event_mode mode,
 405			struct clock_event_device *evt)
 406{
 407	hpet_set_mode(mode, evt, 0);
 408}
 409
 410static int hpet_legacy_next_event(unsigned long delta,
 411			struct clock_event_device *evt)
 412{
 413	return hpet_next_event(delta, evt, 0);
 414}
 415
 416/*
 417 * HPET MSI Support
 418 */
 419#ifdef CONFIG_PCI_MSI
 420
 421static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 422static struct hpet_dev	*hpet_devs;
 423
 424void hpet_msi_unmask(struct irq_data *data)
 425{
 426	struct hpet_dev *hdev = data->handler_data;
 427	unsigned int cfg;
 428
 429	/* unmask it */
 430	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 431	cfg |= HPET_TN_FSB;
 432	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 433}
 434
 435void hpet_msi_mask(struct irq_data *data)
 436{
 437	struct hpet_dev *hdev = data->handler_data;
 438	unsigned int cfg;
 439
 440	/* mask it */
 441	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 442	cfg &= ~HPET_TN_FSB;
 443	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 444}
 445
 446void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 447{
 448	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 449	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 450}
 451
 452void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 455	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 456	msg->address_hi = 0;
 457}
 458
 459static void hpet_msi_set_mode(enum clock_event_mode mode,
 460				struct clock_event_device *evt)
 461{
 462	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 463	hpet_set_mode(mode, evt, hdev->num);
 464}
 465
 466static int hpet_msi_next_event(unsigned long delta,
 467				struct clock_event_device *evt)
 468{
 469	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 470	return hpet_next_event(delta, evt, hdev->num);
 471}
 472
 473static int hpet_setup_msi_irq(unsigned int irq)
 474{
 475	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
 476		destroy_irq(irq);
 477		return -EINVAL;
 478	}
 479	return 0;
 480}
 481
 482static int hpet_assign_irq(struct hpet_dev *dev)
 483{
 484	unsigned int irq;
 485
 486	irq = create_irq_nr(0, -1);
 487	if (!irq)
 488		return -EINVAL;
 489
 490	irq_set_handler_data(irq, dev);
 491
 492	if (hpet_setup_msi_irq(irq))
 493		return -EINVAL;
 494
 495	dev->irq = irq;
 496	return 0;
 497}
 498
 499static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 500{
 501	struct hpet_dev *dev = (struct hpet_dev *)data;
 502	struct clock_event_device *hevt = &dev->evt;
 503
 504	if (!hevt->event_handler) {
 505		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 506				dev->num);
 507		return IRQ_HANDLED;
 508	}
 509
 510	hevt->event_handler(hevt);
 511	return IRQ_HANDLED;
 512}
 513
 514static int hpet_setup_irq(struct hpet_dev *dev)
 515{
 516
 517	if (request_irq(dev->irq, hpet_interrupt_handler,
 518			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 519			dev->name, dev))
 520		return -1;
 521
 522	disable_irq(dev->irq);
 523	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 524	enable_irq(dev->irq);
 525
 526	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 527			 dev->name, dev->irq);
 528
 529	return 0;
 530}
 531
 532/* This should be called in specific @cpu */
 533static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 534{
 535	struct clock_event_device *evt = &hdev->evt;
 536
 537	WARN_ON(cpu != smp_processor_id());
 538	if (!(hdev->flags & HPET_DEV_VALID))
 539		return;
 540
 541	if (hpet_setup_msi_irq(hdev->irq))
 542		return;
 543
 544	hdev->cpu = cpu;
 545	per_cpu(cpu_hpet_dev, cpu) = hdev;
 546	evt->name = hdev->name;
 547	hpet_setup_irq(hdev);
 548	evt->irq = hdev->irq;
 549
 550	evt->rating = 110;
 551	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 552	if (hdev->flags & HPET_DEV_PERI_CAP)
 553		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 554
 555	evt->set_mode = hpet_msi_set_mode;
 556	evt->set_next_event = hpet_msi_next_event;
 557	evt->cpumask = cpumask_of(hdev->cpu);
 558
 559	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 560					0x7FFFFFFF);
 561}
 562
 563#ifdef CONFIG_HPET
 564/* Reserve at least one timer for userspace (/dev/hpet) */
 565#define RESERVE_TIMERS 1
 566#else
 567#define RESERVE_TIMERS 0
 568#endif
 569
 570static void hpet_msi_capability_lookup(unsigned int start_timer)
 571{
 572	unsigned int id;
 573	unsigned int num_timers;
 574	unsigned int num_timers_used = 0;
 575	int i;
 576
 577	if (hpet_msi_disable)
 578		return;
 579
 580	if (boot_cpu_has(X86_FEATURE_ARAT))
 581		return;
 582	id = hpet_readl(HPET_ID);
 583
 584	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 585	num_timers++; /* Value read out starts from 0 */
 586	hpet_print_config();
 587
 588	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 589	if (!hpet_devs)
 590		return;
 591
 592	hpet_num_timers = num_timers;
 593
 594	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 595		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 596		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 597
 598		/* Only consider HPET timer with MSI support */
 599		if (!(cfg & HPET_TN_FSB_CAP))
 600			continue;
 601
 602		hdev->flags = 0;
 603		if (cfg & HPET_TN_PERIODIC_CAP)
 604			hdev->flags |= HPET_DEV_PERI_CAP;
 605		hdev->num = i;
 606
 607		sprintf(hdev->name, "hpet%d", i);
 608		if (hpet_assign_irq(hdev))
 609			continue;
 610
 611		hdev->flags |= HPET_DEV_FSB_CAP;
 612		hdev->flags |= HPET_DEV_VALID;
 613		num_timers_used++;
 614		if (num_timers_used == num_possible_cpus())
 615			break;
 616	}
 617
 618	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 619		num_timers, num_timers_used);
 620}
 621
 622#ifdef CONFIG_HPET
 623static void hpet_reserve_msi_timers(struct hpet_data *hd)
 624{
 625	int i;
 626
 627	if (!hpet_devs)
 628		return;
 629
 630	for (i = 0; i < hpet_num_timers; i++) {
 631		struct hpet_dev *hdev = &hpet_devs[i];
 632
 633		if (!(hdev->flags & HPET_DEV_VALID))
 634			continue;
 635
 636		hd->hd_irq[hdev->num] = hdev->irq;
 637		hpet_reserve_timer(hd, hdev->num);
 638	}
 639}
 640#endif
 641
 642static struct hpet_dev *hpet_get_unused_timer(void)
 643{
 644	int i;
 645
 646	if (!hpet_devs)
 647		return NULL;
 648
 649	for (i = 0; i < hpet_num_timers; i++) {
 650		struct hpet_dev *hdev = &hpet_devs[i];
 651
 652		if (!(hdev->flags & HPET_DEV_VALID))
 653			continue;
 654		if (test_and_set_bit(HPET_DEV_USED_BIT,
 655			(unsigned long *)&hdev->flags))
 656			continue;
 657		return hdev;
 658	}
 659	return NULL;
 660}
 661
 662struct hpet_work_struct {
 663	struct delayed_work work;
 664	struct completion complete;
 665};
 666
 667static void hpet_work(struct work_struct *w)
 668{
 669	struct hpet_dev *hdev;
 670	int cpu = smp_processor_id();
 671	struct hpet_work_struct *hpet_work;
 672
 673	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 674
 675	hdev = hpet_get_unused_timer();
 676	if (hdev)
 677		init_one_hpet_msi_clockevent(hdev, cpu);
 678
 679	complete(&hpet_work->complete);
 680}
 681
 682static int hpet_cpuhp_notify(struct notifier_block *n,
 683		unsigned long action, void *hcpu)
 684{
 685	unsigned long cpu = (unsigned long)hcpu;
 686	struct hpet_work_struct work;
 687	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 688
 689	switch (action & 0xf) {
 690	case CPU_ONLINE:
 691		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 692		init_completion(&work.complete);
 693		/* FIXME: add schedule_work_on() */
 694		schedule_delayed_work_on(cpu, &work.work, 0);
 695		wait_for_completion(&work.complete);
 696		destroy_timer_on_stack(&work.work.timer);
 697		break;
 698	case CPU_DEAD:
 699		if (hdev) {
 700			free_irq(hdev->irq, hdev);
 701			hdev->flags &= ~HPET_DEV_USED;
 702			per_cpu(cpu_hpet_dev, cpu) = NULL;
 703		}
 704		break;
 705	}
 706	return NOTIFY_OK;
 707}
 708#else
 709
 710static int hpet_setup_msi_irq(unsigned int irq)
 711{
 712	return 0;
 713}
 714static void hpet_msi_capability_lookup(unsigned int start_timer)
 715{
 716	return;
 717}
 718
 719#ifdef CONFIG_HPET
 720static void hpet_reserve_msi_timers(struct hpet_data *hd)
 721{
 722	return;
 723}
 724#endif
 725
 726static int hpet_cpuhp_notify(struct notifier_block *n,
 727		unsigned long action, void *hcpu)
 728{
 729	return NOTIFY_OK;
 730}
 731
 732#endif
 733
 734/*
 735 * Clock source related code
 736 */
 737static cycle_t read_hpet(struct clocksource *cs)
 738{
 739	return (cycle_t)hpet_readl(HPET_COUNTER);
 740}
 741
 742static struct clocksource clocksource_hpet = {
 743	.name		= "hpet",
 744	.rating		= 250,
 745	.read		= read_hpet,
 746	.mask		= HPET_MASK,
 747	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 748	.resume		= hpet_resume_counter,
 749#ifdef CONFIG_X86_64
 750	.archdata	= { .vclock_mode = VCLOCK_HPET },
 751#endif
 752};
 753
 754static int hpet_clocksource_register(void)
 755{
 756	u64 start, now;
 757	cycle_t t1;
 758
 759	/* Start the counter */
 760	hpet_restart_counter();
 761
 762	/* Verify whether hpet counter works */
 763	t1 = hpet_readl(HPET_COUNTER);
 764	rdtscll(start);
 765
 766	/*
 767	 * We don't know the TSC frequency yet, but waiting for
 768	 * 200000 TSC cycles is safe:
 769	 * 4 GHz == 50us
 770	 * 1 GHz == 200us
 771	 */
 772	do {
 773		rep_nop();
 774		rdtscll(now);
 775	} while ((now - start) < 200000UL);
 776
 777	if (t1 == hpet_readl(HPET_COUNTER)) {
 778		printk(KERN_WARNING
 779		       "HPET counter not counting. HPET disabled\n");
 780		return -ENODEV;
 781	}
 782
 783	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 784	return 0;
 785}
 786
 
 
 787/**
 788 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 789 */
 790int __init hpet_enable(void)
 791{
 792	unsigned long hpet_period;
 793	unsigned int id;
 794	u64 freq;
 795	int i;
 796
 797	if (!is_hpet_capable())
 798		return 0;
 799
 800	hpet_set_mapping();
 801
 802	/*
 803	 * Read the period and check for a sane value:
 804	 */
 805	hpet_period = hpet_readl(HPET_PERIOD);
 806
 807	/*
 808	 * AMD SB700 based systems with spread spectrum enabled use a
 809	 * SMM based HPET emulation to provide proper frequency
 810	 * setting. The SMM code is initialized with the first HPET
 811	 * register access and takes some time to complete. During
 812	 * this time the config register reads 0xffffffff. We check
 813	 * for max. 1000 loops whether the config register reads a non
 814	 * 0xffffffff value to make sure that HPET is up and running
 815	 * before we go further. A counting loop is safe, as the HPET
 816	 * access takes thousands of CPU cycles. On non SB700 based
 817	 * machines this check is only done once and has no side
 818	 * effects.
 819	 */
 820	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 821		if (i == 1000) {
 822			printk(KERN_WARNING
 823			       "HPET config register value = 0xFFFFFFFF. "
 824			       "Disabling HPET\n");
 825			goto out_nohpet;
 826		}
 827	}
 828
 829	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 830		goto out_nohpet;
 831
 832	/*
 833	 * The period is a femto seconds value. Convert it to a
 834	 * frequency.
 835	 */
 836	freq = FSEC_PER_SEC;
 837	do_div(freq, hpet_period);
 838	hpet_freq = freq;
 839
 840	/*
 841	 * Read the HPET ID register to retrieve the IRQ routing
 842	 * information and the number of channels
 843	 */
 844	id = hpet_readl(HPET_ID);
 845	hpet_print_config();
 846
 
 
 847#ifdef CONFIG_HPET_EMULATE_RTC
 848	/*
 849	 * The legacy routing mode needs at least two channels, tick timer
 850	 * and the rtc emulation channel.
 851	 */
 852	if (!(id & HPET_ID_NUMBER))
 853		goto out_nohpet;
 854#endif
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	if (hpet_clocksource_register())
 857		goto out_nohpet;
 858
 859	if (id & HPET_ID_LEGSUP) {
 860		hpet_legacy_clockevent_register();
 861		return 1;
 862	}
 863	return 0;
 864
 865out_nohpet:
 866	hpet_clear_mapping();
 867	hpet_address = 0;
 868	return 0;
 869}
 870
 871/*
 872 * Needs to be late, as the reserve_timer code calls kalloc !
 873 *
 874 * Not a problem on i386 as hpet_enable is called from late_time_init,
 875 * but on x86_64 it is necessary !
 876 */
 877static __init int hpet_late_init(void)
 878{
 879	int cpu;
 880
 881	if (boot_hpet_disable)
 882		return -ENODEV;
 883
 884	if (!hpet_address) {
 885		if (!force_hpet_address)
 886			return -ENODEV;
 887
 888		hpet_address = force_hpet_address;
 889		hpet_enable();
 890	}
 891
 892	if (!hpet_virt_address)
 893		return -ENODEV;
 894
 895	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 896		hpet_msi_capability_lookup(2);
 897	else
 898		hpet_msi_capability_lookup(0);
 899
 900	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 901	hpet_print_config();
 902
 903	if (hpet_msi_disable)
 904		return 0;
 905
 906	if (boot_cpu_has(X86_FEATURE_ARAT))
 907		return 0;
 908
 
 909	for_each_online_cpu(cpu) {
 910		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 911	}
 912
 913	/* This notifier should be called after workqueue is ready */
 914	hotcpu_notifier(hpet_cpuhp_notify, -20);
 
 915
 916	return 0;
 917}
 918fs_initcall(hpet_late_init);
 919
 920void hpet_disable(void)
 921{
 922	if (is_hpet_capable() && hpet_virt_address) {
 923		unsigned int cfg = hpet_readl(HPET_CFG);
 924
 925		if (hpet_legacy_int_enabled) {
 
 
 926			cfg &= ~HPET_CFG_LEGACY;
 927			hpet_legacy_int_enabled = 0;
 928		}
 929		cfg &= ~HPET_CFG_ENABLE;
 930		hpet_writel(cfg, HPET_CFG);
 
 
 
 
 
 
 
 
 
 
 
 
 931	}
 932}
 933
 934#ifdef CONFIG_HPET_EMULATE_RTC
 935
 936/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 937 * is enabled, we support RTC interrupt functionality in software.
 938 * RTC has 3 kinds of interrupts:
 939 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 940 *    is updated
 941 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 942 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 943 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 944 * (1) and (2) above are implemented using polling at a frequency of
 945 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 946 * overhead. (DEFAULT_RTC_INT_FREQ)
 947 * For (3), we use interrupts at 64Hz or user specified periodic
 948 * frequency, whichever is higher.
 949 */
 950#include <linux/mc146818rtc.h>
 951#include <linux/rtc.h>
 952#include <asm/rtc.h>
 953
 954#define DEFAULT_RTC_INT_FREQ	64
 955#define DEFAULT_RTC_SHIFT	6
 956#define RTC_NUM_INTS		1
 957
 958static unsigned long hpet_rtc_flags;
 959static int hpet_prev_update_sec;
 960static struct rtc_time hpet_alarm_time;
 961static unsigned long hpet_pie_count;
 962static u32 hpet_t1_cmp;
 963static u32 hpet_default_delta;
 964static u32 hpet_pie_delta;
 965static unsigned long hpet_pie_limit;
 966
 967static rtc_irq_handler irq_handler;
 968
 969/*
 970 * Check that the hpet counter c1 is ahead of the c2
 971 */
 972static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 973{
 974	return (s32)(c2 - c1) < 0;
 975}
 976
 977/*
 978 * Registers a IRQ handler.
 979 */
 980int hpet_register_irq_handler(rtc_irq_handler handler)
 981{
 982	if (!is_hpet_enabled())
 983		return -ENODEV;
 984	if (irq_handler)
 985		return -EBUSY;
 986
 987	irq_handler = handler;
 988
 989	return 0;
 990}
 991EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
 992
 993/*
 994 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 995 * and does cleanup.
 996 */
 997void hpet_unregister_irq_handler(rtc_irq_handler handler)
 998{
 999	if (!is_hpet_enabled())
1000		return;
1001
1002	irq_handler = NULL;
1003	hpet_rtc_flags = 0;
1004}
1005EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1006
1007/*
1008 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1009 * is not supported by all HPET implementations for timer 1.
1010 *
1011 * hpet_rtc_timer_init() is called when the rtc is initialized.
1012 */
1013int hpet_rtc_timer_init(void)
1014{
1015	unsigned int cfg, cnt, delta;
1016	unsigned long flags;
1017
1018	if (!is_hpet_enabled())
1019		return 0;
1020
1021	if (!hpet_default_delta) {
1022		uint64_t clc;
1023
1024		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1025		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1026		hpet_default_delta = clc;
1027	}
1028
1029	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1030		delta = hpet_default_delta;
1031	else
1032		delta = hpet_pie_delta;
1033
1034	local_irq_save(flags);
1035
1036	cnt = delta + hpet_readl(HPET_COUNTER);
1037	hpet_writel(cnt, HPET_T1_CMP);
1038	hpet_t1_cmp = cnt;
1039
1040	cfg = hpet_readl(HPET_T1_CFG);
1041	cfg &= ~HPET_TN_PERIODIC;
1042	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1043	hpet_writel(cfg, HPET_T1_CFG);
1044
1045	local_irq_restore(flags);
1046
1047	return 1;
1048}
1049EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1050
 
 
 
 
 
 
 
 
1051/*
1052 * The functions below are called from rtc driver.
1053 * Return 0 if HPET is not being used.
1054 * Otherwise do the necessary changes and return 1.
1055 */
1056int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1057{
1058	if (!is_hpet_enabled())
1059		return 0;
1060
1061	hpet_rtc_flags &= ~bit_mask;
 
 
 
1062	return 1;
1063}
1064EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1065
1066int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1067{
1068	unsigned long oldbits = hpet_rtc_flags;
1069
1070	if (!is_hpet_enabled())
1071		return 0;
1072
1073	hpet_rtc_flags |= bit_mask;
1074
1075	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1076		hpet_prev_update_sec = -1;
1077
1078	if (!oldbits)
1079		hpet_rtc_timer_init();
1080
1081	return 1;
1082}
1083EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1084
1085int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1086			unsigned char sec)
1087{
1088	if (!is_hpet_enabled())
1089		return 0;
1090
1091	hpet_alarm_time.tm_hour = hrs;
1092	hpet_alarm_time.tm_min = min;
1093	hpet_alarm_time.tm_sec = sec;
1094
1095	return 1;
1096}
1097EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1098
1099int hpet_set_periodic_freq(unsigned long freq)
1100{
1101	uint64_t clc;
1102
1103	if (!is_hpet_enabled())
1104		return 0;
1105
1106	if (freq <= DEFAULT_RTC_INT_FREQ)
1107		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1108	else {
1109		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1110		do_div(clc, freq);
1111		clc >>= hpet_clockevent.shift;
1112		hpet_pie_delta = clc;
1113		hpet_pie_limit = 0;
1114	}
1115	return 1;
1116}
1117EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1118
1119int hpet_rtc_dropped_irq(void)
1120{
1121	return is_hpet_enabled();
1122}
1123EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1124
1125static void hpet_rtc_timer_reinit(void)
1126{
1127	unsigned int cfg, delta;
1128	int lost_ints = -1;
1129
1130	if (unlikely(!hpet_rtc_flags)) {
1131		cfg = hpet_readl(HPET_T1_CFG);
1132		cfg &= ~HPET_TN_ENABLE;
1133		hpet_writel(cfg, HPET_T1_CFG);
1134		return;
1135	}
1136
1137	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1138		delta = hpet_default_delta;
1139	else
1140		delta = hpet_pie_delta;
1141
1142	/*
1143	 * Increment the comparator value until we are ahead of the
1144	 * current count.
1145	 */
1146	do {
1147		hpet_t1_cmp += delta;
1148		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1149		lost_ints++;
1150	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1151
1152	if (lost_ints) {
1153		if (hpet_rtc_flags & RTC_PIE)
1154			hpet_pie_count += lost_ints;
1155		if (printk_ratelimit())
1156			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1157				lost_ints);
1158	}
1159}
1160
1161irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1162{
1163	struct rtc_time curr_time;
1164	unsigned long rtc_int_flag = 0;
1165
1166	hpet_rtc_timer_reinit();
1167	memset(&curr_time, 0, sizeof(struct rtc_time));
1168
1169	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1170		get_rtc_time(&curr_time);
1171
1172	if (hpet_rtc_flags & RTC_UIE &&
1173	    curr_time.tm_sec != hpet_prev_update_sec) {
1174		if (hpet_prev_update_sec >= 0)
1175			rtc_int_flag = RTC_UF;
1176		hpet_prev_update_sec = curr_time.tm_sec;
1177	}
1178
1179	if (hpet_rtc_flags & RTC_PIE &&
1180	    ++hpet_pie_count >= hpet_pie_limit) {
1181		rtc_int_flag |= RTC_PF;
1182		hpet_pie_count = 0;
1183	}
1184
1185	if (hpet_rtc_flags & RTC_AIE &&
1186	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1187	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1188	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1189			rtc_int_flag |= RTC_AF;
1190
1191	if (rtc_int_flag) {
1192		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1193		if (irq_handler)
1194			irq_handler(rtc_int_flag, dev_id);
1195	}
1196	return IRQ_HANDLED;
1197}
1198EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1199#endif
v3.15
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
  18
  19#define HPET_MASK			CLOCKSOURCE_MASK(32)
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC			1000000L
  24
  25#define HPET_DEV_USED_BIT		2
  26#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID			0x8
  28#define HPET_DEV_FSB_CAP		0x1000
  29#define HPET_DEV_PERI_CAP		0x2000
  30
  31#define HPET_MIN_CYCLES			128
  32#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
 
 
  34/*
  35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  36 */
  37unsigned long				hpet_address;
  38u8					hpet_blockid; /* OS timer block num */
  39u8					hpet_msi_disable;
  40
  41#ifdef CONFIG_PCI_MSI
  42static unsigned long			hpet_num_timers;
  43#endif
  44static void __iomem			*hpet_virt_address;
  45
  46struct hpet_dev {
  47	struct clock_event_device	evt;
  48	unsigned int			num;
  49	int				cpu;
  50	unsigned int			irq;
  51	unsigned int			flags;
  52	char				name[10];
  53};
  54
  55inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
  56{
  57	return container_of(evtdev, struct hpet_dev, evt);
  58}
  59
  60inline unsigned int hpet_readl(unsigned int a)
  61{
  62	return readl(hpet_virt_address + a);
  63}
  64
  65static inline void hpet_writel(unsigned int d, unsigned int a)
  66{
  67	writel(d, hpet_virt_address + a);
  68}
  69
  70#ifdef CONFIG_X86_64
  71#include <asm/pgtable.h>
  72#endif
  73
  74static inline void hpet_set_mapping(void)
  75{
  76	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  77#ifdef CONFIG_X86_64
  78	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  79#endif
  80}
  81
  82static inline void hpet_clear_mapping(void)
  83{
  84	iounmap(hpet_virt_address);
  85	hpet_virt_address = NULL;
  86}
  87
  88/*
  89 * HPET command line enable / disable
  90 */
  91int boot_hpet_disable;
  92int hpet_force_user;
  93static int hpet_verbose;
  94
  95static int __init hpet_setup(char *str)
  96{
  97	while (str) {
  98		char *next = strchr(str, ',');
  99
 100		if (next)
 101			*next++ = 0;
 102		if (!strncmp("disable", str, 7))
 103			boot_hpet_disable = 1;
 104		if (!strncmp("force", str, 5))
 105			hpet_force_user = 1;
 106		if (!strncmp("verbose", str, 7))
 107			hpet_verbose = 1;
 108		str = next;
 109	}
 110	return 1;
 111}
 112__setup("hpet=", hpet_setup);
 113
 114static int __init disable_hpet(char *str)
 115{
 116	boot_hpet_disable = 1;
 117	return 1;
 118}
 119__setup("nohpet", disable_hpet);
 120
 121static inline int is_hpet_capable(void)
 122{
 123	return !boot_hpet_disable && hpet_address;
 124}
 125
 126/*
 127 * HPET timer interrupt enable / disable
 128 */
 129static int hpet_legacy_int_enabled;
 130
 131/**
 132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 133 */
 134int is_hpet_enabled(void)
 135{
 136	return is_hpet_capable() && hpet_legacy_int_enabled;
 137}
 138EXPORT_SYMBOL_GPL(is_hpet_enabled);
 139
 140static void _hpet_print_config(const char *function, int line)
 141{
 142	u32 i, timers, l, h;
 143	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 144	l = hpet_readl(HPET_ID);
 145	h = hpet_readl(HPET_PERIOD);
 146	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 147	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 148	l = hpet_readl(HPET_CFG);
 149	h = hpet_readl(HPET_STATUS);
 150	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 151	l = hpet_readl(HPET_COUNTER);
 152	h = hpet_readl(HPET_COUNTER+4);
 153	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 154
 155	for (i = 0; i < timers; i++) {
 156		l = hpet_readl(HPET_Tn_CFG(i));
 157		h = hpet_readl(HPET_Tn_CFG(i)+4);
 158		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 159		       i, l, h);
 160		l = hpet_readl(HPET_Tn_CMP(i));
 161		h = hpet_readl(HPET_Tn_CMP(i)+4);
 162		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 163		       i, l, h);
 164		l = hpet_readl(HPET_Tn_ROUTE(i));
 165		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 166		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 167		       i, l, h);
 168	}
 169}
 170
 171#define hpet_print_config()					\
 172do {								\
 173	if (hpet_verbose)					\
 174		_hpet_print_config(__FUNCTION__, __LINE__);	\
 175} while (0)
 176
 177/*
 178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 179 * timer 0 and timer 1 in case of RTC emulation.
 180 */
 181#ifdef CONFIG_HPET
 182
 183static void hpet_reserve_msi_timers(struct hpet_data *hd);
 184
 185static void hpet_reserve_platform_timers(unsigned int id)
 186{
 187	struct hpet __iomem *hpet = hpet_virt_address;
 188	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 189	unsigned int nrtimers, i;
 190	struct hpet_data hd;
 191
 192	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 193
 194	memset(&hd, 0, sizeof(hd));
 195	hd.hd_phys_address	= hpet_address;
 196	hd.hd_address		= hpet;
 197	hd.hd_nirqs		= nrtimers;
 198	hpet_reserve_timer(&hd, 0);
 199
 200#ifdef CONFIG_HPET_EMULATE_RTC
 201	hpet_reserve_timer(&hd, 1);
 202#endif
 203
 204	/*
 205	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 206	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 207	 * don't bother configuring *any* comparator interrupts.
 208	 */
 209	hd.hd_irq[0] = HPET_LEGACY_8254;
 210	hd.hd_irq[1] = HPET_LEGACY_RTC;
 211
 212	for (i = 2; i < nrtimers; timer++, i++) {
 213		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 214			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 215	}
 216
 217	hpet_reserve_msi_timers(&hd);
 218
 219	hpet_alloc(&hd);
 220
 221}
 222#else
 223static void hpet_reserve_platform_timers(unsigned int id) { }
 224#endif
 225
 226/*
 227 * Common hpet info
 228 */
 229static unsigned long hpet_freq;
 230
 231static void hpet_legacy_set_mode(enum clock_event_mode mode,
 232			  struct clock_event_device *evt);
 233static int hpet_legacy_next_event(unsigned long delta,
 234			   struct clock_event_device *evt);
 235
 236/*
 237 * The hpet clock event device
 238 */
 239static struct clock_event_device hpet_clockevent = {
 240	.name		= "hpet",
 241	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 242	.set_mode	= hpet_legacy_set_mode,
 243	.set_next_event = hpet_legacy_next_event,
 244	.irq		= 0,
 245	.rating		= 50,
 246};
 247
 248static void hpet_stop_counter(void)
 249{
 250	unsigned long cfg = hpet_readl(HPET_CFG);
 251	cfg &= ~HPET_CFG_ENABLE;
 252	hpet_writel(cfg, HPET_CFG);
 253}
 254
 255static void hpet_reset_counter(void)
 256{
 257	hpet_writel(0, HPET_COUNTER);
 258	hpet_writel(0, HPET_COUNTER + 4);
 259}
 260
 261static void hpet_start_counter(void)
 262{
 263	unsigned int cfg = hpet_readl(HPET_CFG);
 264	cfg |= HPET_CFG_ENABLE;
 265	hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270	hpet_stop_counter();
 271	hpet_reset_counter();
 272	hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277	force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282	hpet_resume_device();
 283	hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288	unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290	cfg |= HPET_CFG_LEGACY;
 291	hpet_writel(cfg, HPET_CFG);
 292	hpet_legacy_int_enabled = 1;
 293}
 294
 295static void hpet_legacy_clockevent_register(void)
 296{
 297	/* Start HPET legacy interrupts */
 298	hpet_enable_legacy_int();
 299
 300	/*
 301	 * Start hpet with the boot cpu mask and make it
 302	 * global after the IO_APIC has been initialized.
 303	 */
 304	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 305	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 306					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 307	global_clock_event = &hpet_clockevent;
 308	printk(KERN_DEBUG "hpet clockevent registered\n");
 309}
 310
 311static int hpet_setup_msi_irq(unsigned int irq);
 312
 313static void hpet_set_mode(enum clock_event_mode mode,
 314			  struct clock_event_device *evt, int timer)
 315{
 316	unsigned int cfg, cmp, now;
 317	uint64_t delta;
 318
 319	switch (mode) {
 320	case CLOCK_EVT_MODE_PERIODIC:
 321		hpet_stop_counter();
 322		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 323		delta >>= evt->shift;
 324		now = hpet_readl(HPET_COUNTER);
 325		cmp = now + (unsigned int) delta;
 326		cfg = hpet_readl(HPET_Tn_CFG(timer));
 
 
 327		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 328		       HPET_TN_SETVAL | HPET_TN_32BIT;
 329		hpet_writel(cfg, HPET_Tn_CFG(timer));
 330		hpet_writel(cmp, HPET_Tn_CMP(timer));
 331		udelay(1);
 332		/*
 333		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 334		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 335		 * bit is automatically cleared after the first write.
 336		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 337		 * Publication # 24674)
 338		 */
 339		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 340		hpet_start_counter();
 341		hpet_print_config();
 342		break;
 343
 344	case CLOCK_EVT_MODE_ONESHOT:
 345		cfg = hpet_readl(HPET_Tn_CFG(timer));
 346		cfg &= ~HPET_TN_PERIODIC;
 347		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 348		hpet_writel(cfg, HPET_Tn_CFG(timer));
 349		break;
 350
 351	case CLOCK_EVT_MODE_UNUSED:
 352	case CLOCK_EVT_MODE_SHUTDOWN:
 353		cfg = hpet_readl(HPET_Tn_CFG(timer));
 354		cfg &= ~HPET_TN_ENABLE;
 355		hpet_writel(cfg, HPET_Tn_CFG(timer));
 356		break;
 357
 358	case CLOCK_EVT_MODE_RESUME:
 359		if (timer == 0) {
 360			hpet_enable_legacy_int();
 361		} else {
 362			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 363			hpet_setup_msi_irq(hdev->irq);
 364			disable_irq(hdev->irq);
 365			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 366			enable_irq(hdev->irq);
 367		}
 368		hpet_print_config();
 369		break;
 370	}
 371}
 372
 373static int hpet_next_event(unsigned long delta,
 374			   struct clock_event_device *evt, int timer)
 375{
 376	u32 cnt;
 377	s32 res;
 378
 379	cnt = hpet_readl(HPET_COUNTER);
 380	cnt += (u32) delta;
 381	hpet_writel(cnt, HPET_Tn_CMP(timer));
 382
 383	/*
 384	 * HPETs are a complete disaster. The compare register is
 385	 * based on a equal comparison and neither provides a less
 386	 * than or equal functionality (which would require to take
 387	 * the wraparound into account) nor a simple count down event
 388	 * mode. Further the write to the comparator register is
 389	 * delayed internally up to two HPET clock cycles in certain
 390	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 391	 * longer delays. We worked around that by reading back the
 392	 * compare register, but that required another workaround for
 393	 * ICH9,10 chips where the first readout after write can
 394	 * return the old stale value. We already had a minimum
 395	 * programming delta of 5us enforced, but a NMI or SMI hitting
 396	 * between the counter readout and the comparator write can
 397	 * move us behind that point easily. Now instead of reading
 398	 * the compare register back several times, we make the ETIME
 399	 * decision based on the following: Return ETIME if the
 400	 * counter value after the write is less than HPET_MIN_CYCLES
 401	 * away from the event or if the counter is already ahead of
 402	 * the event. The minimum programming delta for the generic
 403	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 404	 */
 405	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 406
 407	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 408}
 409
 410static void hpet_legacy_set_mode(enum clock_event_mode mode,
 411			struct clock_event_device *evt)
 412{
 413	hpet_set_mode(mode, evt, 0);
 414}
 415
 416static int hpet_legacy_next_event(unsigned long delta,
 417			struct clock_event_device *evt)
 418{
 419	return hpet_next_event(delta, evt, 0);
 420}
 421
 422/*
 423 * HPET MSI Support
 424 */
 425#ifdef CONFIG_PCI_MSI
 426
 427static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 428static struct hpet_dev	*hpet_devs;
 429
 430void hpet_msi_unmask(struct irq_data *data)
 431{
 432	struct hpet_dev *hdev = data->handler_data;
 433	unsigned int cfg;
 434
 435	/* unmask it */
 436	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 437	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 438	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 439}
 440
 441void hpet_msi_mask(struct irq_data *data)
 442{
 443	struct hpet_dev *hdev = data->handler_data;
 444	unsigned int cfg;
 445
 446	/* mask it */
 447	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 448	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 449	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 450}
 451
 452void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 455	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 456}
 457
 458void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 459{
 460	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 461	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 462	msg->address_hi = 0;
 463}
 464
 465static void hpet_msi_set_mode(enum clock_event_mode mode,
 466				struct clock_event_device *evt)
 467{
 468	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 469	hpet_set_mode(mode, evt, hdev->num);
 470}
 471
 472static int hpet_msi_next_event(unsigned long delta,
 473				struct clock_event_device *evt)
 474{
 475	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 476	return hpet_next_event(delta, evt, hdev->num);
 477}
 478
 479static int hpet_setup_msi_irq(unsigned int irq)
 480{
 481	if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
 482		destroy_irq(irq);
 483		return -EINVAL;
 484	}
 485	return 0;
 486}
 487
 488static int hpet_assign_irq(struct hpet_dev *dev)
 489{
 490	unsigned int irq;
 491
 492	irq = create_irq_nr(0, -1);
 493	if (!irq)
 494		return -EINVAL;
 495
 496	irq_set_handler_data(irq, dev);
 497
 498	if (hpet_setup_msi_irq(irq))
 499		return -EINVAL;
 500
 501	dev->irq = irq;
 502	return 0;
 503}
 504
 505static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 506{
 507	struct hpet_dev *dev = (struct hpet_dev *)data;
 508	struct clock_event_device *hevt = &dev->evt;
 509
 510	if (!hevt->event_handler) {
 511		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 512				dev->num);
 513		return IRQ_HANDLED;
 514	}
 515
 516	hevt->event_handler(hevt);
 517	return IRQ_HANDLED;
 518}
 519
 520static int hpet_setup_irq(struct hpet_dev *dev)
 521{
 522
 523	if (request_irq(dev->irq, hpet_interrupt_handler,
 524			IRQF_TIMER | IRQF_NOBALANCING,
 525			dev->name, dev))
 526		return -1;
 527
 528	disable_irq(dev->irq);
 529	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 530	enable_irq(dev->irq);
 531
 532	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 533			 dev->name, dev->irq);
 534
 535	return 0;
 536}
 537
 538/* This should be called in specific @cpu */
 539static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 540{
 541	struct clock_event_device *evt = &hdev->evt;
 542
 543	WARN_ON(cpu != smp_processor_id());
 544	if (!(hdev->flags & HPET_DEV_VALID))
 545		return;
 546
 547	if (hpet_setup_msi_irq(hdev->irq))
 548		return;
 549
 550	hdev->cpu = cpu;
 551	per_cpu(cpu_hpet_dev, cpu) = hdev;
 552	evt->name = hdev->name;
 553	hpet_setup_irq(hdev);
 554	evt->irq = hdev->irq;
 555
 556	evt->rating = 110;
 557	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 558	if (hdev->flags & HPET_DEV_PERI_CAP)
 559		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 560
 561	evt->set_mode = hpet_msi_set_mode;
 562	evt->set_next_event = hpet_msi_next_event;
 563	evt->cpumask = cpumask_of(hdev->cpu);
 564
 565	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 566					0x7FFFFFFF);
 567}
 568
 569#ifdef CONFIG_HPET
 570/* Reserve at least one timer for userspace (/dev/hpet) */
 571#define RESERVE_TIMERS 1
 572#else
 573#define RESERVE_TIMERS 0
 574#endif
 575
 576static void hpet_msi_capability_lookup(unsigned int start_timer)
 577{
 578	unsigned int id;
 579	unsigned int num_timers;
 580	unsigned int num_timers_used = 0;
 581	int i;
 582
 583	if (hpet_msi_disable)
 584		return;
 585
 586	if (boot_cpu_has(X86_FEATURE_ARAT))
 587		return;
 588	id = hpet_readl(HPET_ID);
 589
 590	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 591	num_timers++; /* Value read out starts from 0 */
 592	hpet_print_config();
 593
 594	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 595	if (!hpet_devs)
 596		return;
 597
 598	hpet_num_timers = num_timers;
 599
 600	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 601		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 602		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 603
 604		/* Only consider HPET timer with MSI support */
 605		if (!(cfg & HPET_TN_FSB_CAP))
 606			continue;
 607
 608		hdev->flags = 0;
 609		if (cfg & HPET_TN_PERIODIC_CAP)
 610			hdev->flags |= HPET_DEV_PERI_CAP;
 611		hdev->num = i;
 612
 613		sprintf(hdev->name, "hpet%d", i);
 614		if (hpet_assign_irq(hdev))
 615			continue;
 616
 617		hdev->flags |= HPET_DEV_FSB_CAP;
 618		hdev->flags |= HPET_DEV_VALID;
 619		num_timers_used++;
 620		if (num_timers_used == num_possible_cpus())
 621			break;
 622	}
 623
 624	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 625		num_timers, num_timers_used);
 626}
 627
 628#ifdef CONFIG_HPET
 629static void hpet_reserve_msi_timers(struct hpet_data *hd)
 630{
 631	int i;
 632
 633	if (!hpet_devs)
 634		return;
 635
 636	for (i = 0; i < hpet_num_timers; i++) {
 637		struct hpet_dev *hdev = &hpet_devs[i];
 638
 639		if (!(hdev->flags & HPET_DEV_VALID))
 640			continue;
 641
 642		hd->hd_irq[hdev->num] = hdev->irq;
 643		hpet_reserve_timer(hd, hdev->num);
 644	}
 645}
 646#endif
 647
 648static struct hpet_dev *hpet_get_unused_timer(void)
 649{
 650	int i;
 651
 652	if (!hpet_devs)
 653		return NULL;
 654
 655	for (i = 0; i < hpet_num_timers; i++) {
 656		struct hpet_dev *hdev = &hpet_devs[i];
 657
 658		if (!(hdev->flags & HPET_DEV_VALID))
 659			continue;
 660		if (test_and_set_bit(HPET_DEV_USED_BIT,
 661			(unsigned long *)&hdev->flags))
 662			continue;
 663		return hdev;
 664	}
 665	return NULL;
 666}
 667
 668struct hpet_work_struct {
 669	struct delayed_work work;
 670	struct completion complete;
 671};
 672
 673static void hpet_work(struct work_struct *w)
 674{
 675	struct hpet_dev *hdev;
 676	int cpu = smp_processor_id();
 677	struct hpet_work_struct *hpet_work;
 678
 679	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 680
 681	hdev = hpet_get_unused_timer();
 682	if (hdev)
 683		init_one_hpet_msi_clockevent(hdev, cpu);
 684
 685	complete(&hpet_work->complete);
 686}
 687
 688static int hpet_cpuhp_notify(struct notifier_block *n,
 689		unsigned long action, void *hcpu)
 690{
 691	unsigned long cpu = (unsigned long)hcpu;
 692	struct hpet_work_struct work;
 693	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 694
 695	switch (action & 0xf) {
 696	case CPU_ONLINE:
 697		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 698		init_completion(&work.complete);
 699		/* FIXME: add schedule_work_on() */
 700		schedule_delayed_work_on(cpu, &work.work, 0);
 701		wait_for_completion(&work.complete);
 702		destroy_delayed_work_on_stack(&work.work);
 703		break;
 704	case CPU_DEAD:
 705		if (hdev) {
 706			free_irq(hdev->irq, hdev);
 707			hdev->flags &= ~HPET_DEV_USED;
 708			per_cpu(cpu_hpet_dev, cpu) = NULL;
 709		}
 710		break;
 711	}
 712	return NOTIFY_OK;
 713}
 714#else
 715
 716static int hpet_setup_msi_irq(unsigned int irq)
 717{
 718	return 0;
 719}
 720static void hpet_msi_capability_lookup(unsigned int start_timer)
 721{
 722	return;
 723}
 724
 725#ifdef CONFIG_HPET
 726static void hpet_reserve_msi_timers(struct hpet_data *hd)
 727{
 728	return;
 729}
 730#endif
 731
 732static int hpet_cpuhp_notify(struct notifier_block *n,
 733		unsigned long action, void *hcpu)
 734{
 735	return NOTIFY_OK;
 736}
 737
 738#endif
 739
 740/*
 741 * Clock source related code
 742 */
 743static cycle_t read_hpet(struct clocksource *cs)
 744{
 745	return (cycle_t)hpet_readl(HPET_COUNTER);
 746}
 747
 748static struct clocksource clocksource_hpet = {
 749	.name		= "hpet",
 750	.rating		= 250,
 751	.read		= read_hpet,
 752	.mask		= HPET_MASK,
 753	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 754	.resume		= hpet_resume_counter,
 
 755	.archdata	= { .vclock_mode = VCLOCK_HPET },
 
 756};
 757
 758static int hpet_clocksource_register(void)
 759{
 760	u64 start, now;
 761	cycle_t t1;
 762
 763	/* Start the counter */
 764	hpet_restart_counter();
 765
 766	/* Verify whether hpet counter works */
 767	t1 = hpet_readl(HPET_COUNTER);
 768	rdtscll(start);
 769
 770	/*
 771	 * We don't know the TSC frequency yet, but waiting for
 772	 * 200000 TSC cycles is safe:
 773	 * 4 GHz == 50us
 774	 * 1 GHz == 200us
 775	 */
 776	do {
 777		rep_nop();
 778		rdtscll(now);
 779	} while ((now - start) < 200000UL);
 780
 781	if (t1 == hpet_readl(HPET_COUNTER)) {
 782		printk(KERN_WARNING
 783		       "HPET counter not counting. HPET disabled\n");
 784		return -ENODEV;
 785	}
 786
 787	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 788	return 0;
 789}
 790
 791static u32 *hpet_boot_cfg;
 792
 793/**
 794 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 795 */
 796int __init hpet_enable(void)
 797{
 798	u32 hpet_period, cfg, id;
 
 799	u64 freq;
 800	unsigned int i, last;
 801
 802	if (!is_hpet_capable())
 803		return 0;
 804
 805	hpet_set_mapping();
 806
 807	/*
 808	 * Read the period and check for a sane value:
 809	 */
 810	hpet_period = hpet_readl(HPET_PERIOD);
 811
 812	/*
 813	 * AMD SB700 based systems with spread spectrum enabled use a
 814	 * SMM based HPET emulation to provide proper frequency
 815	 * setting. The SMM code is initialized with the first HPET
 816	 * register access and takes some time to complete. During
 817	 * this time the config register reads 0xffffffff. We check
 818	 * for max. 1000 loops whether the config register reads a non
 819	 * 0xffffffff value to make sure that HPET is up and running
 820	 * before we go further. A counting loop is safe, as the HPET
 821	 * access takes thousands of CPU cycles. On non SB700 based
 822	 * machines this check is only done once and has no side
 823	 * effects.
 824	 */
 825	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 826		if (i == 1000) {
 827			printk(KERN_WARNING
 828			       "HPET config register value = 0xFFFFFFFF. "
 829			       "Disabling HPET\n");
 830			goto out_nohpet;
 831		}
 832	}
 833
 834	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 835		goto out_nohpet;
 836
 837	/*
 838	 * The period is a femto seconds value. Convert it to a
 839	 * frequency.
 840	 */
 841	freq = FSEC_PER_SEC;
 842	do_div(freq, hpet_period);
 843	hpet_freq = freq;
 844
 845	/*
 846	 * Read the HPET ID register to retrieve the IRQ routing
 847	 * information and the number of channels
 848	 */
 849	id = hpet_readl(HPET_ID);
 850	hpet_print_config();
 851
 852	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 853
 854#ifdef CONFIG_HPET_EMULATE_RTC
 855	/*
 856	 * The legacy routing mode needs at least two channels, tick timer
 857	 * and the rtc emulation channel.
 858	 */
 859	if (!last)
 860		goto out_nohpet;
 861#endif
 862
 863	cfg = hpet_readl(HPET_CFG);
 864	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 865				GFP_KERNEL);
 866	if (hpet_boot_cfg)
 867		*hpet_boot_cfg = cfg;
 868	else
 869		pr_warn("HPET initial state will not be saved\n");
 870	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 871	hpet_writel(cfg, HPET_CFG);
 872	if (cfg)
 873		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 874			cfg);
 875
 876	for (i = 0; i <= last; ++i) {
 877		cfg = hpet_readl(HPET_Tn_CFG(i));
 878		if (hpet_boot_cfg)
 879			hpet_boot_cfg[i + 1] = cfg;
 880		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 881		hpet_writel(cfg, HPET_Tn_CFG(i));
 882		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 883			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 884			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 885		if (cfg)
 886			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 887				cfg, i);
 888	}
 889	hpet_print_config();
 890
 891	if (hpet_clocksource_register())
 892		goto out_nohpet;
 893
 894	if (id & HPET_ID_LEGSUP) {
 895		hpet_legacy_clockevent_register();
 896		return 1;
 897	}
 898	return 0;
 899
 900out_nohpet:
 901	hpet_clear_mapping();
 902	hpet_address = 0;
 903	return 0;
 904}
 905
 906/*
 907 * Needs to be late, as the reserve_timer code calls kalloc !
 908 *
 909 * Not a problem on i386 as hpet_enable is called from late_time_init,
 910 * but on x86_64 it is necessary !
 911 */
 912static __init int hpet_late_init(void)
 913{
 914	int cpu;
 915
 916	if (boot_hpet_disable)
 917		return -ENODEV;
 918
 919	if (!hpet_address) {
 920		if (!force_hpet_address)
 921			return -ENODEV;
 922
 923		hpet_address = force_hpet_address;
 924		hpet_enable();
 925	}
 926
 927	if (!hpet_virt_address)
 928		return -ENODEV;
 929
 930	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 931		hpet_msi_capability_lookup(2);
 932	else
 933		hpet_msi_capability_lookup(0);
 934
 935	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 936	hpet_print_config();
 937
 938	if (hpet_msi_disable)
 939		return 0;
 940
 941	if (boot_cpu_has(X86_FEATURE_ARAT))
 942		return 0;
 943
 944	cpu_notifier_register_begin();
 945	for_each_online_cpu(cpu) {
 946		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 947	}
 948
 949	/* This notifier should be called after workqueue is ready */
 950	__hotcpu_notifier(hpet_cpuhp_notify, -20);
 951	cpu_notifier_register_done();
 952
 953	return 0;
 954}
 955fs_initcall(hpet_late_init);
 956
 957void hpet_disable(void)
 958{
 959	if (is_hpet_capable() && hpet_virt_address) {
 960		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
 961
 962		if (hpet_boot_cfg)
 963			cfg = *hpet_boot_cfg;
 964		else if (hpet_legacy_int_enabled) {
 965			cfg &= ~HPET_CFG_LEGACY;
 966			hpet_legacy_int_enabled = 0;
 967		}
 968		cfg &= ~HPET_CFG_ENABLE;
 969		hpet_writel(cfg, HPET_CFG);
 970
 971		if (!hpet_boot_cfg)
 972			return;
 973
 974		id = hpet_readl(HPET_ID);
 975		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 976
 977		for (id = 0; id <= last; ++id)
 978			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
 979
 980		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
 981			hpet_writel(*hpet_boot_cfg, HPET_CFG);
 982	}
 983}
 984
 985#ifdef CONFIG_HPET_EMULATE_RTC
 986
 987/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 988 * is enabled, we support RTC interrupt functionality in software.
 989 * RTC has 3 kinds of interrupts:
 990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 991 *    is updated
 992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 994 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 995 * (1) and (2) above are implemented using polling at a frequency of
 996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 997 * overhead. (DEFAULT_RTC_INT_FREQ)
 998 * For (3), we use interrupts at 64Hz or user specified periodic
 999 * frequency, whichever is higher.
1000 */
1001#include <linux/mc146818rtc.h>
1002#include <linux/rtc.h>
1003#include <asm/rtc.h>
1004
1005#define DEFAULT_RTC_INT_FREQ	64
1006#define DEFAULT_RTC_SHIFT	6
1007#define RTC_NUM_INTS		1
1008
1009static unsigned long hpet_rtc_flags;
1010static int hpet_prev_update_sec;
1011static struct rtc_time hpet_alarm_time;
1012static unsigned long hpet_pie_count;
1013static u32 hpet_t1_cmp;
1014static u32 hpet_default_delta;
1015static u32 hpet_pie_delta;
1016static unsigned long hpet_pie_limit;
1017
1018static rtc_irq_handler irq_handler;
1019
1020/*
1021 * Check that the hpet counter c1 is ahead of the c2
1022 */
1023static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1024{
1025	return (s32)(c2 - c1) < 0;
1026}
1027
1028/*
1029 * Registers a IRQ handler.
1030 */
1031int hpet_register_irq_handler(rtc_irq_handler handler)
1032{
1033	if (!is_hpet_enabled())
1034		return -ENODEV;
1035	if (irq_handler)
1036		return -EBUSY;
1037
1038	irq_handler = handler;
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1043
1044/*
1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1046 * and does cleanup.
1047 */
1048void hpet_unregister_irq_handler(rtc_irq_handler handler)
1049{
1050	if (!is_hpet_enabled())
1051		return;
1052
1053	irq_handler = NULL;
1054	hpet_rtc_flags = 0;
1055}
1056EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1057
1058/*
1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060 * is not supported by all HPET implementations for timer 1.
1061 *
1062 * hpet_rtc_timer_init() is called when the rtc is initialized.
1063 */
1064int hpet_rtc_timer_init(void)
1065{
1066	unsigned int cfg, cnt, delta;
1067	unsigned long flags;
1068
1069	if (!is_hpet_enabled())
1070		return 0;
1071
1072	if (!hpet_default_delta) {
1073		uint64_t clc;
1074
1075		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1076		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1077		hpet_default_delta = clc;
1078	}
1079
1080	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1081		delta = hpet_default_delta;
1082	else
1083		delta = hpet_pie_delta;
1084
1085	local_irq_save(flags);
1086
1087	cnt = delta + hpet_readl(HPET_COUNTER);
1088	hpet_writel(cnt, HPET_T1_CMP);
1089	hpet_t1_cmp = cnt;
1090
1091	cfg = hpet_readl(HPET_T1_CFG);
1092	cfg &= ~HPET_TN_PERIODIC;
1093	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1094	hpet_writel(cfg, HPET_T1_CFG);
1095
1096	local_irq_restore(flags);
1097
1098	return 1;
1099}
1100EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1101
1102static void hpet_disable_rtc_channel(void)
1103{
1104	unsigned long cfg;
1105	cfg = hpet_readl(HPET_T1_CFG);
1106	cfg &= ~HPET_TN_ENABLE;
1107	hpet_writel(cfg, HPET_T1_CFG);
1108}
1109
1110/*
1111 * The functions below are called from rtc driver.
1112 * Return 0 if HPET is not being used.
1113 * Otherwise do the necessary changes and return 1.
1114 */
1115int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1116{
1117	if (!is_hpet_enabled())
1118		return 0;
1119
1120	hpet_rtc_flags &= ~bit_mask;
1121	if (unlikely(!hpet_rtc_flags))
1122		hpet_disable_rtc_channel();
1123
1124	return 1;
1125}
1126EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1127
1128int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1129{
1130	unsigned long oldbits = hpet_rtc_flags;
1131
1132	if (!is_hpet_enabled())
1133		return 0;
1134
1135	hpet_rtc_flags |= bit_mask;
1136
1137	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1138		hpet_prev_update_sec = -1;
1139
1140	if (!oldbits)
1141		hpet_rtc_timer_init();
1142
1143	return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1146
1147int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1148			unsigned char sec)
1149{
1150	if (!is_hpet_enabled())
1151		return 0;
1152
1153	hpet_alarm_time.tm_hour = hrs;
1154	hpet_alarm_time.tm_min = min;
1155	hpet_alarm_time.tm_sec = sec;
1156
1157	return 1;
1158}
1159EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1160
1161int hpet_set_periodic_freq(unsigned long freq)
1162{
1163	uint64_t clc;
1164
1165	if (!is_hpet_enabled())
1166		return 0;
1167
1168	if (freq <= DEFAULT_RTC_INT_FREQ)
1169		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1170	else {
1171		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1172		do_div(clc, freq);
1173		clc >>= hpet_clockevent.shift;
1174		hpet_pie_delta = clc;
1175		hpet_pie_limit = 0;
1176	}
1177	return 1;
1178}
1179EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1180
1181int hpet_rtc_dropped_irq(void)
1182{
1183	return is_hpet_enabled();
1184}
1185EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1186
1187static void hpet_rtc_timer_reinit(void)
1188{
1189	unsigned int delta;
1190	int lost_ints = -1;
1191
1192	if (unlikely(!hpet_rtc_flags))
1193		hpet_disable_rtc_channel();
 
 
 
 
1194
1195	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1196		delta = hpet_default_delta;
1197	else
1198		delta = hpet_pie_delta;
1199
1200	/*
1201	 * Increment the comparator value until we are ahead of the
1202	 * current count.
1203	 */
1204	do {
1205		hpet_t1_cmp += delta;
1206		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1207		lost_ints++;
1208	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1209
1210	if (lost_ints) {
1211		if (hpet_rtc_flags & RTC_PIE)
1212			hpet_pie_count += lost_ints;
1213		if (printk_ratelimit())
1214			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1215				lost_ints);
1216	}
1217}
1218
1219irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1220{
1221	struct rtc_time curr_time;
1222	unsigned long rtc_int_flag = 0;
1223
1224	hpet_rtc_timer_reinit();
1225	memset(&curr_time, 0, sizeof(struct rtc_time));
1226
1227	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1228		get_rtc_time(&curr_time);
1229
1230	if (hpet_rtc_flags & RTC_UIE &&
1231	    curr_time.tm_sec != hpet_prev_update_sec) {
1232		if (hpet_prev_update_sec >= 0)
1233			rtc_int_flag = RTC_UF;
1234		hpet_prev_update_sec = curr_time.tm_sec;
1235	}
1236
1237	if (hpet_rtc_flags & RTC_PIE &&
1238	    ++hpet_pie_count >= hpet_pie_limit) {
1239		rtc_int_flag |= RTC_PF;
1240		hpet_pie_count = 0;
1241	}
1242
1243	if (hpet_rtc_flags & RTC_AIE &&
1244	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1245	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1246	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1247			rtc_int_flag |= RTC_AF;
1248
1249	if (rtc_int_flag) {
1250		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1251		if (irq_handler)
1252			irq_handler(rtc_int_flag, dev_id);
1253	}
1254	return IRQ_HANDLED;
1255}
1256EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1257#endif