Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v3.1
   1/*
   2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
   3 *
   4 * MIPS floating point support
   5 * Copyright (C) 1994-2000 Algorithmics Ltd.
   6 *
   7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
   8 * Copyright (C) 2000  MIPS Technologies, Inc.
   9 *
  10 *  This program is free software; you can distribute it and/or modify it
  11 *  under the terms of the GNU General Public License (Version 2) as
  12 *  published by the Free Software Foundation.
  13 *
  14 *  This program is distributed in the hope it will be useful, but WITHOUT
  15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  17 *  for more details.
  18 *
  19 *  You should have received a copy of the GNU General Public License along
  20 *  with this program; if not, write to the Free Software Foundation, Inc.,
  21 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22 *
  23 * A complete emulator for MIPS coprocessor 1 instructions.  This is
  24 * required for #float(switch) or #float(trap), where it catches all
  25 * COP1 instructions via the "CoProcessor Unusable" exception.
  26 *
  27 * More surprisingly it is also required for #float(ieee), to help out
  28 * the hardware fpu at the boundaries of the IEEE-754 representation
  29 * (denormalised values, infinities, underflow, etc).  It is made
  30 * quite nasty because emulation of some non-COP1 instructions is
  31 * required, e.g. in branch delay slots.
  32 *
  33 * Note if you know that you won't have an fpu, then you'll get much
  34 * better performance by compiling with -msoft-float!
  35 */
  36#include <linux/sched.h>
  37#include <linux/module.h>
  38#include <linux/debugfs.h>
  39#include <linux/perf_event.h>
  40
  41#include <asm/inst.h>
  42#include <asm/bootinfo.h>
  43#include <asm/processor.h>
  44#include <asm/ptrace.h>
  45#include <asm/signal.h>
  46#include <asm/mipsregs.h>
  47#include <asm/fpu_emulator.h>
 
  48#include <asm/uaccess.h>
  49#include <asm/branch.h>
  50
  51#include "ieee754.h"
  52
  53/* Strap kernel emulator for full MIPS IV emulation */
  54
  55#ifdef __mips
  56#undef __mips
  57#endif
  58#define __mips 4
  59
  60/* Function which emulates a floating point instruction. */
  61
  62static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
  63	mips_instruction);
  64
  65#if __mips >= 4 && __mips != 32
  66static int fpux_emu(struct pt_regs *,
  67	struct mips_fpu_struct *, mips_instruction, void *__user *);
  68#endif
  69
  70/* Further private data for which no space exists in mips_fpu_struct */
  71
  72#ifdef CONFIG_DEBUG_FS
  73DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
  74#endif
  75
  76/* Control registers */
  77
  78#define FPCREG_RID	0	/* $0  = revision id */
  79#define FPCREG_CSR	31	/* $31 = csr */
  80
  81/* Determine rounding mode from the RM bits of the FCSR */
  82#define modeindex(v) ((v) & FPU_CSR_RM)
  83
 
 
 
 
 
  84/* Convert Mips rounding mode (0..3) to IEEE library modes. */
  85static const unsigned char ieee_rm[4] = {
  86	[FPU_CSR_RN] = IEEE754_RN,
  87	[FPU_CSR_RZ] = IEEE754_RZ,
  88	[FPU_CSR_RU] = IEEE754_RU,
  89	[FPU_CSR_RD] = IEEE754_RD,
  90};
  91/* Convert IEEE library modes to Mips rounding mode (0..3). */
  92static const unsigned char mips_rm[4] = {
  93	[IEEE754_RN] = FPU_CSR_RN,
  94	[IEEE754_RZ] = FPU_CSR_RZ,
  95	[IEEE754_RD] = FPU_CSR_RD,
  96	[IEEE754_RU] = FPU_CSR_RU,
  97};
  98
  99#if __mips >= 4
 100/* convert condition code register number to csr bit */
 101static const unsigned int fpucondbit[8] = {
 102	FPU_CSR_COND0,
 103	FPU_CSR_COND1,
 104	FPU_CSR_COND2,
 105	FPU_CSR_COND3,
 106	FPU_CSR_COND4,
 107	FPU_CSR_COND5,
 108	FPU_CSR_COND6,
 109	FPU_CSR_COND7
 110};
 111#endif
 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113
 114/*
 115 * Redundant with logic already in kernel/branch.c,
 116 * embedded in compute_return_epc.  At some point,
 117 * a single subroutine should be used across both
 118 * modules.
 119 */
 120static int isBranchInstr(mips_instruction * i)
 
 121{
 122	switch (MIPSInst_OPCODE(*i)) {
 
 
 
 
 123	case spec_op:
 124		switch (MIPSInst_FUNC(*i)) {
 125		case jalr_op:
 
 
 
 
 126		case jr_op:
 
 127			return 1;
 128		}
 129		break;
 130
 131	case bcond_op:
 132		switch (MIPSInst_RT(*i)) {
 
 
 
 
 
 
 133		case bltz_op:
 134		case bgez_op:
 135		case bltzl_op:
 136		case bgezl_op:
 137		case bltzal_op:
 
 
 
 
 
 
 
 138		case bgezal_op:
 139		case bltzall_op:
 140		case bgezall_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141			return 1;
 142		}
 143		break;
 144
 145	case j_op:
 146	case jal_op:
 147	case jalx_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148	case beq_op:
 149	case bne_op:
 150	case blez_op:
 151	case bgtz_op:
 152	case beql_op:
 
 
 
 
 
 
 
 
 
 
 
 153	case bnel_op:
 
 
 
 
 
 
 
 
 
 
 
 154	case blezl_op:
 
 
 
 
 
 
 
 
 
 
 155	case bgtzl_op:
 
 
 
 
 
 
 
 
 156		return 1;
 157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158	case cop0_op:
 159	case cop1_op:
 160	case cop2_op:
 161	case cop1x_op:
 162		if (MIPSInst_RS(*i) == bc_op)
 163			return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164		break;
 165	}
 166
 167	return 0;
 168}
 169
 170/*
 171 * In the Linux kernel, we support selection of FPR format on the
 172 * basis of the Status.FR bit.  If an FPU is not present, the FR bit
 173 * is hardwired to zero, which would imply a 32-bit FPU even for
 174 * 64-bit CPUs.  For 64-bit kernels with no FPU we use TIF_32BIT_REGS
 175 * as a proxy for the FR bit so that a 64-bit FPU is emulated.  In any
 176 * case, for a 32-bit kernel which uses the O32 MIPS ABI, only the
 177 * even FPRs are used (Status.FR = 0).
 
 178 */
 179static inline int cop1_64bit(struct pt_regs *xcp)
 180{
 181	if (cpu_has_fpu)
 182		return xcp->cp0_status & ST0_FR;
 183#ifdef CONFIG_64BIT
 184	return !test_thread_flag(TIF_32BIT_REGS);
 185#else
 186	return 0;
 
 
 187#endif
 188}
 189
 190#define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
 191			(int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
 192
 193#define SITOREG(si, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
 194			cop1_64bit(xcp) || !(x & 1) ? \
 195			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
 196			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
 197
 198#define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
 199#define DITOREG(di, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200
 201#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
 202#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
 203#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
 204#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
 205
 206/*
 207 * Emulate the single floating point instruction pointed at by EPC.
 208 * Two instructions if the instruction is in a branch delay slot.
 209 */
 210
 211static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 212		       void *__user *fault_addr)
 213{
 214	mips_instruction ir;
 215	unsigned long emulpc, contpc;
 216	unsigned int cond;
 217
 218	if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
 219		MIPS_FPU_EMU_INC_STATS(errors);
 220		*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 221		return SIGBUS;
 222	}
 223	if (__get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
 224		MIPS_FPU_EMU_INC_STATS(errors);
 225		*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 226		return SIGSEGV;
 227	}
 228
 229	/* XXX NEC Vr54xx bug workaround */
 230	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
 231		xcp->cp0_cause &= ~CAUSEF_BD;
 
 
 
 
 
 
 
 232
 233	if (xcp->cp0_cause & CAUSEF_BD) {
 234		/*
 235		 * The instruction to be emulated is in a branch delay slot
 236		 * which means that we have to  emulate the branch instruction
 237		 * BEFORE we do the cop1 instruction.
 238		 *
 239		 * This branch could be a COP1 branch, but in that case we
 240		 * would have had a trap for that instruction, and would not
 241		 * come through this route.
 242		 *
 243		 * Linux MIPS branch emulator operates on context, updating the
 244		 * cp0_epc.
 245		 */
 246		emulpc = xcp->cp0_epc + 4;	/* Snapshot emulation target */
 
 
 
 
 
 247
 248		if (__compute_return_epc(xcp)) {
 249#ifdef CP1DBG
 250			printk("failed to emulate branch at %p\n",
 251				(void *) (xcp->cp0_epc));
 252#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253			return SIGILL;
 254		}
 255		if (!access_ok(VERIFY_READ, emulpc, sizeof(mips_instruction))) {
 256			MIPS_FPU_EMU_INC_STATS(errors);
 257			*fault_addr = (mips_instruction __user *)emulpc;
 258			return SIGBUS;
 259		}
 260		if (__get_user(ir, (mips_instruction __user *) emulpc)) {
 261			MIPS_FPU_EMU_INC_STATS(errors);
 262			*fault_addr = (mips_instruction __user *)emulpc;
 263			return SIGSEGV;
 264		}
 265		/* __compute_return_epc() will have updated cp0_epc */
 266		contpc = xcp->cp0_epc;
 267		/* In order not to confuse ptrace() et al, tweak context */
 268		xcp->cp0_epc = emulpc - 4;
 269	} else {
 270		emulpc = xcp->cp0_epc;
 271		contpc = xcp->cp0_epc + 4;
 272	}
 273
 274      emul:
 275	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
 276	MIPS_FPU_EMU_INC_STATS(emulated);
 277	switch (MIPSInst_OPCODE(ir)) {
 278	case ldc1_op:{
 279		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 280			MIPSInst_SIMM(ir));
 281		u64 val;
 282
 283		MIPS_FPU_EMU_INC_STATS(loads);
 284
 285		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
 286			MIPS_FPU_EMU_INC_STATS(errors);
 287			*fault_addr = va;
 288			return SIGBUS;
 289		}
 290		if (__get_user(val, va)) {
 291			MIPS_FPU_EMU_INC_STATS(errors);
 292			*fault_addr = va;
 293			return SIGSEGV;
 294		}
 295		DITOREG(val, MIPSInst_RT(ir));
 296		break;
 297	}
 298
 299	case sdc1_op:{
 300		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 301			MIPSInst_SIMM(ir));
 302		u64 val;
 303
 304		MIPS_FPU_EMU_INC_STATS(stores);
 305		DIFROMREG(val, MIPSInst_RT(ir));
 306		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
 307			MIPS_FPU_EMU_INC_STATS(errors);
 308			*fault_addr = va;
 309			return SIGBUS;
 310		}
 311		if (__put_user(val, va)) {
 312			MIPS_FPU_EMU_INC_STATS(errors);
 313			*fault_addr = va;
 314			return SIGSEGV;
 315		}
 316		break;
 317	}
 318
 319	case lwc1_op:{
 320		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 321			MIPSInst_SIMM(ir));
 322		u32 val;
 323
 324		MIPS_FPU_EMU_INC_STATS(loads);
 325		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
 326			MIPS_FPU_EMU_INC_STATS(errors);
 327			*fault_addr = va;
 328			return SIGBUS;
 329		}
 330		if (__get_user(val, va)) {
 331			MIPS_FPU_EMU_INC_STATS(errors);
 332			*fault_addr = va;
 333			return SIGSEGV;
 334		}
 335		SITOREG(val, MIPSInst_RT(ir));
 336		break;
 337	}
 338
 339	case swc1_op:{
 340		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 341			MIPSInst_SIMM(ir));
 342		u32 val;
 343
 344		MIPS_FPU_EMU_INC_STATS(stores);
 345		SIFROMREG(val, MIPSInst_RT(ir));
 346		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
 347			MIPS_FPU_EMU_INC_STATS(errors);
 348			*fault_addr = va;
 349			return SIGBUS;
 350		}
 351		if (__put_user(val, va)) {
 352			MIPS_FPU_EMU_INC_STATS(errors);
 353			*fault_addr = va;
 354			return SIGSEGV;
 355		}
 356		break;
 357	}
 358
 359	case cop1_op:
 360		switch (MIPSInst_RS(ir)) {
 361
 362#if defined(__mips64)
 363		case dmfc_op:
 364			/* copregister fs -> gpr[rt] */
 365			if (MIPSInst_RT(ir) != 0) {
 366				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
 367					MIPSInst_RD(ir));
 368			}
 369			break;
 370
 371		case dmtc_op:
 372			/* copregister fs <- rt */
 373			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 374			break;
 375#endif
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		case mfc_op:
 378			/* copregister rd -> gpr[rt] */
 379			if (MIPSInst_RT(ir) != 0) {
 380				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
 381					MIPSInst_RD(ir));
 382			}
 383			break;
 384
 385		case mtc_op:
 386			/* copregister rd <- rt */
 387			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 388			break;
 389
 390		case cfc_op:{
 391			/* cop control register rd -> gpr[rt] */
 392			u32 value;
 393
 394			if (MIPSInst_RD(ir) == FPCREG_CSR) {
 395				value = ctx->fcr31;
 396				value = (value & ~FPU_CSR_RM) |
 397					mips_rm[modeindex(value)];
 398#ifdef CSRTRACE
 399				printk("%p gpr[%d]<-csr=%08x\n",
 400					(void *) (xcp->cp0_epc),
 401					MIPSInst_RT(ir), value);
 402#endif
 403			}
 404			else if (MIPSInst_RD(ir) == FPCREG_RID)
 405				value = 0;
 406			else
 407				value = 0;
 408			if (MIPSInst_RT(ir))
 409				xcp->regs[MIPSInst_RT(ir)] = value;
 410			break;
 411		}
 412
 413		case ctc_op:{
 414			/* copregister rd <- rt */
 415			u32 value;
 416
 417			if (MIPSInst_RT(ir) == 0)
 418				value = 0;
 419			else
 420				value = xcp->regs[MIPSInst_RT(ir)];
 421
 422			/* we only have one writable control reg
 423			 */
 424			if (MIPSInst_RD(ir) == FPCREG_CSR) {
 425#ifdef CSRTRACE
 426				printk("%p gpr[%d]->csr=%08x\n",
 427					(void *) (xcp->cp0_epc),
 428					MIPSInst_RT(ir), value);
 429#endif
 430
 431				/*
 432				 * Don't write reserved bits,
 433				 * and convert to ieee library modes
 434				 */
 435				ctx->fcr31 = (value &
 436						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
 437						ieee_rm[modeindex(value)];
 438			}
 439			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 440				return SIGFPE;
 441			}
 442			break;
 443		}
 444
 445		case bc_op:{
 446			int likely = 0;
 447
 448			if (xcp->cp0_cause & CAUSEF_BD)
 449				return SIGILL;
 450
 451#if __mips >= 4
 452			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
 453#else
 454			cond = ctx->fcr31 & FPU_CSR_COND;
 455#endif
 456			switch (MIPSInst_RT(ir) & 3) {
 457			case bcfl_op:
 458				likely = 1;
 459			case bcf_op:
 460				cond = !cond;
 461				break;
 462			case bctl_op:
 463				likely = 1;
 464			case bct_op:
 465				break;
 466			default:
 467				/* thats an illegal instruction */
 468				return SIGILL;
 469			}
 470
 471			xcp->cp0_cause |= CAUSEF_BD;
 472			if (cond) {
 473				/* branch taken: emulate dslot
 474				 * instruction
 475				 */
 476				xcp->cp0_epc += 4;
 477				contpc = (xcp->cp0_epc +
 478					(MIPSInst_SIMM(ir) << 2));
 479
 480				if (!access_ok(VERIFY_READ, xcp->cp0_epc,
 481					       sizeof(mips_instruction))) {
 482					MIPS_FPU_EMU_INC_STATS(errors);
 483					*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 484					return SIGBUS;
 485				}
 486				if (__get_user(ir,
 487				    (mips_instruction __user *) xcp->cp0_epc)) {
 488					MIPS_FPU_EMU_INC_STATS(errors);
 489					*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 490					return SIGSEGV;
 491				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493				switch (MIPSInst_OPCODE(ir)) {
 494				case lwc1_op:
 495				case swc1_op:
 496#if (__mips >= 2 || defined(__mips64))
 497				case ldc1_op:
 498				case sdc1_op:
 499#endif
 500				case cop1_op:
 501#if __mips >= 4 && __mips != 32
 502				case cop1x_op:
 503#endif
 504					/* its one of ours */
 505					goto emul;
 506#if __mips >= 4
 507				case spec_op:
 508					if (MIPSInst_FUNC(ir) == movc_op)
 509						goto emul;
 510					break;
 511#endif
 512				}
 513
 514				/*
 515				 * Single step the non-cp1
 516				 * instruction in the dslot
 517				 */
 518				return mips_dsemul(xcp, ir, contpc);
 519			}
 520			else {
 521				/* branch not taken */
 522				if (likely) {
 523					/*
 524					 * branch likely nullifies
 525					 * dslot if not taken
 526					 */
 527					xcp->cp0_epc += 4;
 528					contpc += 4;
 529					/*
 530					 * else continue & execute
 531					 * dslot as normal insn
 532					 */
 533				}
 534			}
 535			break;
 536		}
 537
 538		default:
 539			if (!(MIPSInst_RS(ir) & 0x10))
 540				return SIGILL;
 541			{
 542				int sig;
 543
 544				/* a real fpu computation instruction */
 545				if ((sig = fpu_emu(xcp, ctx, ir)))
 546					return sig;
 547			}
 548		}
 549		break;
 550
 551#if __mips >= 4 && __mips != 32
 552	case cop1x_op:{
 553		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
 554		if (sig)
 555			return sig;
 556		break;
 557	}
 558#endif
 559
 560#if __mips >= 4
 561	case spec_op:
 562		if (MIPSInst_FUNC(ir) != movc_op)
 563			return SIGILL;
 564		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
 565		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
 566			xcp->regs[MIPSInst_RD(ir)] =
 567				xcp->regs[MIPSInst_RS(ir)];
 568		break;
 569#endif
 570
 571	default:
 
 572		return SIGILL;
 573	}
 574
 575	/* we did it !! */
 576	xcp->cp0_epc = contpc;
 577	xcp->cp0_cause &= ~CAUSEF_BD;
 578
 579	return 0;
 580}
 581
 582/*
 583 * Conversion table from MIPS compare ops 48-63
 584 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
 585 */
 586static const unsigned char cmptab[8] = {
 587	0,			/* cmp_0 (sig) cmp_sf */
 588	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
 589	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
 590	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
 591	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
 592	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
 593	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
 594	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
 595};
 596
 597
 598#if __mips >= 4 && __mips != 32
 599
 600/*
 601 * Additional MIPS4 instructions
 602 */
 603
 604#define DEF3OP(name, p, f1, f2, f3) \
 605static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
 606    ieee754##p t) \
 607{ \
 608	struct _ieee754_csr ieee754_csr_save; \
 609	s = f1(s, t); \
 610	ieee754_csr_save = ieee754_csr; \
 611	s = f2(s, r); \
 612	ieee754_csr_save.cx |= ieee754_csr.cx; \
 613	ieee754_csr_save.sx |= ieee754_csr.sx; \
 614	s = f3(s); \
 615	ieee754_csr.cx |= ieee754_csr_save.cx; \
 616	ieee754_csr.sx |= ieee754_csr_save.sx; \
 617	return s; \
 618}
 619
 620static ieee754dp fpemu_dp_recip(ieee754dp d)
 621{
 622	return ieee754dp_div(ieee754dp_one(0), d);
 623}
 624
 625static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
 626{
 627	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
 628}
 629
 630static ieee754sp fpemu_sp_recip(ieee754sp s)
 631{
 632	return ieee754sp_div(ieee754sp_one(0), s);
 633}
 634
 635static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
 636{
 637	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
 638}
 639
 640DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
 641DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
 642DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
 643DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
 644DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
 645DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
 646DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
 647DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
 648
 649static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 650	mips_instruction ir, void *__user *fault_addr)
 651{
 652	unsigned rcsr = 0;	/* resulting csr */
 653
 654	MIPS_FPU_EMU_INC_STATS(cp1xops);
 655
 656	switch (MIPSInst_FMA_FFMT(ir)) {
 657	case s_fmt:{		/* 0 */
 658
 659		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
 660		ieee754sp fd, fr, fs, ft;
 661		u32 __user *va;
 662		u32 val;
 663
 664		switch (MIPSInst_FUNC(ir)) {
 665		case lwxc1_op:
 666			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 667				xcp->regs[MIPSInst_FT(ir)]);
 668
 669			MIPS_FPU_EMU_INC_STATS(loads);
 670			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
 671				MIPS_FPU_EMU_INC_STATS(errors);
 672				*fault_addr = va;
 673				return SIGBUS;
 674			}
 675			if (__get_user(val, va)) {
 676				MIPS_FPU_EMU_INC_STATS(errors);
 677				*fault_addr = va;
 678				return SIGSEGV;
 679			}
 680			SITOREG(val, MIPSInst_FD(ir));
 681			break;
 682
 683		case swxc1_op:
 684			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 685				xcp->regs[MIPSInst_FT(ir)]);
 686
 687			MIPS_FPU_EMU_INC_STATS(stores);
 688
 689			SIFROMREG(val, MIPSInst_FS(ir));
 690			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
 691				MIPS_FPU_EMU_INC_STATS(errors);
 692				*fault_addr = va;
 693				return SIGBUS;
 694			}
 695			if (put_user(val, va)) {
 696				MIPS_FPU_EMU_INC_STATS(errors);
 697				*fault_addr = va;
 698				return SIGSEGV;
 699			}
 700			break;
 701
 702		case madd_s_op:
 703			handler = fpemu_sp_madd;
 704			goto scoptop;
 705		case msub_s_op:
 706			handler = fpemu_sp_msub;
 707			goto scoptop;
 708		case nmadd_s_op:
 709			handler = fpemu_sp_nmadd;
 710			goto scoptop;
 711		case nmsub_s_op:
 712			handler = fpemu_sp_nmsub;
 713			goto scoptop;
 714
 715		      scoptop:
 716			SPFROMREG(fr, MIPSInst_FR(ir));
 717			SPFROMREG(fs, MIPSInst_FS(ir));
 718			SPFROMREG(ft, MIPSInst_FT(ir));
 719			fd = (*handler) (fr, fs, ft);
 720			SPTOREG(fd, MIPSInst_FD(ir));
 721
 722		      copcsr:
 723			if (ieee754_cxtest(IEEE754_INEXACT))
 724				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
 725			if (ieee754_cxtest(IEEE754_UNDERFLOW))
 726				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
 727			if (ieee754_cxtest(IEEE754_OVERFLOW))
 728				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
 729			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
 730				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
 731
 732			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
 733			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 734				/*printk ("SIGFPE: fpu csr = %08x\n",
 735				   ctx->fcr31); */
 736				return SIGFPE;
 737			}
 738
 739			break;
 740
 741		default:
 742			return SIGILL;
 743		}
 744		break;
 745	}
 746
 747	case d_fmt:{		/* 1 */
 748		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
 749		ieee754dp fd, fr, fs, ft;
 750		u64 __user *va;
 751		u64 val;
 752
 753		switch (MIPSInst_FUNC(ir)) {
 754		case ldxc1_op:
 755			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 756				xcp->regs[MIPSInst_FT(ir)]);
 757
 758			MIPS_FPU_EMU_INC_STATS(loads);
 759			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
 760				MIPS_FPU_EMU_INC_STATS(errors);
 761				*fault_addr = va;
 762				return SIGBUS;
 763			}
 764			if (__get_user(val, va)) {
 765				MIPS_FPU_EMU_INC_STATS(errors);
 766				*fault_addr = va;
 767				return SIGSEGV;
 768			}
 769			DITOREG(val, MIPSInst_FD(ir));
 770			break;
 771
 772		case sdxc1_op:
 773			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 774				xcp->regs[MIPSInst_FT(ir)]);
 775
 776			MIPS_FPU_EMU_INC_STATS(stores);
 777			DIFROMREG(val, MIPSInst_FS(ir));
 778			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
 779				MIPS_FPU_EMU_INC_STATS(errors);
 780				*fault_addr = va;
 781				return SIGBUS;
 782			}
 783			if (__put_user(val, va)) {
 784				MIPS_FPU_EMU_INC_STATS(errors);
 785				*fault_addr = va;
 786				return SIGSEGV;
 787			}
 788			break;
 789
 790		case madd_d_op:
 791			handler = fpemu_dp_madd;
 792			goto dcoptop;
 793		case msub_d_op:
 794			handler = fpemu_dp_msub;
 795			goto dcoptop;
 796		case nmadd_d_op:
 797			handler = fpemu_dp_nmadd;
 798			goto dcoptop;
 799		case nmsub_d_op:
 800			handler = fpemu_dp_nmsub;
 801			goto dcoptop;
 802
 803		      dcoptop:
 804			DPFROMREG(fr, MIPSInst_FR(ir));
 805			DPFROMREG(fs, MIPSInst_FS(ir));
 806			DPFROMREG(ft, MIPSInst_FT(ir));
 807			fd = (*handler) (fr, fs, ft);
 808			DPTOREG(fd, MIPSInst_FD(ir));
 809			goto copcsr;
 810
 811		default:
 812			return SIGILL;
 813		}
 814		break;
 815	}
 816
 817	case 0x7:		/* 7 */
 818		if (MIPSInst_FUNC(ir) != pfetch_op) {
 819			return SIGILL;
 820		}
 821		/* ignore prefx operation */
 822		break;
 823
 824	default:
 825		return SIGILL;
 826	}
 827
 828	return 0;
 829}
 830#endif
 831
 832
 833
 834/*
 835 * Emulate a single COP1 arithmetic instruction.
 836 */
 837static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 838	mips_instruction ir)
 839{
 840	int rfmt;		/* resulting format */
 841	unsigned rcsr = 0;	/* resulting csr */
 842	unsigned cond;
 843	union {
 844		ieee754dp d;
 845		ieee754sp s;
 846		int w;
 847#ifdef __mips64
 848		s64 l;
 849#endif
 850	} rv;			/* resulting value */
 851
 852	MIPS_FPU_EMU_INC_STATS(cp1ops);
 853	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
 854	case s_fmt:{		/* 0 */
 855		union {
 856			ieee754sp(*b) (ieee754sp, ieee754sp);
 857			ieee754sp(*u) (ieee754sp);
 858		} handler;
 859
 860		switch (MIPSInst_FUNC(ir)) {
 861			/* binary ops */
 862		case fadd_op:
 863			handler.b = ieee754sp_add;
 864			goto scopbop;
 865		case fsub_op:
 866			handler.b = ieee754sp_sub;
 867			goto scopbop;
 868		case fmul_op:
 869			handler.b = ieee754sp_mul;
 870			goto scopbop;
 871		case fdiv_op:
 872			handler.b = ieee754sp_div;
 873			goto scopbop;
 874
 875			/* unary  ops */
 876#if __mips >= 2 || defined(__mips64)
 877		case fsqrt_op:
 878			handler.u = ieee754sp_sqrt;
 879			goto scopuop;
 880#endif
 881#if __mips >= 4 && __mips != 32
 882		case frsqrt_op:
 883			handler.u = fpemu_sp_rsqrt;
 884			goto scopuop;
 885		case frecip_op:
 886			handler.u = fpemu_sp_recip;
 887			goto scopuop;
 888#endif
 889#if __mips >= 4
 890		case fmovc_op:
 891			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
 892			if (((ctx->fcr31 & cond) != 0) !=
 893				((MIPSInst_FT(ir) & 1) != 0))
 894				return 0;
 895			SPFROMREG(rv.s, MIPSInst_FS(ir));
 896			break;
 897		case fmovz_op:
 898			if (xcp->regs[MIPSInst_FT(ir)] != 0)
 899				return 0;
 900			SPFROMREG(rv.s, MIPSInst_FS(ir));
 901			break;
 902		case fmovn_op:
 903			if (xcp->regs[MIPSInst_FT(ir)] == 0)
 904				return 0;
 905			SPFROMREG(rv.s, MIPSInst_FS(ir));
 906			break;
 907#endif
 908		case fabs_op:
 909			handler.u = ieee754sp_abs;
 910			goto scopuop;
 911		case fneg_op:
 912			handler.u = ieee754sp_neg;
 913			goto scopuop;
 914		case fmov_op:
 915			/* an easy one */
 916			SPFROMREG(rv.s, MIPSInst_FS(ir));
 917			goto copcsr;
 918
 919			/* binary op on handler */
 920		      scopbop:
 921			{
 922				ieee754sp fs, ft;
 923
 924				SPFROMREG(fs, MIPSInst_FS(ir));
 925				SPFROMREG(ft, MIPSInst_FT(ir));
 926
 927				rv.s = (*handler.b) (fs, ft);
 928				goto copcsr;
 929			}
 930		      scopuop:
 931			{
 932				ieee754sp fs;
 933
 934				SPFROMREG(fs, MIPSInst_FS(ir));
 935				rv.s = (*handler.u) (fs);
 936				goto copcsr;
 937			}
 938		      copcsr:
 939			if (ieee754_cxtest(IEEE754_INEXACT))
 940				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
 941			if (ieee754_cxtest(IEEE754_UNDERFLOW))
 942				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
 943			if (ieee754_cxtest(IEEE754_OVERFLOW))
 944				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
 945			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
 946				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
 947			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
 948				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
 949			break;
 950
 951			/* unary conv ops */
 952		case fcvts_op:
 953			return SIGILL;	/* not defined */
 954		case fcvtd_op:{
 955			ieee754sp fs;
 956
 957			SPFROMREG(fs, MIPSInst_FS(ir));
 958			rv.d = ieee754dp_fsp(fs);
 959			rfmt = d_fmt;
 960			goto copcsr;
 961		}
 962		case fcvtw_op:{
 963			ieee754sp fs;
 964
 965			SPFROMREG(fs, MIPSInst_FS(ir));
 966			rv.w = ieee754sp_tint(fs);
 967			rfmt = w_fmt;
 968			goto copcsr;
 969		}
 970
 971#if __mips >= 2 || defined(__mips64)
 972		case fround_op:
 973		case ftrunc_op:
 974		case fceil_op:
 975		case ffloor_op:{
 976			unsigned int oldrm = ieee754_csr.rm;
 977			ieee754sp fs;
 978
 979			SPFROMREG(fs, MIPSInst_FS(ir));
 980			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
 981			rv.w = ieee754sp_tint(fs);
 982			ieee754_csr.rm = oldrm;
 983			rfmt = w_fmt;
 984			goto copcsr;
 985		}
 986#endif /* __mips >= 2 */
 987
 988#if defined(__mips64)
 989		case fcvtl_op:{
 990			ieee754sp fs;
 991
 992			SPFROMREG(fs, MIPSInst_FS(ir));
 993			rv.l = ieee754sp_tlong(fs);
 994			rfmt = l_fmt;
 995			goto copcsr;
 996		}
 997
 998		case froundl_op:
 999		case ftruncl_op:
1000		case fceill_op:
1001		case ffloorl_op:{
1002			unsigned int oldrm = ieee754_csr.rm;
1003			ieee754sp fs;
1004
1005			SPFROMREG(fs, MIPSInst_FS(ir));
1006			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1007			rv.l = ieee754sp_tlong(fs);
1008			ieee754_csr.rm = oldrm;
1009			rfmt = l_fmt;
1010			goto copcsr;
1011		}
1012#endif /* defined(__mips64) */
1013
1014		default:
1015			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1016				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1017				ieee754sp fs, ft;
1018
1019				SPFROMREG(fs, MIPSInst_FS(ir));
1020				SPFROMREG(ft, MIPSInst_FT(ir));
1021				rv.w = ieee754sp_cmp(fs, ft,
1022					cmptab[cmpop & 0x7], cmpop & 0x8);
1023				rfmt = -1;
1024				if ((cmpop & 0x8) && ieee754_cxtest
1025					(IEEE754_INVALID_OPERATION))
1026					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1027				else
1028					goto copcsr;
1029
1030			}
1031			else {
1032				return SIGILL;
1033			}
1034			break;
1035		}
1036		break;
1037	}
1038
1039	case d_fmt:{
1040		union {
1041			ieee754dp(*b) (ieee754dp, ieee754dp);
1042			ieee754dp(*u) (ieee754dp);
1043		} handler;
1044
1045		switch (MIPSInst_FUNC(ir)) {
1046			/* binary ops */
1047		case fadd_op:
1048			handler.b = ieee754dp_add;
1049			goto dcopbop;
1050		case fsub_op:
1051			handler.b = ieee754dp_sub;
1052			goto dcopbop;
1053		case fmul_op:
1054			handler.b = ieee754dp_mul;
1055			goto dcopbop;
1056		case fdiv_op:
1057			handler.b = ieee754dp_div;
1058			goto dcopbop;
1059
1060			/* unary  ops */
1061#if __mips >= 2 || defined(__mips64)
1062		case fsqrt_op:
1063			handler.u = ieee754dp_sqrt;
1064			goto dcopuop;
1065#endif
1066#if __mips >= 4 && __mips != 32
1067		case frsqrt_op:
1068			handler.u = fpemu_dp_rsqrt;
1069			goto dcopuop;
1070		case frecip_op:
1071			handler.u = fpemu_dp_recip;
1072			goto dcopuop;
1073#endif
1074#if __mips >= 4
1075		case fmovc_op:
1076			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1077			if (((ctx->fcr31 & cond) != 0) !=
1078				((MIPSInst_FT(ir) & 1) != 0))
1079				return 0;
1080			DPFROMREG(rv.d, MIPSInst_FS(ir));
1081			break;
1082		case fmovz_op:
1083			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1084				return 0;
1085			DPFROMREG(rv.d, MIPSInst_FS(ir));
1086			break;
1087		case fmovn_op:
1088			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1089				return 0;
1090			DPFROMREG(rv.d, MIPSInst_FS(ir));
1091			break;
1092#endif
1093		case fabs_op:
1094			handler.u = ieee754dp_abs;
1095			goto dcopuop;
1096
1097		case fneg_op:
1098			handler.u = ieee754dp_neg;
1099			goto dcopuop;
1100
1101		case fmov_op:
1102			/* an easy one */
1103			DPFROMREG(rv.d, MIPSInst_FS(ir));
1104			goto copcsr;
1105
1106			/* binary op on handler */
1107		      dcopbop:{
1108				ieee754dp fs, ft;
1109
1110				DPFROMREG(fs, MIPSInst_FS(ir));
1111				DPFROMREG(ft, MIPSInst_FT(ir));
1112
1113				rv.d = (*handler.b) (fs, ft);
1114				goto copcsr;
1115			}
1116		      dcopuop:{
1117				ieee754dp fs;
1118
1119				DPFROMREG(fs, MIPSInst_FS(ir));
1120				rv.d = (*handler.u) (fs);
1121				goto copcsr;
1122			}
1123
1124			/* unary conv ops */
1125		case fcvts_op:{
1126			ieee754dp fs;
1127
1128			DPFROMREG(fs, MIPSInst_FS(ir));
1129			rv.s = ieee754sp_fdp(fs);
1130			rfmt = s_fmt;
1131			goto copcsr;
1132		}
1133		case fcvtd_op:
1134			return SIGILL;	/* not defined */
1135
1136		case fcvtw_op:{
1137			ieee754dp fs;
1138
1139			DPFROMREG(fs, MIPSInst_FS(ir));
1140			rv.w = ieee754dp_tint(fs);	/* wrong */
1141			rfmt = w_fmt;
1142			goto copcsr;
1143		}
1144
1145#if __mips >= 2 || defined(__mips64)
1146		case fround_op:
1147		case ftrunc_op:
1148		case fceil_op:
1149		case ffloor_op:{
1150			unsigned int oldrm = ieee754_csr.rm;
1151			ieee754dp fs;
1152
1153			DPFROMREG(fs, MIPSInst_FS(ir));
1154			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1155			rv.w = ieee754dp_tint(fs);
1156			ieee754_csr.rm = oldrm;
1157			rfmt = w_fmt;
1158			goto copcsr;
1159		}
1160#endif
1161
1162#if defined(__mips64)
1163		case fcvtl_op:{
1164			ieee754dp fs;
1165
1166			DPFROMREG(fs, MIPSInst_FS(ir));
1167			rv.l = ieee754dp_tlong(fs);
1168			rfmt = l_fmt;
1169			goto copcsr;
1170		}
1171
1172		case froundl_op:
1173		case ftruncl_op:
1174		case fceill_op:
1175		case ffloorl_op:{
1176			unsigned int oldrm = ieee754_csr.rm;
1177			ieee754dp fs;
1178
1179			DPFROMREG(fs, MIPSInst_FS(ir));
1180			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1181			rv.l = ieee754dp_tlong(fs);
1182			ieee754_csr.rm = oldrm;
1183			rfmt = l_fmt;
1184			goto copcsr;
1185		}
1186#endif /* __mips >= 3 */
1187
1188		default:
1189			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1190				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1191				ieee754dp fs, ft;
1192
1193				DPFROMREG(fs, MIPSInst_FS(ir));
1194				DPFROMREG(ft, MIPSInst_FT(ir));
1195				rv.w = ieee754dp_cmp(fs, ft,
1196					cmptab[cmpop & 0x7], cmpop & 0x8);
1197				rfmt = -1;
1198				if ((cmpop & 0x8)
1199					&&
1200					ieee754_cxtest
1201					(IEEE754_INVALID_OPERATION))
1202					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1203				else
1204					goto copcsr;
1205
1206			}
1207			else {
1208				return SIGILL;
1209			}
1210			break;
1211		}
1212		break;
1213	}
1214
1215	case w_fmt:{
1216		ieee754sp fs;
1217
1218		switch (MIPSInst_FUNC(ir)) {
1219		case fcvts_op:
1220			/* convert word to single precision real */
1221			SPFROMREG(fs, MIPSInst_FS(ir));
1222			rv.s = ieee754sp_fint(fs.bits);
1223			rfmt = s_fmt;
1224			goto copcsr;
1225		case fcvtd_op:
1226			/* convert word to double precision real */
1227			SPFROMREG(fs, MIPSInst_FS(ir));
1228			rv.d = ieee754dp_fint(fs.bits);
1229			rfmt = d_fmt;
1230			goto copcsr;
1231		default:
1232			return SIGILL;
1233		}
1234		break;
1235	}
1236
1237#if defined(__mips64)
1238	case l_fmt:{
 
 
 
1239		switch (MIPSInst_FUNC(ir)) {
1240		case fcvts_op:
1241			/* convert long to single precision real */
1242			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1243			rfmt = s_fmt;
1244			goto copcsr;
1245		case fcvtd_op:
1246			/* convert long to double precision real */
1247			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1248			rfmt = d_fmt;
1249			goto copcsr;
1250		default:
1251			return SIGILL;
1252		}
1253		break;
1254	}
1255#endif
1256
1257	default:
1258		return SIGILL;
1259	}
1260
1261	/*
1262	 * Update the fpu CSR register for this operation.
1263	 * If an exception is required, generate a tidy SIGFPE exception,
1264	 * without updating the result register.
1265	 * Note: cause exception bits do not accumulate, they are rewritten
1266	 * for each op; only the flag/sticky bits accumulate.
1267	 */
1268	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1269	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1270		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1271		return SIGFPE;
1272	}
1273
1274	/*
1275	 * Now we can safely write the result back to the register file.
1276	 */
1277	switch (rfmt) {
1278	case -1:{
1279#if __mips >= 4
1280		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1281#else
1282		cond = FPU_CSR_COND;
1283#endif
1284		if (rv.w)
1285			ctx->fcr31 |= cond;
1286		else
1287			ctx->fcr31 &= ~cond;
1288		break;
1289	}
1290	case d_fmt:
1291		DPTOREG(rv.d, MIPSInst_FD(ir));
1292		break;
1293	case s_fmt:
1294		SPTOREG(rv.s, MIPSInst_FD(ir));
1295		break;
1296	case w_fmt:
1297		SITOREG(rv.w, MIPSInst_FD(ir));
1298		break;
1299#if defined(__mips64)
1300	case l_fmt:
1301		DITOREG(rv.l, MIPSInst_FD(ir));
1302		break;
1303#endif
1304	default:
1305		return SIGILL;
1306	}
1307
1308	return 0;
1309}
1310
1311int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1312	int has_fpu, void *__user *fault_addr)
1313{
1314	unsigned long oldepc, prevepc;
1315	mips_instruction insn;
 
 
1316	int sig = 0;
1317
1318	oldepc = xcp->cp0_epc;
1319	do {
1320		prevepc = xcp->cp0_epc;
1321
1322		if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
1323			MIPS_FPU_EMU_INC_STATS(errors);
1324			*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1325			return SIGBUS;
1326		}
1327		if (__get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1328			MIPS_FPU_EMU_INC_STATS(errors);
1329			*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1330			return SIGSEGV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331		}
1332		if (insn == 0)
1333			xcp->cp0_epc += 4;	/* skip nops */
 
 
 
1334		else {
1335			/*
1336			 * The 'ieee754_csr' is an alias of
1337			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1338			 * ieee754_csr.  But ieee754_csr.rm is ieee
1339			 * library modes. (not mips rounding mode)
1340			 */
1341			/* convert to ieee library modes */
1342			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1343			sig = cop1Emulate(xcp, ctx, fault_addr);
1344			/* revert to mips rounding mode */
1345			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1346		}
1347
1348		if (has_fpu)
1349			break;
1350		if (sig)
1351			break;
1352
1353		cond_resched();
1354	} while (xcp->cp0_epc > prevepc);
1355
1356	/* SIGILL indicates a non-fpu instruction */
1357	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1358		/* but if epc has advanced, then ignore it */
1359		sig = 0;
1360
1361	return sig;
1362}
1363
1364#ifdef CONFIG_DEBUG_FS
1365
1366static int fpuemu_stat_get(void *data, u64 *val)
1367{
1368	int cpu;
1369	unsigned long sum = 0;
1370	for_each_online_cpu(cpu) {
1371		struct mips_fpu_emulator_stats *ps;
1372		local_t *pv;
1373		ps = &per_cpu(fpuemustats, cpu);
1374		pv = (void *)ps + (unsigned long)data;
1375		sum += local_read(pv);
1376	}
1377	*val = sum;
1378	return 0;
1379}
1380DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
1381
1382extern struct dentry *mips_debugfs_dir;
1383static int __init debugfs_fpuemu(void)
1384{
1385	struct dentry *d, *dir;
1386
1387	if (!mips_debugfs_dir)
1388		return -ENODEV;
1389	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1390	if (!dir)
1391		return -ENOMEM;
1392
1393#define FPU_STAT_CREATE(M)						\
1394	do {								\
1395		d = debugfs_create_file(#M , S_IRUGO, dir,		\
1396			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
1397			&fops_fpuemu_stat);				\
1398		if (!d)							\
1399			return -ENOMEM;					\
1400	} while (0)
1401
1402	FPU_STAT_CREATE(emulated);
1403	FPU_STAT_CREATE(loads);
1404	FPU_STAT_CREATE(stores);
1405	FPU_STAT_CREATE(cp1ops);
1406	FPU_STAT_CREATE(cp1xops);
1407	FPU_STAT_CREATE(errors);
1408
1409	return 0;
1410}
1411__initcall(debugfs_fpuemu);
1412#endif
v3.15
   1/*
   2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
   3 *
   4 * MIPS floating point support
   5 * Copyright (C) 1994-2000 Algorithmics Ltd.
   6 *
   7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
   8 * Copyright (C) 2000  MIPS Technologies, Inc.
   9 *
  10 *  This program is free software; you can distribute it and/or modify it
  11 *  under the terms of the GNU General Public License (Version 2) as
  12 *  published by the Free Software Foundation.
  13 *
  14 *  This program is distributed in the hope it will be useful, but WITHOUT
  15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  17 *  for more details.
  18 *
  19 *  You should have received a copy of the GNU General Public License along
  20 *  with this program; if not, write to the Free Software Foundation, Inc.,
  21 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22 *
  23 * A complete emulator for MIPS coprocessor 1 instructions.  This is
  24 * required for #float(switch) or #float(trap), where it catches all
  25 * COP1 instructions via the "CoProcessor Unusable" exception.
  26 *
  27 * More surprisingly it is also required for #float(ieee), to help out
  28 * the hardware fpu at the boundaries of the IEEE-754 representation
  29 * (denormalised values, infinities, underflow, etc).  It is made
  30 * quite nasty because emulation of some non-COP1 instructions is
  31 * required, e.g. in branch delay slots.
  32 *
  33 * Note if you know that you won't have an fpu, then you'll get much
  34 * better performance by compiling with -msoft-float!
  35 */
  36#include <linux/sched.h>
  37#include <linux/module.h>
  38#include <linux/debugfs.h>
  39#include <linux/perf_event.h>
  40
  41#include <asm/inst.h>
  42#include <asm/bootinfo.h>
  43#include <asm/processor.h>
  44#include <asm/ptrace.h>
  45#include <asm/signal.h>
  46#include <asm/mipsregs.h>
  47#include <asm/fpu_emulator.h>
  48#include <asm/fpu.h>
  49#include <asm/uaccess.h>
  50#include <asm/branch.h>
  51
  52#include "ieee754.h"
  53
  54/* Strap kernel emulator for full MIPS IV emulation */
  55
  56#ifdef __mips
  57#undef __mips
  58#endif
  59#define __mips 4
  60
  61/* Function which emulates a floating point instruction. */
  62
  63static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
  64	mips_instruction);
  65
  66#if __mips >= 4 && __mips != 32
  67static int fpux_emu(struct pt_regs *,
  68	struct mips_fpu_struct *, mips_instruction, void *__user *);
  69#endif
  70
  71/* Further private data for which no space exists in mips_fpu_struct */
  72
  73#ifdef CONFIG_DEBUG_FS
  74DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
  75#endif
  76
  77/* Control registers */
  78
  79#define FPCREG_RID	0	/* $0  = revision id */
  80#define FPCREG_CSR	31	/* $31 = csr */
  81
  82/* Determine rounding mode from the RM bits of the FCSR */
  83#define modeindex(v) ((v) & FPU_CSR_RM)
  84
  85/* microMIPS bitfields */
  86#define MM_POOL32A_MINOR_MASK	0x3f
  87#define MM_POOL32A_MINOR_SHIFT	0x6
  88#define MM_MIPS32_COND_FC	0x30
  89
  90/* Convert Mips rounding mode (0..3) to IEEE library modes. */
  91static const unsigned char ieee_rm[4] = {
  92	[FPU_CSR_RN] = IEEE754_RN,
  93	[FPU_CSR_RZ] = IEEE754_RZ,
  94	[FPU_CSR_RU] = IEEE754_RU,
  95	[FPU_CSR_RD] = IEEE754_RD,
  96};
  97/* Convert IEEE library modes to Mips rounding mode (0..3). */
  98static const unsigned char mips_rm[4] = {
  99	[IEEE754_RN] = FPU_CSR_RN,
 100	[IEEE754_RZ] = FPU_CSR_RZ,
 101	[IEEE754_RD] = FPU_CSR_RD,
 102	[IEEE754_RU] = FPU_CSR_RU,
 103};
 104
 105#if __mips >= 4
 106/* convert condition code register number to csr bit */
 107static const unsigned int fpucondbit[8] = {
 108	FPU_CSR_COND0,
 109	FPU_CSR_COND1,
 110	FPU_CSR_COND2,
 111	FPU_CSR_COND3,
 112	FPU_CSR_COND4,
 113	FPU_CSR_COND5,
 114	FPU_CSR_COND6,
 115	FPU_CSR_COND7
 116};
 117#endif
 118
 119/* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
 120static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
 121
 122/* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
 123static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
 124static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
 125static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
 126static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
 127
 128/*
 129 * This functions translates a 32-bit microMIPS instruction
 130 * into a 32-bit MIPS32 instruction. Returns 0 on success
 131 * and SIGILL otherwise.
 132 */
 133static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
 134{
 135	union mips_instruction insn = *insn_ptr;
 136	union mips_instruction mips32_insn = insn;
 137	int func, fmt, op;
 138
 139	switch (insn.mm_i_format.opcode) {
 140	case mm_ldc132_op:
 141		mips32_insn.mm_i_format.opcode = ldc1_op;
 142		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 143		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 144		break;
 145	case mm_lwc132_op:
 146		mips32_insn.mm_i_format.opcode = lwc1_op;
 147		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 148		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 149		break;
 150	case mm_sdc132_op:
 151		mips32_insn.mm_i_format.opcode = sdc1_op;
 152		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 153		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 154		break;
 155	case mm_swc132_op:
 156		mips32_insn.mm_i_format.opcode = swc1_op;
 157		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 158		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 159		break;
 160	case mm_pool32i_op:
 161		/* NOTE: offset is << by 1 if in microMIPS mode. */
 162		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
 163		    (insn.mm_i_format.rt == mm_bc1t_op)) {
 164			mips32_insn.fb_format.opcode = cop1_op;
 165			mips32_insn.fb_format.bc = bc_op;
 166			mips32_insn.fb_format.flag =
 167				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
 168		} else
 169			return SIGILL;
 170		break;
 171	case mm_pool32f_op:
 172		switch (insn.mm_fp0_format.func) {
 173		case mm_32f_01_op:
 174		case mm_32f_11_op:
 175		case mm_32f_02_op:
 176		case mm_32f_12_op:
 177		case mm_32f_41_op:
 178		case mm_32f_51_op:
 179		case mm_32f_42_op:
 180		case mm_32f_52_op:
 181			op = insn.mm_fp0_format.func;
 182			if (op == mm_32f_01_op)
 183				func = madd_s_op;
 184			else if (op == mm_32f_11_op)
 185				func = madd_d_op;
 186			else if (op == mm_32f_02_op)
 187				func = nmadd_s_op;
 188			else if (op == mm_32f_12_op)
 189				func = nmadd_d_op;
 190			else if (op == mm_32f_41_op)
 191				func = msub_s_op;
 192			else if (op == mm_32f_51_op)
 193				func = msub_d_op;
 194			else if (op == mm_32f_42_op)
 195				func = nmsub_s_op;
 196			else
 197				func = nmsub_d_op;
 198			mips32_insn.fp6_format.opcode = cop1x_op;
 199			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
 200			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
 201			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
 202			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
 203			mips32_insn.fp6_format.func = func;
 204			break;
 205		case mm_32f_10_op:
 206			func = -1;	/* Invalid */
 207			op = insn.mm_fp5_format.op & 0x7;
 208			if (op == mm_ldxc1_op)
 209				func = ldxc1_op;
 210			else if (op == mm_sdxc1_op)
 211				func = sdxc1_op;
 212			else if (op == mm_lwxc1_op)
 213				func = lwxc1_op;
 214			else if (op == mm_swxc1_op)
 215				func = swxc1_op;
 216
 217			if (func != -1) {
 218				mips32_insn.r_format.opcode = cop1x_op;
 219				mips32_insn.r_format.rs =
 220					insn.mm_fp5_format.base;
 221				mips32_insn.r_format.rt =
 222					insn.mm_fp5_format.index;
 223				mips32_insn.r_format.rd = 0;
 224				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
 225				mips32_insn.r_format.func = func;
 226			} else
 227				return SIGILL;
 228			break;
 229		case mm_32f_40_op:
 230			op = -1;	/* Invalid */
 231			if (insn.mm_fp2_format.op == mm_fmovt_op)
 232				op = 1;
 233			else if (insn.mm_fp2_format.op == mm_fmovf_op)
 234				op = 0;
 235			if (op != -1) {
 236				mips32_insn.fp0_format.opcode = cop1_op;
 237				mips32_insn.fp0_format.fmt =
 238					sdps_format[insn.mm_fp2_format.fmt];
 239				mips32_insn.fp0_format.ft =
 240					(insn.mm_fp2_format.cc<<2) + op;
 241				mips32_insn.fp0_format.fs =
 242					insn.mm_fp2_format.fs;
 243				mips32_insn.fp0_format.fd =
 244					insn.mm_fp2_format.fd;
 245				mips32_insn.fp0_format.func = fmovc_op;
 246			} else
 247				return SIGILL;
 248			break;
 249		case mm_32f_60_op:
 250			func = -1;	/* Invalid */
 251			if (insn.mm_fp0_format.op == mm_fadd_op)
 252				func = fadd_op;
 253			else if (insn.mm_fp0_format.op == mm_fsub_op)
 254				func = fsub_op;
 255			else if (insn.mm_fp0_format.op == mm_fmul_op)
 256				func = fmul_op;
 257			else if (insn.mm_fp0_format.op == mm_fdiv_op)
 258				func = fdiv_op;
 259			if (func != -1) {
 260				mips32_insn.fp0_format.opcode = cop1_op;
 261				mips32_insn.fp0_format.fmt =
 262					sdps_format[insn.mm_fp0_format.fmt];
 263				mips32_insn.fp0_format.ft =
 264					insn.mm_fp0_format.ft;
 265				mips32_insn.fp0_format.fs =
 266					insn.mm_fp0_format.fs;
 267				mips32_insn.fp0_format.fd =
 268					insn.mm_fp0_format.fd;
 269				mips32_insn.fp0_format.func = func;
 270			} else
 271				return SIGILL;
 272			break;
 273		case mm_32f_70_op:
 274			func = -1;	/* Invalid */
 275			if (insn.mm_fp0_format.op == mm_fmovn_op)
 276				func = fmovn_op;
 277			else if (insn.mm_fp0_format.op == mm_fmovz_op)
 278				func = fmovz_op;
 279			if (func != -1) {
 280				mips32_insn.fp0_format.opcode = cop1_op;
 281				mips32_insn.fp0_format.fmt =
 282					sdps_format[insn.mm_fp0_format.fmt];
 283				mips32_insn.fp0_format.ft =
 284					insn.mm_fp0_format.ft;
 285				mips32_insn.fp0_format.fs =
 286					insn.mm_fp0_format.fs;
 287				mips32_insn.fp0_format.fd =
 288					insn.mm_fp0_format.fd;
 289				mips32_insn.fp0_format.func = func;
 290			} else
 291				return SIGILL;
 292			break;
 293		case mm_32f_73_op:    /* POOL32FXF */
 294			switch (insn.mm_fp1_format.op) {
 295			case mm_movf0_op:
 296			case mm_movf1_op:
 297			case mm_movt0_op:
 298			case mm_movt1_op:
 299				if ((insn.mm_fp1_format.op & 0x7f) ==
 300				    mm_movf0_op)
 301					op = 0;
 302				else
 303					op = 1;
 304				mips32_insn.r_format.opcode = spec_op;
 305				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
 306				mips32_insn.r_format.rt =
 307					(insn.mm_fp4_format.cc << 2) + op;
 308				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
 309				mips32_insn.r_format.re = 0;
 310				mips32_insn.r_format.func = movc_op;
 311				break;
 312			case mm_fcvtd0_op:
 313			case mm_fcvtd1_op:
 314			case mm_fcvts0_op:
 315			case mm_fcvts1_op:
 316				if ((insn.mm_fp1_format.op & 0x7f) ==
 317				    mm_fcvtd0_op) {
 318					func = fcvtd_op;
 319					fmt = swl_format[insn.mm_fp3_format.fmt];
 320				} else {
 321					func = fcvts_op;
 322					fmt = dwl_format[insn.mm_fp3_format.fmt];
 323				}
 324				mips32_insn.fp0_format.opcode = cop1_op;
 325				mips32_insn.fp0_format.fmt = fmt;
 326				mips32_insn.fp0_format.ft = 0;
 327				mips32_insn.fp0_format.fs =
 328					insn.mm_fp3_format.fs;
 329				mips32_insn.fp0_format.fd =
 330					insn.mm_fp3_format.rt;
 331				mips32_insn.fp0_format.func = func;
 332				break;
 333			case mm_fmov0_op:
 334			case mm_fmov1_op:
 335			case mm_fabs0_op:
 336			case mm_fabs1_op:
 337			case mm_fneg0_op:
 338			case mm_fneg1_op:
 339				if ((insn.mm_fp1_format.op & 0x7f) ==
 340				    mm_fmov0_op)
 341					func = fmov_op;
 342				else if ((insn.mm_fp1_format.op & 0x7f) ==
 343					 mm_fabs0_op)
 344					func = fabs_op;
 345				else
 346					func = fneg_op;
 347				mips32_insn.fp0_format.opcode = cop1_op;
 348				mips32_insn.fp0_format.fmt =
 349					sdps_format[insn.mm_fp3_format.fmt];
 350				mips32_insn.fp0_format.ft = 0;
 351				mips32_insn.fp0_format.fs =
 352					insn.mm_fp3_format.fs;
 353				mips32_insn.fp0_format.fd =
 354					insn.mm_fp3_format.rt;
 355				mips32_insn.fp0_format.func = func;
 356				break;
 357			case mm_ffloorl_op:
 358			case mm_ffloorw_op:
 359			case mm_fceill_op:
 360			case mm_fceilw_op:
 361			case mm_ftruncl_op:
 362			case mm_ftruncw_op:
 363			case mm_froundl_op:
 364			case mm_froundw_op:
 365			case mm_fcvtl_op:
 366			case mm_fcvtw_op:
 367				if (insn.mm_fp1_format.op == mm_ffloorl_op)
 368					func = ffloorl_op;
 369				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
 370					func = ffloor_op;
 371				else if (insn.mm_fp1_format.op == mm_fceill_op)
 372					func = fceill_op;
 373				else if (insn.mm_fp1_format.op == mm_fceilw_op)
 374					func = fceil_op;
 375				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
 376					func = ftruncl_op;
 377				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
 378					func = ftrunc_op;
 379				else if (insn.mm_fp1_format.op == mm_froundl_op)
 380					func = froundl_op;
 381				else if (insn.mm_fp1_format.op == mm_froundw_op)
 382					func = fround_op;
 383				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
 384					func = fcvtl_op;
 385				else
 386					func = fcvtw_op;
 387				mips32_insn.fp0_format.opcode = cop1_op;
 388				mips32_insn.fp0_format.fmt =
 389					sd_format[insn.mm_fp1_format.fmt];
 390				mips32_insn.fp0_format.ft = 0;
 391				mips32_insn.fp0_format.fs =
 392					insn.mm_fp1_format.fs;
 393				mips32_insn.fp0_format.fd =
 394					insn.mm_fp1_format.rt;
 395				mips32_insn.fp0_format.func = func;
 396				break;
 397			case mm_frsqrt_op:
 398			case mm_fsqrt_op:
 399			case mm_frecip_op:
 400				if (insn.mm_fp1_format.op == mm_frsqrt_op)
 401					func = frsqrt_op;
 402				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
 403					func = fsqrt_op;
 404				else
 405					func = frecip_op;
 406				mips32_insn.fp0_format.opcode = cop1_op;
 407				mips32_insn.fp0_format.fmt =
 408					sdps_format[insn.mm_fp1_format.fmt];
 409				mips32_insn.fp0_format.ft = 0;
 410				mips32_insn.fp0_format.fs =
 411					insn.mm_fp1_format.fs;
 412				mips32_insn.fp0_format.fd =
 413					insn.mm_fp1_format.rt;
 414				mips32_insn.fp0_format.func = func;
 415				break;
 416			case mm_mfc1_op:
 417			case mm_mtc1_op:
 418			case mm_cfc1_op:
 419			case mm_ctc1_op:
 420			case mm_mfhc1_op:
 421			case mm_mthc1_op:
 422				if (insn.mm_fp1_format.op == mm_mfc1_op)
 423					op = mfc_op;
 424				else if (insn.mm_fp1_format.op == mm_mtc1_op)
 425					op = mtc_op;
 426				else if (insn.mm_fp1_format.op == mm_cfc1_op)
 427					op = cfc_op;
 428				else if (insn.mm_fp1_format.op == mm_ctc1_op)
 429					op = ctc_op;
 430				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
 431					op = mfhc_op;
 432				else
 433					op = mthc_op;
 434				mips32_insn.fp1_format.opcode = cop1_op;
 435				mips32_insn.fp1_format.op = op;
 436				mips32_insn.fp1_format.rt =
 437					insn.mm_fp1_format.rt;
 438				mips32_insn.fp1_format.fs =
 439					insn.mm_fp1_format.fs;
 440				mips32_insn.fp1_format.fd = 0;
 441				mips32_insn.fp1_format.func = 0;
 442				break;
 443			default:
 444				return SIGILL;
 445			}
 446			break;
 447		case mm_32f_74_op:	/* c.cond.fmt */
 448			mips32_insn.fp0_format.opcode = cop1_op;
 449			mips32_insn.fp0_format.fmt =
 450				sdps_format[insn.mm_fp4_format.fmt];
 451			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
 452			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
 453			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
 454			mips32_insn.fp0_format.func =
 455				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
 456			break;
 457		default:
 458			return SIGILL;
 459		}
 460		break;
 461	default:
 462		return SIGILL;
 463	}
 464
 465	*insn_ptr = mips32_insn;
 466	return 0;
 467}
 468
 469int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
 470		     unsigned long *contpc)
 471{
 472	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
 473	int bc_false = 0;
 474	unsigned int fcr31;
 475	unsigned int bit;
 476
 477	if (!cpu_has_mmips)
 478		return 0;
 479
 480	switch (insn.mm_i_format.opcode) {
 481	case mm_pool32a_op:
 482		if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
 483		    mm_pool32axf_op) {
 484			switch (insn.mm_i_format.simmediate >>
 485				MM_POOL32A_MINOR_SHIFT) {
 486			case mm_jalr_op:
 487			case mm_jalrhb_op:
 488			case mm_jalrs_op:
 489			case mm_jalrshb_op:
 490				if (insn.mm_i_format.rt != 0)	/* Not mm_jr */
 491					regs->regs[insn.mm_i_format.rt] =
 492						regs->cp0_epc +
 493						dec_insn.pc_inc +
 494						dec_insn.next_pc_inc;
 495				*contpc = regs->regs[insn.mm_i_format.rs];
 496				return 1;
 497			}
 498		}
 499		break;
 500	case mm_pool32i_op:
 501		switch (insn.mm_i_format.rt) {
 502		case mm_bltzals_op:
 503		case mm_bltzal_op:
 504			regs->regs[31] = regs->cp0_epc +
 505				dec_insn.pc_inc +
 506				dec_insn.next_pc_inc;
 507			/* Fall through */
 508		case mm_bltz_op:
 509			if ((long)regs->regs[insn.mm_i_format.rs] < 0)
 510				*contpc = regs->cp0_epc +
 511					dec_insn.pc_inc +
 512					(insn.mm_i_format.simmediate << 1);
 513			else
 514				*contpc = regs->cp0_epc +
 515					dec_insn.pc_inc +
 516					dec_insn.next_pc_inc;
 517			return 1;
 518		case mm_bgezals_op:
 519		case mm_bgezal_op:
 520			regs->regs[31] = regs->cp0_epc +
 521					dec_insn.pc_inc +
 522					dec_insn.next_pc_inc;
 523			/* Fall through */
 524		case mm_bgez_op:
 525			if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
 526				*contpc = regs->cp0_epc +
 527					dec_insn.pc_inc +
 528					(insn.mm_i_format.simmediate << 1);
 529			else
 530				*contpc = regs->cp0_epc +
 531					dec_insn.pc_inc +
 532					dec_insn.next_pc_inc;
 533			return 1;
 534		case mm_blez_op:
 535			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
 536				*contpc = regs->cp0_epc +
 537					dec_insn.pc_inc +
 538					(insn.mm_i_format.simmediate << 1);
 539			else
 540				*contpc = regs->cp0_epc +
 541					dec_insn.pc_inc +
 542					dec_insn.next_pc_inc;
 543			return 1;
 544		case mm_bgtz_op:
 545			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
 546				*contpc = regs->cp0_epc +
 547					dec_insn.pc_inc +
 548					(insn.mm_i_format.simmediate << 1);
 549			else
 550				*contpc = regs->cp0_epc +
 551					dec_insn.pc_inc +
 552					dec_insn.next_pc_inc;
 553			return 1;
 554		case mm_bc2f_op:
 555		case mm_bc1f_op:
 556			bc_false = 1;
 557			/* Fall through */
 558		case mm_bc2t_op:
 559		case mm_bc1t_op:
 560			preempt_disable();
 561			if (is_fpu_owner())
 562				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
 563			else
 564				fcr31 = current->thread.fpu.fcr31;
 565			preempt_enable();
 566
 567			if (bc_false)
 568				fcr31 = ~fcr31;
 569
 570			bit = (insn.mm_i_format.rs >> 2);
 571			bit += (bit != 0);
 572			bit += 23;
 573			if (fcr31 & (1 << bit))
 574				*contpc = regs->cp0_epc +
 575					dec_insn.pc_inc +
 576					(insn.mm_i_format.simmediate << 1);
 577			else
 578				*contpc = regs->cp0_epc +
 579					dec_insn.pc_inc + dec_insn.next_pc_inc;
 580			return 1;
 581		}
 582		break;
 583	case mm_pool16c_op:
 584		switch (insn.mm_i_format.rt) {
 585		case mm_jalr16_op:
 586		case mm_jalrs16_op:
 587			regs->regs[31] = regs->cp0_epc +
 588				dec_insn.pc_inc + dec_insn.next_pc_inc;
 589			/* Fall through */
 590		case mm_jr16_op:
 591			*contpc = regs->regs[insn.mm_i_format.rs];
 592			return 1;
 593		}
 594		break;
 595	case mm_beqz16_op:
 596		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
 597			*contpc = regs->cp0_epc +
 598				dec_insn.pc_inc +
 599				(insn.mm_b1_format.simmediate << 1);
 600		else
 601			*contpc = regs->cp0_epc +
 602				dec_insn.pc_inc + dec_insn.next_pc_inc;
 603		return 1;
 604	case mm_bnez16_op:
 605		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
 606			*contpc = regs->cp0_epc +
 607				dec_insn.pc_inc +
 608				(insn.mm_b1_format.simmediate << 1);
 609		else
 610			*contpc = regs->cp0_epc +
 611				dec_insn.pc_inc + dec_insn.next_pc_inc;
 612		return 1;
 613	case mm_b16_op:
 614		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 615			 (insn.mm_b0_format.simmediate << 1);
 616		return 1;
 617	case mm_beq32_op:
 618		if (regs->regs[insn.mm_i_format.rs] ==
 619		    regs->regs[insn.mm_i_format.rt])
 620			*contpc = regs->cp0_epc +
 621				dec_insn.pc_inc +
 622				(insn.mm_i_format.simmediate << 1);
 623		else
 624			*contpc = regs->cp0_epc +
 625				dec_insn.pc_inc +
 626				dec_insn.next_pc_inc;
 627		return 1;
 628	case mm_bne32_op:
 629		if (regs->regs[insn.mm_i_format.rs] !=
 630		    regs->regs[insn.mm_i_format.rt])
 631			*contpc = regs->cp0_epc +
 632				dec_insn.pc_inc +
 633				(insn.mm_i_format.simmediate << 1);
 634		else
 635			*contpc = regs->cp0_epc +
 636				dec_insn.pc_inc + dec_insn.next_pc_inc;
 637		return 1;
 638	case mm_jalx32_op:
 639		regs->regs[31] = regs->cp0_epc +
 640			dec_insn.pc_inc + dec_insn.next_pc_inc;
 641		*contpc = regs->cp0_epc + dec_insn.pc_inc;
 642		*contpc >>= 28;
 643		*contpc <<= 28;
 644		*contpc |= (insn.j_format.target << 2);
 645		return 1;
 646	case mm_jals32_op:
 647	case mm_jal32_op:
 648		regs->regs[31] = regs->cp0_epc +
 649			dec_insn.pc_inc + dec_insn.next_pc_inc;
 650		/* Fall through */
 651	case mm_j32_op:
 652		*contpc = regs->cp0_epc + dec_insn.pc_inc;
 653		*contpc >>= 27;
 654		*contpc <<= 27;
 655		*contpc |= (insn.j_format.target << 1);
 656		set_isa16_mode(*contpc);
 657		return 1;
 658	}
 659	return 0;
 660}
 661
 662/*
 663 * Redundant with logic already in kernel/branch.c,
 664 * embedded in compute_return_epc.  At some point,
 665 * a single subroutine should be used across both
 666 * modules.
 667 */
 668static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
 669			 unsigned long *contpc)
 670{
 671	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
 672	unsigned int fcr31;
 673	unsigned int bit = 0;
 674
 675	switch (insn.i_format.opcode) {
 676	case spec_op:
 677		switch (insn.r_format.func) {
 678		case jalr_op:
 679			regs->regs[insn.r_format.rd] =
 680				regs->cp0_epc + dec_insn.pc_inc +
 681				dec_insn.next_pc_inc;
 682			/* Fall through */
 683		case jr_op:
 684			*contpc = regs->regs[insn.r_format.rs];
 685			return 1;
 686		}
 687		break;
 
 688	case bcond_op:
 689		switch (insn.i_format.rt) {
 690		case bltzal_op:
 691		case bltzall_op:
 692			regs->regs[31] = regs->cp0_epc +
 693				dec_insn.pc_inc +
 694				dec_insn.next_pc_inc;
 695			/* Fall through */
 696		case bltz_op:
 
 697		case bltzl_op:
 698			if ((long)regs->regs[insn.i_format.rs] < 0)
 699				*contpc = regs->cp0_epc +
 700					dec_insn.pc_inc +
 701					(insn.i_format.simmediate << 2);
 702			else
 703				*contpc = regs->cp0_epc +
 704					dec_insn.pc_inc +
 705					dec_insn.next_pc_inc;
 706			return 1;
 707		case bgezal_op:
 
 708		case bgezall_op:
 709			regs->regs[31] = regs->cp0_epc +
 710				dec_insn.pc_inc +
 711				dec_insn.next_pc_inc;
 712			/* Fall through */
 713		case bgez_op:
 714		case bgezl_op:
 715			if ((long)regs->regs[insn.i_format.rs] >= 0)
 716				*contpc = regs->cp0_epc +
 717					dec_insn.pc_inc +
 718					(insn.i_format.simmediate << 2);
 719			else
 720				*contpc = regs->cp0_epc +
 721					dec_insn.pc_inc +
 722					dec_insn.next_pc_inc;
 723			return 1;
 724		}
 725		break;
 
 
 
 726	case jalx_op:
 727		set_isa16_mode(bit);
 728	case jal_op:
 729		regs->regs[31] = regs->cp0_epc +
 730			dec_insn.pc_inc +
 731			dec_insn.next_pc_inc;
 732		/* Fall through */
 733	case j_op:
 734		*contpc = regs->cp0_epc + dec_insn.pc_inc;
 735		*contpc >>= 28;
 736		*contpc <<= 28;
 737		*contpc |= (insn.j_format.target << 2);
 738		/* Set microMIPS mode bit: XOR for jalx. */
 739		*contpc ^= bit;
 740		return 1;
 741	case beq_op:
 
 
 
 742	case beql_op:
 743		if (regs->regs[insn.i_format.rs] ==
 744		    regs->regs[insn.i_format.rt])
 745			*contpc = regs->cp0_epc +
 746				dec_insn.pc_inc +
 747				(insn.i_format.simmediate << 2);
 748		else
 749			*contpc = regs->cp0_epc +
 750				dec_insn.pc_inc +
 751				dec_insn.next_pc_inc;
 752		return 1;
 753	case bne_op:
 754	case bnel_op:
 755		if (regs->regs[insn.i_format.rs] !=
 756		    regs->regs[insn.i_format.rt])
 757			*contpc = regs->cp0_epc +
 758				dec_insn.pc_inc +
 759				(insn.i_format.simmediate << 2);
 760		else
 761			*contpc = regs->cp0_epc +
 762				dec_insn.pc_inc +
 763				dec_insn.next_pc_inc;
 764		return 1;
 765	case blez_op:
 766	case blezl_op:
 767		if ((long)regs->regs[insn.i_format.rs] <= 0)
 768			*contpc = regs->cp0_epc +
 769				dec_insn.pc_inc +
 770				(insn.i_format.simmediate << 2);
 771		else
 772			*contpc = regs->cp0_epc +
 773				dec_insn.pc_inc +
 774				dec_insn.next_pc_inc;
 775		return 1;
 776	case bgtz_op:
 777	case bgtzl_op:
 778		if ((long)regs->regs[insn.i_format.rs] > 0)
 779			*contpc = regs->cp0_epc +
 780				dec_insn.pc_inc +
 781				(insn.i_format.simmediate << 2);
 782		else
 783			*contpc = regs->cp0_epc +
 784				dec_insn.pc_inc +
 785				dec_insn.next_pc_inc;
 786		return 1;
 787#ifdef CONFIG_CPU_CAVIUM_OCTEON
 788	case lwc2_op: /* This is bbit0 on Octeon */
 789		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
 790			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 791		else
 792			*contpc = regs->cp0_epc + 8;
 793		return 1;
 794	case ldc2_op: /* This is bbit032 on Octeon */
 795		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
 796			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 797		else
 798			*contpc = regs->cp0_epc + 8;
 799		return 1;
 800	case swc2_op: /* This is bbit1 on Octeon */
 801		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
 802			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 803		else
 804			*contpc = regs->cp0_epc + 8;
 805		return 1;
 806	case sdc2_op: /* This is bbit132 on Octeon */
 807		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
 808			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 809		else
 810			*contpc = regs->cp0_epc + 8;
 811		return 1;
 812#endif
 813	case cop0_op:
 814	case cop1_op:
 815	case cop2_op:
 816	case cop1x_op:
 817		if (insn.i_format.rs == bc_op) {
 818			preempt_disable();
 819			if (is_fpu_owner())
 820				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
 821			else
 822				fcr31 = current->thread.fpu.fcr31;
 823			preempt_enable();
 824
 825			bit = (insn.i_format.rt >> 2);
 826			bit += (bit != 0);
 827			bit += 23;
 828			switch (insn.i_format.rt & 3) {
 829			case 0:	/* bc1f */
 830			case 2:	/* bc1fl */
 831				if (~fcr31 & (1 << bit))
 832					*contpc = regs->cp0_epc +
 833						dec_insn.pc_inc +
 834						(insn.i_format.simmediate << 2);
 835				else
 836					*contpc = regs->cp0_epc +
 837						dec_insn.pc_inc +
 838						dec_insn.next_pc_inc;
 839				return 1;
 840			case 1:	/* bc1t */
 841			case 3:	/* bc1tl */
 842				if (fcr31 & (1 << bit))
 843					*contpc = regs->cp0_epc +
 844						dec_insn.pc_inc +
 845						(insn.i_format.simmediate << 2);
 846				else
 847					*contpc = regs->cp0_epc +
 848						dec_insn.pc_inc +
 849						dec_insn.next_pc_inc;
 850				return 1;
 851			}
 852		}
 853		break;
 854	}
 
 855	return 0;
 856}
 857
 858/*
 859 * In the Linux kernel, we support selection of FPR format on the
 860 * basis of the Status.FR bit.	If an FPU is not present, the FR bit
 861 * is hardwired to zero, which would imply a 32-bit FPU even for
 862 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
 863 * FPU emu is slow and bulky and optimizing this function offers fairly
 864 * sizeable benefits so we try to be clever and make this function return
 865 * a constant whenever possible, that is on 64-bit kernels without O32
 866 * compatibility enabled and on 32-bit without 64-bit FPU support.
 867 */
 868static inline int cop1_64bit(struct pt_regs *xcp)
 869{
 870#if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
 871	return 1;
 872#elif defined(CONFIG_32BIT) && !defined(CONFIG_MIPS_O32_FP64_SUPPORT)
 
 
 873	return 0;
 874#else
 875	return !test_thread_flag(TIF_32BIT_FPREGS);
 876#endif
 877}
 878
 879#define SIFROMREG(si, x) do {						\
 880	if (cop1_64bit(xcp))						\
 881		(si) = get_fpr32(&ctx->fpr[x], 0);			\
 882	else								\
 883		(si) = get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);		\
 884} while (0)
 885
 886#define SITOREG(si, x) do {						\
 887	if (cop1_64bit(xcp)) {						\
 888		unsigned i;						\
 889		set_fpr32(&ctx->fpr[x], 0, si);				\
 890		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
 891			set_fpr32(&ctx->fpr[x], i, 0);			\
 892	} else {							\
 893		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
 894	}								\
 895} while (0)
 896
 897#define SIFROMHREG(si, x)	((si) = get_fpr32(&ctx->fpr[x], 1))
 898
 899#define SITOHREG(si, x) do {						\
 900	unsigned i;							\
 901	set_fpr32(&ctx->fpr[x], 1, si);					\
 902	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
 903		set_fpr32(&ctx->fpr[x], i, 0);				\
 904} while (0)
 905
 906#define DIFROMREG(di, x) \
 907	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
 908
 909#define DITOREG(di, x) do {						\
 910	unsigned fpr, i;						\
 911	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
 912	set_fpr64(&ctx->fpr[fpr], 0, di);				\
 913	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
 914		set_fpr64(&ctx->fpr[fpr], i, 0);			\
 915} while (0)
 916
 917#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
 918#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
 919#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
 920#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
 921
 922/*
 923 * Emulate the single floating point instruction pointed at by EPC.
 924 * Two instructions if the instruction is in a branch delay slot.
 925 */
 926
 927static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 928		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
 929{
 930	mips_instruction ir;
 931	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
 932	unsigned int cond;
 933	int pc_inc;
 
 
 
 
 
 
 
 
 
 
 934
 935	/* XXX NEC Vr54xx bug workaround */
 936	if (xcp->cp0_cause & CAUSEF_BD) {
 937		if (dec_insn.micro_mips_mode) {
 938			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
 939				xcp->cp0_cause &= ~CAUSEF_BD;
 940		} else {
 941			if (!isBranchInstr(xcp, dec_insn, &contpc))
 942				xcp->cp0_cause &= ~CAUSEF_BD;
 943		}
 944	}
 945
 946	if (xcp->cp0_cause & CAUSEF_BD) {
 947		/*
 948		 * The instruction to be emulated is in a branch delay slot
 949		 * which means that we have to	emulate the branch instruction
 950		 * BEFORE we do the cop1 instruction.
 951		 *
 952		 * This branch could be a COP1 branch, but in that case we
 953		 * would have had a trap for that instruction, and would not
 954		 * come through this route.
 955		 *
 956		 * Linux MIPS branch emulator operates on context, updating the
 957		 * cp0_epc.
 958		 */
 959		ir = dec_insn.next_insn;  /* process delay slot instr */
 960		pc_inc = dec_insn.next_pc_inc;
 961	} else {
 962		ir = dec_insn.insn;       /* process current instr */
 963		pc_inc = dec_insn.pc_inc;
 964	}
 965
 966	/*
 967	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
 968	 * instructions, we want to convert microMIPS FPU instructions
 969	 * into MIPS32 instructions so that we could reuse all of the
 970	 * FPU emulation code.
 971	 *
 972	 * NOTE: We cannot do this for branch instructions since they
 973	 *       are not a subset. Example: Cannot emulate a 16-bit
 974	 *       aligned target address with a MIPS32 instruction.
 975	 */
 976	if (dec_insn.micro_mips_mode) {
 977		/*
 978		 * If next instruction is a 16-bit instruction, then it
 979		 * it cannot be a FPU instruction. This could happen
 980		 * since we can be called for non-FPU instructions.
 981		 */
 982		if ((pc_inc == 2) ||
 983			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
 984			 == SIGILL))
 985			return SIGILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987
 988      emul:
 989	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
 990	MIPS_FPU_EMU_INC_STATS(emulated);
 991	switch (MIPSInst_OPCODE(ir)) {
 992	case ldc1_op:{
 993		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 994			MIPSInst_SIMM(ir));
 995		u64 val;
 996
 997		MIPS_FPU_EMU_INC_STATS(loads);
 998
 999		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1000			MIPS_FPU_EMU_INC_STATS(errors);
1001			*fault_addr = va;
1002			return SIGBUS;
1003		}
1004		if (__get_user(val, va)) {
1005			MIPS_FPU_EMU_INC_STATS(errors);
1006			*fault_addr = va;
1007			return SIGSEGV;
1008		}
1009		DITOREG(val, MIPSInst_RT(ir));
1010		break;
1011	}
1012
1013	case sdc1_op:{
1014		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1015			MIPSInst_SIMM(ir));
1016		u64 val;
1017
1018		MIPS_FPU_EMU_INC_STATS(stores);
1019		DIFROMREG(val, MIPSInst_RT(ir));
1020		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1021			MIPS_FPU_EMU_INC_STATS(errors);
1022			*fault_addr = va;
1023			return SIGBUS;
1024		}
1025		if (__put_user(val, va)) {
1026			MIPS_FPU_EMU_INC_STATS(errors);
1027			*fault_addr = va;
1028			return SIGSEGV;
1029		}
1030		break;
1031	}
1032
1033	case lwc1_op:{
1034		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1035			MIPSInst_SIMM(ir));
1036		u32 val;
1037
1038		MIPS_FPU_EMU_INC_STATS(loads);
1039		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1040			MIPS_FPU_EMU_INC_STATS(errors);
1041			*fault_addr = va;
1042			return SIGBUS;
1043		}
1044		if (__get_user(val, va)) {
1045			MIPS_FPU_EMU_INC_STATS(errors);
1046			*fault_addr = va;
1047			return SIGSEGV;
1048		}
1049		SITOREG(val, MIPSInst_RT(ir));
1050		break;
1051	}
1052
1053	case swc1_op:{
1054		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1055			MIPSInst_SIMM(ir));
1056		u32 val;
1057
1058		MIPS_FPU_EMU_INC_STATS(stores);
1059		SIFROMREG(val, MIPSInst_RT(ir));
1060		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1061			MIPS_FPU_EMU_INC_STATS(errors);
1062			*fault_addr = va;
1063			return SIGBUS;
1064		}
1065		if (__put_user(val, va)) {
1066			MIPS_FPU_EMU_INC_STATS(errors);
1067			*fault_addr = va;
1068			return SIGSEGV;
1069		}
1070		break;
1071	}
1072
1073	case cop1_op:
1074		switch (MIPSInst_RS(ir)) {
1075
1076#if defined(__mips64)
1077		case dmfc_op:
1078			/* copregister fs -> gpr[rt] */
1079			if (MIPSInst_RT(ir) != 0) {
1080				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1081					MIPSInst_RD(ir));
1082			}
1083			break;
1084
1085		case dmtc_op:
1086			/* copregister fs <- rt */
1087			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1088			break;
1089#endif
1090
1091		case mfhc_op:
1092			if (!cpu_has_mips_r2)
1093				goto sigill;
1094
1095			/* copregister rd -> gpr[rt] */
1096			if (MIPSInst_RT(ir) != 0) {
1097				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1098					MIPSInst_RD(ir));
1099			}
1100			break;
1101
1102		case mthc_op:
1103			if (!cpu_has_mips_r2)
1104				goto sigill;
1105
1106			/* copregister rd <- gpr[rt] */
1107			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1108			break;
1109
1110		case mfc_op:
1111			/* copregister rd -> gpr[rt] */
1112			if (MIPSInst_RT(ir) != 0) {
1113				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1114					MIPSInst_RD(ir));
1115			}
1116			break;
1117
1118		case mtc_op:
1119			/* copregister rd <- rt */
1120			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1121			break;
1122
1123		case cfc_op:{
1124			/* cop control register rd -> gpr[rt] */
1125			u32 value;
1126
1127			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1128				value = ctx->fcr31;
1129				value = (value & ~FPU_CSR_RM) |
1130					mips_rm[modeindex(value)];
1131#ifdef CSRTRACE
1132				printk("%p gpr[%d]<-csr=%08x\n",
1133					(void *) (xcp->cp0_epc),
1134					MIPSInst_RT(ir), value);
1135#endif
1136			}
1137			else if (MIPSInst_RD(ir) == FPCREG_RID)
1138				value = 0;
1139			else
1140				value = 0;
1141			if (MIPSInst_RT(ir))
1142				xcp->regs[MIPSInst_RT(ir)] = value;
1143			break;
1144		}
1145
1146		case ctc_op:{
1147			/* copregister rd <- rt */
1148			u32 value;
1149
1150			if (MIPSInst_RT(ir) == 0)
1151				value = 0;
1152			else
1153				value = xcp->regs[MIPSInst_RT(ir)];
1154
1155			/* we only have one writable control reg
1156			 */
1157			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1158#ifdef CSRTRACE
1159				printk("%p gpr[%d]->csr=%08x\n",
1160					(void *) (xcp->cp0_epc),
1161					MIPSInst_RT(ir), value);
1162#endif
1163
1164				/*
1165				 * Don't write reserved bits,
1166				 * and convert to ieee library modes
1167				 */
1168				ctx->fcr31 = (value &
1169						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1170						ieee_rm[modeindex(value)];
1171			}
1172			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1173				return SIGFPE;
1174			}
1175			break;
1176		}
1177
1178		case bc_op:{
1179			int likely = 0;
1180
1181			if (xcp->cp0_cause & CAUSEF_BD)
1182				return SIGILL;
1183
1184#if __mips >= 4
1185			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1186#else
1187			cond = ctx->fcr31 & FPU_CSR_COND;
1188#endif
1189			switch (MIPSInst_RT(ir) & 3) {
1190			case bcfl_op:
1191				likely = 1;
1192			case bcf_op:
1193				cond = !cond;
1194				break;
1195			case bctl_op:
1196				likely = 1;
1197			case bct_op:
1198				break;
1199			default:
1200				/* thats an illegal instruction */
1201				return SIGILL;
1202			}
1203
1204			xcp->cp0_cause |= CAUSEF_BD;
1205			if (cond) {
1206				/* branch taken: emulate dslot
1207				 * instruction
1208				 */
1209				xcp->cp0_epc += dec_insn.pc_inc;
1210
1211				contpc = MIPSInst_SIMM(ir);
1212				ir = dec_insn.next_insn;
1213				if (dec_insn.micro_mips_mode) {
1214					contpc = (xcp->cp0_epc + (contpc << 1));
1215
1216					/* If 16-bit instruction, not FPU. */
1217					if ((dec_insn.next_pc_inc == 2) ||
1218						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1219
1220						/*
1221						 * Since this instruction will
1222						 * be put on the stack with
1223						 * 32-bit words, get around
1224						 * this problem by putting a
1225						 * NOP16 as the second one.
1226						 */
1227						if (dec_insn.next_pc_inc == 2)
1228							ir = (ir & (~0xffff)) | MM_NOP16;
1229
1230						/*
1231						 * Single step the non-CP1
1232						 * instruction in the dslot.
1233						 */
1234						return mips_dsemul(xcp, ir, contpc);
1235					}
1236				} else
1237					contpc = (xcp->cp0_epc + (contpc << 2));
1238
1239				switch (MIPSInst_OPCODE(ir)) {
1240				case lwc1_op:
1241				case swc1_op:
1242#if (__mips >= 2 || defined(__mips64))
1243				case ldc1_op:
1244				case sdc1_op:
1245#endif
1246				case cop1_op:
1247#if __mips >= 4 && __mips != 32
1248				case cop1x_op:
1249#endif
1250					/* its one of ours */
1251					goto emul;
1252#if __mips >= 4
1253				case spec_op:
1254					if (MIPSInst_FUNC(ir) == movc_op)
1255						goto emul;
1256					break;
1257#endif
1258				}
1259
1260				/*
1261				 * Single step the non-cp1
1262				 * instruction in the dslot
1263				 */
1264				return mips_dsemul(xcp, ir, contpc);
1265			}
1266			else {
1267				/* branch not taken */
1268				if (likely) {
1269					/*
1270					 * branch likely nullifies
1271					 * dslot if not taken
1272					 */
1273					xcp->cp0_epc += dec_insn.pc_inc;
1274					contpc += dec_insn.pc_inc;
1275					/*
1276					 * else continue & execute
1277					 * dslot as normal insn
1278					 */
1279				}
1280			}
1281			break;
1282		}
1283
1284		default:
1285			if (!(MIPSInst_RS(ir) & 0x10))
1286				return SIGILL;
1287			{
1288				int sig;
1289
1290				/* a real fpu computation instruction */
1291				if ((sig = fpu_emu(xcp, ctx, ir)))
1292					return sig;
1293			}
1294		}
1295		break;
1296
1297#if __mips >= 4 && __mips != 32
1298	case cop1x_op:{
1299		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1300		if (sig)
1301			return sig;
1302		break;
1303	}
1304#endif
1305
1306#if __mips >= 4
1307	case spec_op:
1308		if (MIPSInst_FUNC(ir) != movc_op)
1309			return SIGILL;
1310		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1311		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1312			xcp->regs[MIPSInst_RD(ir)] =
1313				xcp->regs[MIPSInst_RS(ir)];
1314		break;
1315#endif
1316
1317	default:
1318sigill:
1319		return SIGILL;
1320	}
1321
1322	/* we did it !! */
1323	xcp->cp0_epc = contpc;
1324	xcp->cp0_cause &= ~CAUSEF_BD;
1325
1326	return 0;
1327}
1328
1329/*
1330 * Conversion table from MIPS compare ops 48-63
1331 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1332 */
1333static const unsigned char cmptab[8] = {
1334	0,			/* cmp_0 (sig) cmp_sf */
1335	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1336	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1337	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1338	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1339	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1340	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1341	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1342};
1343
1344
1345#if __mips >= 4 && __mips != 32
1346
1347/*
1348 * Additional MIPS4 instructions
1349 */
1350
1351#define DEF3OP(name, p, f1, f2, f3) \
1352static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1353    ieee754##p t) \
1354{ \
1355	struct _ieee754_csr ieee754_csr_save; \
1356	s = f1(s, t); \
1357	ieee754_csr_save = ieee754_csr; \
1358	s = f2(s, r); \
1359	ieee754_csr_save.cx |= ieee754_csr.cx; \
1360	ieee754_csr_save.sx |= ieee754_csr.sx; \
1361	s = f3(s); \
1362	ieee754_csr.cx |= ieee754_csr_save.cx; \
1363	ieee754_csr.sx |= ieee754_csr_save.sx; \
1364	return s; \
1365}
1366
1367static ieee754dp fpemu_dp_recip(ieee754dp d)
1368{
1369	return ieee754dp_div(ieee754dp_one(0), d);
1370}
1371
1372static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
1373{
1374	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1375}
1376
1377static ieee754sp fpemu_sp_recip(ieee754sp s)
1378{
1379	return ieee754sp_div(ieee754sp_one(0), s);
1380}
1381
1382static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
1383{
1384	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1385}
1386
1387DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1388DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1389DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1390DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1391DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1392DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1393DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1394DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1395
1396static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1397	mips_instruction ir, void *__user *fault_addr)
1398{
1399	unsigned rcsr = 0;	/* resulting csr */
1400
1401	MIPS_FPU_EMU_INC_STATS(cp1xops);
1402
1403	switch (MIPSInst_FMA_FFMT(ir)) {
1404	case s_fmt:{		/* 0 */
1405
1406		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
1407		ieee754sp fd, fr, fs, ft;
1408		u32 __user *va;
1409		u32 val;
1410
1411		switch (MIPSInst_FUNC(ir)) {
1412		case lwxc1_op:
1413			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1414				xcp->regs[MIPSInst_FT(ir)]);
1415
1416			MIPS_FPU_EMU_INC_STATS(loads);
1417			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1418				MIPS_FPU_EMU_INC_STATS(errors);
1419				*fault_addr = va;
1420				return SIGBUS;
1421			}
1422			if (__get_user(val, va)) {
1423				MIPS_FPU_EMU_INC_STATS(errors);
1424				*fault_addr = va;
1425				return SIGSEGV;
1426			}
1427			SITOREG(val, MIPSInst_FD(ir));
1428			break;
1429
1430		case swxc1_op:
1431			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1432				xcp->regs[MIPSInst_FT(ir)]);
1433
1434			MIPS_FPU_EMU_INC_STATS(stores);
1435
1436			SIFROMREG(val, MIPSInst_FS(ir));
1437			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1438				MIPS_FPU_EMU_INC_STATS(errors);
1439				*fault_addr = va;
1440				return SIGBUS;
1441			}
1442			if (put_user(val, va)) {
1443				MIPS_FPU_EMU_INC_STATS(errors);
1444				*fault_addr = va;
1445				return SIGSEGV;
1446			}
1447			break;
1448
1449		case madd_s_op:
1450			handler = fpemu_sp_madd;
1451			goto scoptop;
1452		case msub_s_op:
1453			handler = fpemu_sp_msub;
1454			goto scoptop;
1455		case nmadd_s_op:
1456			handler = fpemu_sp_nmadd;
1457			goto scoptop;
1458		case nmsub_s_op:
1459			handler = fpemu_sp_nmsub;
1460			goto scoptop;
1461
1462		      scoptop:
1463			SPFROMREG(fr, MIPSInst_FR(ir));
1464			SPFROMREG(fs, MIPSInst_FS(ir));
1465			SPFROMREG(ft, MIPSInst_FT(ir));
1466			fd = (*handler) (fr, fs, ft);
1467			SPTOREG(fd, MIPSInst_FD(ir));
1468
1469		      copcsr:
1470			if (ieee754_cxtest(IEEE754_INEXACT))
1471				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1472			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1473				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1474			if (ieee754_cxtest(IEEE754_OVERFLOW))
1475				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1476			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1477				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1478
1479			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1480			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1481				/*printk ("SIGFPE: fpu csr = %08x\n",
1482				   ctx->fcr31); */
1483				return SIGFPE;
1484			}
1485
1486			break;
1487
1488		default:
1489			return SIGILL;
1490		}
1491		break;
1492	}
1493
1494	case d_fmt:{		/* 1 */
1495		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
1496		ieee754dp fd, fr, fs, ft;
1497		u64 __user *va;
1498		u64 val;
1499
1500		switch (MIPSInst_FUNC(ir)) {
1501		case ldxc1_op:
1502			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1503				xcp->regs[MIPSInst_FT(ir)]);
1504
1505			MIPS_FPU_EMU_INC_STATS(loads);
1506			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1507				MIPS_FPU_EMU_INC_STATS(errors);
1508				*fault_addr = va;
1509				return SIGBUS;
1510			}
1511			if (__get_user(val, va)) {
1512				MIPS_FPU_EMU_INC_STATS(errors);
1513				*fault_addr = va;
1514				return SIGSEGV;
1515			}
1516			DITOREG(val, MIPSInst_FD(ir));
1517			break;
1518
1519		case sdxc1_op:
1520			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1521				xcp->regs[MIPSInst_FT(ir)]);
1522
1523			MIPS_FPU_EMU_INC_STATS(stores);
1524			DIFROMREG(val, MIPSInst_FS(ir));
1525			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1526				MIPS_FPU_EMU_INC_STATS(errors);
1527				*fault_addr = va;
1528				return SIGBUS;
1529			}
1530			if (__put_user(val, va)) {
1531				MIPS_FPU_EMU_INC_STATS(errors);
1532				*fault_addr = va;
1533				return SIGSEGV;
1534			}
1535			break;
1536
1537		case madd_d_op:
1538			handler = fpemu_dp_madd;
1539			goto dcoptop;
1540		case msub_d_op:
1541			handler = fpemu_dp_msub;
1542			goto dcoptop;
1543		case nmadd_d_op:
1544			handler = fpemu_dp_nmadd;
1545			goto dcoptop;
1546		case nmsub_d_op:
1547			handler = fpemu_dp_nmsub;
1548			goto dcoptop;
1549
1550		      dcoptop:
1551			DPFROMREG(fr, MIPSInst_FR(ir));
1552			DPFROMREG(fs, MIPSInst_FS(ir));
1553			DPFROMREG(ft, MIPSInst_FT(ir));
1554			fd = (*handler) (fr, fs, ft);
1555			DPTOREG(fd, MIPSInst_FD(ir));
1556			goto copcsr;
1557
1558		default:
1559			return SIGILL;
1560		}
1561		break;
1562	}
1563
1564	case 0x3:
1565		if (MIPSInst_FUNC(ir) != pfetch_op)
1566			return SIGILL;
1567
1568		/* ignore prefx operation */
1569		break;
1570
1571	default:
1572		return SIGILL;
1573	}
1574
1575	return 0;
1576}
1577#endif
1578
1579
1580
1581/*
1582 * Emulate a single COP1 arithmetic instruction.
1583 */
1584static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1585	mips_instruction ir)
1586{
1587	int rfmt;		/* resulting format */
1588	unsigned rcsr = 0;	/* resulting csr */
1589	unsigned cond;
1590	union {
1591		ieee754dp d;
1592		ieee754sp s;
1593		int w;
1594#ifdef __mips64
1595		s64 l;
1596#endif
1597	} rv;			/* resulting value */
1598
1599	MIPS_FPU_EMU_INC_STATS(cp1ops);
1600	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1601	case s_fmt:{		/* 0 */
1602		union {
1603			ieee754sp(*b) (ieee754sp, ieee754sp);
1604			ieee754sp(*u) (ieee754sp);
1605		} handler;
1606
1607		switch (MIPSInst_FUNC(ir)) {
1608			/* binary ops */
1609		case fadd_op:
1610			handler.b = ieee754sp_add;
1611			goto scopbop;
1612		case fsub_op:
1613			handler.b = ieee754sp_sub;
1614			goto scopbop;
1615		case fmul_op:
1616			handler.b = ieee754sp_mul;
1617			goto scopbop;
1618		case fdiv_op:
1619			handler.b = ieee754sp_div;
1620			goto scopbop;
1621
1622			/* unary  ops */
1623#if __mips >= 2 || defined(__mips64)
1624		case fsqrt_op:
1625			handler.u = ieee754sp_sqrt;
1626			goto scopuop;
1627#endif
1628#if __mips >= 4 && __mips != 32
1629		case frsqrt_op:
1630			handler.u = fpemu_sp_rsqrt;
1631			goto scopuop;
1632		case frecip_op:
1633			handler.u = fpemu_sp_recip;
1634			goto scopuop;
1635#endif
1636#if __mips >= 4
1637		case fmovc_op:
1638			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1639			if (((ctx->fcr31 & cond) != 0) !=
1640				((MIPSInst_FT(ir) & 1) != 0))
1641				return 0;
1642			SPFROMREG(rv.s, MIPSInst_FS(ir));
1643			break;
1644		case fmovz_op:
1645			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1646				return 0;
1647			SPFROMREG(rv.s, MIPSInst_FS(ir));
1648			break;
1649		case fmovn_op:
1650			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1651				return 0;
1652			SPFROMREG(rv.s, MIPSInst_FS(ir));
1653			break;
1654#endif
1655		case fabs_op:
1656			handler.u = ieee754sp_abs;
1657			goto scopuop;
1658		case fneg_op:
1659			handler.u = ieee754sp_neg;
1660			goto scopuop;
1661		case fmov_op:
1662			/* an easy one */
1663			SPFROMREG(rv.s, MIPSInst_FS(ir));
1664			goto copcsr;
1665
1666			/* binary op on handler */
1667		      scopbop:
1668			{
1669				ieee754sp fs, ft;
1670
1671				SPFROMREG(fs, MIPSInst_FS(ir));
1672				SPFROMREG(ft, MIPSInst_FT(ir));
1673
1674				rv.s = (*handler.b) (fs, ft);
1675				goto copcsr;
1676			}
1677		      scopuop:
1678			{
1679				ieee754sp fs;
1680
1681				SPFROMREG(fs, MIPSInst_FS(ir));
1682				rv.s = (*handler.u) (fs);
1683				goto copcsr;
1684			}
1685		      copcsr:
1686			if (ieee754_cxtest(IEEE754_INEXACT))
1687				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1688			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1689				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1690			if (ieee754_cxtest(IEEE754_OVERFLOW))
1691				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1692			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1693				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1694			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1695				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1696			break;
1697
1698			/* unary conv ops */
1699		case fcvts_op:
1700			return SIGILL;	/* not defined */
1701		case fcvtd_op:{
1702			ieee754sp fs;
1703
1704			SPFROMREG(fs, MIPSInst_FS(ir));
1705			rv.d = ieee754dp_fsp(fs);
1706			rfmt = d_fmt;
1707			goto copcsr;
1708		}
1709		case fcvtw_op:{
1710			ieee754sp fs;
1711
1712			SPFROMREG(fs, MIPSInst_FS(ir));
1713			rv.w = ieee754sp_tint(fs);
1714			rfmt = w_fmt;
1715			goto copcsr;
1716		}
1717
1718#if __mips >= 2 || defined(__mips64)
1719		case fround_op:
1720		case ftrunc_op:
1721		case fceil_op:
1722		case ffloor_op:{
1723			unsigned int oldrm = ieee754_csr.rm;
1724			ieee754sp fs;
1725
1726			SPFROMREG(fs, MIPSInst_FS(ir));
1727			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1728			rv.w = ieee754sp_tint(fs);
1729			ieee754_csr.rm = oldrm;
1730			rfmt = w_fmt;
1731			goto copcsr;
1732		}
1733#endif /* __mips >= 2 */
1734
1735#if defined(__mips64)
1736		case fcvtl_op:{
1737			ieee754sp fs;
1738
1739			SPFROMREG(fs, MIPSInst_FS(ir));
1740			rv.l = ieee754sp_tlong(fs);
1741			rfmt = l_fmt;
1742			goto copcsr;
1743		}
1744
1745		case froundl_op:
1746		case ftruncl_op:
1747		case fceill_op:
1748		case ffloorl_op:{
1749			unsigned int oldrm = ieee754_csr.rm;
1750			ieee754sp fs;
1751
1752			SPFROMREG(fs, MIPSInst_FS(ir));
1753			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1754			rv.l = ieee754sp_tlong(fs);
1755			ieee754_csr.rm = oldrm;
1756			rfmt = l_fmt;
1757			goto copcsr;
1758		}
1759#endif /* defined(__mips64) */
1760
1761		default:
1762			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1763				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1764				ieee754sp fs, ft;
1765
1766				SPFROMREG(fs, MIPSInst_FS(ir));
1767				SPFROMREG(ft, MIPSInst_FT(ir));
1768				rv.w = ieee754sp_cmp(fs, ft,
1769					cmptab[cmpop & 0x7], cmpop & 0x8);
1770				rfmt = -1;
1771				if ((cmpop & 0x8) && ieee754_cxtest
1772					(IEEE754_INVALID_OPERATION))
1773					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1774				else
1775					goto copcsr;
1776
1777			}
1778			else {
1779				return SIGILL;
1780			}
1781			break;
1782		}
1783		break;
1784	}
1785
1786	case d_fmt:{
1787		union {
1788			ieee754dp(*b) (ieee754dp, ieee754dp);
1789			ieee754dp(*u) (ieee754dp);
1790		} handler;
1791
1792		switch (MIPSInst_FUNC(ir)) {
1793			/* binary ops */
1794		case fadd_op:
1795			handler.b = ieee754dp_add;
1796			goto dcopbop;
1797		case fsub_op:
1798			handler.b = ieee754dp_sub;
1799			goto dcopbop;
1800		case fmul_op:
1801			handler.b = ieee754dp_mul;
1802			goto dcopbop;
1803		case fdiv_op:
1804			handler.b = ieee754dp_div;
1805			goto dcopbop;
1806
1807			/* unary  ops */
1808#if __mips >= 2 || defined(__mips64)
1809		case fsqrt_op:
1810			handler.u = ieee754dp_sqrt;
1811			goto dcopuop;
1812#endif
1813#if __mips >= 4 && __mips != 32
1814		case frsqrt_op:
1815			handler.u = fpemu_dp_rsqrt;
1816			goto dcopuop;
1817		case frecip_op:
1818			handler.u = fpemu_dp_recip;
1819			goto dcopuop;
1820#endif
1821#if __mips >= 4
1822		case fmovc_op:
1823			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1824			if (((ctx->fcr31 & cond) != 0) !=
1825				((MIPSInst_FT(ir) & 1) != 0))
1826				return 0;
1827			DPFROMREG(rv.d, MIPSInst_FS(ir));
1828			break;
1829		case fmovz_op:
1830			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1831				return 0;
1832			DPFROMREG(rv.d, MIPSInst_FS(ir));
1833			break;
1834		case fmovn_op:
1835			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1836				return 0;
1837			DPFROMREG(rv.d, MIPSInst_FS(ir));
1838			break;
1839#endif
1840		case fabs_op:
1841			handler.u = ieee754dp_abs;
1842			goto dcopuop;
1843
1844		case fneg_op:
1845			handler.u = ieee754dp_neg;
1846			goto dcopuop;
1847
1848		case fmov_op:
1849			/* an easy one */
1850			DPFROMREG(rv.d, MIPSInst_FS(ir));
1851			goto copcsr;
1852
1853			/* binary op on handler */
1854		      dcopbop:{
1855				ieee754dp fs, ft;
1856
1857				DPFROMREG(fs, MIPSInst_FS(ir));
1858				DPFROMREG(ft, MIPSInst_FT(ir));
1859
1860				rv.d = (*handler.b) (fs, ft);
1861				goto copcsr;
1862			}
1863		      dcopuop:{
1864				ieee754dp fs;
1865
1866				DPFROMREG(fs, MIPSInst_FS(ir));
1867				rv.d = (*handler.u) (fs);
1868				goto copcsr;
1869			}
1870
1871			/* unary conv ops */
1872		case fcvts_op:{
1873			ieee754dp fs;
1874
1875			DPFROMREG(fs, MIPSInst_FS(ir));
1876			rv.s = ieee754sp_fdp(fs);
1877			rfmt = s_fmt;
1878			goto copcsr;
1879		}
1880		case fcvtd_op:
1881			return SIGILL;	/* not defined */
1882
1883		case fcvtw_op:{
1884			ieee754dp fs;
1885
1886			DPFROMREG(fs, MIPSInst_FS(ir));
1887			rv.w = ieee754dp_tint(fs);	/* wrong */
1888			rfmt = w_fmt;
1889			goto copcsr;
1890		}
1891
1892#if __mips >= 2 || defined(__mips64)
1893		case fround_op:
1894		case ftrunc_op:
1895		case fceil_op:
1896		case ffloor_op:{
1897			unsigned int oldrm = ieee754_csr.rm;
1898			ieee754dp fs;
1899
1900			DPFROMREG(fs, MIPSInst_FS(ir));
1901			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1902			rv.w = ieee754dp_tint(fs);
1903			ieee754_csr.rm = oldrm;
1904			rfmt = w_fmt;
1905			goto copcsr;
1906		}
1907#endif
1908
1909#if defined(__mips64)
1910		case fcvtl_op:{
1911			ieee754dp fs;
1912
1913			DPFROMREG(fs, MIPSInst_FS(ir));
1914			rv.l = ieee754dp_tlong(fs);
1915			rfmt = l_fmt;
1916			goto copcsr;
1917		}
1918
1919		case froundl_op:
1920		case ftruncl_op:
1921		case fceill_op:
1922		case ffloorl_op:{
1923			unsigned int oldrm = ieee754_csr.rm;
1924			ieee754dp fs;
1925
1926			DPFROMREG(fs, MIPSInst_FS(ir));
1927			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1928			rv.l = ieee754dp_tlong(fs);
1929			ieee754_csr.rm = oldrm;
1930			rfmt = l_fmt;
1931			goto copcsr;
1932		}
1933#endif /* __mips >= 3 */
1934
1935		default:
1936			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1937				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1938				ieee754dp fs, ft;
1939
1940				DPFROMREG(fs, MIPSInst_FS(ir));
1941				DPFROMREG(ft, MIPSInst_FT(ir));
1942				rv.w = ieee754dp_cmp(fs, ft,
1943					cmptab[cmpop & 0x7], cmpop & 0x8);
1944				rfmt = -1;
1945				if ((cmpop & 0x8)
1946					&&
1947					ieee754_cxtest
1948					(IEEE754_INVALID_OPERATION))
1949					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1950				else
1951					goto copcsr;
1952
1953			}
1954			else {
1955				return SIGILL;
1956			}
1957			break;
1958		}
1959		break;
1960	}
1961
1962	case w_fmt:{
1963		ieee754sp fs;
1964
1965		switch (MIPSInst_FUNC(ir)) {
1966		case fcvts_op:
1967			/* convert word to single precision real */
1968			SPFROMREG(fs, MIPSInst_FS(ir));
1969			rv.s = ieee754sp_fint(fs.bits);
1970			rfmt = s_fmt;
1971			goto copcsr;
1972		case fcvtd_op:
1973			/* convert word to double precision real */
1974			SPFROMREG(fs, MIPSInst_FS(ir));
1975			rv.d = ieee754dp_fint(fs.bits);
1976			rfmt = d_fmt;
1977			goto copcsr;
1978		default:
1979			return SIGILL;
1980		}
1981		break;
1982	}
1983
1984#if defined(__mips64)
1985	case l_fmt:{
1986		u64 bits;
1987		DIFROMREG(bits, MIPSInst_FS(ir));
1988
1989		switch (MIPSInst_FUNC(ir)) {
1990		case fcvts_op:
1991			/* convert long to single precision real */
1992			rv.s = ieee754sp_flong(bits);
1993			rfmt = s_fmt;
1994			goto copcsr;
1995		case fcvtd_op:
1996			/* convert long to double precision real */
1997			rv.d = ieee754dp_flong(bits);
1998			rfmt = d_fmt;
1999			goto copcsr;
2000		default:
2001			return SIGILL;
2002		}
2003		break;
2004	}
2005#endif
2006
2007	default:
2008		return SIGILL;
2009	}
2010
2011	/*
2012	 * Update the fpu CSR register for this operation.
2013	 * If an exception is required, generate a tidy SIGFPE exception,
2014	 * without updating the result register.
2015	 * Note: cause exception bits do not accumulate, they are rewritten
2016	 * for each op; only the flag/sticky bits accumulate.
2017	 */
2018	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2019	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2020		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
2021		return SIGFPE;
2022	}
2023
2024	/*
2025	 * Now we can safely write the result back to the register file.
2026	 */
2027	switch (rfmt) {
2028	case -1:{
2029#if __mips >= 4
2030		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
2031#else
2032		cond = FPU_CSR_COND;
2033#endif
2034		if (rv.w)
2035			ctx->fcr31 |= cond;
2036		else
2037			ctx->fcr31 &= ~cond;
2038		break;
2039	}
2040	case d_fmt:
2041		DPTOREG(rv.d, MIPSInst_FD(ir));
2042		break;
2043	case s_fmt:
2044		SPTOREG(rv.s, MIPSInst_FD(ir));
2045		break;
2046	case w_fmt:
2047		SITOREG(rv.w, MIPSInst_FD(ir));
2048		break;
2049#if defined(__mips64)
2050	case l_fmt:
2051		DITOREG(rv.l, MIPSInst_FD(ir));
2052		break;
2053#endif
2054	default:
2055		return SIGILL;
2056	}
2057
2058	return 0;
2059}
2060
2061int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2062	int has_fpu, void *__user *fault_addr)
2063{
2064	unsigned long oldepc, prevepc;
2065	struct mm_decoded_insn dec_insn;
2066	u16 instr[4];
2067	u16 *instr_ptr;
2068	int sig = 0;
2069
2070	oldepc = xcp->cp0_epc;
2071	do {
2072		prevepc = xcp->cp0_epc;
2073
2074		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2075			/*
2076			 * Get next 2 microMIPS instructions and convert them
2077			 * into 32-bit instructions.
2078			 */
2079			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2080			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2081			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2082			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2083				MIPS_FPU_EMU_INC_STATS(errors);
2084				return SIGBUS;
2085			}
2086			instr_ptr = instr;
2087
2088			/* Get first instruction. */
2089			if (mm_insn_16bit(*instr_ptr)) {
2090				/* Duplicate the half-word. */
2091				dec_insn.insn = (*instr_ptr << 16) |
2092					(*instr_ptr);
2093				/* 16-bit instruction. */
2094				dec_insn.pc_inc = 2;
2095				instr_ptr += 1;
2096			} else {
2097				dec_insn.insn = (*instr_ptr << 16) |
2098					*(instr_ptr+1);
2099				/* 32-bit instruction. */
2100				dec_insn.pc_inc = 4;
2101				instr_ptr += 2;
2102			}
2103			/* Get second instruction. */
2104			if (mm_insn_16bit(*instr_ptr)) {
2105				/* Duplicate the half-word. */
2106				dec_insn.next_insn = (*instr_ptr << 16) |
2107					(*instr_ptr);
2108				/* 16-bit instruction. */
2109				dec_insn.next_pc_inc = 2;
2110			} else {
2111				dec_insn.next_insn = (*instr_ptr << 16) |
2112					*(instr_ptr+1);
2113				/* 32-bit instruction. */
2114				dec_insn.next_pc_inc = 4;
2115			}
2116			dec_insn.micro_mips_mode = 1;
2117		} else {
2118			if ((get_user(dec_insn.insn,
2119			    (mips_instruction __user *) xcp->cp0_epc)) ||
2120			    (get_user(dec_insn.next_insn,
2121			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2122				MIPS_FPU_EMU_INC_STATS(errors);
2123				return SIGBUS;
2124			}
2125			dec_insn.pc_inc = 4;
2126			dec_insn.next_pc_inc = 4;
2127			dec_insn.micro_mips_mode = 0;
2128		}
2129
2130		if ((dec_insn.insn == 0) ||
2131		   ((dec_insn.pc_inc == 2) &&
2132		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2133			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2134		else {
2135			/*
2136			 * The 'ieee754_csr' is an alias of
2137			 * ctx->fcr31.	No need to copy ctx->fcr31 to
2138			 * ieee754_csr.	 But ieee754_csr.rm is ieee
2139			 * library modes. (not mips rounding mode)
2140			 */
2141			/* convert to ieee library modes */
2142			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2143			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2144			/* revert to mips rounding mode */
2145			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2146		}
2147
2148		if (has_fpu)
2149			break;
2150		if (sig)
2151			break;
2152
2153		cond_resched();
2154	} while (xcp->cp0_epc > prevepc);
2155
2156	/* SIGILL indicates a non-fpu instruction */
2157	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2158		/* but if epc has advanced, then ignore it */
2159		sig = 0;
2160
2161	return sig;
2162}
2163
2164#ifdef CONFIG_DEBUG_FS
2165
2166static int fpuemu_stat_get(void *data, u64 *val)
2167{
2168	int cpu;
2169	unsigned long sum = 0;
2170	for_each_online_cpu(cpu) {
2171		struct mips_fpu_emulator_stats *ps;
2172		local_t *pv;
2173		ps = &per_cpu(fpuemustats, cpu);
2174		pv = (void *)ps + (unsigned long)data;
2175		sum += local_read(pv);
2176	}
2177	*val = sum;
2178	return 0;
2179}
2180DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2181
2182extern struct dentry *mips_debugfs_dir;
2183static int __init debugfs_fpuemu(void)
2184{
2185	struct dentry *d, *dir;
2186
2187	if (!mips_debugfs_dir)
2188		return -ENODEV;
2189	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2190	if (!dir)
2191		return -ENOMEM;
2192
2193#define FPU_STAT_CREATE(M)						\
2194	do {								\
2195		d = debugfs_create_file(#M , S_IRUGO, dir,		\
2196			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
2197			&fops_fpuemu_stat);				\
2198		if (!d)							\
2199			return -ENOMEM;					\
2200	} while (0)
2201
2202	FPU_STAT_CREATE(emulated);
2203	FPU_STAT_CREATE(loads);
2204	FPU_STAT_CREATE(stores);
2205	FPU_STAT_CREATE(cp1ops);
2206	FPU_STAT_CREATE(cp1xops);
2207	FPU_STAT_CREATE(errors);
2208
2209	return 0;
2210}
2211__initcall(debugfs_fpuemu);
2212#endif