Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
   3 *
   4 * MIPS floating point support
   5 * Copyright (C) 1994-2000 Algorithmics Ltd.
   6 *
   7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
   8 * Copyright (C) 2000  MIPS Technologies, Inc.
   9 *
  10 *  This program is free software; you can distribute it and/or modify it
  11 *  under the terms of the GNU General Public License (Version 2) as
  12 *  published by the Free Software Foundation.
  13 *
  14 *  This program is distributed in the hope it will be useful, but WITHOUT
  15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  17 *  for more details.
  18 *
  19 *  You should have received a copy of the GNU General Public License along
  20 *  with this program; if not, write to the Free Software Foundation, Inc.,
  21 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22 *
  23 * A complete emulator for MIPS coprocessor 1 instructions.  This is
  24 * required for #float(switch) or #float(trap), where it catches all
  25 * COP1 instructions via the "CoProcessor Unusable" exception.
  26 *
  27 * More surprisingly it is also required for #float(ieee), to help out
  28 * the hardware fpu at the boundaries of the IEEE-754 representation
  29 * (denormalised values, infinities, underflow, etc).  It is made
  30 * quite nasty because emulation of some non-COP1 instructions is
  31 * required, e.g. in branch delay slots.
  32 *
  33 * Note if you know that you won't have an fpu, then you'll get much
  34 * better performance by compiling with -msoft-float!
  35 */
  36#include <linux/sched.h>
  37#include <linux/module.h>
  38#include <linux/debugfs.h>
 
  39#include <linux/perf_event.h>
  40
 
  41#include <asm/inst.h>
  42#include <asm/bootinfo.h>
  43#include <asm/processor.h>
  44#include <asm/ptrace.h>
  45#include <asm/signal.h>
  46#include <asm/mipsregs.h>
 
 
 
  47#include <asm/fpu_emulator.h>
  48#include <asm/uaccess.h>
  49#include <asm/branch.h>
  50
  51#include "ieee754.h"
  52
  53/* Strap kernel emulator for full MIPS IV emulation */
  54
  55#ifdef __mips
  56#undef __mips
  57#endif
  58#define __mips 4
  59
  60/* Function which emulates a floating point instruction. */
  61
  62static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
  63	mips_instruction);
  64
  65#if __mips >= 4 && __mips != 32
  66static int fpux_emu(struct pt_regs *,
  67	struct mips_fpu_struct *, mips_instruction, void *__user *);
  68#endif
  69
  70/* Further private data for which no space exists in mips_fpu_struct */
  71
  72#ifdef CONFIG_DEBUG_FS
  73DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
  74#endif
  75
  76/* Control registers */
  77
  78#define FPCREG_RID	0	/* $0  = revision id */
 
 
 
  79#define FPCREG_CSR	31	/* $31 = csr */
  80
  81/* Determine rounding mode from the RM bits of the FCSR */
  82#define modeindex(v) ((v) & FPU_CSR_RM)
  83
  84/* Convert Mips rounding mode (0..3) to IEEE library modes. */
  85static const unsigned char ieee_rm[4] = {
  86	[FPU_CSR_RN] = IEEE754_RN,
  87	[FPU_CSR_RZ] = IEEE754_RZ,
  88	[FPU_CSR_RU] = IEEE754_RU,
  89	[FPU_CSR_RD] = IEEE754_RD,
  90};
  91/* Convert IEEE library modes to Mips rounding mode (0..3). */
  92static const unsigned char mips_rm[4] = {
  93	[IEEE754_RN] = FPU_CSR_RN,
  94	[IEEE754_RZ] = FPU_CSR_RZ,
  95	[IEEE754_RD] = FPU_CSR_RD,
  96	[IEEE754_RU] = FPU_CSR_RU,
  97};
  98
  99#if __mips >= 4
 100/* convert condition code register number to csr bit */
 101static const unsigned int fpucondbit[8] = {
 102	FPU_CSR_COND0,
 103	FPU_CSR_COND1,
 104	FPU_CSR_COND2,
 105	FPU_CSR_COND3,
 106	FPU_CSR_COND4,
 107	FPU_CSR_COND5,
 108	FPU_CSR_COND6,
 109	FPU_CSR_COND7
 110};
 111#endif
 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113
 114/*
 115 * Redundant with logic already in kernel/branch.c,
 116 * embedded in compute_return_epc.  At some point,
 117 * a single subroutine should be used across both
 118 * modules.
 119 */
 120static int isBranchInstr(mips_instruction * i)
 
 121{
 122	switch (MIPSInst_OPCODE(*i)) {
 
 
 
 
 123	case spec_op:
 124		switch (MIPSInst_FUNC(*i)) {
 125		case jalr_op:
 
 
 
 
 
 
 126		case jr_op:
 
 
 
 
 127			return 1;
 128		}
 129		break;
 130
 131	case bcond_op:
 132		switch (MIPSInst_RT(*i)) {
 133		case bltz_op:
 134		case bgez_op:
 135		case bltzl_op:
 136		case bgezl_op:
 137		case bltzal_op:
 138		case bgezal_op:
 139		case bltzall_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140		case bgezall_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141			return 1;
 142		}
 143		break;
 144
 145	case j_op:
 146	case jal_op:
 147	case jalx_op:
 148	case beq_op:
 149	case bne_op:
 150	case blez_op:
 151	case bgtz_op:
 
 
 
 
 
 
 
 
 
 
 152	case beql_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	case bnel_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 154	case blezl_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155	case bgtzl_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158	case cop0_op:
 159	case cop1_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	case cop2_op:
 161	case cop1x_op:
 162		if (MIPSInst_RS(*i) == bc_op)
 163			return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164		break;
 165	}
 166
 167	return 0;
 168}
 169
 170/*
 171 * In the Linux kernel, we support selection of FPR format on the
 172 * basis of the Status.FR bit.  If an FPU is not present, the FR bit
 173 * is hardwired to zero, which would imply a 32-bit FPU even for
 174 * 64-bit CPUs.  For 64-bit kernels with no FPU we use TIF_32BIT_REGS
 175 * as a proxy for the FR bit so that a 64-bit FPU is emulated.  In any
 176 * case, for a 32-bit kernel which uses the O32 MIPS ABI, only the
 177 * even FPRs are used (Status.FR = 0).
 
 178 */
 179static inline int cop1_64bit(struct pt_regs *xcp)
 180{
 181	if (cpu_has_fpu)
 182		return xcp->cp0_status & ST0_FR;
 183#ifdef CONFIG_64BIT
 184	return !test_thread_flag(TIF_32BIT_REGS);
 185#else
 186	return 0;
 187#endif
 188}
 189
 190#define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
 191			(int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
 192
 193#define SITOREG(si, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
 194			cop1_64bit(xcp) || !(x & 1) ? \
 195			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
 196			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
 197
 198#define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
 199#define DITOREG(di, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200
 201#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
 202#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
 203#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
 204#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
 205
 206/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207 * Emulate the single floating point instruction pointed at by EPC.
 208 * Two instructions if the instruction is in a branch delay slot.
 209 */
 210
 211static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 212		       void *__user *fault_addr)
 213{
 
 
 214	mips_instruction ir;
 215	unsigned long emulpc, contpc;
 216	unsigned int cond;
 
 
 
 
 
 217
 218	if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
 219		MIPS_FPU_EMU_INC_STATS(errors);
 220		*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 221		return SIGBUS;
 222	}
 223	if (__get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
 224		MIPS_FPU_EMU_INC_STATS(errors);
 225		*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 226		return SIGSEGV;
 227	}
 228
 229	/* XXX NEC Vr54xx bug workaround */
 230	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
 231		xcp->cp0_cause &= ~CAUSEF_BD;
 
 
 
 
 
 
 
 232
 233	if (xcp->cp0_cause & CAUSEF_BD) {
 234		/*
 235		 * The instruction to be emulated is in a branch delay slot
 236		 * which means that we have to  emulate the branch instruction
 237		 * BEFORE we do the cop1 instruction.
 238		 *
 239		 * This branch could be a COP1 branch, but in that case we
 240		 * would have had a trap for that instruction, and would not
 241		 * come through this route.
 242		 *
 243		 * Linux MIPS branch emulator operates on context, updating the
 244		 * cp0_epc.
 245		 */
 246		emulpc = xcp->cp0_epc + 4;	/* Snapshot emulation target */
 
 
 
 
 
 247
 248		if (__compute_return_epc(xcp)) {
 249#ifdef CP1DBG
 250			printk("failed to emulate branch at %p\n",
 251				(void *) (xcp->cp0_epc));
 252#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253			return SIGILL;
 254		}
 255		if (!access_ok(VERIFY_READ, emulpc, sizeof(mips_instruction))) {
 256			MIPS_FPU_EMU_INC_STATS(errors);
 257			*fault_addr = (mips_instruction __user *)emulpc;
 258			return SIGBUS;
 259		}
 260		if (__get_user(ir, (mips_instruction __user *) emulpc)) {
 261			MIPS_FPU_EMU_INC_STATS(errors);
 262			*fault_addr = (mips_instruction __user *)emulpc;
 263			return SIGSEGV;
 264		}
 265		/* __compute_return_epc() will have updated cp0_epc */
 266		contpc = xcp->cp0_epc;
 267		/* In order not to confuse ptrace() et al, tweak context */
 268		xcp->cp0_epc = emulpc - 4;
 269	} else {
 270		emulpc = xcp->cp0_epc;
 271		contpc = xcp->cp0_epc + 4;
 272	}
 273
 274      emul:
 275	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
 276	MIPS_FPU_EMU_INC_STATS(emulated);
 277	switch (MIPSInst_OPCODE(ir)) {
 278	case ldc1_op:{
 279		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 280			MIPSInst_SIMM(ir));
 281		u64 val;
 282
 283		MIPS_FPU_EMU_INC_STATS(loads);
 284
 285		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
 286			MIPS_FPU_EMU_INC_STATS(errors);
 287			*fault_addr = va;
 288			return SIGBUS;
 289		}
 290		if (__get_user(val, va)) {
 291			MIPS_FPU_EMU_INC_STATS(errors);
 292			*fault_addr = va;
 293			return SIGSEGV;
 294		}
 295		DITOREG(val, MIPSInst_RT(ir));
 296		break;
 297	}
 298
 299	case sdc1_op:{
 300		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 301			MIPSInst_SIMM(ir));
 302		u64 val;
 303
 
 
 
 304		MIPS_FPU_EMU_INC_STATS(stores);
 305		DIFROMREG(val, MIPSInst_RT(ir));
 306		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
 307			MIPS_FPU_EMU_INC_STATS(errors);
 308			*fault_addr = va;
 309			return SIGBUS;
 310		}
 311		if (__put_user(val, va)) {
 312			MIPS_FPU_EMU_INC_STATS(errors);
 313			*fault_addr = va;
 314			return SIGSEGV;
 315		}
 316		break;
 317	}
 318
 319	case lwc1_op:{
 320		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 321			MIPSInst_SIMM(ir));
 322		u32 val;
 323
 
 
 
 324		MIPS_FPU_EMU_INC_STATS(loads);
 325		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
 326			MIPS_FPU_EMU_INC_STATS(errors);
 327			*fault_addr = va;
 328			return SIGBUS;
 329		}
 330		if (__get_user(val, va)) {
 331			MIPS_FPU_EMU_INC_STATS(errors);
 332			*fault_addr = va;
 333			return SIGSEGV;
 334		}
 335		SITOREG(val, MIPSInst_RT(ir));
 336		break;
 337	}
 338
 339	case swc1_op:{
 340		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 341			MIPSInst_SIMM(ir));
 342		u32 val;
 343
 
 
 
 344		MIPS_FPU_EMU_INC_STATS(stores);
 345		SIFROMREG(val, MIPSInst_RT(ir));
 346		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
 347			MIPS_FPU_EMU_INC_STATS(errors);
 348			*fault_addr = va;
 349			return SIGBUS;
 350		}
 351		if (__put_user(val, va)) {
 352			MIPS_FPU_EMU_INC_STATS(errors);
 353			*fault_addr = va;
 354			return SIGSEGV;
 355		}
 356		break;
 357	}
 358
 359	case cop1_op:
 360		switch (MIPSInst_RS(ir)) {
 361
 362#if defined(__mips64)
 363		case dmfc_op:
 
 
 
 364			/* copregister fs -> gpr[rt] */
 365			if (MIPSInst_RT(ir) != 0) {
 366				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
 367					MIPSInst_RD(ir));
 368			}
 369			break;
 370
 371		case dmtc_op:
 
 
 
 372			/* copregister fs <- rt */
 373			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 374			break;
 375#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376
 377		case mfc_op:
 378			/* copregister rd -> gpr[rt] */
 379			if (MIPSInst_RT(ir) != 0) {
 380				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
 381					MIPSInst_RD(ir));
 382			}
 383			break;
 384
 385		case mtc_op:
 386			/* copregister rd <- rt */
 387			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 388			break;
 389
 390		case cfc_op:{
 391			/* cop control register rd -> gpr[rt] */
 392			u32 value;
 393
 394			if (MIPSInst_RD(ir) == FPCREG_CSR) {
 395				value = ctx->fcr31;
 396				value = (value & ~FPU_CSR_RM) |
 397					mips_rm[modeindex(value)];
 398#ifdef CSRTRACE
 399				printk("%p gpr[%d]<-csr=%08x\n",
 400					(void *) (xcp->cp0_epc),
 401					MIPSInst_RT(ir), value);
 402#endif
 403			}
 404			else if (MIPSInst_RD(ir) == FPCREG_RID)
 405				value = 0;
 406			else
 407				value = 0;
 408			if (MIPSInst_RT(ir))
 409				xcp->regs[MIPSInst_RT(ir)] = value;
 410			break;
 411		}
 412
 413		case ctc_op:{
 414			/* copregister rd <- rt */
 415			u32 value;
 416
 417			if (MIPSInst_RT(ir) == 0)
 418				value = 0;
 419			else
 420				value = xcp->regs[MIPSInst_RT(ir)];
 421
 422			/* we only have one writable control reg
 423			 */
 424			if (MIPSInst_RD(ir) == FPCREG_CSR) {
 425#ifdef CSRTRACE
 426				printk("%p gpr[%d]->csr=%08x\n",
 427					(void *) (xcp->cp0_epc),
 428					MIPSInst_RT(ir), value);
 429#endif
 430
 431				/*
 432				 * Don't write reserved bits,
 433				 * and convert to ieee library modes
 434				 */
 435				ctx->fcr31 = (value &
 436						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
 437						ieee_rm[modeindex(value)];
 438			}
 439			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 440				return SIGFPE;
 441			}
 442			break;
 443		}
 444
 445		case bc_op:{
 446			int likely = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447
 448			if (xcp->cp0_cause & CAUSEF_BD)
 
 449				return SIGILL;
 450
 451#if __mips >= 4
 452			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
 453#else
 454			cond = ctx->fcr31 & FPU_CSR_COND;
 455#endif
 
 
 456			switch (MIPSInst_RT(ir) & 3) {
 457			case bcfl_op:
 458				likely = 1;
 
 
 459			case bcf_op:
 460				cond = !cond;
 461				break;
 462			case bctl_op:
 463				likely = 1;
 
 
 464			case bct_op:
 465				break;
 466			default:
 467				/* thats an illegal instruction */
 468				return SIGILL;
 469			}
 470
 471			xcp->cp0_cause |= CAUSEF_BD;
 472			if (cond) {
 473				/* branch taken: emulate dslot
 474				 * instruction
 475				 */
 476				xcp->cp0_epc += 4;
 477				contpc = (xcp->cp0_epc +
 478					(MIPSInst_SIMM(ir) << 2));
 479
 480				if (!access_ok(VERIFY_READ, xcp->cp0_epc,
 481					       sizeof(mips_instruction))) {
 482					MIPS_FPU_EMU_INC_STATS(errors);
 483					*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 484					return SIGBUS;
 485				}
 486				if (__get_user(ir,
 487				    (mips_instruction __user *) xcp->cp0_epc)) {
 488					MIPS_FPU_EMU_INC_STATS(errors);
 489					*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
 490					return SIGSEGV;
 491				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493				switch (MIPSInst_OPCODE(ir)) {
 494				case lwc1_op:
 495				case swc1_op:
 496#if (__mips >= 2 || defined(__mips64))
 
 497				case ldc1_op:
 498				case sdc1_op:
 499#endif
 
 
 
 
 500				case cop1_op:
 501#if __mips >= 4 && __mips != 32
 502				case cop1x_op:
 503#endif
 504					/* its one of ours */
 505					goto emul;
 506#if __mips >= 4
 507				case spec_op:
 508					if (MIPSInst_FUNC(ir) == movc_op)
 
 509						goto emul;
 
 
 
 
 
 
 
 
 
 
 
 510					break;
 511#endif
 
 
 
 512				}
 513
 514				/*
 515				 * Single step the non-cp1
 516				 * instruction in the dslot
 517				 */
 518				return mips_dsemul(xcp, ir, contpc);
 519			}
 520			else {
 521				/* branch not taken */
 522				if (likely) {
 523					/*
 524					 * branch likely nullifies
 525					 * dslot if not taken
 526					 */
 527					xcp->cp0_epc += 4;
 528					contpc += 4;
 529					/*
 530					 * else continue & execute
 531					 * dslot as normal insn
 532					 */
 533				}
 
 
 534			}
 535			break;
 536		}
 537
 538		default:
 539			if (!(MIPSInst_RS(ir) & 0x10))
 540				return SIGILL;
 541			{
 542				int sig;
 543
 544				/* a real fpu computation instruction */
 545				if ((sig = fpu_emu(xcp, ctx, ir)))
 546					return sig;
 547			}
 548		}
 549		break;
 550
 551#if __mips >= 4 && __mips != 32
 552	case cop1x_op:{
 553		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
 
 
 554		if (sig)
 555			return sig;
 556		break;
 557	}
 558#endif
 559
 560#if __mips >= 4
 561	case spec_op:
 
 
 
 562		if (MIPSInst_FUNC(ir) != movc_op)
 563			return SIGILL;
 564		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
 565		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
 566			xcp->regs[MIPSInst_RD(ir)] =
 567				xcp->regs[MIPSInst_RS(ir)];
 568		break;
 569#endif
 570
 571	default:
 
 572		return SIGILL;
 573	}
 574
 575	/* we did it !! */
 576	xcp->cp0_epc = contpc;
 577	xcp->cp0_cause &= ~CAUSEF_BD;
 578
 579	return 0;
 580}
 581
 582/*
 583 * Conversion table from MIPS compare ops 48-63
 584 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
 585 */
 586static const unsigned char cmptab[8] = {
 587	0,			/* cmp_0 (sig) cmp_sf */
 588	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
 589	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
 590	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
 591	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
 592	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
 593	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
 594	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
 595};
 596
 
 
 
 
 
 
 
 597
 598#if __mips >= 4 && __mips != 32
 599
 600/*
 601 * Additional MIPS4 instructions
 602 */
 603
 604#define DEF3OP(name, p, f1, f2, f3) \
 605static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
 606    ieee754##p t) \
 607{ \
 608	struct _ieee754_csr ieee754_csr_save; \
 609	s = f1(s, t); \
 610	ieee754_csr_save = ieee754_csr; \
 611	s = f2(s, r); \
 612	ieee754_csr_save.cx |= ieee754_csr.cx; \
 613	ieee754_csr_save.sx |= ieee754_csr.sx; \
 614	s = f3(s); \
 615	ieee754_csr.cx |= ieee754_csr_save.cx; \
 616	ieee754_csr.sx |= ieee754_csr_save.sx; \
 617	return s; \
 618}
 619
 620static ieee754dp fpemu_dp_recip(ieee754dp d)
 621{
 622	return ieee754dp_div(ieee754dp_one(0), d);
 623}
 624
 625static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
 626{
 627	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
 628}
 629
 630static ieee754sp fpemu_sp_recip(ieee754sp s)
 631{
 632	return ieee754sp_div(ieee754sp_one(0), s);
 633}
 634
 635static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
 636{
 637	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
 638}
 639
 640DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
 641DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
 642DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
 643DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
 644DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
 645DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
 646DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
 647DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
 648
 649static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 650	mips_instruction ir, void *__user *fault_addr)
 651{
 652	unsigned rcsr = 0;	/* resulting csr */
 653
 654	MIPS_FPU_EMU_INC_STATS(cp1xops);
 655
 656	switch (MIPSInst_FMA_FFMT(ir)) {
 657	case s_fmt:{		/* 0 */
 658
 659		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
 660		ieee754sp fd, fr, fs, ft;
 661		u32 __user *va;
 662		u32 val;
 663
 664		switch (MIPSInst_FUNC(ir)) {
 665		case lwxc1_op:
 666			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 667				xcp->regs[MIPSInst_FT(ir)]);
 668
 669			MIPS_FPU_EMU_INC_STATS(loads);
 670			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
 671				MIPS_FPU_EMU_INC_STATS(errors);
 672				*fault_addr = va;
 673				return SIGBUS;
 674			}
 675			if (__get_user(val, va)) {
 676				MIPS_FPU_EMU_INC_STATS(errors);
 677				*fault_addr = va;
 678				return SIGSEGV;
 679			}
 680			SITOREG(val, MIPSInst_FD(ir));
 681			break;
 682
 683		case swxc1_op:
 684			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 685				xcp->regs[MIPSInst_FT(ir)]);
 686
 687			MIPS_FPU_EMU_INC_STATS(stores);
 688
 689			SIFROMREG(val, MIPSInst_FS(ir));
 690			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
 691				MIPS_FPU_EMU_INC_STATS(errors);
 692				*fault_addr = va;
 693				return SIGBUS;
 694			}
 695			if (put_user(val, va)) {
 696				MIPS_FPU_EMU_INC_STATS(errors);
 697				*fault_addr = va;
 698				return SIGSEGV;
 699			}
 700			break;
 701
 702		case madd_s_op:
 703			handler = fpemu_sp_madd;
 704			goto scoptop;
 705		case msub_s_op:
 706			handler = fpemu_sp_msub;
 707			goto scoptop;
 708		case nmadd_s_op:
 709			handler = fpemu_sp_nmadd;
 710			goto scoptop;
 711		case nmsub_s_op:
 712			handler = fpemu_sp_nmsub;
 713			goto scoptop;
 714
 715		      scoptop:
 716			SPFROMREG(fr, MIPSInst_FR(ir));
 717			SPFROMREG(fs, MIPSInst_FS(ir));
 718			SPFROMREG(ft, MIPSInst_FT(ir));
 719			fd = (*handler) (fr, fs, ft);
 720			SPTOREG(fd, MIPSInst_FD(ir));
 721
 722		      copcsr:
 723			if (ieee754_cxtest(IEEE754_INEXACT))
 
 724				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
 725			if (ieee754_cxtest(IEEE754_UNDERFLOW))
 
 
 726				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
 727			if (ieee754_cxtest(IEEE754_OVERFLOW))
 
 
 728				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
 729			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
 
 
 730				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
 
 731
 732			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
 733			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 734				/*printk ("SIGFPE: fpu csr = %08x\n",
 735				   ctx->fcr31); */
 736				return SIGFPE;
 737			}
 738
 739			break;
 740
 741		default:
 742			return SIGILL;
 743		}
 744		break;
 745	}
 746
 747	case d_fmt:{		/* 1 */
 748		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
 749		ieee754dp fd, fr, fs, ft;
 750		u64 __user *va;
 751		u64 val;
 752
 753		switch (MIPSInst_FUNC(ir)) {
 754		case ldxc1_op:
 755			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 756				xcp->regs[MIPSInst_FT(ir)]);
 757
 758			MIPS_FPU_EMU_INC_STATS(loads);
 759			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
 760				MIPS_FPU_EMU_INC_STATS(errors);
 761				*fault_addr = va;
 762				return SIGBUS;
 763			}
 764			if (__get_user(val, va)) {
 765				MIPS_FPU_EMU_INC_STATS(errors);
 766				*fault_addr = va;
 767				return SIGSEGV;
 768			}
 769			DITOREG(val, MIPSInst_FD(ir));
 770			break;
 771
 772		case sdxc1_op:
 773			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 774				xcp->regs[MIPSInst_FT(ir)]);
 775
 776			MIPS_FPU_EMU_INC_STATS(stores);
 777			DIFROMREG(val, MIPSInst_FS(ir));
 778			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
 779				MIPS_FPU_EMU_INC_STATS(errors);
 780				*fault_addr = va;
 781				return SIGBUS;
 782			}
 783			if (__put_user(val, va)) {
 784				MIPS_FPU_EMU_INC_STATS(errors);
 785				*fault_addr = va;
 786				return SIGSEGV;
 787			}
 788			break;
 789
 790		case madd_d_op:
 791			handler = fpemu_dp_madd;
 792			goto dcoptop;
 793		case msub_d_op:
 794			handler = fpemu_dp_msub;
 795			goto dcoptop;
 796		case nmadd_d_op:
 797			handler = fpemu_dp_nmadd;
 798			goto dcoptop;
 799		case nmsub_d_op:
 800			handler = fpemu_dp_nmsub;
 801			goto dcoptop;
 802
 803		      dcoptop:
 804			DPFROMREG(fr, MIPSInst_FR(ir));
 805			DPFROMREG(fs, MIPSInst_FS(ir));
 806			DPFROMREG(ft, MIPSInst_FT(ir));
 807			fd = (*handler) (fr, fs, ft);
 808			DPTOREG(fd, MIPSInst_FD(ir));
 809			goto copcsr;
 810
 811		default:
 812			return SIGILL;
 813		}
 814		break;
 815	}
 816
 817	case 0x7:		/* 7 */
 818		if (MIPSInst_FUNC(ir) != pfetch_op) {
 819			return SIGILL;
 820		}
 821		/* ignore prefx operation */
 822		break;
 823
 824	default:
 825		return SIGILL;
 826	}
 827
 828	return 0;
 829}
 830#endif
 831
 832
 833
 834/*
 835 * Emulate a single COP1 arithmetic instruction.
 836 */
 837static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 838	mips_instruction ir)
 839{
 840	int rfmt;		/* resulting format */
 841	unsigned rcsr = 0;	/* resulting csr */
 
 
 842	unsigned cond;
 843	union {
 844		ieee754dp d;
 845		ieee754sp s;
 846		int w;
 847#ifdef __mips64
 848		s64 l;
 849#endif
 850	} rv;			/* resulting value */
 
 851
 852	MIPS_FPU_EMU_INC_STATS(cp1ops);
 853	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
 854	case s_fmt:{		/* 0 */
 855		union {
 856			ieee754sp(*b) (ieee754sp, ieee754sp);
 857			ieee754sp(*u) (ieee754sp);
 858		} handler;
 
 859
 860		switch (MIPSInst_FUNC(ir)) {
 861			/* binary ops */
 862		case fadd_op:
 863			handler.b = ieee754sp_add;
 864			goto scopbop;
 865		case fsub_op:
 866			handler.b = ieee754sp_sub;
 867			goto scopbop;
 868		case fmul_op:
 869			handler.b = ieee754sp_mul;
 870			goto scopbop;
 871		case fdiv_op:
 872			handler.b = ieee754sp_div;
 873			goto scopbop;
 874
 875			/* unary  ops */
 876#if __mips >= 2 || defined(__mips64)
 877		case fsqrt_op:
 
 
 
 878			handler.u = ieee754sp_sqrt;
 879			goto scopuop;
 880#endif
 881#if __mips >= 4 && __mips != 32
 
 
 
 
 882		case frsqrt_op:
 
 
 
 883			handler.u = fpemu_sp_rsqrt;
 884			goto scopuop;
 
 885		case frecip_op:
 
 
 
 886			handler.u = fpemu_sp_recip;
 887			goto scopuop;
 888#endif
 889#if __mips >= 4
 890		case fmovc_op:
 
 
 
 891			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
 892			if (((ctx->fcr31 & cond) != 0) !=
 893				((MIPSInst_FT(ir) & 1) != 0))
 894				return 0;
 895			SPFROMREG(rv.s, MIPSInst_FS(ir));
 896			break;
 
 897		case fmovz_op:
 
 
 
 898			if (xcp->regs[MIPSInst_FT(ir)] != 0)
 899				return 0;
 900			SPFROMREG(rv.s, MIPSInst_FS(ir));
 901			break;
 
 902		case fmovn_op:
 
 
 
 903			if (xcp->regs[MIPSInst_FT(ir)] == 0)
 904				return 0;
 905			SPFROMREG(rv.s, MIPSInst_FS(ir));
 906			break;
 907#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908		case fabs_op:
 909			handler.u = ieee754sp_abs;
 910			goto scopuop;
 
 911		case fneg_op:
 912			handler.u = ieee754sp_neg;
 913			goto scopuop;
 
 914		case fmov_op:
 915			/* an easy one */
 916			SPFROMREG(rv.s, MIPSInst_FS(ir));
 917			goto copcsr;
 918
 919			/* binary op on handler */
 920		      scopbop:
 921			{
 922				ieee754sp fs, ft;
 923
 924				SPFROMREG(fs, MIPSInst_FS(ir));
 925				SPFROMREG(ft, MIPSInst_FT(ir));
 926
 927				rv.s = (*handler.b) (fs, ft);
 928				goto copcsr;
 929			}
 930		      scopuop:
 931			{
 932				ieee754sp fs;
 933
 934				SPFROMREG(fs, MIPSInst_FS(ir));
 935				rv.s = (*handler.u) (fs);
 936				goto copcsr;
 937			}
 938		      copcsr:
 939			if (ieee754_cxtest(IEEE754_INEXACT))
 
 
 
 940				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
 941			if (ieee754_cxtest(IEEE754_UNDERFLOW))
 
 
 942				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
 943			if (ieee754_cxtest(IEEE754_OVERFLOW))
 
 
 944				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
 945			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
 
 
 946				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
 947			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
 
 
 948				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
 
 949			break;
 950
 951			/* unary conv ops */
 952		case fcvts_op:
 953			return SIGILL;	/* not defined */
 954		case fcvtd_op:{
 955			ieee754sp fs;
 956
 
 957			SPFROMREG(fs, MIPSInst_FS(ir));
 958			rv.d = ieee754dp_fsp(fs);
 959			rfmt = d_fmt;
 960			goto copcsr;
 961		}
 962		case fcvtw_op:{
 963			ieee754sp fs;
 964
 
 965			SPFROMREG(fs, MIPSInst_FS(ir));
 966			rv.w = ieee754sp_tint(fs);
 967			rfmt = w_fmt;
 968			goto copcsr;
 969		}
 970
 971#if __mips >= 2 || defined(__mips64)
 972		case fround_op:
 973		case ftrunc_op:
 974		case fceil_op:
 975		case ffloor_op:{
 976			unsigned int oldrm = ieee754_csr.rm;
 977			ieee754sp fs;
 978
 
 979			SPFROMREG(fs, MIPSInst_FS(ir));
 980			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
 981			rv.w = ieee754sp_tint(fs);
 982			ieee754_csr.rm = oldrm;
 983			rfmt = w_fmt;
 984			goto copcsr;
 985		}
 986#endif /* __mips >= 2 */
 987
 988#if defined(__mips64)
 989		case fcvtl_op:{
 990			ieee754sp fs;
 
 
 
 
 
 
 
 
 
 
 
 991
 992			SPFROMREG(fs, MIPSInst_FS(ir));
 993			rv.l = ieee754sp_tlong(fs);
 994			rfmt = l_fmt;
 995			goto copcsr;
 996		}
 997
 998		case froundl_op:
 999		case ftruncl_op:
1000		case fceill_op:
1001		case ffloorl_op:{
1002			unsigned int oldrm = ieee754_csr.rm;
1003			ieee754sp fs;
1004
 
1005			SPFROMREG(fs, MIPSInst_FS(ir));
1006			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1007			rv.l = ieee754sp_tlong(fs);
1008			ieee754_csr.rm = oldrm;
1009			rfmt = l_fmt;
1010			goto copcsr;
1011		}
1012#endif /* defined(__mips64) */
1013
1014		default:
1015			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1016				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1017				ieee754sp fs, ft;
1018
1019				SPFROMREG(fs, MIPSInst_FS(ir));
1020				SPFROMREG(ft, MIPSInst_FT(ir));
1021				rv.w = ieee754sp_cmp(fs, ft,
1022					cmptab[cmpop & 0x7], cmpop & 0x8);
1023				rfmt = -1;
1024				if ((cmpop & 0x8) && ieee754_cxtest
1025					(IEEE754_INVALID_OPERATION))
1026					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1027				else
1028					goto copcsr;
1029
1030			}
1031			else {
1032				return SIGILL;
1033			}
1034			break;
1035		}
1036		break;
1037	}
1038
1039	case d_fmt:{
 
1040		union {
1041			ieee754dp(*b) (ieee754dp, ieee754dp);
1042			ieee754dp(*u) (ieee754dp);
1043		} handler;
1044
1045		switch (MIPSInst_FUNC(ir)) {
1046			/* binary ops */
1047		case fadd_op:
1048			handler.b = ieee754dp_add;
1049			goto dcopbop;
1050		case fsub_op:
1051			handler.b = ieee754dp_sub;
1052			goto dcopbop;
1053		case fmul_op:
1054			handler.b = ieee754dp_mul;
1055			goto dcopbop;
1056		case fdiv_op:
1057			handler.b = ieee754dp_div;
1058			goto dcopbop;
1059
1060			/* unary  ops */
1061#if __mips >= 2 || defined(__mips64)
1062		case fsqrt_op:
 
 
 
1063			handler.u = ieee754dp_sqrt;
1064			goto dcopuop;
1065#endif
1066#if __mips >= 4 && __mips != 32
 
 
 
1067		case frsqrt_op:
 
 
 
1068			handler.u = fpemu_dp_rsqrt;
1069			goto dcopuop;
1070		case frecip_op:
 
 
 
1071			handler.u = fpemu_dp_recip;
1072			goto dcopuop;
1073#endif
1074#if __mips >= 4
1075		case fmovc_op:
 
 
 
1076			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1077			if (((ctx->fcr31 & cond) != 0) !=
1078				((MIPSInst_FT(ir) & 1) != 0))
1079				return 0;
1080			DPFROMREG(rv.d, MIPSInst_FS(ir));
1081			break;
1082		case fmovz_op:
 
 
 
1083			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1084				return 0;
1085			DPFROMREG(rv.d, MIPSInst_FS(ir));
1086			break;
1087		case fmovn_op:
 
 
 
1088			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1089				return 0;
1090			DPFROMREG(rv.d, MIPSInst_FS(ir));
1091			break;
1092#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093		case fabs_op:
1094			handler.u = ieee754dp_abs;
1095			goto dcopuop;
1096
1097		case fneg_op:
1098			handler.u = ieee754dp_neg;
1099			goto dcopuop;
1100
1101		case fmov_op:
1102			/* an easy one */
1103			DPFROMREG(rv.d, MIPSInst_FS(ir));
1104			goto copcsr;
1105
1106			/* binary op on handler */
1107		      dcopbop:{
1108				ieee754dp fs, ft;
1109
1110				DPFROMREG(fs, MIPSInst_FS(ir));
1111				DPFROMREG(ft, MIPSInst_FT(ir));
1112
1113				rv.d = (*handler.b) (fs, ft);
1114				goto copcsr;
1115			}
1116		      dcopuop:{
1117				ieee754dp fs;
1118
1119				DPFROMREG(fs, MIPSInst_FS(ir));
1120				rv.d = (*handler.u) (fs);
1121				goto copcsr;
1122			}
1123
1124			/* unary conv ops */
1125		case fcvts_op:{
1126			ieee754dp fs;
 
 
 
1127
 
 
 
 
1128			DPFROMREG(fs, MIPSInst_FS(ir));
1129			rv.s = ieee754sp_fdp(fs);
1130			rfmt = s_fmt;
1131			goto copcsr;
1132		}
1133		case fcvtd_op:
1134			return SIGILL;	/* not defined */
1135
1136		case fcvtw_op:{
1137			ieee754dp fs;
1138
1139			DPFROMREG(fs, MIPSInst_FS(ir));
1140			rv.w = ieee754dp_tint(fs);	/* wrong */
1141			rfmt = w_fmt;
1142			goto copcsr;
1143		}
1144
1145#if __mips >= 2 || defined(__mips64)
1146		case fround_op:
1147		case ftrunc_op:
1148		case fceil_op:
1149		case ffloor_op:{
1150			unsigned int oldrm = ieee754_csr.rm;
1151			ieee754dp fs;
1152
 
1153			DPFROMREG(fs, MIPSInst_FS(ir));
1154			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1155			rv.w = ieee754dp_tint(fs);
1156			ieee754_csr.rm = oldrm;
1157			rfmt = w_fmt;
1158			goto copcsr;
1159		}
1160#endif
1161
1162#if defined(__mips64)
1163		case fcvtl_op:{
1164			ieee754dp fs;
 
 
 
 
 
 
 
 
 
 
 
1165
1166			DPFROMREG(fs, MIPSInst_FS(ir));
1167			rv.l = ieee754dp_tlong(fs);
1168			rfmt = l_fmt;
1169			goto copcsr;
1170		}
1171
1172		case froundl_op:
1173		case ftruncl_op:
1174		case fceill_op:
1175		case ffloorl_op:{
1176			unsigned int oldrm = ieee754_csr.rm;
1177			ieee754dp fs;
1178
 
1179			DPFROMREG(fs, MIPSInst_FS(ir));
1180			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1181			rv.l = ieee754dp_tlong(fs);
1182			ieee754_csr.rm = oldrm;
1183			rfmt = l_fmt;
1184			goto copcsr;
1185		}
1186#endif /* __mips >= 3 */
1187
1188		default:
1189			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1190				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1191				ieee754dp fs, ft;
1192
1193				DPFROMREG(fs, MIPSInst_FS(ir));
1194				DPFROMREG(ft, MIPSInst_FT(ir));
1195				rv.w = ieee754dp_cmp(fs, ft,
1196					cmptab[cmpop & 0x7], cmpop & 0x8);
1197				rfmt = -1;
1198				if ((cmpop & 0x8)
1199					&&
1200					ieee754_cxtest
1201					(IEEE754_INVALID_OPERATION))
1202					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1203				else
1204					goto copcsr;
1205
1206			}
1207			else {
1208				return SIGILL;
1209			}
1210			break;
1211		}
1212		break;
1213	}
1214
1215	case w_fmt:{
1216		ieee754sp fs;
1217
1218		switch (MIPSInst_FUNC(ir)) {
1219		case fcvts_op:
1220			/* convert word to single precision real */
1221			SPFROMREG(fs, MIPSInst_FS(ir));
1222			rv.s = ieee754sp_fint(fs.bits);
1223			rfmt = s_fmt;
1224			goto copcsr;
1225		case fcvtd_op:
1226			/* convert word to double precision real */
1227			SPFROMREG(fs, MIPSInst_FS(ir));
1228			rv.d = ieee754dp_fint(fs.bits);
1229			rfmt = d_fmt;
1230			goto copcsr;
1231		default:
1232			return SIGILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233		}
1234		break;
1235	}
1236
1237#if defined(__mips64)
1238	case l_fmt:{
 
 
 
 
 
1239		switch (MIPSInst_FUNC(ir)) {
1240		case fcvts_op:
1241			/* convert long to single precision real */
1242			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1243			rfmt = s_fmt;
1244			goto copcsr;
1245		case fcvtd_op:
1246			/* convert long to double precision real */
1247			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1248			rfmt = d_fmt;
1249			goto copcsr;
1250		default:
1251			return SIGILL;
1252		}
1253		break;
1254	}
1255#endif
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257	default:
1258		return SIGILL;
1259	}
1260
1261	/*
1262	 * Update the fpu CSR register for this operation.
1263	 * If an exception is required, generate a tidy SIGFPE exception,
1264	 * without updating the result register.
1265	 * Note: cause exception bits do not accumulate, they are rewritten
1266	 * for each op; only the flag/sticky bits accumulate.
1267	 */
1268	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1269	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1270		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1271		return SIGFPE;
1272	}
1273
1274	/*
1275	 * Now we can safely write the result back to the register file.
1276	 */
1277	switch (rfmt) {
1278	case -1:{
1279#if __mips >= 4
1280		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1281#else
1282		cond = FPU_CSR_COND;
1283#endif
1284		if (rv.w)
1285			ctx->fcr31 |= cond;
1286		else
1287			ctx->fcr31 &= ~cond;
1288		break;
1289	}
1290	case d_fmt:
1291		DPTOREG(rv.d, MIPSInst_FD(ir));
1292		break;
1293	case s_fmt:
1294		SPTOREG(rv.s, MIPSInst_FD(ir));
1295		break;
1296	case w_fmt:
1297		SITOREG(rv.w, MIPSInst_FD(ir));
1298		break;
1299#if defined(__mips64)
1300	case l_fmt:
 
 
 
1301		DITOREG(rv.l, MIPSInst_FD(ir));
1302		break;
1303#endif
1304	default:
1305		return SIGILL;
1306	}
1307
1308	return 0;
1309}
1310
1311int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1312	int has_fpu, void *__user *fault_addr)
1313{
1314	unsigned long oldepc, prevepc;
1315	mips_instruction insn;
 
 
1316	int sig = 0;
1317
1318	oldepc = xcp->cp0_epc;
1319	do {
1320		prevepc = xcp->cp0_epc;
1321
1322		if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
1323			MIPS_FPU_EMU_INC_STATS(errors);
1324			*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1325			return SIGBUS;
1326		}
1327		if (__get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1328			MIPS_FPU_EMU_INC_STATS(errors);
1329			*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1330			return SIGSEGV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331		}
1332		if (insn == 0)
1333			xcp->cp0_epc += 4;	/* skip nops */
 
 
 
1334		else {
1335			/*
1336			 * The 'ieee754_csr' is an alias of
1337			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1338			 * ieee754_csr.  But ieee754_csr.rm is ieee
1339			 * library modes. (not mips rounding mode)
1340			 */
1341			/* convert to ieee library modes */
1342			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1343			sig = cop1Emulate(xcp, ctx, fault_addr);
1344			/* revert to mips rounding mode */
1345			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1346		}
1347
1348		if (has_fpu)
1349			break;
1350		if (sig)
1351			break;
1352
1353		cond_resched();
1354	} while (xcp->cp0_epc > prevepc);
1355
1356	/* SIGILL indicates a non-fpu instruction */
1357	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1358		/* but if epc has advanced, then ignore it */
1359		sig = 0;
1360
1361	return sig;
1362}
1363
1364#ifdef CONFIG_DEBUG_FS
1365
1366static int fpuemu_stat_get(void *data, u64 *val)
1367{
1368	int cpu;
1369	unsigned long sum = 0;
1370	for_each_online_cpu(cpu) {
1371		struct mips_fpu_emulator_stats *ps;
1372		local_t *pv;
1373		ps = &per_cpu(fpuemustats, cpu);
1374		pv = (void *)ps + (unsigned long)data;
1375		sum += local_read(pv);
1376	}
1377	*val = sum;
1378	return 0;
1379}
1380DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
1381
1382extern struct dentry *mips_debugfs_dir;
1383static int __init debugfs_fpuemu(void)
1384{
1385	struct dentry *d, *dir;
1386
1387	if (!mips_debugfs_dir)
1388		return -ENODEV;
1389	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1390	if (!dir)
1391		return -ENOMEM;
1392
1393#define FPU_STAT_CREATE(M)						\
1394	do {								\
1395		d = debugfs_create_file(#M , S_IRUGO, dir,		\
1396			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
1397			&fops_fpuemu_stat);				\
1398		if (!d)							\
1399			return -ENOMEM;					\
1400	} while (0)
1401
1402	FPU_STAT_CREATE(emulated);
1403	FPU_STAT_CREATE(loads);
1404	FPU_STAT_CREATE(stores);
1405	FPU_STAT_CREATE(cp1ops);
1406	FPU_STAT_CREATE(cp1xops);
1407	FPU_STAT_CREATE(errors);
1408
1409	return 0;
1410}
1411__initcall(debugfs_fpuemu);
1412#endif
v4.10.11
   1/*
   2 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
   3 *
   4 * MIPS floating point support
   5 * Copyright (C) 1994-2000 Algorithmics Ltd.
   6 *
   7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
   8 * Copyright (C) 2000  MIPS Technologies, Inc.
   9 *
  10 *  This program is free software; you can distribute it and/or modify it
  11 *  under the terms of the GNU General Public License (Version 2) as
  12 *  published by the Free Software Foundation.
  13 *
  14 *  This program is distributed in the hope it will be useful, but WITHOUT
  15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  17 *  for more details.
  18 *
  19 *  You should have received a copy of the GNU General Public License along
  20 *  with this program; if not, write to the Free Software Foundation, Inc.,
  21 *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
  22 *
  23 * A complete emulator for MIPS coprocessor 1 instructions.  This is
  24 * required for #float(switch) or #float(trap), where it catches all
  25 * COP1 instructions via the "CoProcessor Unusable" exception.
  26 *
  27 * More surprisingly it is also required for #float(ieee), to help out
  28 * the hardware FPU at the boundaries of the IEEE-754 representation
  29 * (denormalised values, infinities, underflow, etc).  It is made
  30 * quite nasty because emulation of some non-COP1 instructions is
  31 * required, e.g. in branch delay slots.
  32 *
  33 * Note if you know that you won't have an FPU, then you'll get much
  34 * better performance by compiling with -msoft-float!
  35 */
  36#include <linux/sched.h>
 
  37#include <linux/debugfs.h>
  38#include <linux/percpu-defs.h>
  39#include <linux/perf_event.h>
  40
  41#include <asm/branch.h>
  42#include <asm/inst.h>
 
 
  43#include <asm/ptrace.h>
  44#include <asm/signal.h>
  45#include <linux/uaccess.h>
  46
  47#include <asm/cpu-info.h>
  48#include <asm/processor.h>
  49#include <asm/fpu_emulator.h>
  50#include <asm/fpu.h>
  51#include <asm/mips-r2-to-r6-emul.h>
  52
  53#include "ieee754.h"
  54
 
 
 
 
 
 
 
  55/* Function which emulates a floating point instruction. */
  56
  57static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
  58	mips_instruction);
  59
 
  60static int fpux_emu(struct pt_regs *,
  61	struct mips_fpu_struct *, mips_instruction, void *__user *);
 
 
 
 
 
 
 
  62
  63/* Control registers */
  64
  65#define FPCREG_RID	0	/* $0  = revision id */
  66#define FPCREG_FCCR	25	/* $25 = fccr */
  67#define FPCREG_FEXR	26	/* $26 = fexr */
  68#define FPCREG_FENR	28	/* $28 = fenr */
  69#define FPCREG_CSR	31	/* $31 = csr */
  70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71/* convert condition code register number to csr bit */
  72const unsigned int fpucondbit[8] = {
  73	FPU_CSR_COND,
  74	FPU_CSR_COND1,
  75	FPU_CSR_COND2,
  76	FPU_CSR_COND3,
  77	FPU_CSR_COND4,
  78	FPU_CSR_COND5,
  79	FPU_CSR_COND6,
  80	FPU_CSR_COND7
  81};
 
  82
  83/* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
  84static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
  85static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
  86static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
  87static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
  88
  89/*
  90 * This functions translates a 32-bit microMIPS instruction
  91 * into a 32-bit MIPS32 instruction. Returns 0 on success
  92 * and SIGILL otherwise.
  93 */
  94static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
  95{
  96	union mips_instruction insn = *insn_ptr;
  97	union mips_instruction mips32_insn = insn;
  98	int func, fmt, op;
  99
 100	switch (insn.mm_i_format.opcode) {
 101	case mm_ldc132_op:
 102		mips32_insn.mm_i_format.opcode = ldc1_op;
 103		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 104		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 105		break;
 106	case mm_lwc132_op:
 107		mips32_insn.mm_i_format.opcode = lwc1_op;
 108		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 109		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 110		break;
 111	case mm_sdc132_op:
 112		mips32_insn.mm_i_format.opcode = sdc1_op;
 113		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 114		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 115		break;
 116	case mm_swc132_op:
 117		mips32_insn.mm_i_format.opcode = swc1_op;
 118		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 119		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 120		break;
 121	case mm_pool32i_op:
 122		/* NOTE: offset is << by 1 if in microMIPS mode. */
 123		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
 124		    (insn.mm_i_format.rt == mm_bc1t_op)) {
 125			mips32_insn.fb_format.opcode = cop1_op;
 126			mips32_insn.fb_format.bc = bc_op;
 127			mips32_insn.fb_format.flag =
 128				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
 129		} else
 130			return SIGILL;
 131		break;
 132	case mm_pool32f_op:
 133		switch (insn.mm_fp0_format.func) {
 134		case mm_32f_01_op:
 135		case mm_32f_11_op:
 136		case mm_32f_02_op:
 137		case mm_32f_12_op:
 138		case mm_32f_41_op:
 139		case mm_32f_51_op:
 140		case mm_32f_42_op:
 141		case mm_32f_52_op:
 142			op = insn.mm_fp0_format.func;
 143			if (op == mm_32f_01_op)
 144				func = madd_s_op;
 145			else if (op == mm_32f_11_op)
 146				func = madd_d_op;
 147			else if (op == mm_32f_02_op)
 148				func = nmadd_s_op;
 149			else if (op == mm_32f_12_op)
 150				func = nmadd_d_op;
 151			else if (op == mm_32f_41_op)
 152				func = msub_s_op;
 153			else if (op == mm_32f_51_op)
 154				func = msub_d_op;
 155			else if (op == mm_32f_42_op)
 156				func = nmsub_s_op;
 157			else
 158				func = nmsub_d_op;
 159			mips32_insn.fp6_format.opcode = cop1x_op;
 160			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
 161			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
 162			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
 163			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
 164			mips32_insn.fp6_format.func = func;
 165			break;
 166		case mm_32f_10_op:
 167			func = -1;	/* Invalid */
 168			op = insn.mm_fp5_format.op & 0x7;
 169			if (op == mm_ldxc1_op)
 170				func = ldxc1_op;
 171			else if (op == mm_sdxc1_op)
 172				func = sdxc1_op;
 173			else if (op == mm_lwxc1_op)
 174				func = lwxc1_op;
 175			else if (op == mm_swxc1_op)
 176				func = swxc1_op;
 177
 178			if (func != -1) {
 179				mips32_insn.r_format.opcode = cop1x_op;
 180				mips32_insn.r_format.rs =
 181					insn.mm_fp5_format.base;
 182				mips32_insn.r_format.rt =
 183					insn.mm_fp5_format.index;
 184				mips32_insn.r_format.rd = 0;
 185				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
 186				mips32_insn.r_format.func = func;
 187			} else
 188				return SIGILL;
 189			break;
 190		case mm_32f_40_op:
 191			op = -1;	/* Invalid */
 192			if (insn.mm_fp2_format.op == mm_fmovt_op)
 193				op = 1;
 194			else if (insn.mm_fp2_format.op == mm_fmovf_op)
 195				op = 0;
 196			if (op != -1) {
 197				mips32_insn.fp0_format.opcode = cop1_op;
 198				mips32_insn.fp0_format.fmt =
 199					sdps_format[insn.mm_fp2_format.fmt];
 200				mips32_insn.fp0_format.ft =
 201					(insn.mm_fp2_format.cc<<2) + op;
 202				mips32_insn.fp0_format.fs =
 203					insn.mm_fp2_format.fs;
 204				mips32_insn.fp0_format.fd =
 205					insn.mm_fp2_format.fd;
 206				mips32_insn.fp0_format.func = fmovc_op;
 207			} else
 208				return SIGILL;
 209			break;
 210		case mm_32f_60_op:
 211			func = -1;	/* Invalid */
 212			if (insn.mm_fp0_format.op == mm_fadd_op)
 213				func = fadd_op;
 214			else if (insn.mm_fp0_format.op == mm_fsub_op)
 215				func = fsub_op;
 216			else if (insn.mm_fp0_format.op == mm_fmul_op)
 217				func = fmul_op;
 218			else if (insn.mm_fp0_format.op == mm_fdiv_op)
 219				func = fdiv_op;
 220			if (func != -1) {
 221				mips32_insn.fp0_format.opcode = cop1_op;
 222				mips32_insn.fp0_format.fmt =
 223					sdps_format[insn.mm_fp0_format.fmt];
 224				mips32_insn.fp0_format.ft =
 225					insn.mm_fp0_format.ft;
 226				mips32_insn.fp0_format.fs =
 227					insn.mm_fp0_format.fs;
 228				mips32_insn.fp0_format.fd =
 229					insn.mm_fp0_format.fd;
 230				mips32_insn.fp0_format.func = func;
 231			} else
 232				return SIGILL;
 233			break;
 234		case mm_32f_70_op:
 235			func = -1;	/* Invalid */
 236			if (insn.mm_fp0_format.op == mm_fmovn_op)
 237				func = fmovn_op;
 238			else if (insn.mm_fp0_format.op == mm_fmovz_op)
 239				func = fmovz_op;
 240			if (func != -1) {
 241				mips32_insn.fp0_format.opcode = cop1_op;
 242				mips32_insn.fp0_format.fmt =
 243					sdps_format[insn.mm_fp0_format.fmt];
 244				mips32_insn.fp0_format.ft =
 245					insn.mm_fp0_format.ft;
 246				mips32_insn.fp0_format.fs =
 247					insn.mm_fp0_format.fs;
 248				mips32_insn.fp0_format.fd =
 249					insn.mm_fp0_format.fd;
 250				mips32_insn.fp0_format.func = func;
 251			} else
 252				return SIGILL;
 253			break;
 254		case mm_32f_73_op:    /* POOL32FXF */
 255			switch (insn.mm_fp1_format.op) {
 256			case mm_movf0_op:
 257			case mm_movf1_op:
 258			case mm_movt0_op:
 259			case mm_movt1_op:
 260				if ((insn.mm_fp1_format.op & 0x7f) ==
 261				    mm_movf0_op)
 262					op = 0;
 263				else
 264					op = 1;
 265				mips32_insn.r_format.opcode = spec_op;
 266				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
 267				mips32_insn.r_format.rt =
 268					(insn.mm_fp4_format.cc << 2) + op;
 269				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
 270				mips32_insn.r_format.re = 0;
 271				mips32_insn.r_format.func = movc_op;
 272				break;
 273			case mm_fcvtd0_op:
 274			case mm_fcvtd1_op:
 275			case mm_fcvts0_op:
 276			case mm_fcvts1_op:
 277				if ((insn.mm_fp1_format.op & 0x7f) ==
 278				    mm_fcvtd0_op) {
 279					func = fcvtd_op;
 280					fmt = swl_format[insn.mm_fp3_format.fmt];
 281				} else {
 282					func = fcvts_op;
 283					fmt = dwl_format[insn.mm_fp3_format.fmt];
 284				}
 285				mips32_insn.fp0_format.opcode = cop1_op;
 286				mips32_insn.fp0_format.fmt = fmt;
 287				mips32_insn.fp0_format.ft = 0;
 288				mips32_insn.fp0_format.fs =
 289					insn.mm_fp3_format.fs;
 290				mips32_insn.fp0_format.fd =
 291					insn.mm_fp3_format.rt;
 292				mips32_insn.fp0_format.func = func;
 293				break;
 294			case mm_fmov0_op:
 295			case mm_fmov1_op:
 296			case mm_fabs0_op:
 297			case mm_fabs1_op:
 298			case mm_fneg0_op:
 299			case mm_fneg1_op:
 300				if ((insn.mm_fp1_format.op & 0x7f) ==
 301				    mm_fmov0_op)
 302					func = fmov_op;
 303				else if ((insn.mm_fp1_format.op & 0x7f) ==
 304					 mm_fabs0_op)
 305					func = fabs_op;
 306				else
 307					func = fneg_op;
 308				mips32_insn.fp0_format.opcode = cop1_op;
 309				mips32_insn.fp0_format.fmt =
 310					sdps_format[insn.mm_fp3_format.fmt];
 311				mips32_insn.fp0_format.ft = 0;
 312				mips32_insn.fp0_format.fs =
 313					insn.mm_fp3_format.fs;
 314				mips32_insn.fp0_format.fd =
 315					insn.mm_fp3_format.rt;
 316				mips32_insn.fp0_format.func = func;
 317				break;
 318			case mm_ffloorl_op:
 319			case mm_ffloorw_op:
 320			case mm_fceill_op:
 321			case mm_fceilw_op:
 322			case mm_ftruncl_op:
 323			case mm_ftruncw_op:
 324			case mm_froundl_op:
 325			case mm_froundw_op:
 326			case mm_fcvtl_op:
 327			case mm_fcvtw_op:
 328				if (insn.mm_fp1_format.op == mm_ffloorl_op)
 329					func = ffloorl_op;
 330				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
 331					func = ffloor_op;
 332				else if (insn.mm_fp1_format.op == mm_fceill_op)
 333					func = fceill_op;
 334				else if (insn.mm_fp1_format.op == mm_fceilw_op)
 335					func = fceil_op;
 336				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
 337					func = ftruncl_op;
 338				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
 339					func = ftrunc_op;
 340				else if (insn.mm_fp1_format.op == mm_froundl_op)
 341					func = froundl_op;
 342				else if (insn.mm_fp1_format.op == mm_froundw_op)
 343					func = fround_op;
 344				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
 345					func = fcvtl_op;
 346				else
 347					func = fcvtw_op;
 348				mips32_insn.fp0_format.opcode = cop1_op;
 349				mips32_insn.fp0_format.fmt =
 350					sd_format[insn.mm_fp1_format.fmt];
 351				mips32_insn.fp0_format.ft = 0;
 352				mips32_insn.fp0_format.fs =
 353					insn.mm_fp1_format.fs;
 354				mips32_insn.fp0_format.fd =
 355					insn.mm_fp1_format.rt;
 356				mips32_insn.fp0_format.func = func;
 357				break;
 358			case mm_frsqrt_op:
 359			case mm_fsqrt_op:
 360			case mm_frecip_op:
 361				if (insn.mm_fp1_format.op == mm_frsqrt_op)
 362					func = frsqrt_op;
 363				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
 364					func = fsqrt_op;
 365				else
 366					func = frecip_op;
 367				mips32_insn.fp0_format.opcode = cop1_op;
 368				mips32_insn.fp0_format.fmt =
 369					sdps_format[insn.mm_fp1_format.fmt];
 370				mips32_insn.fp0_format.ft = 0;
 371				mips32_insn.fp0_format.fs =
 372					insn.mm_fp1_format.fs;
 373				mips32_insn.fp0_format.fd =
 374					insn.mm_fp1_format.rt;
 375				mips32_insn.fp0_format.func = func;
 376				break;
 377			case mm_mfc1_op:
 378			case mm_mtc1_op:
 379			case mm_cfc1_op:
 380			case mm_ctc1_op:
 381			case mm_mfhc1_op:
 382			case mm_mthc1_op:
 383				if (insn.mm_fp1_format.op == mm_mfc1_op)
 384					op = mfc_op;
 385				else if (insn.mm_fp1_format.op == mm_mtc1_op)
 386					op = mtc_op;
 387				else if (insn.mm_fp1_format.op == mm_cfc1_op)
 388					op = cfc_op;
 389				else if (insn.mm_fp1_format.op == mm_ctc1_op)
 390					op = ctc_op;
 391				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
 392					op = mfhc_op;
 393				else
 394					op = mthc_op;
 395				mips32_insn.fp1_format.opcode = cop1_op;
 396				mips32_insn.fp1_format.op = op;
 397				mips32_insn.fp1_format.rt =
 398					insn.mm_fp1_format.rt;
 399				mips32_insn.fp1_format.fs =
 400					insn.mm_fp1_format.fs;
 401				mips32_insn.fp1_format.fd = 0;
 402				mips32_insn.fp1_format.func = 0;
 403				break;
 404			default:
 405				return SIGILL;
 406			}
 407			break;
 408		case mm_32f_74_op:	/* c.cond.fmt */
 409			mips32_insn.fp0_format.opcode = cop1_op;
 410			mips32_insn.fp0_format.fmt =
 411				sdps_format[insn.mm_fp4_format.fmt];
 412			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
 413			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
 414			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
 415			mips32_insn.fp0_format.func =
 416				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
 417			break;
 418		default:
 419			return SIGILL;
 420		}
 421		break;
 422	default:
 423		return SIGILL;
 424	}
 425
 426	*insn_ptr = mips32_insn;
 427	return 0;
 428}
 429
 430/*
 431 * Redundant with logic already in kernel/branch.c,
 432 * embedded in compute_return_epc.  At some point,
 433 * a single subroutine should be used across both
 434 * modules.
 435 */
 436int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
 437		  unsigned long *contpc)
 438{
 439	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
 440	unsigned int fcr31;
 441	unsigned int bit = 0;
 442
 443	switch (insn.i_format.opcode) {
 444	case spec_op:
 445		switch (insn.r_format.func) {
 446		case jalr_op:
 447			if (insn.r_format.rd != 0) {
 448				regs->regs[insn.r_format.rd] =
 449					regs->cp0_epc + dec_insn.pc_inc +
 450					dec_insn.next_pc_inc;
 451			}
 452			/* Fall through */
 453		case jr_op:
 454			/* For R6, JR already emulated in jalr_op */
 455			if (NO_R6EMU && insn.r_format.func == jr_op)
 456				break;
 457			*contpc = regs->regs[insn.r_format.rs];
 458			return 1;
 459		}
 460		break;
 
 461	case bcond_op:
 462		switch (insn.i_format.rt) {
 
 
 
 
 463		case bltzal_op:
 
 464		case bltzall_op:
 465			if (NO_R6EMU && (insn.i_format.rs ||
 466			    insn.i_format.rt == bltzall_op))
 467				break;
 468
 469			regs->regs[31] = regs->cp0_epc +
 470				dec_insn.pc_inc +
 471				dec_insn.next_pc_inc;
 472			/* Fall through */
 473		case bltzl_op:
 474			if (NO_R6EMU)
 475				break;
 476		case bltz_op:
 477			if ((long)regs->regs[insn.i_format.rs] < 0)
 478				*contpc = regs->cp0_epc +
 479					dec_insn.pc_inc +
 480					(insn.i_format.simmediate << 2);
 481			else
 482				*contpc = regs->cp0_epc +
 483					dec_insn.pc_inc +
 484					dec_insn.next_pc_inc;
 485			return 1;
 486		case bgezal_op:
 487		case bgezall_op:
 488			if (NO_R6EMU && (insn.i_format.rs ||
 489			    insn.i_format.rt == bgezall_op))
 490				break;
 491
 492			regs->regs[31] = regs->cp0_epc +
 493				dec_insn.pc_inc +
 494				dec_insn.next_pc_inc;
 495			/* Fall through */
 496		case bgezl_op:
 497			if (NO_R6EMU)
 498				break;
 499		case bgez_op:
 500			if ((long)regs->regs[insn.i_format.rs] >= 0)
 501				*contpc = regs->cp0_epc +
 502					dec_insn.pc_inc +
 503					(insn.i_format.simmediate << 2);
 504			else
 505				*contpc = regs->cp0_epc +
 506					dec_insn.pc_inc +
 507					dec_insn.next_pc_inc;
 508			return 1;
 509		}
 510		break;
 
 
 
 511	case jalx_op:
 512		set_isa16_mode(bit);
 513	case jal_op:
 514		regs->regs[31] = regs->cp0_epc +
 515			dec_insn.pc_inc +
 516			dec_insn.next_pc_inc;
 517		/* Fall through */
 518	case j_op:
 519		*contpc = regs->cp0_epc + dec_insn.pc_inc;
 520		*contpc >>= 28;
 521		*contpc <<= 28;
 522		*contpc |= (insn.j_format.target << 2);
 523		/* Set microMIPS mode bit: XOR for jalx. */
 524		*contpc ^= bit;
 525		return 1;
 526	case beql_op:
 527		if (NO_R6EMU)
 528			break;
 529	case beq_op:
 530		if (regs->regs[insn.i_format.rs] ==
 531		    regs->regs[insn.i_format.rt])
 532			*contpc = regs->cp0_epc +
 533				dec_insn.pc_inc +
 534				(insn.i_format.simmediate << 2);
 535		else
 536			*contpc = regs->cp0_epc +
 537				dec_insn.pc_inc +
 538				dec_insn.next_pc_inc;
 539		return 1;
 540	case bnel_op:
 541		if (NO_R6EMU)
 542			break;
 543	case bne_op:
 544		if (regs->regs[insn.i_format.rs] !=
 545		    regs->regs[insn.i_format.rt])
 546			*contpc = regs->cp0_epc +
 547				dec_insn.pc_inc +
 548				(insn.i_format.simmediate << 2);
 549		else
 550			*contpc = regs->cp0_epc +
 551				dec_insn.pc_inc +
 552				dec_insn.next_pc_inc;
 553		return 1;
 554	case blezl_op:
 555		if (!insn.i_format.rt && NO_R6EMU)
 556			break;
 557	case blez_op:
 558
 559		/*
 560		 * Compact branches for R6 for the
 561		 * blez and blezl opcodes.
 562		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
 563		 * BLEZ  | rs = rt != 0      == BGEZALC
 564		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
 565		 * BLEZL | rs = 0 | rt != 0  == BLEZC
 566		 * BLEZL | rs = rt != 0      == BGEZC
 567		 * BLEZL | rs != 0 | rt != 0 == BGEC
 568		 *
 569		 * For real BLEZ{,L}, rt is always 0.
 570		 */
 571		if (cpu_has_mips_r6 && insn.i_format.rt) {
 572			if ((insn.i_format.opcode == blez_op) &&
 573			    ((!insn.i_format.rs && insn.i_format.rt) ||
 574			     (insn.i_format.rs == insn.i_format.rt)))
 575				regs->regs[31] = regs->cp0_epc +
 576					dec_insn.pc_inc;
 577			*contpc = regs->cp0_epc + dec_insn.pc_inc +
 578				dec_insn.next_pc_inc;
 579
 580			return 1;
 581		}
 582		if ((long)regs->regs[insn.i_format.rs] <= 0)
 583			*contpc = regs->cp0_epc +
 584				dec_insn.pc_inc +
 585				(insn.i_format.simmediate << 2);
 586		else
 587			*contpc = regs->cp0_epc +
 588				dec_insn.pc_inc +
 589				dec_insn.next_pc_inc;
 590		return 1;
 591	case bgtzl_op:
 592		if (!insn.i_format.rt && NO_R6EMU)
 593			break;
 594	case bgtz_op:
 595		/*
 596		 * Compact branches for R6 for the
 597		 * bgtz and bgtzl opcodes.
 598		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
 599		 * BGTZ  | rs = rt != 0      == BLTZALC
 600		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
 601		 * BGTZL | rs = 0 | rt != 0  == BGTZC
 602		 * BGTZL | rs = rt != 0      == BLTZC
 603		 * BGTZL | rs != 0 | rt != 0 == BLTC
 604		 *
 605		 * *ZALC varint for BGTZ &&& rt != 0
 606		 * For real GTZ{,L}, rt is always 0.
 607		 */
 608		if (cpu_has_mips_r6 && insn.i_format.rt) {
 609			if ((insn.i_format.opcode == blez_op) &&
 610			    ((!insn.i_format.rs && insn.i_format.rt) ||
 611			     (insn.i_format.rs == insn.i_format.rt)))
 612				regs->regs[31] = regs->cp0_epc +
 613					dec_insn.pc_inc;
 614			*contpc = regs->cp0_epc + dec_insn.pc_inc +
 615				dec_insn.next_pc_inc;
 616
 617			return 1;
 618		}
 619
 620		if ((long)regs->regs[insn.i_format.rs] > 0)
 621			*contpc = regs->cp0_epc +
 622				dec_insn.pc_inc +
 623				(insn.i_format.simmediate << 2);
 624		else
 625			*contpc = regs->cp0_epc +
 626				dec_insn.pc_inc +
 627				dec_insn.next_pc_inc;
 628		return 1;
 629	case pop10_op:
 630	case pop30_op:
 631		if (!cpu_has_mips_r6)
 632			break;
 633		if (insn.i_format.rt && !insn.i_format.rs)
 634			regs->regs[31] = regs->cp0_epc + 4;
 635		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 636			dec_insn.next_pc_inc;
 637
 638		return 1;
 639#ifdef CONFIG_CPU_CAVIUM_OCTEON
 640	case lwc2_op: /* This is bbit0 on Octeon */
 641		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
 642			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 643		else
 644			*contpc = regs->cp0_epc + 8;
 645		return 1;
 646	case ldc2_op: /* This is bbit032 on Octeon */
 647		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
 648			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 649		else
 650			*contpc = regs->cp0_epc + 8;
 651		return 1;
 652	case swc2_op: /* This is bbit1 on Octeon */
 653		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
 654			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 655		else
 656			*contpc = regs->cp0_epc + 8;
 657		return 1;
 658	case sdc2_op: /* This is bbit132 on Octeon */
 659		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
 660			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 661		else
 662			*contpc = regs->cp0_epc + 8;
 663		return 1;
 664#else
 665	case bc6_op:
 666		/*
 667		 * Only valid for MIPS R6 but we can still end up
 668		 * here from a broken userland so just tell emulator
 669		 * this is not a branch and let it break later on.
 670		 */
 671		if  (!cpu_has_mips_r6)
 672			break;
 673		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 674			dec_insn.next_pc_inc;
 675
 676		return 1;
 677	case balc6_op:
 678		if (!cpu_has_mips_r6)
 679			break;
 680		regs->regs[31] = regs->cp0_epc + 4;
 681		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 682			dec_insn.next_pc_inc;
 683
 684		return 1;
 685	case pop66_op:
 686		if (!cpu_has_mips_r6)
 687			break;
 688		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 689			dec_insn.next_pc_inc;
 690
 691		return 1;
 692	case pop76_op:
 693		if (!cpu_has_mips_r6)
 694			break;
 695		if (!insn.i_format.rs)
 696			regs->regs[31] = regs->cp0_epc + 4;
 697		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 698			dec_insn.next_pc_inc;
 699
 700		return 1;
 701#endif
 702	case cop0_op:
 703	case cop1_op:
 704		/* Need to check for R6 bc1nez and bc1eqz branches */
 705		if (cpu_has_mips_r6 &&
 706		    ((insn.i_format.rs == bc1eqz_op) ||
 707		     (insn.i_format.rs == bc1nez_op))) {
 708			bit = 0;
 709			switch (insn.i_format.rs) {
 710			case bc1eqz_op:
 711				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
 712				    bit = 1;
 713				break;
 714			case bc1nez_op:
 715				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
 716				    bit = 1;
 717				break;
 718			}
 719			if (bit)
 720				*contpc = regs->cp0_epc +
 721					dec_insn.pc_inc +
 722					(insn.i_format.simmediate << 2);
 723			else
 724				*contpc = regs->cp0_epc +
 725					dec_insn.pc_inc +
 726					dec_insn.next_pc_inc;
 727
 728			return 1;
 729		}
 730		/* R2/R6 compatible cop1 instruction. Fall through */
 731	case cop2_op:
 732	case cop1x_op:
 733		if (insn.i_format.rs == bc_op) {
 734			preempt_disable();
 735			if (is_fpu_owner())
 736			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
 737			else
 738				fcr31 = current->thread.fpu.fcr31;
 739			preempt_enable();
 740
 741			bit = (insn.i_format.rt >> 2);
 742			bit += (bit != 0);
 743			bit += 23;
 744			switch (insn.i_format.rt & 3) {
 745			case 0:	/* bc1f */
 746			case 2:	/* bc1fl */
 747				if (~fcr31 & (1 << bit))
 748					*contpc = regs->cp0_epc +
 749						dec_insn.pc_inc +
 750						(insn.i_format.simmediate << 2);
 751				else
 752					*contpc = regs->cp0_epc +
 753						dec_insn.pc_inc +
 754						dec_insn.next_pc_inc;
 755				return 1;
 756			case 1:	/* bc1t */
 757			case 3:	/* bc1tl */
 758				if (fcr31 & (1 << bit))
 759					*contpc = regs->cp0_epc +
 760						dec_insn.pc_inc +
 761						(insn.i_format.simmediate << 2);
 762				else
 763					*contpc = regs->cp0_epc +
 764						dec_insn.pc_inc +
 765						dec_insn.next_pc_inc;
 766				return 1;
 767			}
 768		}
 769		break;
 770	}
 
 771	return 0;
 772}
 773
 774/*
 775 * In the Linux kernel, we support selection of FPR format on the
 776 * basis of the Status.FR bit.	If an FPU is not present, the FR bit
 777 * is hardwired to zero, which would imply a 32-bit FPU even for
 778 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
 779 * FPU emu is slow and bulky and optimizing this function offers fairly
 780 * sizeable benefits so we try to be clever and make this function return
 781 * a constant whenever possible, that is on 64-bit kernels without O32
 782 * compatibility enabled and on 32-bit without 64-bit FPU support.
 783 */
 784static inline int cop1_64bit(struct pt_regs *xcp)
 785{
 786	if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
 787		return 1;
 788	else if (IS_ENABLED(CONFIG_32BIT) &&
 789		 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
 790		return 0;
 
 
 
 791
 792	return !test_thread_flag(TIF_32BIT_FPREGS);
 793}
 794
 795static inline bool hybrid_fprs(void)
 796{
 797	return test_thread_flag(TIF_HYBRID_FPREGS);
 798}
 799
 800#define SIFROMREG(si, x)						\
 801do {									\
 802	if (cop1_64bit(xcp) && !hybrid_fprs())				\
 803		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
 804	else								\
 805		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
 806} while (0)
 807
 808#define SITOREG(si, x)							\
 809do {									\
 810	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
 811		unsigned i;						\
 812		set_fpr32(&ctx->fpr[x], 0, si);				\
 813		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
 814			set_fpr32(&ctx->fpr[x], i, 0);			\
 815	} else {							\
 816		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
 817	}								\
 818} while (0)
 819
 820#define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
 821
 822#define SITOHREG(si, x)							\
 823do {									\
 824	unsigned i;							\
 825	set_fpr32(&ctx->fpr[x], 1, si);					\
 826	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
 827		set_fpr32(&ctx->fpr[x], i, 0);				\
 828} while (0)
 829
 830#define DIFROMREG(di, x)						\
 831	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
 832
 833#define DITOREG(di, x)							\
 834do {									\
 835	unsigned fpr, i;						\
 836	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
 837	set_fpr64(&ctx->fpr[fpr], 0, di);				\
 838	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
 839		set_fpr64(&ctx->fpr[fpr], i, 0);			\
 840} while (0)
 841
 842#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
 843#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
 844#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
 845#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
 846
 847/*
 848 * Emulate a CFC1 instruction.
 849 */
 850static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 851			    mips_instruction ir)
 852{
 853	u32 fcr31 = ctx->fcr31;
 854	u32 value = 0;
 855
 856	switch (MIPSInst_RD(ir)) {
 857	case FPCREG_CSR:
 858		value = fcr31;
 859		pr_debug("%p gpr[%d]<-csr=%08x\n",
 860			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 861		break;
 862
 863	case FPCREG_FENR:
 864		if (!cpu_has_mips_r)
 865			break;
 866		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
 867			MIPS_FENR_FS;
 868		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
 869		pr_debug("%p gpr[%d]<-enr=%08x\n",
 870			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 871		break;
 872
 873	case FPCREG_FEXR:
 874		if (!cpu_has_mips_r)
 875			break;
 876		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
 877		pr_debug("%p gpr[%d]<-exr=%08x\n",
 878			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 879		break;
 880
 881	case FPCREG_FCCR:
 882		if (!cpu_has_mips_r)
 883			break;
 884		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
 885			MIPS_FCCR_COND0;
 886		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
 887			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
 888		pr_debug("%p gpr[%d]<-ccr=%08x\n",
 889			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 890		break;
 891
 892	case FPCREG_RID:
 893		value = boot_cpu_data.fpu_id;
 894		break;
 895
 896	default:
 897		break;
 898	}
 899
 900	if (MIPSInst_RT(ir))
 901		xcp->regs[MIPSInst_RT(ir)] = value;
 902}
 903
 904/*
 905 * Emulate a CTC1 instruction.
 906 */
 907static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 908			    mips_instruction ir)
 909{
 910	u32 fcr31 = ctx->fcr31;
 911	u32 value;
 912	u32 mask;
 913
 914	if (MIPSInst_RT(ir) == 0)
 915		value = 0;
 916	else
 917		value = xcp->regs[MIPSInst_RT(ir)];
 918
 919	switch (MIPSInst_RD(ir)) {
 920	case FPCREG_CSR:
 921		pr_debug("%p gpr[%d]->csr=%08x\n",
 922			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 923
 924		/* Preserve read-only bits.  */
 925		mask = boot_cpu_data.fpu_msk31;
 926		fcr31 = (value & ~mask) | (fcr31 & mask);
 927		break;
 928
 929	case FPCREG_FENR:
 930		if (!cpu_has_mips_r)
 931			break;
 932		pr_debug("%p gpr[%d]->enr=%08x\n",
 933			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 934		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
 935		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
 936			 FPU_CSR_FS;
 937		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
 938		break;
 939
 940	case FPCREG_FEXR:
 941		if (!cpu_has_mips_r)
 942			break;
 943		pr_debug("%p gpr[%d]->exr=%08x\n",
 944			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 945		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
 946		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
 947		break;
 948
 949	case FPCREG_FCCR:
 950		if (!cpu_has_mips_r)
 951			break;
 952		pr_debug("%p gpr[%d]->ccr=%08x\n",
 953			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 954		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
 955		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
 956			 FPU_CSR_COND;
 957		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
 958			 FPU_CSR_CONDX;
 959		break;
 960
 961	default:
 962		break;
 963	}
 964
 965	ctx->fcr31 = fcr31;
 966}
 967
 968/*
 969 * Emulate the single floating point instruction pointed at by EPC.
 970 * Two instructions if the instruction is in a branch delay slot.
 971 */
 972
 973static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 974		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
 975{
 976	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
 977	unsigned int cond, cbit, bit0;
 978	mips_instruction ir;
 979	int likely, pc_inc;
 980	union fpureg *fpr;
 981	u32 __user *wva;
 982	u64 __user *dva;
 983	u32 wval;
 984	u64 dval;
 985	int sig;
 986
 987	/*
 988	 * These are giving gcc a gentle hint about what to expect in
 989	 * dec_inst in order to do better optimization.
 990	 */
 991	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
 992		unreachable();
 
 
 
 
 993
 994	/* XXX NEC Vr54xx bug workaround */
 995	if (delay_slot(xcp)) {
 996		if (dec_insn.micro_mips_mode) {
 997			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
 998				clear_delay_slot(xcp);
 999		} else {
1000			if (!isBranchInstr(xcp, dec_insn, &contpc))
1001				clear_delay_slot(xcp);
1002		}
1003	}
1004
1005	if (delay_slot(xcp)) {
1006		/*
1007		 * The instruction to be emulated is in a branch delay slot
1008		 * which means that we have to	emulate the branch instruction
1009		 * BEFORE we do the cop1 instruction.
1010		 *
1011		 * This branch could be a COP1 branch, but in that case we
1012		 * would have had a trap for that instruction, and would not
1013		 * come through this route.
1014		 *
1015		 * Linux MIPS branch emulator operates on context, updating the
1016		 * cp0_epc.
1017		 */
1018		ir = dec_insn.next_insn;  /* process delay slot instr */
1019		pc_inc = dec_insn.next_pc_inc;
1020	} else {
1021		ir = dec_insn.insn;       /* process current instr */
1022		pc_inc = dec_insn.pc_inc;
1023	}
1024
1025	/*
1026	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1027	 * instructions, we want to convert microMIPS FPU instructions
1028	 * into MIPS32 instructions so that we could reuse all of the
1029	 * FPU emulation code.
1030	 *
1031	 * NOTE: We cannot do this for branch instructions since they
1032	 *       are not a subset. Example: Cannot emulate a 16-bit
1033	 *       aligned target address with a MIPS32 instruction.
1034	 */
1035	if (dec_insn.micro_mips_mode) {
1036		/*
1037		 * If next instruction is a 16-bit instruction, then it
1038		 * it cannot be a FPU instruction. This could happen
1039		 * since we can be called for non-FPU instructions.
1040		 */
1041		if ((pc_inc == 2) ||
1042			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1043			 == SIGILL))
1044			return SIGILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045	}
1046
1047emul:
1048	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1049	MIPS_FPU_EMU_INC_STATS(emulated);
1050	switch (MIPSInst_OPCODE(ir)) {
1051	case ldc1_op:
1052		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1053				     MIPSInst_SIMM(ir));
 
 
1054		MIPS_FPU_EMU_INC_STATS(loads);
1055
1056		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1057			MIPS_FPU_EMU_INC_STATS(errors);
1058			*fault_addr = dva;
1059			return SIGBUS;
1060		}
1061		if (__get_user(dval, dva)) {
1062			MIPS_FPU_EMU_INC_STATS(errors);
1063			*fault_addr = dva;
1064			return SIGSEGV;
1065		}
1066		DITOREG(dval, MIPSInst_RT(ir));
1067		break;
 
 
 
 
 
 
1068
1069	case sdc1_op:
1070		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1071				      MIPSInst_SIMM(ir));
1072		MIPS_FPU_EMU_INC_STATS(stores);
1073		DIFROMREG(dval, MIPSInst_RT(ir));
1074		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1075			MIPS_FPU_EMU_INC_STATS(errors);
1076			*fault_addr = dva;
1077			return SIGBUS;
1078		}
1079		if (__put_user(dval, dva)) {
1080			MIPS_FPU_EMU_INC_STATS(errors);
1081			*fault_addr = dva;
1082			return SIGSEGV;
1083		}
1084		break;
 
 
 
 
 
 
1085
1086	case lwc1_op:
1087		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1088				      MIPSInst_SIMM(ir));
1089		MIPS_FPU_EMU_INC_STATS(loads);
1090		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1091			MIPS_FPU_EMU_INC_STATS(errors);
1092			*fault_addr = wva;
1093			return SIGBUS;
1094		}
1095		if (__get_user(wval, wva)) {
1096			MIPS_FPU_EMU_INC_STATS(errors);
1097			*fault_addr = wva;
1098			return SIGSEGV;
1099		}
1100		SITOREG(wval, MIPSInst_RT(ir));
1101		break;
 
 
 
 
 
 
1102
1103	case swc1_op:
1104		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1105				      MIPSInst_SIMM(ir));
1106		MIPS_FPU_EMU_INC_STATS(stores);
1107		SIFROMREG(wval, MIPSInst_RT(ir));
1108		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1109			MIPS_FPU_EMU_INC_STATS(errors);
1110			*fault_addr = wva;
1111			return SIGBUS;
1112		}
1113		if (__put_user(wval, wva)) {
1114			MIPS_FPU_EMU_INC_STATS(errors);
1115			*fault_addr = wva;
1116			return SIGSEGV;
1117		}
1118		break;
 
1119
1120	case cop1_op:
1121		switch (MIPSInst_RS(ir)) {
 
 
1122		case dmfc_op:
1123			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1124				return SIGILL;
1125
1126			/* copregister fs -> gpr[rt] */
1127			if (MIPSInst_RT(ir) != 0) {
1128				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1129					MIPSInst_RD(ir));
1130			}
1131			break;
1132
1133		case dmtc_op:
1134			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1135				return SIGILL;
1136
1137			/* copregister fs <- rt */
1138			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1139			break;
1140
1141		case mfhc_op:
1142			if (!cpu_has_mips_r2_r6)
1143				goto sigill;
1144
1145			/* copregister rd -> gpr[rt] */
1146			if (MIPSInst_RT(ir) != 0) {
1147				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1148					MIPSInst_RD(ir));
1149			}
1150			break;
1151
1152		case mthc_op:
1153			if (!cpu_has_mips_r2_r6)
1154				goto sigill;
1155
1156			/* copregister rd <- gpr[rt] */
1157			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1158			break;
1159
1160		case mfc_op:
1161			/* copregister rd -> gpr[rt] */
1162			if (MIPSInst_RT(ir) != 0) {
1163				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1164					MIPSInst_RD(ir));
1165			}
1166			break;
1167
1168		case mtc_op:
1169			/* copregister rd <- rt */
1170			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1171			break;
1172
1173		case cfc_op:
1174			/* cop control register rd -> gpr[rt] */
1175			cop1_cfc(xcp, ctx, ir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176			break;
 
1177
1178		case ctc_op:
1179			/* copregister rd <- rt */
1180			cop1_ctc(xcp, ctx, ir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1182				return SIGFPE;
1183			}
1184			break;
 
1185
1186		case bc1eqz_op:
1187		case bc1nez_op:
1188			if (!cpu_has_mips_r6 || delay_slot(xcp))
1189				return SIGILL;
1190
1191			cond = likely = 0;
1192			fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
1193			bit0 = get_fpr32(fpr, 0) & 0x1;
1194			switch (MIPSInst_RS(ir)) {
1195			case bc1eqz_op:
1196				cond = bit0 == 0;
1197				break;
1198			case bc1nez_op:
1199				cond = bit0 != 0;
1200				break;
1201			}
1202			goto branch_common;
1203
1204		case bc_op:
1205			if (delay_slot(xcp))
1206				return SIGILL;
1207
1208			if (cpu_has_mips_4_5_r)
1209				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1210			else
1211				cbit = FPU_CSR_COND;
1212			cond = ctx->fcr31 & cbit;
1213
1214			likely = 0;
1215			switch (MIPSInst_RT(ir) & 3) {
1216			case bcfl_op:
1217				if (cpu_has_mips_2_3_4_5_r)
1218					likely = 1;
1219				/* Fall through */
1220			case bcf_op:
1221				cond = !cond;
1222				break;
1223			case bctl_op:
1224				if (cpu_has_mips_2_3_4_5_r)
1225					likely = 1;
1226				/* Fall through */
1227			case bct_op:
1228				break;
 
 
 
1229			}
1230branch_common:
1231			set_delay_slot(xcp);
1232			if (cond) {
1233				/*
1234				 * Branch taken: emulate dslot instruction
1235				 */
1236				unsigned long bcpc;
1237
1238				/*
1239				 * Remember EPC at the branch to point back
1240				 * at so that any delay-slot instruction
1241				 * signal is not silently ignored.
1242				 */
1243				bcpc = xcp->cp0_epc;
1244				xcp->cp0_epc += dec_insn.pc_inc;
1245
1246				contpc = MIPSInst_SIMM(ir);
1247				ir = dec_insn.next_insn;
1248				if (dec_insn.micro_mips_mode) {
1249					contpc = (xcp->cp0_epc + (contpc << 1));
1250
1251					/* If 16-bit instruction, not FPU. */
1252					if ((dec_insn.next_pc_inc == 2) ||
1253						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1254
1255						/*
1256						 * Since this instruction will
1257						 * be put on the stack with
1258						 * 32-bit words, get around
1259						 * this problem by putting a
1260						 * NOP16 as the second one.
1261						 */
1262						if (dec_insn.next_pc_inc == 2)
1263							ir = (ir & (~0xffff)) | MM_NOP16;
1264
1265						/*
1266						 * Single step the non-CP1
1267						 * instruction in the dslot.
1268						 */
1269						sig = mips_dsemul(xcp, ir,
1270								  bcpc, contpc);
1271						if (sig < 0)
1272							break;
1273						if (sig)
1274							xcp->cp0_epc = bcpc;
1275						/*
1276						 * SIGILL forces out of
1277						 * the emulation loop.
1278						 */
1279						return sig ? sig : SIGILL;
1280					}
1281				} else
1282					contpc = (xcp->cp0_epc + (contpc << 2));
1283
1284				switch (MIPSInst_OPCODE(ir)) {
1285				case lwc1_op:
1286				case swc1_op:
1287					goto emul;
1288
1289				case ldc1_op:
1290				case sdc1_op:
1291					if (cpu_has_mips_2_3_4_5_r)
1292						goto emul;
1293
1294					goto bc_sigill;
1295
1296				case cop1_op:
 
 
 
 
1297					goto emul;
1298
1299				case cop1x_op:
1300					if (cpu_has_mips_4_5_64_r2_r6)
1301						/* its one of ours */
1302						goto emul;
1303
1304					goto bc_sigill;
1305
1306				case spec_op:
1307					switch (MIPSInst_FUNC(ir)) {
1308					case movc_op:
1309						if (cpu_has_mips_4_5_r)
1310							goto emul;
1311
1312						goto bc_sigill;
1313					}
1314					break;
1315
1316				bc_sigill:
1317					xcp->cp0_epc = bcpc;
1318					return SIGILL;
1319				}
1320
1321				/*
1322				 * Single step the non-cp1
1323				 * instruction in the dslot
1324				 */
1325				sig = mips_dsemul(xcp, ir, bcpc, contpc);
1326				if (sig < 0)
1327					break;
1328				if (sig)
1329					xcp->cp0_epc = bcpc;
1330				/* SIGILL forces out of the emulation loop.  */
1331				return sig ? sig : SIGILL;
1332			} else if (likely) {	/* branch not taken */
1333				/*
1334				 * branch likely nullifies
1335				 * dslot if not taken
1336				 */
1337				xcp->cp0_epc += dec_insn.pc_inc;
1338				contpc += dec_insn.pc_inc;
1339				/*
1340				 * else continue & execute
1341				 * dslot as normal insn
1342				 */
1343			}
1344			break;
 
1345
1346		default:
1347			if (!(MIPSInst_RS(ir) & 0x10))
1348				return SIGILL;
 
 
1349
1350			/* a real fpu computation instruction */
1351			if ((sig = fpu_emu(xcp, ctx, ir)))
1352				return sig;
 
1353		}
1354		break;
1355
1356	case cop1x_op:
1357		if (!cpu_has_mips_4_5_64_r2_r6)
1358			return SIGILL;
1359
1360		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1361		if (sig)
1362			return sig;
1363		break;
 
 
1364
 
1365	case spec_op:
1366		if (!cpu_has_mips_4_5_r)
1367			return SIGILL;
1368
1369		if (MIPSInst_FUNC(ir) != movc_op)
1370			return SIGILL;
1371		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1372		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1373			xcp->regs[MIPSInst_RD(ir)] =
1374				xcp->regs[MIPSInst_RS(ir)];
1375		break;
 
 
1376	default:
1377sigill:
1378		return SIGILL;
1379	}
1380
1381	/* we did it !! */
1382	xcp->cp0_epc = contpc;
1383	clear_delay_slot(xcp);
1384
1385	return 0;
1386}
1387
1388/*
1389 * Conversion table from MIPS compare ops 48-63
1390 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1391 */
1392static const unsigned char cmptab[8] = {
1393	0,			/* cmp_0 (sig) cmp_sf */
1394	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1395	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1396	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1397	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1398	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1399	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1400	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1401};
1402
1403static const unsigned char negative_cmptab[8] = {
1404	0, /* Reserved */
1405	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1406	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1407	IEEE754_CLT | IEEE754_CGT,
1408	/* Reserved */
1409};
1410
 
1411
1412/*
1413 * Additional MIPS4 instructions
1414 */
1415
1416#define DEF3OP(name, p, f1, f2, f3)					\
1417static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1418	union ieee754##p s, union ieee754##p t)				\
1419{									\
1420	struct _ieee754_csr ieee754_csr_save;				\
1421	s = f1(s, t);							\
1422	ieee754_csr_save = ieee754_csr;					\
1423	s = f2(s, r);							\
1424	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1425	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1426	s = f3(s);							\
1427	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1428	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1429	return s;							\
1430}
1431
1432static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1433{
1434	return ieee754dp_div(ieee754dp_one(0), d);
1435}
1436
1437static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1438{
1439	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1440}
1441
1442static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1443{
1444	return ieee754sp_div(ieee754sp_one(0), s);
1445}
1446
1447static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1448{
1449	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1450}
1451
1452DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1453DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1454DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1455DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1456DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1457DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1458DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1459DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1460
1461static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1462	mips_instruction ir, void *__user *fault_addr)
1463{
1464	unsigned rcsr = 0;	/* resulting csr */
1465
1466	MIPS_FPU_EMU_INC_STATS(cp1xops);
1467
1468	switch (MIPSInst_FMA_FFMT(ir)) {
1469	case s_fmt:{		/* 0 */
1470
1471		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1472		union ieee754sp fd, fr, fs, ft;
1473		u32 __user *va;
1474		u32 val;
1475
1476		switch (MIPSInst_FUNC(ir)) {
1477		case lwxc1_op:
1478			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1479				xcp->regs[MIPSInst_FT(ir)]);
1480
1481			MIPS_FPU_EMU_INC_STATS(loads);
1482			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1483				MIPS_FPU_EMU_INC_STATS(errors);
1484				*fault_addr = va;
1485				return SIGBUS;
1486			}
1487			if (__get_user(val, va)) {
1488				MIPS_FPU_EMU_INC_STATS(errors);
1489				*fault_addr = va;
1490				return SIGSEGV;
1491			}
1492			SITOREG(val, MIPSInst_FD(ir));
1493			break;
1494
1495		case swxc1_op:
1496			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1497				xcp->regs[MIPSInst_FT(ir)]);
1498
1499			MIPS_FPU_EMU_INC_STATS(stores);
1500
1501			SIFROMREG(val, MIPSInst_FS(ir));
1502			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1503				MIPS_FPU_EMU_INC_STATS(errors);
1504				*fault_addr = va;
1505				return SIGBUS;
1506			}
1507			if (put_user(val, va)) {
1508				MIPS_FPU_EMU_INC_STATS(errors);
1509				*fault_addr = va;
1510				return SIGSEGV;
1511			}
1512			break;
1513
1514		case madd_s_op:
1515			handler = fpemu_sp_madd;
1516			goto scoptop;
1517		case msub_s_op:
1518			handler = fpemu_sp_msub;
1519			goto scoptop;
1520		case nmadd_s_op:
1521			handler = fpemu_sp_nmadd;
1522			goto scoptop;
1523		case nmsub_s_op:
1524			handler = fpemu_sp_nmsub;
1525			goto scoptop;
1526
1527		      scoptop:
1528			SPFROMREG(fr, MIPSInst_FR(ir));
1529			SPFROMREG(fs, MIPSInst_FS(ir));
1530			SPFROMREG(ft, MIPSInst_FT(ir));
1531			fd = (*handler) (fr, fs, ft);
1532			SPTOREG(fd, MIPSInst_FD(ir));
1533
1534		      copcsr:
1535			if (ieee754_cxtest(IEEE754_INEXACT)) {
1536				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1537				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1538			}
1539			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1540				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1541				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1542			}
1543			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1544				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1545				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1546			}
1547			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1548				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1549				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1550			}
1551
1552			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1553			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1554				/*printk ("SIGFPE: FPU csr = %08x\n",
1555				   ctx->fcr31); */
1556				return SIGFPE;
1557			}
1558
1559			break;
1560
1561		default:
1562			return SIGILL;
1563		}
1564		break;
1565	}
1566
1567	case d_fmt:{		/* 1 */
1568		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1569		union ieee754dp fd, fr, fs, ft;
1570		u64 __user *va;
1571		u64 val;
1572
1573		switch (MIPSInst_FUNC(ir)) {
1574		case ldxc1_op:
1575			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1576				xcp->regs[MIPSInst_FT(ir)]);
1577
1578			MIPS_FPU_EMU_INC_STATS(loads);
1579			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1580				MIPS_FPU_EMU_INC_STATS(errors);
1581				*fault_addr = va;
1582				return SIGBUS;
1583			}
1584			if (__get_user(val, va)) {
1585				MIPS_FPU_EMU_INC_STATS(errors);
1586				*fault_addr = va;
1587				return SIGSEGV;
1588			}
1589			DITOREG(val, MIPSInst_FD(ir));
1590			break;
1591
1592		case sdxc1_op:
1593			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1594				xcp->regs[MIPSInst_FT(ir)]);
1595
1596			MIPS_FPU_EMU_INC_STATS(stores);
1597			DIFROMREG(val, MIPSInst_FS(ir));
1598			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1599				MIPS_FPU_EMU_INC_STATS(errors);
1600				*fault_addr = va;
1601				return SIGBUS;
1602			}
1603			if (__put_user(val, va)) {
1604				MIPS_FPU_EMU_INC_STATS(errors);
1605				*fault_addr = va;
1606				return SIGSEGV;
1607			}
1608			break;
1609
1610		case madd_d_op:
1611			handler = fpemu_dp_madd;
1612			goto dcoptop;
1613		case msub_d_op:
1614			handler = fpemu_dp_msub;
1615			goto dcoptop;
1616		case nmadd_d_op:
1617			handler = fpemu_dp_nmadd;
1618			goto dcoptop;
1619		case nmsub_d_op:
1620			handler = fpemu_dp_nmsub;
1621			goto dcoptop;
1622
1623		      dcoptop:
1624			DPFROMREG(fr, MIPSInst_FR(ir));
1625			DPFROMREG(fs, MIPSInst_FS(ir));
1626			DPFROMREG(ft, MIPSInst_FT(ir));
1627			fd = (*handler) (fr, fs, ft);
1628			DPTOREG(fd, MIPSInst_FD(ir));
1629			goto copcsr;
1630
1631		default:
1632			return SIGILL;
1633		}
1634		break;
1635	}
1636
1637	case 0x3:
1638		if (MIPSInst_FUNC(ir) != pfetch_op)
1639			return SIGILL;
1640
1641		/* ignore prefx operation */
1642		break;
1643
1644	default:
1645		return SIGILL;
1646	}
1647
1648	return 0;
1649}
 
1650
1651
1652
1653/*
1654 * Emulate a single COP1 arithmetic instruction.
1655 */
1656static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1657	mips_instruction ir)
1658{
1659	int rfmt;		/* resulting format */
1660	unsigned rcsr = 0;	/* resulting csr */
1661	unsigned int oldrm;
1662	unsigned int cbit;
1663	unsigned cond;
1664	union {
1665		union ieee754dp d;
1666		union ieee754sp s;
1667		int w;
 
1668		s64 l;
 
1669	} rv;			/* resulting value */
1670	u64 bits;
1671
1672	MIPS_FPU_EMU_INC_STATS(cp1ops);
1673	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1674	case s_fmt: {		/* 0 */
1675		union {
1676			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1677			union ieee754sp(*u) (union ieee754sp);
1678		} handler;
1679		union ieee754sp fd, fs, ft;
1680
1681		switch (MIPSInst_FUNC(ir)) {
1682			/* binary ops */
1683		case fadd_op:
1684			handler.b = ieee754sp_add;
1685			goto scopbop;
1686		case fsub_op:
1687			handler.b = ieee754sp_sub;
1688			goto scopbop;
1689		case fmul_op:
1690			handler.b = ieee754sp_mul;
1691			goto scopbop;
1692		case fdiv_op:
1693			handler.b = ieee754sp_div;
1694			goto scopbop;
1695
1696			/* unary  ops */
 
1697		case fsqrt_op:
1698			if (!cpu_has_mips_2_3_4_5_r)
1699				return SIGILL;
1700
1701			handler.u = ieee754sp_sqrt;
1702			goto scopuop;
1703
1704		/*
1705		 * Note that on some MIPS IV implementations such as the
1706		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1707		 * achieve full IEEE-754 accuracy - however this emulator does.
1708		 */
1709		case frsqrt_op:
1710			if (!cpu_has_mips_4_5_64_r2_r6)
1711				return SIGILL;
1712
1713			handler.u = fpemu_sp_rsqrt;
1714			goto scopuop;
1715
1716		case frecip_op:
1717			if (!cpu_has_mips_4_5_64_r2_r6)
1718				return SIGILL;
1719
1720			handler.u = fpemu_sp_recip;
1721			goto scopuop;
1722
 
1723		case fmovc_op:
1724			if (!cpu_has_mips_4_5_r)
1725				return SIGILL;
1726
1727			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1728			if (((ctx->fcr31 & cond) != 0) !=
1729				((MIPSInst_FT(ir) & 1) != 0))
1730				return 0;
1731			SPFROMREG(rv.s, MIPSInst_FS(ir));
1732			break;
1733
1734		case fmovz_op:
1735			if (!cpu_has_mips_4_5_r)
1736				return SIGILL;
1737
1738			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1739				return 0;
1740			SPFROMREG(rv.s, MIPSInst_FS(ir));
1741			break;
1742
1743		case fmovn_op:
1744			if (!cpu_has_mips_4_5_r)
1745				return SIGILL;
1746
1747			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1748				return 0;
1749			SPFROMREG(rv.s, MIPSInst_FS(ir));
1750			break;
1751
1752		case fseleqz_op:
1753			if (!cpu_has_mips_r6)
1754				return SIGILL;
1755
1756			SPFROMREG(rv.s, MIPSInst_FT(ir));
1757			if (rv.w & 0x1)
1758				rv.w = 0;
1759			else
1760				SPFROMREG(rv.s, MIPSInst_FS(ir));
1761			break;
1762
1763		case fselnez_op:
1764			if (!cpu_has_mips_r6)
1765				return SIGILL;
1766
1767			SPFROMREG(rv.s, MIPSInst_FT(ir));
1768			if (rv.w & 0x1)
1769				SPFROMREG(rv.s, MIPSInst_FS(ir));
1770			else
1771				rv.w = 0;
1772			break;
1773
1774		case fmaddf_op: {
1775			union ieee754sp ft, fs, fd;
1776
1777			if (!cpu_has_mips_r6)
1778				return SIGILL;
1779
1780			SPFROMREG(ft, MIPSInst_FT(ir));
1781			SPFROMREG(fs, MIPSInst_FS(ir));
1782			SPFROMREG(fd, MIPSInst_FD(ir));
1783			rv.s = ieee754sp_maddf(fd, fs, ft);
1784			break;
1785		}
1786
1787		case fmsubf_op: {
1788			union ieee754sp ft, fs, fd;
1789
1790			if (!cpu_has_mips_r6)
1791				return SIGILL;
1792
1793			SPFROMREG(ft, MIPSInst_FT(ir));
1794			SPFROMREG(fs, MIPSInst_FS(ir));
1795			SPFROMREG(fd, MIPSInst_FD(ir));
1796			rv.s = ieee754sp_msubf(fd, fs, ft);
1797			break;
1798		}
1799
1800		case frint_op: {
1801			union ieee754sp fs;
1802
1803			if (!cpu_has_mips_r6)
1804				return SIGILL;
1805
1806			SPFROMREG(fs, MIPSInst_FS(ir));
1807			rv.l = ieee754sp_tlong(fs);
1808			rv.s = ieee754sp_flong(rv.l);
1809			goto copcsr;
1810		}
1811
1812		case fclass_op: {
1813			union ieee754sp fs;
1814
1815			if (!cpu_has_mips_r6)
1816				return SIGILL;
1817
1818			SPFROMREG(fs, MIPSInst_FS(ir));
1819			rv.w = ieee754sp_2008class(fs);
1820			rfmt = w_fmt;
1821			break;
1822		}
1823
1824		case fmin_op: {
1825			union ieee754sp fs, ft;
1826
1827			if (!cpu_has_mips_r6)
1828				return SIGILL;
1829
1830			SPFROMREG(ft, MIPSInst_FT(ir));
1831			SPFROMREG(fs, MIPSInst_FS(ir));
1832			rv.s = ieee754sp_fmin(fs, ft);
1833			break;
1834		}
1835
1836		case fmina_op: {
1837			union ieee754sp fs, ft;
1838
1839			if (!cpu_has_mips_r6)
1840				return SIGILL;
1841
1842			SPFROMREG(ft, MIPSInst_FT(ir));
1843			SPFROMREG(fs, MIPSInst_FS(ir));
1844			rv.s = ieee754sp_fmina(fs, ft);
1845			break;
1846		}
1847
1848		case fmax_op: {
1849			union ieee754sp fs, ft;
1850
1851			if (!cpu_has_mips_r6)
1852				return SIGILL;
1853
1854			SPFROMREG(ft, MIPSInst_FT(ir));
1855			SPFROMREG(fs, MIPSInst_FS(ir));
1856			rv.s = ieee754sp_fmax(fs, ft);
1857			break;
1858		}
1859
1860		case fmaxa_op: {
1861			union ieee754sp fs, ft;
1862
1863			if (!cpu_has_mips_r6)
1864				return SIGILL;
1865
1866			SPFROMREG(ft, MIPSInst_FT(ir));
1867			SPFROMREG(fs, MIPSInst_FS(ir));
1868			rv.s = ieee754sp_fmaxa(fs, ft);
1869			break;
1870		}
1871
1872		case fabs_op:
1873			handler.u = ieee754sp_abs;
1874			goto scopuop;
1875
1876		case fneg_op:
1877			handler.u = ieee754sp_neg;
1878			goto scopuop;
1879
1880		case fmov_op:
1881			/* an easy one */
1882			SPFROMREG(rv.s, MIPSInst_FS(ir));
1883			goto copcsr;
1884
1885			/* binary op on handler */
1886scopbop:
1887			SPFROMREG(fs, MIPSInst_FS(ir));
1888			SPFROMREG(ft, MIPSInst_FT(ir));
 
 
 
 
 
 
 
 
 
 
1889
1890			rv.s = (*handler.b) (fs, ft);
1891			goto copcsr;
1892scopuop:
1893			SPFROMREG(fs, MIPSInst_FS(ir));
1894			rv.s = (*handler.u) (fs);
1895			goto copcsr;
1896copcsr:
1897			if (ieee754_cxtest(IEEE754_INEXACT)) {
1898				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1899				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1900			}
1901			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1902				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1903				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1904			}
1905			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1906				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1907				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1908			}
1909			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1910				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1911				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1912			}
1913			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1914				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1915				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1916			}
1917			break;
1918
1919			/* unary conv ops */
1920		case fcvts_op:
1921			return SIGILL;	/* not defined */
 
 
1922
1923		case fcvtd_op:
1924			SPFROMREG(fs, MIPSInst_FS(ir));
1925			rv.d = ieee754dp_fsp(fs);
1926			rfmt = d_fmt;
1927			goto copcsr;
 
 
 
1928
1929		case fcvtw_op:
1930			SPFROMREG(fs, MIPSInst_FS(ir));
1931			rv.w = ieee754sp_tint(fs);
1932			rfmt = w_fmt;
1933			goto copcsr;
 
1934
 
1935		case fround_op:
1936		case ftrunc_op:
1937		case fceil_op:
1938		case ffloor_op:
1939			if (!cpu_has_mips_2_3_4_5_r)
1940				return SIGILL;
1941
1942			oldrm = ieee754_csr.rm;
1943			SPFROMREG(fs, MIPSInst_FS(ir));
1944			ieee754_csr.rm = MIPSInst_FUNC(ir);
1945			rv.w = ieee754sp_tint(fs);
1946			ieee754_csr.rm = oldrm;
1947			rfmt = w_fmt;
1948			goto copcsr;
 
 
1949
1950		case fsel_op:
1951			if (!cpu_has_mips_r6)
1952				return SIGILL;
1953
1954			SPFROMREG(fd, MIPSInst_FD(ir));
1955			if (fd.bits & 0x1)
1956				SPFROMREG(rv.s, MIPSInst_FT(ir));
1957			else
1958				SPFROMREG(rv.s, MIPSInst_FS(ir));
1959			break;
1960
1961		case fcvtl_op:
1962			if (!cpu_has_mips_3_4_5_64_r2_r6)
1963				return SIGILL;
1964
1965			SPFROMREG(fs, MIPSInst_FS(ir));
1966			rv.l = ieee754sp_tlong(fs);
1967			rfmt = l_fmt;
1968			goto copcsr;
 
1969
1970		case froundl_op:
1971		case ftruncl_op:
1972		case fceill_op:
1973		case ffloorl_op:
1974			if (!cpu_has_mips_3_4_5_64_r2_r6)
1975				return SIGILL;
1976
1977			oldrm = ieee754_csr.rm;
1978			SPFROMREG(fs, MIPSInst_FS(ir));
1979			ieee754_csr.rm = MIPSInst_FUNC(ir);
1980			rv.l = ieee754sp_tlong(fs);
1981			ieee754_csr.rm = oldrm;
1982			rfmt = l_fmt;
1983			goto copcsr;
 
 
1984
1985		default:
1986			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
1987				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1988				union ieee754sp fs, ft;
1989
1990				SPFROMREG(fs, MIPSInst_FS(ir));
1991				SPFROMREG(ft, MIPSInst_FT(ir));
1992				rv.w = ieee754sp_cmp(fs, ft,
1993					cmptab[cmpop & 0x7], cmpop & 0x8);
1994				rfmt = -1;
1995				if ((cmpop & 0x8) && ieee754_cxtest
1996					(IEEE754_INVALID_OPERATION))
1997					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1998				else
1999					goto copcsr;
2000
2001			} else
 
2002				return SIGILL;
 
2003			break;
2004		}
2005		break;
2006	}
2007
2008	case d_fmt: {
2009		union ieee754dp fd, fs, ft;
2010		union {
2011			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
2012			union ieee754dp(*u) (union ieee754dp);
2013		} handler;
2014
2015		switch (MIPSInst_FUNC(ir)) {
2016			/* binary ops */
2017		case fadd_op:
2018			handler.b = ieee754dp_add;
2019			goto dcopbop;
2020		case fsub_op:
2021			handler.b = ieee754dp_sub;
2022			goto dcopbop;
2023		case fmul_op:
2024			handler.b = ieee754dp_mul;
2025			goto dcopbop;
2026		case fdiv_op:
2027			handler.b = ieee754dp_div;
2028			goto dcopbop;
2029
2030			/* unary  ops */
 
2031		case fsqrt_op:
2032			if (!cpu_has_mips_2_3_4_5_r)
2033				return SIGILL;
2034
2035			handler.u = ieee754dp_sqrt;
2036			goto dcopuop;
2037		/*
2038		 * Note that on some MIPS IV implementations such as the
2039		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2040		 * achieve full IEEE-754 accuracy - however this emulator does.
2041		 */
2042		case frsqrt_op:
2043			if (!cpu_has_mips_4_5_64_r2_r6)
2044				return SIGILL;
2045
2046			handler.u = fpemu_dp_rsqrt;
2047			goto dcopuop;
2048		case frecip_op:
2049			if (!cpu_has_mips_4_5_64_r2_r6)
2050				return SIGILL;
2051
2052			handler.u = fpemu_dp_recip;
2053			goto dcopuop;
 
 
2054		case fmovc_op:
2055			if (!cpu_has_mips_4_5_r)
2056				return SIGILL;
2057
2058			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2059			if (((ctx->fcr31 & cond) != 0) !=
2060				((MIPSInst_FT(ir) & 1) != 0))
2061				return 0;
2062			DPFROMREG(rv.d, MIPSInst_FS(ir));
2063			break;
2064		case fmovz_op:
2065			if (!cpu_has_mips_4_5_r)
2066				return SIGILL;
2067
2068			if (xcp->regs[MIPSInst_FT(ir)] != 0)
2069				return 0;
2070			DPFROMREG(rv.d, MIPSInst_FS(ir));
2071			break;
2072		case fmovn_op:
2073			if (!cpu_has_mips_4_5_r)
2074				return SIGILL;
2075
2076			if (xcp->regs[MIPSInst_FT(ir)] == 0)
2077				return 0;
2078			DPFROMREG(rv.d, MIPSInst_FS(ir));
2079			break;
2080
2081		case fseleqz_op:
2082			if (!cpu_has_mips_r6)
2083				return SIGILL;
2084
2085			DPFROMREG(rv.d, MIPSInst_FT(ir));
2086			if (rv.l & 0x1)
2087				rv.l = 0;
2088			else
2089				DPFROMREG(rv.d, MIPSInst_FS(ir));
2090			break;
2091
2092		case fselnez_op:
2093			if (!cpu_has_mips_r6)
2094				return SIGILL;
2095
2096			DPFROMREG(rv.d, MIPSInst_FT(ir));
2097			if (rv.l & 0x1)
2098				DPFROMREG(rv.d, MIPSInst_FS(ir));
2099			else
2100				rv.l = 0;
2101			break;
2102
2103		case fmaddf_op: {
2104			union ieee754dp ft, fs, fd;
2105
2106			if (!cpu_has_mips_r6)
2107				return SIGILL;
2108
2109			DPFROMREG(ft, MIPSInst_FT(ir));
2110			DPFROMREG(fs, MIPSInst_FS(ir));
2111			DPFROMREG(fd, MIPSInst_FD(ir));
2112			rv.d = ieee754dp_maddf(fd, fs, ft);
2113			break;
2114		}
2115
2116		case fmsubf_op: {
2117			union ieee754dp ft, fs, fd;
2118
2119			if (!cpu_has_mips_r6)
2120				return SIGILL;
2121
2122			DPFROMREG(ft, MIPSInst_FT(ir));
2123			DPFROMREG(fs, MIPSInst_FS(ir));
2124			DPFROMREG(fd, MIPSInst_FD(ir));
2125			rv.d = ieee754dp_msubf(fd, fs, ft);
2126			break;
2127		}
2128
2129		case frint_op: {
2130			union ieee754dp fs;
2131
2132			if (!cpu_has_mips_r6)
2133				return SIGILL;
2134
2135			DPFROMREG(fs, MIPSInst_FS(ir));
2136			rv.l = ieee754dp_tlong(fs);
2137			rv.d = ieee754dp_flong(rv.l);
2138			goto copcsr;
2139		}
2140
2141		case fclass_op: {
2142			union ieee754dp fs;
2143
2144			if (!cpu_has_mips_r6)
2145				return SIGILL;
2146
2147			DPFROMREG(fs, MIPSInst_FS(ir));
2148			rv.w = ieee754dp_2008class(fs);
2149			rfmt = w_fmt;
2150			break;
2151		}
2152
2153		case fmin_op: {
2154			union ieee754dp fs, ft;
2155
2156			if (!cpu_has_mips_r6)
2157				return SIGILL;
2158
2159			DPFROMREG(ft, MIPSInst_FT(ir));
2160			DPFROMREG(fs, MIPSInst_FS(ir));
2161			rv.d = ieee754dp_fmin(fs, ft);
2162			break;
2163		}
2164
2165		case fmina_op: {
2166			union ieee754dp fs, ft;
2167
2168			if (!cpu_has_mips_r6)
2169				return SIGILL;
2170
2171			DPFROMREG(ft, MIPSInst_FT(ir));
2172			DPFROMREG(fs, MIPSInst_FS(ir));
2173			rv.d = ieee754dp_fmina(fs, ft);
2174			break;
2175		}
2176
2177		case fmax_op: {
2178			union ieee754dp fs, ft;
2179
2180			if (!cpu_has_mips_r6)
2181				return SIGILL;
2182
2183			DPFROMREG(ft, MIPSInst_FT(ir));
2184			DPFROMREG(fs, MIPSInst_FS(ir));
2185			rv.d = ieee754dp_fmax(fs, ft);
2186			break;
2187		}
2188
2189		case fmaxa_op: {
2190			union ieee754dp fs, ft;
2191
2192			if (!cpu_has_mips_r6)
2193				return SIGILL;
2194
2195			DPFROMREG(ft, MIPSInst_FT(ir));
2196			DPFROMREG(fs, MIPSInst_FS(ir));
2197			rv.d = ieee754dp_fmaxa(fs, ft);
2198			break;
2199		}
2200
2201		case fabs_op:
2202			handler.u = ieee754dp_abs;
2203			goto dcopuop;
2204
2205		case fneg_op:
2206			handler.u = ieee754dp_neg;
2207			goto dcopuop;
2208
2209		case fmov_op:
2210			/* an easy one */
2211			DPFROMREG(rv.d, MIPSInst_FS(ir));
2212			goto copcsr;
2213
2214			/* binary op on handler */
2215dcopbop:
2216			DPFROMREG(fs, MIPSInst_FS(ir));
2217			DPFROMREG(ft, MIPSInst_FT(ir));
 
 
 
 
 
 
 
 
 
 
 
 
 
2218
2219			rv.d = (*handler.b) (fs, ft);
2220			goto copcsr;
2221dcopuop:
2222			DPFROMREG(fs, MIPSInst_FS(ir));
2223			rv.d = (*handler.u) (fs);
2224			goto copcsr;
2225
2226		/*
2227		 * unary conv ops
2228		 */
2229		case fcvts_op:
2230			DPFROMREG(fs, MIPSInst_FS(ir));
2231			rv.s = ieee754sp_fdp(fs);
2232			rfmt = s_fmt;
2233			goto copcsr;
2234
2235		case fcvtd_op:
2236			return SIGILL;	/* not defined */
2237
2238		case fcvtw_op:
 
 
2239			DPFROMREG(fs, MIPSInst_FS(ir));
2240			rv.w = ieee754dp_tint(fs);	/* wrong */
2241			rfmt = w_fmt;
2242			goto copcsr;
 
2243
 
2244		case fround_op:
2245		case ftrunc_op:
2246		case fceil_op:
2247		case ffloor_op:
2248			if (!cpu_has_mips_2_3_4_5_r)
2249				return SIGILL;
2250
2251			oldrm = ieee754_csr.rm;
2252			DPFROMREG(fs, MIPSInst_FS(ir));
2253			ieee754_csr.rm = MIPSInst_FUNC(ir);
2254			rv.w = ieee754dp_tint(fs);
2255			ieee754_csr.rm = oldrm;
2256			rfmt = w_fmt;
2257			goto copcsr;
 
 
2258
2259		case fsel_op:
2260			if (!cpu_has_mips_r6)
2261				return SIGILL;
2262
2263			DPFROMREG(fd, MIPSInst_FD(ir));
2264			if (fd.bits & 0x1)
2265				DPFROMREG(rv.d, MIPSInst_FT(ir));
2266			else
2267				DPFROMREG(rv.d, MIPSInst_FS(ir));
2268			break;
2269
2270		case fcvtl_op:
2271			if (!cpu_has_mips_3_4_5_64_r2_r6)
2272				return SIGILL;
2273
2274			DPFROMREG(fs, MIPSInst_FS(ir));
2275			rv.l = ieee754dp_tlong(fs);
2276			rfmt = l_fmt;
2277			goto copcsr;
 
2278
2279		case froundl_op:
2280		case ftruncl_op:
2281		case fceill_op:
2282		case ffloorl_op:
2283			if (!cpu_has_mips_3_4_5_64_r2_r6)
2284				return SIGILL;
2285
2286			oldrm = ieee754_csr.rm;
2287			DPFROMREG(fs, MIPSInst_FS(ir));
2288			ieee754_csr.rm = MIPSInst_FUNC(ir);
2289			rv.l = ieee754dp_tlong(fs);
2290			ieee754_csr.rm = oldrm;
2291			rfmt = l_fmt;
2292			goto copcsr;
 
 
2293
2294		default:
2295			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2296				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2297				union ieee754dp fs, ft;
2298
2299				DPFROMREG(fs, MIPSInst_FS(ir));
2300				DPFROMREG(ft, MIPSInst_FT(ir));
2301				rv.w = ieee754dp_cmp(fs, ft,
2302					cmptab[cmpop & 0x7], cmpop & 0x8);
2303				rfmt = -1;
2304				if ((cmpop & 0x8)
2305					&&
2306					ieee754_cxtest
2307					(IEEE754_INVALID_OPERATION))
2308					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2309				else
2310					goto copcsr;
2311
2312			}
2313			else {
2314				return SIGILL;
2315			}
2316			break;
2317		}
2318		break;
2319	}
2320
2321	case w_fmt: {
2322		union ieee754dp fs;
2323
2324		switch (MIPSInst_FUNC(ir)) {
2325		case fcvts_op:
2326			/* convert word to single precision real */
2327			SPFROMREG(fs, MIPSInst_FS(ir));
2328			rv.s = ieee754sp_fint(fs.bits);
2329			rfmt = s_fmt;
2330			goto copcsr;
2331		case fcvtd_op:
2332			/* convert word to double precision real */
2333			SPFROMREG(fs, MIPSInst_FS(ir));
2334			rv.d = ieee754dp_fint(fs.bits);
2335			rfmt = d_fmt;
2336			goto copcsr;
2337		default: {
2338			/* Emulating the new CMP.condn.fmt R6 instruction */
2339#define CMPOP_MASK	0x7
2340#define SIGN_BIT	(0x1 << 3)
2341#define PREDICATE_BIT	(0x1 << 4)
2342
2343			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2344			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2345			union ieee754sp fs, ft;
2346
2347			/* This is an R6 only instruction */
2348			if (!cpu_has_mips_r6 ||
2349			    (MIPSInst_FUNC(ir) & 0x20))
2350				return SIGILL;
2351
2352			/* fmt is w_fmt for single precision so fix it */
2353			rfmt = s_fmt;
2354			/* default to false */
2355			rv.w = 0;
2356
2357			/* CMP.condn.S */
2358			SPFROMREG(fs, MIPSInst_FS(ir));
2359			SPFROMREG(ft, MIPSInst_FT(ir));
2360
2361			/* positive predicates */
2362			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2363				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2364						  sig))
2365				    rv.w = -1; /* true, all 1s */
2366				if ((sig) &&
2367				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2368					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2369				else
2370					goto copcsr;
2371			} else {
2372				/* negative predicates */
2373				switch (cmpop) {
2374				case 1:
2375				case 2:
2376				case 3:
2377					if (ieee754sp_cmp(fs, ft,
2378							  negative_cmptab[cmpop],
2379							  sig))
2380						rv.w = -1; /* true, all 1s */
2381					if (sig &&
2382					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2383						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2384					else
2385						goto copcsr;
2386					break;
2387				default:
2388					/* Reserved R6 ops */
2389					pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2390					return SIGILL;
2391				}
2392			}
2393			break;
2394			}
2395		}
 
2396	}
2397
2398	case l_fmt:
2399
2400		if (!cpu_has_mips_3_4_5_64_r2_r6)
2401			return SIGILL;
2402
2403		DIFROMREG(bits, MIPSInst_FS(ir));
2404
2405		switch (MIPSInst_FUNC(ir)) {
2406		case fcvts_op:
2407			/* convert long to single precision real */
2408			rv.s = ieee754sp_flong(bits);
2409			rfmt = s_fmt;
2410			goto copcsr;
2411		case fcvtd_op:
2412			/* convert long to double precision real */
2413			rv.d = ieee754dp_flong(bits);
2414			rfmt = d_fmt;
2415			goto copcsr;
2416		default: {
2417			/* Emulating the new CMP.condn.fmt R6 instruction */
2418			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2419			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2420			union ieee754dp fs, ft;
 
2421
2422			if (!cpu_has_mips_r6 ||
2423			    (MIPSInst_FUNC(ir) & 0x20))
2424				return SIGILL;
2425
2426			/* fmt is l_fmt for double precision so fix it */
2427			rfmt = d_fmt;
2428			/* default to false */
2429			rv.l = 0;
2430
2431			/* CMP.condn.D */
2432			DPFROMREG(fs, MIPSInst_FS(ir));
2433			DPFROMREG(ft, MIPSInst_FT(ir));
2434
2435			/* positive predicates */
2436			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2437				if (ieee754dp_cmp(fs, ft,
2438						  cmptab[cmpop], sig))
2439				    rv.l = -1LL; /* true, all 1s */
2440				if (sig &&
2441				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2442					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2443				else
2444					goto copcsr;
2445			} else {
2446				/* negative predicates */
2447				switch (cmpop) {
2448				case 1:
2449				case 2:
2450				case 3:
2451					if (ieee754dp_cmp(fs, ft,
2452							  negative_cmptab[cmpop],
2453							  sig))
2454						rv.l = -1LL; /* true, all 1s */
2455					if (sig &&
2456					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2457						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2458					else
2459						goto copcsr;
2460					break;
2461				default:
2462					/* Reserved R6 ops */
2463					pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2464					return SIGILL;
2465				}
2466			}
2467			break;
2468			}
2469		}
2470	default:
2471		return SIGILL;
2472	}
2473
2474	/*
2475	 * Update the fpu CSR register for this operation.
2476	 * If an exception is required, generate a tidy SIGFPE exception,
2477	 * without updating the result register.
2478	 * Note: cause exception bits do not accumulate, they are rewritten
2479	 * for each op; only the flag/sticky bits accumulate.
2480	 */
2481	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2482	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2483		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2484		return SIGFPE;
2485	}
2486
2487	/*
2488	 * Now we can safely write the result back to the register file.
2489	 */
2490	switch (rfmt) {
2491	case -1:
2492
2493		if (cpu_has_mips_4_5_r)
2494			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2495		else
2496			cbit = FPU_CSR_COND;
2497		if (rv.w)
2498			ctx->fcr31 |= cbit;
2499		else
2500			ctx->fcr31 &= ~cbit;
2501		break;
2502
2503	case d_fmt:
2504		DPTOREG(rv.d, MIPSInst_FD(ir));
2505		break;
2506	case s_fmt:
2507		SPTOREG(rv.s, MIPSInst_FD(ir));
2508		break;
2509	case w_fmt:
2510		SITOREG(rv.w, MIPSInst_FD(ir));
2511		break;
 
2512	case l_fmt:
2513		if (!cpu_has_mips_3_4_5_64_r2_r6)
2514			return SIGILL;
2515
2516		DITOREG(rv.l, MIPSInst_FD(ir));
2517		break;
 
2518	default:
2519		return SIGILL;
2520	}
2521
2522	return 0;
2523}
2524
2525int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2526	int has_fpu, void *__user *fault_addr)
2527{
2528	unsigned long oldepc, prevepc;
2529	struct mm_decoded_insn dec_insn;
2530	u16 instr[4];
2531	u16 *instr_ptr;
2532	int sig = 0;
2533
2534	oldepc = xcp->cp0_epc;
2535	do {
2536		prevepc = xcp->cp0_epc;
2537
2538		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2539			/*
2540			 * Get next 2 microMIPS instructions and convert them
2541			 * into 32-bit instructions.
2542			 */
2543			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2544			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2545			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2546			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2547				MIPS_FPU_EMU_INC_STATS(errors);
2548				return SIGBUS;
2549			}
2550			instr_ptr = instr;
2551
2552			/* Get first instruction. */
2553			if (mm_insn_16bit(*instr_ptr)) {
2554				/* Duplicate the half-word. */
2555				dec_insn.insn = (*instr_ptr << 16) |
2556					(*instr_ptr);
2557				/* 16-bit instruction. */
2558				dec_insn.pc_inc = 2;
2559				instr_ptr += 1;
2560			} else {
2561				dec_insn.insn = (*instr_ptr << 16) |
2562					*(instr_ptr+1);
2563				/* 32-bit instruction. */
2564				dec_insn.pc_inc = 4;
2565				instr_ptr += 2;
2566			}
2567			/* Get second instruction. */
2568			if (mm_insn_16bit(*instr_ptr)) {
2569				/* Duplicate the half-word. */
2570				dec_insn.next_insn = (*instr_ptr << 16) |
2571					(*instr_ptr);
2572				/* 16-bit instruction. */
2573				dec_insn.next_pc_inc = 2;
2574			} else {
2575				dec_insn.next_insn = (*instr_ptr << 16) |
2576					*(instr_ptr+1);
2577				/* 32-bit instruction. */
2578				dec_insn.next_pc_inc = 4;
2579			}
2580			dec_insn.micro_mips_mode = 1;
2581		} else {
2582			if ((get_user(dec_insn.insn,
2583			    (mips_instruction __user *) xcp->cp0_epc)) ||
2584			    (get_user(dec_insn.next_insn,
2585			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2586				MIPS_FPU_EMU_INC_STATS(errors);
2587				return SIGBUS;
2588			}
2589			dec_insn.pc_inc = 4;
2590			dec_insn.next_pc_inc = 4;
2591			dec_insn.micro_mips_mode = 0;
2592		}
2593
2594		if ((dec_insn.insn == 0) ||
2595		   ((dec_insn.pc_inc == 2) &&
2596		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2597			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2598		else {
2599			/*
2600			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2601			 * No need to copy ctx->fcr31 to ieee754_csr.
 
 
2602			 */
2603			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
 
 
 
 
2604		}
2605
2606		if (has_fpu)
2607			break;
2608		if (sig)
2609			break;
2610
2611		cond_resched();
2612	} while (xcp->cp0_epc > prevepc);
2613
2614	/* SIGILL indicates a non-fpu instruction */
2615	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2616		/* but if EPC has advanced, then ignore it */
2617		sig = 0;
2618
2619	return sig;
2620}