Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
 
 
  13 */
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
 
 
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/module.h>
 
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/spinlock.h>
  23#include <linux/kallsyms.h>
  24#include <linux/bootmem.h>
  25#include <linux/interrupt.h>
  26#include <linux/ptrace.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdebug.h>
  29#include <linux/kprobes.h>
  30#include <linux/notifier.h>
  31#include <linux/kdb.h>
  32#include <linux/irq.h>
  33#include <linux/perf_event.h>
  34
  35#include <asm/bootinfo.h>
  36#include <asm/branch.h>
  37#include <asm/break.h>
  38#include <asm/cop2.h>
  39#include <asm/cpu.h>
 
  40#include <asm/dsp.h>
  41#include <asm/fpu.h>
  42#include <asm/fpu_emulator.h>
 
  43#include <asm/mipsregs.h>
  44#include <asm/mipsmtregs.h>
  45#include <asm/module.h>
 
  46#include <asm/pgtable.h>
  47#include <asm/ptrace.h>
  48#include <asm/sections.h>
  49#include <asm/system.h>
  50#include <asm/tlbdebug.h>
  51#include <asm/traps.h>
  52#include <asm/uaccess.h>
  53#include <asm/watch.h>
  54#include <asm/mmu_context.h>
  55#include <asm/types.h>
  56#include <asm/stacktrace.h>
  57#include <asm/uasm.h>
  58
  59extern void check_wait(void);
  60extern asmlinkage void r4k_wait(void);
  61extern asmlinkage void rollback_handle_int(void);
  62extern asmlinkage void handle_int(void);
  63extern asmlinkage void handle_tlbm(void);
  64extern asmlinkage void handle_tlbl(void);
  65extern asmlinkage void handle_tlbs(void);
  66extern asmlinkage void handle_adel(void);
  67extern asmlinkage void handle_ades(void);
  68extern asmlinkage void handle_ibe(void);
  69extern asmlinkage void handle_dbe(void);
  70extern asmlinkage void handle_sys(void);
  71extern asmlinkage void handle_bp(void);
  72extern asmlinkage void handle_ri(void);
  73extern asmlinkage void handle_ri_rdhwr_vivt(void);
  74extern asmlinkage void handle_ri_rdhwr(void);
  75extern asmlinkage void handle_cpu(void);
  76extern asmlinkage void handle_ov(void);
  77extern asmlinkage void handle_tr(void);
 
  78extern asmlinkage void handle_fpe(void);
 
 
  79extern asmlinkage void handle_mdmx(void);
  80extern asmlinkage void handle_watch(void);
  81extern asmlinkage void handle_mt(void);
  82extern asmlinkage void handle_dsp(void);
  83extern asmlinkage void handle_mcheck(void);
  84extern asmlinkage void handle_reserved(void);
  85
  86extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  87				    struct mips_fpu_struct *ctx, int has_fpu,
  88				    void *__user *fault_addr);
  89
  90void (*board_be_init)(void);
  91int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  92void (*board_nmi_handler_setup)(void);
  93void (*board_ejtag_handler_setup)(void);
  94void (*board_bind_eic_interrupt)(int irq, int regset);
  95
 
  96
  97static void show_raw_backtrace(unsigned long reg29)
  98{
  99	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 100	unsigned long addr;
 101
 102	printk("Call Trace:");
 103#ifdef CONFIG_KALLSYMS
 104	printk("\n");
 105#endif
 106	while (!kstack_end(sp)) {
 107		unsigned long __user *p =
 108			(unsigned long __user *)(unsigned long)sp++;
 109		if (__get_user(addr, p)) {
 110			printk(" (Bad stack address)");
 111			break;
 112		}
 113		if (__kernel_text_address(addr))
 114			print_ip_sym(addr);
 115	}
 116	printk("\n");
 117}
 118
 119#ifdef CONFIG_KALLSYMS
 120int raw_show_trace;
 121static int __init set_raw_show_trace(char *str)
 122{
 123	raw_show_trace = 1;
 124	return 1;
 125}
 126__setup("raw_show_trace", set_raw_show_trace);
 127#endif
 128
 129static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 130{
 131	unsigned long sp = regs->regs[29];
 132	unsigned long ra = regs->regs[31];
 133	unsigned long pc = regs->cp0_epc;
 134
 
 
 
 135	if (raw_show_trace || !__kernel_text_address(pc)) {
 136		show_raw_backtrace(sp);
 137		return;
 138	}
 139	printk("Call Trace:\n");
 140	do {
 141		print_ip_sym(pc);
 142		pc = unwind_stack(task, &sp, pc, &ra);
 143	} while (pc);
 144	printk("\n");
 145}
 146
 147/*
 148 * This routine abuses get_user()/put_user() to reference pointers
 149 * with at least a bit of error checking ...
 150 */
 151static void show_stacktrace(struct task_struct *task,
 152	const struct pt_regs *regs)
 153{
 154	const int field = 2 * sizeof(unsigned long);
 155	long stackdata;
 156	int i;
 157	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 158
 159	printk("Stack :");
 160	i = 0;
 161	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 162		if (i && ((i % (64 / field)) == 0))
 163			printk("\n       ");
 164		if (i > 39) {
 165			printk(" ...");
 166			break;
 167		}
 168
 169		if (__get_user(stackdata, sp++)) {
 170			printk(" (Bad stack address)");
 171			break;
 172		}
 173
 174		printk(" %0*lx", field, stackdata);
 175		i++;
 176	}
 177	printk("\n");
 178	show_backtrace(task, regs);
 179}
 180
 181void show_stack(struct task_struct *task, unsigned long *sp)
 182{
 183	struct pt_regs regs;
 184	if (sp) {
 185		regs.regs[29] = (unsigned long)sp;
 186		regs.regs[31] = 0;
 187		regs.cp0_epc = 0;
 188	} else {
 189		if (task && task != current) {
 190			regs.regs[29] = task->thread.reg29;
 191			regs.regs[31] = 0;
 192			regs.cp0_epc = task->thread.reg31;
 193#ifdef CONFIG_KGDB_KDB
 194		} else if (atomic_read(&kgdb_active) != -1 &&
 195			   kdb_current_regs) {
 196			memcpy(&regs, kdb_current_regs, sizeof(regs));
 197#endif /* CONFIG_KGDB_KDB */
 198		} else {
 199			prepare_frametrace(&regs);
 200		}
 201	}
 202	show_stacktrace(task, &regs);
 203}
 204
 205/*
 206 * The architecture-independent dump_stack generator
 207 */
 208void dump_stack(void)
 209{
 210	struct pt_regs regs;
 211
 212	prepare_frametrace(&regs);
 213	show_backtrace(current, &regs);
 214}
 215
 216EXPORT_SYMBOL(dump_stack);
 217
 218static void show_code(unsigned int __user *pc)
 219{
 220	long i;
 221	unsigned short __user *pc16 = NULL;
 222
 223	printk("\nCode:");
 224
 225	if ((unsigned long)pc & 1)
 226		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 227	for(i = -3 ; i < 6 ; i++) {
 228		unsigned int insn;
 229		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 230			printk(" (Bad address in epc)\n");
 231			break;
 232		}
 233		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 234	}
 235}
 236
 237static void __show_regs(const struct pt_regs *regs)
 238{
 239	const int field = 2 * sizeof(unsigned long);
 240	unsigned int cause = regs->cp0_cause;
 241	int i;
 242
 243	printk("Cpu %d\n", smp_processor_id());
 244
 245	/*
 246	 * Saved main processor registers
 247	 */
 248	for (i = 0; i < 32; ) {
 249		if ((i % 4) == 0)
 250			printk("$%2d   :", i);
 251		if (i == 0)
 252			printk(" %0*lx", field, 0UL);
 253		else if (i == 26 || i == 27)
 254			printk(" %*s", field, "");
 255		else
 256			printk(" %0*lx", field, regs->regs[i]);
 257
 258		i++;
 259		if ((i % 4) == 0)
 260			printk("\n");
 261	}
 262
 263#ifdef CONFIG_CPU_HAS_SMARTMIPS
 264	printk("Acx    : %0*lx\n", field, regs->acx);
 265#endif
 266	printk("Hi    : %0*lx\n", field, regs->hi);
 267	printk("Lo    : %0*lx\n", field, regs->lo);
 268
 269	/*
 270	 * Saved cp0 registers
 271	 */
 272	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 273	       (void *) regs->cp0_epc);
 274	printk("    %s\n", print_tainted());
 275	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 276	       (void *) regs->regs[31]);
 277
 278	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 279
 280	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 281		if (regs->cp0_status & ST0_KUO)
 282			printk("KUo ");
 283		if (regs->cp0_status & ST0_IEO)
 284			printk("IEo ");
 285		if (regs->cp0_status & ST0_KUP)
 286			printk("KUp ");
 287		if (regs->cp0_status & ST0_IEP)
 288			printk("IEp ");
 289		if (regs->cp0_status & ST0_KUC)
 290			printk("KUc ");
 291		if (regs->cp0_status & ST0_IEC)
 292			printk("IEc ");
 293	} else {
 294		if (regs->cp0_status & ST0_KX)
 295			printk("KX ");
 296		if (regs->cp0_status & ST0_SX)
 297			printk("SX ");
 298		if (regs->cp0_status & ST0_UX)
 299			printk("UX ");
 300		switch (regs->cp0_status & ST0_KSU) {
 301		case KSU_USER:
 302			printk("USER ");
 303			break;
 304		case KSU_SUPERVISOR:
 305			printk("SUPERVISOR ");
 306			break;
 307		case KSU_KERNEL:
 308			printk("KERNEL ");
 309			break;
 310		default:
 311			printk("BAD_MODE ");
 312			break;
 313		}
 314		if (regs->cp0_status & ST0_ERL)
 315			printk("ERL ");
 316		if (regs->cp0_status & ST0_EXL)
 317			printk("EXL ");
 318		if (regs->cp0_status & ST0_IE)
 319			printk("IE ");
 320	}
 321	printk("\n");
 322
 323	printk("Cause : %08x\n", cause);
 324
 325	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 326	if (1 <= cause && cause <= 5)
 327		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 328
 329	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 330	       cpu_name_string());
 331}
 332
 333/*
 334 * FIXME: really the generic show_regs should take a const pointer argument.
 335 */
 336void show_regs(struct pt_regs *regs)
 337{
 338	__show_regs((struct pt_regs *)regs);
 339}
 340
 341void show_registers(struct pt_regs *regs)
 342{
 343	const int field = 2 * sizeof(unsigned long);
 
 344
 345	__show_regs(regs);
 346	print_modules();
 347	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 348	       current->comm, current->pid, current_thread_info(), current,
 349	      field, current_thread_info()->tp_value);
 350	if (cpu_has_userlocal) {
 351		unsigned long tls;
 352
 353		tls = read_c0_userlocal();
 354		if (tls != current_thread_info()->tp_value)
 355			printk("*HwTLS: %0*lx\n", field, tls);
 356	}
 357
 
 
 
 358	show_stacktrace(current, regs);
 359	show_code((unsigned int __user *) regs->cp0_epc);
 360	printk("\n");
 
 361}
 362
 363static int regs_to_trapnr(struct pt_regs *regs)
 364{
 365	return (regs->cp0_cause >> 2) & 0x1f;
 366}
 367
 368static DEFINE_RAW_SPINLOCK(die_lock);
 369
 370void __noreturn die(const char *str, struct pt_regs *regs)
 371{
 372	static int die_counter;
 373	int sig = SIGSEGV;
 374#ifdef CONFIG_MIPS_MT_SMTC
 375	unsigned long dvpret;
 376#endif /* CONFIG_MIPS_MT_SMTC */
 377
 378	oops_enter();
 379
 380	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 
 381		sig = 0;
 382
 383	console_verbose();
 384	raw_spin_lock_irq(&die_lock);
 385#ifdef CONFIG_MIPS_MT_SMTC
 386	dvpret = dvpe();
 387#endif /* CONFIG_MIPS_MT_SMTC */
 388	bust_spinlocks(1);
 389#ifdef CONFIG_MIPS_MT_SMTC
 390	mips_mt_regdump(dvpret);
 391#endif /* CONFIG_MIPS_MT_SMTC */
 392
 393	printk("%s[#%d]:\n", str, ++die_counter);
 394	show_registers(regs);
 395	add_taint(TAINT_DIE);
 396	raw_spin_unlock_irq(&die_lock);
 397
 398	oops_exit();
 399
 400	if (in_interrupt())
 401		panic("Fatal exception in interrupt");
 402
 403	if (panic_on_oops) {
 404		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 405		ssleep(5);
 406		panic("Fatal exception");
 407	}
 408
 
 
 
 409	do_exit(sig);
 410}
 411
 412extern struct exception_table_entry __start___dbe_table[];
 413extern struct exception_table_entry __stop___dbe_table[];
 414
 415__asm__(
 416"	.section	__dbe_table, \"a\"\n"
 417"	.previous			\n");
 418
 419/* Given an address, look for it in the exception tables. */
 420static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 421{
 422	const struct exception_table_entry *e;
 423
 424	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 425	if (!e)
 426		e = search_module_dbetables(addr);
 427	return e;
 428}
 429
 430asmlinkage void do_be(struct pt_regs *regs)
 431{
 432	const int field = 2 * sizeof(unsigned long);
 433	const struct exception_table_entry *fixup = NULL;
 434	int data = regs->cp0_cause & 4;
 435	int action = MIPS_BE_FATAL;
 
 436
 437	/* XXX For now.  Fixme, this searches the wrong table ...  */
 
 438	if (data && !user_mode(regs))
 439		fixup = search_dbe_tables(exception_epc(regs));
 440
 441	if (fixup)
 442		action = MIPS_BE_FIXUP;
 443
 444	if (board_be_handler)
 445		action = board_be_handler(regs, fixup != NULL);
 446
 447	switch (action) {
 448	case MIPS_BE_DISCARD:
 449		return;
 450	case MIPS_BE_FIXUP:
 451		if (fixup) {
 452			regs->cp0_epc = fixup->nextinsn;
 453			return;
 454		}
 455		break;
 456	default:
 457		break;
 458	}
 459
 460	/*
 461	 * Assume it would be too dangerous to continue ...
 462	 */
 463	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 464	       data ? "Data" : "Instruction",
 465	       field, regs->cp0_epc, field, regs->regs[31]);
 466	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 467	    == NOTIFY_STOP)
 468		return;
 469
 470	die_if_kernel("Oops", regs);
 471	force_sig(SIGBUS, current);
 
 
 
 472}
 473
 474/*
 475 * ll/sc, rdhwr, sync emulation
 476 */
 477
 478#define OPCODE 0xfc000000
 479#define BASE   0x03e00000
 480#define RT     0x001f0000
 481#define OFFSET 0x0000ffff
 482#define LL     0xc0000000
 483#define SC     0xe0000000
 484#define SPEC0  0x00000000
 485#define SPEC3  0x7c000000
 486#define RD     0x0000f800
 487#define FUNC   0x0000003f
 488#define SYNC   0x0000000f
 489#define RDHWR  0x0000003b
 490
 
 
 
 
 
 
 491/*
 492 * The ll_bit is cleared by r*_switch.S
 493 */
 494
 495unsigned int ll_bit;
 496struct task_struct *ll_task;
 497
 498static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 499{
 500	unsigned long value, __user *vaddr;
 501	long offset;
 502
 503	/*
 504	 * analyse the ll instruction that just caused a ri exception
 505	 * and put the referenced address to addr.
 506	 */
 507
 508	/* sign extend offset */
 509	offset = opcode & OFFSET;
 510	offset <<= 16;
 511	offset >>= 16;
 512
 513	vaddr = (unsigned long __user *)
 514	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 515
 516	if ((unsigned long)vaddr & 3)
 517		return SIGBUS;
 518	if (get_user(value, vaddr))
 519		return SIGSEGV;
 520
 521	preempt_disable();
 522
 523	if (ll_task == NULL || ll_task == current) {
 524		ll_bit = 1;
 525	} else {
 526		ll_bit = 0;
 527	}
 528	ll_task = current;
 529
 530	preempt_enable();
 531
 532	regs->regs[(opcode & RT) >> 16] = value;
 533
 534	return 0;
 535}
 536
 537static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 538{
 539	unsigned long __user *vaddr;
 540	unsigned long reg;
 541	long offset;
 542
 543	/*
 544	 * analyse the sc instruction that just caused a ri exception
 545	 * and put the referenced address to addr.
 546	 */
 547
 548	/* sign extend offset */
 549	offset = opcode & OFFSET;
 550	offset <<= 16;
 551	offset >>= 16;
 552
 553	vaddr = (unsigned long __user *)
 554	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 555	reg = (opcode & RT) >> 16;
 556
 557	if ((unsigned long)vaddr & 3)
 558		return SIGBUS;
 559
 560	preempt_disable();
 561
 562	if (ll_bit == 0 || ll_task != current) {
 563		regs->regs[reg] = 0;
 564		preempt_enable();
 565		return 0;
 566	}
 567
 568	preempt_enable();
 569
 570	if (put_user(regs->regs[reg], vaddr))
 571		return SIGSEGV;
 572
 573	regs->regs[reg] = 1;
 574
 575	return 0;
 576}
 577
 578/*
 579 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 580 * opcodes are supposed to result in coprocessor unusable exceptions if
 581 * executed on ll/sc-less processors.  That's the theory.  In practice a
 582 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 583 * instead, so we're doing the emulation thing in both exception handlers.
 584 */
 585static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 586{
 587	if ((opcode & OPCODE) == LL) {
 588		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 589				1, regs, 0);
 590		return simulate_ll(regs, opcode);
 591	}
 592	if ((opcode & OPCODE) == SC) {
 593		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 594				1, regs, 0);
 595		return simulate_sc(regs, opcode);
 596	}
 597
 598	return -1;			/* Must be something else ... */
 599}
 600
 601/*
 602 * Simulate trapping 'rdhwr' instructions to provide user accessible
 603 * registers not implemented in hardware.
 604 */
 605static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 606{
 607	struct thread_info *ti = task_thread_info(current);
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 610		int rd = (opcode & RD) >> 11;
 611		int rt = (opcode & RT) >> 16;
 612		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 613				1, regs, 0);
 614		switch (rd) {
 615		case 0:		/* CPU number */
 616			regs->regs[rt] = smp_processor_id();
 617			return 0;
 618		case 1:		/* SYNCI length */
 619			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 620					     current_cpu_data.icache.linesz);
 621			return 0;
 622		case 2:		/* Read count register */
 623			regs->regs[rt] = read_c0_count();
 624			return 0;
 625		case 3:		/* Count register resolution */
 626			switch (current_cpu_data.cputype) {
 627			case CPU_20KC:
 628			case CPU_25KF:
 629				regs->regs[rt] = 1;
 630				break;
 631			default:
 632				regs->regs[rt] = 2;
 633			}
 634			return 0;
 635		case 29:
 636			regs->regs[rt] = ti->tp_value;
 637			return 0;
 638		default:
 639			return -1;
 640		}
 641	}
 642
 643	/* Not ours.  */
 644	return -1;
 645}
 646
 647static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 648{
 649	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 650		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 651				1, regs, 0);
 652		return 0;
 653	}
 654
 655	return -1;			/* Must be something else ... */
 656}
 657
 658asmlinkage void do_ov(struct pt_regs *regs)
 659{
 
 660	siginfo_t info;
 661
 
 662	die_if_kernel("Integer overflow", regs);
 663
 664	info.si_code = FPE_INTOVF;
 665	info.si_signo = SIGFPE;
 666	info.si_errno = 0;
 667	info.si_addr = (void __user *) regs->cp0_epc;
 668	force_sig_info(SIGFPE, &info, current);
 
 669}
 670
 671static int process_fpemu_return(int sig, void __user *fault_addr)
 672{
 673	if (sig == SIGSEGV || sig == SIGBUS) {
 674		struct siginfo si = {0};
 675		si.si_addr = fault_addr;
 676		si.si_signo = sig;
 677		if (sig == SIGSEGV) {
 678			if (find_vma(current->mm, (unsigned long)fault_addr))
 679				si.si_code = SEGV_ACCERR;
 680			else
 681				si.si_code = SEGV_MAPERR;
 682		} else {
 683			si.si_code = BUS_ADRERR;
 684		}
 685		force_sig_info(sig, &si, current);
 686		return 1;
 687	} else if (sig) {
 688		force_sig(sig, current);
 689		return 1;
 690	} else {
 691		return 0;
 692	}
 693}
 694
 695/*
 696 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 697 */
 698asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 699{
 
 700	siginfo_t info = {0};
 701
 702	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 703	    == NOTIFY_STOP)
 704		return;
 
 705	die_if_kernel("FP exception in kernel code", regs);
 706
 707	if (fcr31 & FPU_CSR_UNI_X) {
 708		int sig;
 709		void __user *fault_addr = NULL;
 710
 711		/*
 712		 * Unimplemented operation exception.  If we've got the full
 713		 * software emulator on-board, let's use it...
 714		 *
 715		 * Force FPU to dump state into task/thread context.  We're
 716		 * moving a lot of data here for what is probably a single
 717		 * instruction, but the alternative is to pre-decode the FP
 718		 * register operands before invoking the emulator, which seems
 719		 * a bit extreme for what should be an infrequent event.
 720		 */
 721		/* Ensure 'resume' not overwrite saved fp context again. */
 722		lose_fpu(1);
 723
 724		/* Run the emulator */
 725		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 726					       &fault_addr);
 727
 728		/*
 729		 * We can't allow the emulated instruction to leave any of
 730		 * the cause bit set in $fcr31.
 731		 */
 732		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 733
 734		/* Restore the hardware register state */
 735		own_fpu(1);	/* Using the FPU again.  */
 736
 737		/* If something went wrong, signal */
 738		process_fpemu_return(sig, fault_addr);
 739
 740		return;
 741	} else if (fcr31 & FPU_CSR_INV_X)
 742		info.si_code = FPE_FLTINV;
 743	else if (fcr31 & FPU_CSR_DIV_X)
 744		info.si_code = FPE_FLTDIV;
 745	else if (fcr31 & FPU_CSR_OVF_X)
 746		info.si_code = FPE_FLTOVF;
 747	else if (fcr31 & FPU_CSR_UDF_X)
 748		info.si_code = FPE_FLTUND;
 749	else if (fcr31 & FPU_CSR_INE_X)
 750		info.si_code = FPE_FLTRES;
 751	else
 752		info.si_code = __SI_FAULT;
 753	info.si_signo = SIGFPE;
 754	info.si_errno = 0;
 755	info.si_addr = (void __user *) regs->cp0_epc;
 756	force_sig_info(SIGFPE, &info, current);
 
 
 
 757}
 758
 759static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 760	const char *str)
 761{
 762	siginfo_t info;
 763	char b[40];
 764
 765#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 766	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 767		return;
 768#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 769
 770	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 771		return;
 772
 773	/*
 774	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 775	 * insns, even for trap and break codes that indicate arithmetic
 776	 * failures.  Weird ...
 777	 * But should we continue the brokenness???  --macro
 778	 */
 779	switch (code) {
 780	case BRK_OVERFLOW:
 781	case BRK_DIVZERO:
 782		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 783		die_if_kernel(b, regs);
 784		if (code == BRK_DIVZERO)
 785			info.si_code = FPE_INTDIV;
 786		else
 787			info.si_code = FPE_INTOVF;
 788		info.si_signo = SIGFPE;
 789		info.si_errno = 0;
 790		info.si_addr = (void __user *) regs->cp0_epc;
 791		force_sig_info(SIGFPE, &info, current);
 792		break;
 793	case BRK_BUG:
 794		die_if_kernel("Kernel bug detected", regs);
 795		force_sig(SIGTRAP, current);
 796		break;
 797	case BRK_MEMU:
 798		/*
 799		 * Address errors may be deliberately induced by the FPU
 800		 * emulator to retake control of the CPU after executing the
 801		 * instruction in the delay slot of an emulated branch.
 802		 *
 803		 * Terminate if exception was recognized as a delay slot return
 804		 * otherwise handle as normal.
 805		 */
 806		if (do_dsemulret(regs))
 807			return;
 808
 809		die_if_kernel("Math emu break/trap", regs);
 810		force_sig(SIGTRAP, current);
 811		break;
 812	default:
 813		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 814		die_if_kernel(b, regs);
 815		force_sig(SIGTRAP, current);
 816	}
 817}
 818
 819asmlinkage void do_bp(struct pt_regs *regs)
 820{
 821	unsigned int opcode, bcode;
 822
 823	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 824		goto out_sigsegv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	/*
 827	 * There is the ancient bug in the MIPS assemblers that the break
 828	 * code starts left to bit 16 instead to bit 6 in the opcode.
 829	 * Gas is bug-compatible, but not always, grrr...
 830	 * We handle both cases with a simple heuristics.  --macro
 831	 */
 832	bcode = ((opcode >> 6) & ((1 << 20) - 1));
 833	if (bcode >= (1 << 10))
 834		bcode >>= 10;
 835
 836	/*
 837	 * notify the kprobe handlers, if instruction is likely to
 838	 * pertain to them.
 839	 */
 840	switch (bcode) {
 841	case BRK_KPROBE_BP:
 842		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 843			return;
 
 844		else
 845			break;
 846	case BRK_KPROBE_SSTEPBP:
 847		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 848			return;
 
 849		else
 850			break;
 851	default:
 852		break;
 853	}
 854
 855	do_trap_or_bp(regs, bcode, "Break");
 
 
 
 
 856	return;
 857
 858out_sigsegv:
 859	force_sig(SIGSEGV, current);
 
 860}
 861
 862asmlinkage void do_tr(struct pt_regs *regs)
 863{
 864	unsigned int opcode, tcode = 0;
 865
 866	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 867		goto out_sigsegv;
 868
 869	/* Immediate versions don't provide a code.  */
 870	if (!(opcode & OPCODE))
 871		tcode = ((opcode >> 6) & ((1 << 10) - 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873	do_trap_or_bp(regs, tcode, "Trap");
 
 
 
 
 874	return;
 875
 876out_sigsegv:
 877	force_sig(SIGSEGV, current);
 
 878}
 879
 880asmlinkage void do_ri(struct pt_regs *regs)
 881{
 882	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 883	unsigned long old_epc = regs->cp0_epc;
 
 
 884	unsigned int opcode = 0;
 885	int status = -1;
 886
 887	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 888	    == NOTIFY_STOP)
 889		return;
 
 890
 891	die_if_kernel("Reserved instruction in kernel code", regs);
 892
 893	if (unlikely(compute_return_epc(regs) < 0))
 894		return;
 895
 896	if (unlikely(get_user(opcode, epc) < 0))
 897		status = SIGSEGV;
 898
 899	if (!cpu_has_llsc && status < 0)
 900		status = simulate_llsc(regs, opcode);
 
 
 
 901
 902	if (status < 0)
 903		status = simulate_rdhwr(regs, opcode);
 
 
 
 904
 905	if (status < 0)
 906		status = simulate_sync(regs, opcode);
 
 
 
 
 
 
 
 907
 908	if (status < 0)
 909		status = SIGILL;
 910
 911	if (unlikely(status > 0)) {
 912		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
 
 913		force_sig(status, current);
 914	}
 
 
 
 915}
 916
 917/*
 918 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 919 * emulated more than some threshold number of instructions, force migration to
 920 * a "CPU" that has FP support.
 921 */
 922static void mt_ase_fp_affinity(void)
 923{
 924#ifdef CONFIG_MIPS_MT_FPAFF
 925	if (mt_fpemul_threshold > 0 &&
 926	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 927		/*
 928		 * If there's no FPU present, or if the application has already
 929		 * restricted the allowed set to exclude any CPUs with FPUs,
 930		 * we'll skip the procedure.
 931		 */
 932		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 933			cpumask_t tmask;
 934
 935			current->thread.user_cpus_allowed
 936				= current->cpus_allowed;
 937			cpus_and(tmask, current->cpus_allowed,
 938				mt_fpu_cpumask);
 939			set_cpus_allowed_ptr(current, &tmask);
 940			set_thread_flag(TIF_FPUBOUND);
 941		}
 942	}
 943#endif /* CONFIG_MIPS_MT_FPAFF */
 944}
 945
 946/*
 947 * No lock; only written during early bootup by CPU 0.
 948 */
 949static RAW_NOTIFIER_HEAD(cu2_chain);
 950
 951int __ref register_cu2_notifier(struct notifier_block *nb)
 952{
 953	return raw_notifier_chain_register(&cu2_chain, nb);
 954}
 955
 956int cu2_notifier_call_chain(unsigned long val, void *v)
 957{
 958	return raw_notifier_call_chain(&cu2_chain, val, v);
 959}
 960
 961static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 962        void *data)
 963{
 964	struct pt_regs *regs = data;
 965
 966	switch (action) {
 967	default:
 968		die_if_kernel("Unhandled kernel unaligned access or invalid "
 969			      "instruction", regs);
 970		/* Fall through  */
 971
 972	case CU2_EXCEPTION:
 973		force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	}
 975
 976	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977}
 978
 979asmlinkage void do_cpu(struct pt_regs *regs)
 980{
 
 981	unsigned int __user *epc;
 982	unsigned long old_epc;
 983	unsigned int opcode;
 984	unsigned int cpid;
 985	int status;
 986	unsigned long __maybe_unused flags;
 987
 988	die_if_kernel("do_cpu invoked from kernel context!", regs);
 989
 990	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 991
 
 
 
 992	switch (cpid) {
 993	case 0:
 994		epc = (unsigned int __user *)exception_epc(regs);
 995		old_epc = regs->cp0_epc;
 
 996		opcode = 0;
 997		status = -1;
 998
 999		if (unlikely(compute_return_epc(regs) < 0))
1000			return;
1001
1002		if (unlikely(get_user(opcode, epc) < 0))
1003			status = SIGSEGV;
1004
1005		if (!cpu_has_llsc && status < 0)
1006			status = simulate_llsc(regs, opcode);
 
 
 
1007
1008		if (status < 0)
1009			status = simulate_rdhwr(regs, opcode);
 
 
 
 
 
 
 
 
 
 
1010
1011		if (status < 0)
1012			status = SIGILL;
1013
1014		if (unlikely(status > 0)) {
1015			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
 
1016			force_sig(status, current);
1017		}
1018
1019		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020
1021	case 1:
1022		if (used_math())	/* Using the FPU again.  */
1023			own_fpu(1);
1024		else {			/* First time FPU user.  */
1025			init_fpu();
1026			set_used_math();
1027		}
1028
1029		if (!raw_cpu_has_fpu) {
1030			int sig;
1031			void __user *fault_addr = NULL;
1032			sig = fpu_emulator_cop1Handler(regs,
1033						       &current->thread.fpu,
1034						       0, &fault_addr);
1035			if (!process_fpemu_return(sig, fault_addr))
1036				mt_ase_fp_affinity();
1037		}
1038
1039		return;
1040
1041	case 2:
1042		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1043		return;
1044
1045	case 3:
1046		break;
1047	}
1048
1049	force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050}
1051
1052asmlinkage void do_mdmx(struct pt_regs *regs)
1053{
 
 
 
1054	force_sig(SIGILL, current);
 
1055}
1056
1057/*
1058 * Called with interrupts disabled.
1059 */
1060asmlinkage void do_watch(struct pt_regs *regs)
1061{
 
1062	u32 cause;
1063
 
1064	/*
1065	 * Clear WP (bit 22) bit of cause register so we don't loop
1066	 * forever.
1067	 */
1068	cause = read_c0_cause();
1069	cause &= ~(1 << 22);
1070	write_c0_cause(cause);
1071
1072	/*
1073	 * If the current thread has the watch registers loaded, save
1074	 * their values and send SIGTRAP.  Otherwise another thread
1075	 * left the registers set, clear them and continue.
1076	 */
1077	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1078		mips_read_watch_registers();
1079		local_irq_enable();
1080		force_sig(SIGTRAP, current);
1081	} else {
1082		mips_clear_watch_registers();
1083		local_irq_enable();
1084	}
 
1085}
1086
1087asmlinkage void do_mcheck(struct pt_regs *regs)
1088{
1089	const int field = 2 * sizeof(unsigned long);
1090	int multi_match = regs->cp0_status & ST0_TS;
 
1091
 
1092	show_regs(regs);
1093
1094	if (multi_match) {
1095		printk("Index   : %0x\n", read_c0_index());
1096		printk("Pagemask: %0x\n", read_c0_pagemask());
1097		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1098		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1099		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1100		printk("\n");
1101		dump_tlb_all();
1102	}
1103
1104	show_code((unsigned int __user *) regs->cp0_epc);
1105
1106	/*
1107	 * Some chips may have other causes of machine check (e.g. SB1
1108	 * graduation timer)
1109	 */
1110	panic("Caught Machine Check exception - %scaused by multiple "
1111	      "matching entries in the TLB.",
1112	      (multi_match) ? "" : "not ");
1113}
1114
1115asmlinkage void do_mt(struct pt_regs *regs)
1116{
1117	int subcode;
1118
1119	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1120			>> VPECONTROL_EXCPT_SHIFT;
1121	switch (subcode) {
1122	case 0:
1123		printk(KERN_DEBUG "Thread Underflow\n");
1124		break;
1125	case 1:
1126		printk(KERN_DEBUG "Thread Overflow\n");
1127		break;
1128	case 2:
1129		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1130		break;
1131	case 3:
1132		printk(KERN_DEBUG "Gating Storage Exception\n");
1133		break;
1134	case 4:
1135		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1136		break;
1137	case 5:
1138		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1139		break;
1140	default:
1141		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1142			subcode);
1143		break;
1144	}
1145	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1146
1147	force_sig(SIGILL, current);
1148}
1149
1150
1151asmlinkage void do_dsp(struct pt_regs *regs)
1152{
1153	if (cpu_has_dsp)
1154		panic("Unexpected DSP exception\n");
1155
1156	force_sig(SIGILL, current);
1157}
1158
1159asmlinkage void do_reserved(struct pt_regs *regs)
1160{
1161	/*
1162	 * Game over - no way to handle this if it ever occurs.  Most probably
1163	 * caused by a new unknown cpu type or after another deadly
1164	 * hard/software error.
1165	 */
1166	show_regs(regs);
1167	panic("Caught reserved exception %ld - should not happen.",
1168	      (regs->cp0_cause & 0x7f) >> 2);
1169}
1170
1171static int __initdata l1parity = 1;
1172static int __init nol1parity(char *s)
1173{
1174	l1parity = 0;
1175	return 1;
1176}
1177__setup("nol1par", nol1parity);
1178static int __initdata l2parity = 1;
1179static int __init nol2parity(char *s)
1180{
1181	l2parity = 0;
1182	return 1;
1183}
1184__setup("nol2par", nol2parity);
1185
1186/*
1187 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1188 * it different ways.
1189 */
1190static inline void parity_protection_init(void)
1191{
1192	switch (current_cpu_type()) {
1193	case CPU_24K:
1194	case CPU_34K:
1195	case CPU_74K:
1196	case CPU_1004K:
 
 
 
 
1197		{
1198#define ERRCTL_PE	0x80000000
1199#define ERRCTL_L2P	0x00800000
1200			unsigned long errctl;
1201			unsigned int l1parity_present, l2parity_present;
1202
1203			errctl = read_c0_ecc();
1204			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1205
1206			/* probe L1 parity support */
1207			write_c0_ecc(errctl | ERRCTL_PE);
1208			back_to_back_c0_hazard();
1209			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1210
1211			/* probe L2 parity support */
1212			write_c0_ecc(errctl|ERRCTL_L2P);
1213			back_to_back_c0_hazard();
1214			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1215
1216			if (l1parity_present && l2parity_present) {
1217				if (l1parity)
1218					errctl |= ERRCTL_PE;
1219				if (l1parity ^ l2parity)
1220					errctl |= ERRCTL_L2P;
1221			} else if (l1parity_present) {
1222				if (l1parity)
1223					errctl |= ERRCTL_PE;
1224			} else if (l2parity_present) {
1225				if (l2parity)
1226					errctl |= ERRCTL_L2P;
1227			} else {
1228				/* No parity available */
1229			}
1230
1231			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1232
1233			write_c0_ecc(errctl);
1234			back_to_back_c0_hazard();
1235			errctl = read_c0_ecc();
1236			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1237
1238			if (l1parity_present)
1239				printk(KERN_INFO "Cache parity protection %sabled\n",
1240				       (errctl & ERRCTL_PE) ? "en" : "dis");
1241
1242			if (l2parity_present) {
1243				if (l1parity_present && l1parity)
1244					errctl ^= ERRCTL_L2P;
1245				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1246				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1247			}
1248		}
1249		break;
1250
1251	case CPU_5KC:
 
 
1252		write_c0_ecc(0x80000000);
1253		back_to_back_c0_hazard();
1254		/* Set the PE bit (bit 31) in the c0_errctl register. */
1255		printk(KERN_INFO "Cache parity protection %sabled\n",
1256		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1257		break;
1258	case CPU_20KC:
1259	case CPU_25KF:
1260		/* Clear the DE bit (bit 16) in the c0_status register. */
1261		printk(KERN_INFO "Enable cache parity protection for "
1262		       "MIPS 20KC/25KF CPUs.\n");
1263		clear_c0_status(ST0_DE);
1264		break;
1265	default:
1266		break;
1267	}
1268}
1269
1270asmlinkage void cache_parity_error(void)
1271{
1272	const int field = 2 * sizeof(unsigned long);
1273	unsigned int reg_val;
1274
1275	/* For the moment, report the problem and hang. */
1276	printk("Cache error exception:\n");
1277	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1278	reg_val = read_c0_cacheerr();
1279	printk("c0_cacheerr == %08x\n", reg_val);
1280
1281	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1282	       reg_val & (1<<30) ? "secondary" : "primary",
1283	       reg_val & (1<<31) ? "data" : "insn");
1284	printk("Error bits: %s%s%s%s%s%s%s\n",
1285	       reg_val & (1<<29) ? "ED " : "",
1286	       reg_val & (1<<28) ? "ET " : "",
1287	       reg_val & (1<<26) ? "EE " : "",
1288	       reg_val & (1<<25) ? "EB " : "",
1289	       reg_val & (1<<24) ? "EI " : "",
1290	       reg_val & (1<<23) ? "E1 " : "",
1291	       reg_val & (1<<22) ? "E0 " : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
1292	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1293
1294#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1295	if (reg_val & (1<<22))
1296		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1297
1298	if (reg_val & (1<<23))
1299		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1300#endif
1301
1302	panic("Can't handle the cache error!");
1303}
1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305/*
1306 * SDBBP EJTAG debug exception handler.
1307 * We skip the instruction and return to the next instruction.
1308 */
1309void ejtag_exception_handler(struct pt_regs *regs)
1310{
1311	const int field = 2 * sizeof(unsigned long);
1312	unsigned long depc, old_epc;
1313	unsigned int debug;
1314
1315	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1316	depc = read_c0_depc();
1317	debug = read_c0_debug();
1318	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1319	if (debug & 0x80000000) {
1320		/*
1321		 * In branch delay slot.
1322		 * We cheat a little bit here and use EPC to calculate the
1323		 * debug return address (DEPC). EPC is restored after the
1324		 * calculation.
1325		 */
1326		old_epc = regs->cp0_epc;
 
1327		regs->cp0_epc = depc;
1328		__compute_return_epc(regs);
1329		depc = regs->cp0_epc;
1330		regs->cp0_epc = old_epc;
 
1331	} else
1332		depc += 4;
1333	write_c0_depc(depc);
1334
1335#if 0
1336	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1337	write_c0_debug(debug | 0x100);
1338#endif
1339}
1340
1341/*
1342 * NMI exception handler.
 
1343 */
1344NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
 
 
 
 
 
 
 
1345{
 
 
 
1346	bust_spinlocks(1);
1347	printk("NMI taken!!!!\n");
1348	die("NMI", regs);
 
 
1349}
1350
1351#define VECTORSPACING 0x100	/* for EI/VI mode */
1352
1353unsigned long ebase;
1354unsigned long exception_handlers[32];
1355unsigned long vi_handlers[64];
1356
1357void __init *set_except_vector(int n, void *addr)
1358{
1359	unsigned long handler = (unsigned long) addr;
1360	unsigned long old_handler = exception_handlers[n];
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	exception_handlers[n] = handler;
1363	if (n == 0 && cpu_has_divec) {
 
 
 
1364		unsigned long jump_mask = ~((1 << 28) - 1);
 
1365		u32 *buf = (u32 *)(ebase + 0x200);
1366		unsigned int k0 = 26;
1367		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1368			uasm_i_j(&buf, handler & ~jump_mask);
1369			uasm_i_nop(&buf);
1370		} else {
1371			UASM_i_LA(&buf, k0, handler);
1372			uasm_i_jr(&buf, k0);
1373			uasm_i_nop(&buf);
1374		}
1375		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1376	}
1377	return (void *)old_handler;
1378}
1379
1380static asmlinkage void do_default_vi(void)
1381{
1382	show_regs(get_irq_regs());
1383	panic("Caught unexpected vectored interrupt.");
1384}
1385
1386static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1387{
1388	unsigned long handler;
1389	unsigned long old_handler = vi_handlers[n];
1390	int srssets = current_cpu_data.srsets;
1391	u32 *w;
1392	unsigned char *b;
1393
1394	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1395
1396	if (addr == NULL) {
1397		handler = (unsigned long) do_default_vi;
1398		srs = 0;
1399	} else
1400		handler = (unsigned long) addr;
1401	vi_handlers[n] = (unsigned long) addr;
1402
1403	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1404
1405	if (srs >= srssets)
1406		panic("Shadow register set %d not supported", srs);
1407
1408	if (cpu_has_veic) {
1409		if (board_bind_eic_interrupt)
1410			board_bind_eic_interrupt(n, srs);
1411	} else if (cpu_has_vint) {
1412		/* SRSMap is only defined if shadow sets are implemented */
1413		if (srssets > 1)
1414			change_c0_srsmap(0xf << n*4, srs << n*4);
1415	}
1416
1417	if (srs == 0) {
1418		/*
1419		 * If no shadow set is selected then use the default handler
1420		 * that does normal register saving and a standard interrupt exit
1421		 */
1422
1423		extern char except_vec_vi, except_vec_vi_lui;
1424		extern char except_vec_vi_ori, except_vec_vi_end;
1425		extern char rollback_except_vec_vi;
1426		char *vec_start = (cpu_wait == r4k_wait) ?
1427			&rollback_except_vec_vi : &except_vec_vi;
1428#ifdef CONFIG_MIPS_MT_SMTC
1429		/*
1430		 * We need to provide the SMTC vectored interrupt handler
1431		 * not only with the address of the handler, but with the
1432		 * Status.IM bit to be masked before going there.
1433		 */
1434		extern char except_vec_vi_mori;
 
 
 
1435		const int mori_offset = &except_vec_vi_mori - vec_start;
 
1436#endif /* CONFIG_MIPS_MT_SMTC */
1437		const int handler_len = &except_vec_vi_end - vec_start;
 
 
 
1438		const int lui_offset = &except_vec_vi_lui - vec_start;
1439		const int ori_offset = &except_vec_vi_ori - vec_start;
 
 
1440
1441		if (handler_len > VECTORSPACING) {
1442			/*
1443			 * Sigh... panicing won't help as the console
1444			 * is probably not configured :(
1445			 */
1446			panic("VECTORSPACING too small");
1447		}
1448
1449		memcpy(b, vec_start, handler_len);
 
 
 
 
 
1450#ifdef CONFIG_MIPS_MT_SMTC
1451		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1452
1453		w = (u32 *)(b + mori_offset);
1454		*w = (*w & 0xffff0000) | (0x100 << n);
1455#endif /* CONFIG_MIPS_MT_SMTC */
1456		w = (u32 *)(b + lui_offset);
1457		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1458		w = (u32 *)(b + ori_offset);
1459		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1460		local_flush_icache_range((unsigned long)b,
1461					 (unsigned long)(b+handler_len));
1462	}
1463	else {
1464		/*
1465		 * In other cases jump directly to the interrupt handler
1466		 *
1467		 * It is the handlers responsibility to save registers if required
1468		 * (eg hi/lo) and return from the exception using "eret"
1469		 */
1470		w = (u32 *)b;
1471		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1472		*w = 0;
 
 
 
 
 
 
 
 
 
 
1473		local_flush_icache_range((unsigned long)b,
1474					 (unsigned long)(b+8));
1475	}
1476
1477	return (void *)old_handler;
1478}
1479
1480void *set_vi_handler(int n, vi_handler_t addr)
1481{
1482	return set_vi_srs_handler(n, addr, 0);
1483}
1484
1485extern void cpu_cache_init(void);
1486extern void tlb_init(void);
1487extern void flush_tlb_handlers(void);
1488
1489/*
1490 * Timer interrupt
1491 */
1492int cp0_compare_irq;
 
1493int cp0_compare_irq_shift;
1494
1495/*
1496 * Performance counter IRQ or -1 if shared with timer
1497 */
1498int cp0_perfcount_irq;
1499EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1500
1501static int __cpuinitdata noulri;
1502
1503static int __init ulri_disable(char *s)
1504{
1505	pr_info("Disabling ulri\n");
1506	noulri = 1;
1507
1508	return 1;
1509}
1510__setup("noulri", ulri_disable);
1511
1512void __cpuinit per_cpu_trap_init(void)
1513{
1514	unsigned int cpu = smp_processor_id();
1515	unsigned int status_set = ST0_CU0;
1516	unsigned int hwrena = cpu_hwrena_impl_bits;
1517#ifdef CONFIG_MIPS_MT_SMTC
1518	int secondaryTC = 0;
1519	int bootTC = (cpu == 0);
1520
1521	/*
1522	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1523	 * Note that this hack assumes that the SMTC init code
1524	 * assigns TCs consecutively and in ascending order.
1525	 */
1526
1527	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1528	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1529		secondaryTC = 1;
1530#endif /* CONFIG_MIPS_MT_SMTC */
1531
1532	/*
1533	 * Disable coprocessors and select 32-bit or 64-bit addressing
1534	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1535	 * flag that some firmware may have left set and the TS bit (for
1536	 * IP27).  Set XX for ISA IV code to work.
1537	 */
1538#ifdef CONFIG_64BIT
1539	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1540#endif
1541	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1542		status_set |= ST0_XX;
1543	if (cpu_has_dsp)
1544		status_set |= ST0_MX;
1545
1546	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1547			 status_set);
1548
1549	if (cpu_has_mips_r2)
1550		hwrena |= 0x0000000f;
1551
1552	if (!noulri && cpu_has_userlocal)
1553		hwrena |= (1 << 29);
1554
1555	if (hwrena)
1556		write_c0_hwrena(hwrena);
1557
1558#ifdef CONFIG_MIPS_MT_SMTC
1559	if (!secondaryTC) {
1560#endif /* CONFIG_MIPS_MT_SMTC */
1561
1562	if (cpu_has_veic || cpu_has_vint) {
1563		unsigned long sr = set_c0_status(ST0_BEV);
1564		write_c0_ebase(ebase);
1565		write_c0_status(sr);
1566		/* Setting vector spacing enables EI/VI mode  */
1567		change_c0_intctl(0x3e0, VECTORSPACING);
1568	}
1569	if (cpu_has_divec) {
1570		if (cpu_has_mipsmt) {
1571			unsigned int vpflags = dvpe();
1572			set_c0_cause(CAUSEF_IV);
1573			evpe(vpflags);
1574		} else
1575			set_c0_cause(CAUSEF_IV);
1576	}
1577
1578	/*
1579	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1580	 *
1581	 *  o read IntCtl.IPTI to determine the timer interrupt
1582	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1583	 */
1584	if (cpu_has_mips_r2) {
1585		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1586		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1587		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1588		if (cp0_perfcount_irq == cp0_compare_irq)
1589			cp0_perfcount_irq = -1;
1590	} else {
1591		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1592		cp0_compare_irq_shift = cp0_compare_irq;
1593		cp0_perfcount_irq = -1;
1594	}
1595
1596#ifdef CONFIG_MIPS_MT_SMTC
1597	}
1598#endif /* CONFIG_MIPS_MT_SMTC */
1599
1600	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
 
1601
1602	atomic_inc(&init_mm.mm_count);
1603	current->active_mm = &init_mm;
1604	BUG_ON(current->mm);
1605	enter_lazy_tlb(&init_mm, current);
1606
1607#ifdef CONFIG_MIPS_MT_SMTC
1608	if (bootTC) {
1609#endif /* CONFIG_MIPS_MT_SMTC */
1610		cpu_cache_init();
 
 
1611		tlb_init();
1612#ifdef CONFIG_MIPS_MT_SMTC
1613	} else if (!secondaryTC) {
1614		/*
1615		 * First TC in non-boot VPE must do subset of tlb_init()
1616		 * for MMU countrol registers.
1617		 */
1618		write_c0_pagemask(PM_DEFAULT_MASK);
1619		write_c0_wired(0);
1620	}
1621#endif /* CONFIG_MIPS_MT_SMTC */
1622	TLBMISS_HANDLER_SETUP();
1623}
1624
1625/* Install CPU exception handler */
1626void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1627{
 
 
 
1628	memcpy((void *)(ebase + offset), addr, size);
 
1629	local_flush_icache_range(ebase + offset, ebase + offset + size);
1630}
1631
1632static char panic_null_cerr[] __cpuinitdata =
1633	"Trying to set NULL cache error exception handler";
1634
1635/*
1636 * Install uncached CPU exception handler.
1637 * This is suitable only for the cache error exception which is the only
1638 * exception handler that is being run uncached.
1639 */
1640void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1641	unsigned long size)
1642{
1643	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1644
1645	if (!addr)
1646		panic(panic_null_cerr);
1647
1648	memcpy((void *)(uncached_ebase + offset), addr, size);
1649}
1650
1651static int __initdata rdhwr_noopt;
1652static int __init set_rdhwr_noopt(char *str)
1653{
1654	rdhwr_noopt = 1;
1655	return 1;
1656}
1657
1658__setup("rdhwr_noopt", set_rdhwr_noopt);
1659
1660void __init trap_init(void)
1661{
1662	extern char except_vec3_generic, except_vec3_r4000;
1663	extern char except_vec4;
 
1664	unsigned long i;
1665	int rollback;
1666
1667	check_wait();
1668	rollback = (cpu_wait == r4k_wait);
1669
1670#if defined(CONFIG_KGDB)
1671	if (kgdb_early_setup)
1672		return;	/* Already done */
1673#endif
1674
1675	if (cpu_has_veic || cpu_has_vint) {
1676		unsigned long size = 0x200 + VECTORSPACING*64;
1677		ebase = (unsigned long)
1678			__alloc_bootmem(size, 1 << fls(size), 0);
1679	} else {
1680		ebase = CKSEG0;
 
 
 
 
 
1681		if (cpu_has_mips_r2)
1682			ebase += (read_c0_ebase() & 0x3ffff000);
1683	}
1684
1685	per_cpu_trap_init();
 
 
 
 
 
 
 
 
 
 
 
1686
1687	/*
1688	 * Copy the generic exception handlers to their final destination.
1689	 * This will be overriden later as suitable for a particular
1690	 * configuration.
1691	 */
1692	set_handler(0x180, &except_vec3_generic, 0x80);
1693
1694	/*
1695	 * Setup default vectors
1696	 */
1697	for (i = 0; i <= 31; i++)
1698		set_except_vector(i, handle_reserved);
1699
1700	/*
1701	 * Copy the EJTAG debug exception vector handler code to it's final
1702	 * destination.
1703	 */
1704	if (cpu_has_ejtag && board_ejtag_handler_setup)
1705		board_ejtag_handler_setup();
1706
1707	/*
1708	 * Only some CPUs have the watch exceptions.
1709	 */
1710	if (cpu_has_watch)
1711		set_except_vector(23, handle_watch);
1712
1713	/*
1714	 * Initialise interrupt handlers
1715	 */
1716	if (cpu_has_veic || cpu_has_vint) {
1717		int nvec = cpu_has_veic ? 64 : 8;
1718		for (i = 0; i < nvec; i++)
1719			set_vi_handler(i, NULL);
1720	}
1721	else if (cpu_has_divec)
1722		set_handler(0x200, &except_vec4, 0x8);
1723
1724	/*
1725	 * Some CPUs can enable/disable for cache parity detection, but does
1726	 * it different ways.
1727	 */
1728	parity_protection_init();
1729
1730	/*
1731	 * The Data Bus Errors / Instruction Bus Errors are signaled
1732	 * by external hardware.  Therefore these two exceptions
1733	 * may have board specific handlers.
1734	 */
1735	if (board_be_init)
1736		board_be_init();
1737
1738	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
 
1739	set_except_vector(1, handle_tlbm);
1740	set_except_vector(2, handle_tlbl);
1741	set_except_vector(3, handle_tlbs);
1742
1743	set_except_vector(4, handle_adel);
1744	set_except_vector(5, handle_ades);
1745
1746	set_except_vector(6, handle_ibe);
1747	set_except_vector(7, handle_dbe);
1748
1749	set_except_vector(8, handle_sys);
1750	set_except_vector(9, handle_bp);
1751	set_except_vector(10, rdhwr_noopt ? handle_ri :
1752			  (cpu_has_vtag_icache ?
1753			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1754	set_except_vector(11, handle_cpu);
1755	set_except_vector(12, handle_ov);
1756	set_except_vector(13, handle_tr);
 
1757
1758	if (current_cpu_type() == CPU_R6000 ||
1759	    current_cpu_type() == CPU_R6000A) {
1760		/*
1761		 * The R6000 is the only R-series CPU that features a machine
1762		 * check exception (similar to the R4000 cache error) and
1763		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1764		 * written yet.  Well, anyway there is no R6000 machine on the
1765		 * current list of targets for Linux/MIPS.
1766		 * (Duh, crap, there is someone with a triple R6k machine)
1767		 */
1768		//set_except_vector(14, handle_mc);
1769		//set_except_vector(15, handle_ndc);
1770	}
1771
1772
1773	if (board_nmi_handler_setup)
1774		board_nmi_handler_setup();
1775
1776	if (cpu_has_fpu && !cpu_has_nofpuex)
1777		set_except_vector(15, handle_fpe);
1778
 
 
1779	set_except_vector(22, handle_mdmx);
1780
1781	if (cpu_has_mcheck)
1782		set_except_vector(24, handle_mcheck);
1783
1784	if (cpu_has_mipsmt)
1785		set_except_vector(25, handle_mt);
1786
1787	set_except_vector(26, handle_dsp);
1788
 
 
 
1789	if (cpu_has_vce)
1790		/* Special exception: R4[04]00 uses also the divec space. */
1791		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1792	else if (cpu_has_4kex)
1793		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1794	else
1795		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1796
1797	local_flush_icache_range(ebase, ebase + 0x400);
1798	flush_tlb_handlers();
1799
1800	sort_extable(__start___dbe_table, __stop___dbe_table);
1801
1802	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1803}
v3.15
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bug.h>
  16#include <linux/compiler.h>
  17#include <linux/context_tracking.h>
  18#include <linux/kexec.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
 
  21#include <linux/module.h>
  22#include <linux/mm.h>
  23#include <linux/sched.h>
  24#include <linux/smp.h>
  25#include <linux/spinlock.h>
  26#include <linux/kallsyms.h>
  27#include <linux/bootmem.h>
  28#include <linux/interrupt.h>
  29#include <linux/ptrace.h>
  30#include <linux/kgdb.h>
  31#include <linux/kdebug.h>
  32#include <linux/kprobes.h>
  33#include <linux/notifier.h>
  34#include <linux/kdb.h>
  35#include <linux/irq.h>
  36#include <linux/perf_event.h>
  37
  38#include <asm/bootinfo.h>
  39#include <asm/branch.h>
  40#include <asm/break.h>
  41#include <asm/cop2.h>
  42#include <asm/cpu.h>
  43#include <asm/cpu-type.h>
  44#include <asm/dsp.h>
  45#include <asm/fpu.h>
  46#include <asm/fpu_emulator.h>
  47#include <asm/idle.h>
  48#include <asm/mipsregs.h>
  49#include <asm/mipsmtregs.h>
  50#include <asm/module.h>
  51#include <asm/msa.h>
  52#include <asm/pgtable.h>
  53#include <asm/ptrace.h>
  54#include <asm/sections.h>
 
  55#include <asm/tlbdebug.h>
  56#include <asm/traps.h>
  57#include <asm/uaccess.h>
  58#include <asm/watch.h>
  59#include <asm/mmu_context.h>
  60#include <asm/types.h>
  61#include <asm/stacktrace.h>
  62#include <asm/uasm.h>
  63
  64extern void check_wait(void);
 
  65extern asmlinkage void rollback_handle_int(void);
  66extern asmlinkage void handle_int(void);
  67extern u32 handle_tlbl[];
  68extern u32 handle_tlbs[];
  69extern u32 handle_tlbm[];
  70extern asmlinkage void handle_adel(void);
  71extern asmlinkage void handle_ades(void);
  72extern asmlinkage void handle_ibe(void);
  73extern asmlinkage void handle_dbe(void);
  74extern asmlinkage void handle_sys(void);
  75extern asmlinkage void handle_bp(void);
  76extern asmlinkage void handle_ri(void);
  77extern asmlinkage void handle_ri_rdhwr_vivt(void);
  78extern asmlinkage void handle_ri_rdhwr(void);
  79extern asmlinkage void handle_cpu(void);
  80extern asmlinkage void handle_ov(void);
  81extern asmlinkage void handle_tr(void);
  82extern asmlinkage void handle_msa_fpe(void);
  83extern asmlinkage void handle_fpe(void);
  84extern asmlinkage void handle_ftlb(void);
  85extern asmlinkage void handle_msa(void);
  86extern asmlinkage void handle_mdmx(void);
  87extern asmlinkage void handle_watch(void);
  88extern asmlinkage void handle_mt(void);
  89extern asmlinkage void handle_dsp(void);
  90extern asmlinkage void handle_mcheck(void);
  91extern asmlinkage void handle_reserved(void);
  92
 
 
 
 
  93void (*board_be_init)(void);
  94int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  95void (*board_nmi_handler_setup)(void);
  96void (*board_ejtag_handler_setup)(void);
  97void (*board_bind_eic_interrupt)(int irq, int regset);
  98void (*board_ebase_setup)(void);
  99void(*board_cache_error_setup)(void);
 100
 101static void show_raw_backtrace(unsigned long reg29)
 102{
 103	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 104	unsigned long addr;
 105
 106	printk("Call Trace:");
 107#ifdef CONFIG_KALLSYMS
 108	printk("\n");
 109#endif
 110	while (!kstack_end(sp)) {
 111		unsigned long __user *p =
 112			(unsigned long __user *)(unsigned long)sp++;
 113		if (__get_user(addr, p)) {
 114			printk(" (Bad stack address)");
 115			break;
 116		}
 117		if (__kernel_text_address(addr))
 118			print_ip_sym(addr);
 119	}
 120	printk("\n");
 121}
 122
 123#ifdef CONFIG_KALLSYMS
 124int raw_show_trace;
 125static int __init set_raw_show_trace(char *str)
 126{
 127	raw_show_trace = 1;
 128	return 1;
 129}
 130__setup("raw_show_trace", set_raw_show_trace);
 131#endif
 132
 133static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 134{
 135	unsigned long sp = regs->regs[29];
 136	unsigned long ra = regs->regs[31];
 137	unsigned long pc = regs->cp0_epc;
 138
 139	if (!task)
 140		task = current;
 141
 142	if (raw_show_trace || !__kernel_text_address(pc)) {
 143		show_raw_backtrace(sp);
 144		return;
 145	}
 146	printk("Call Trace:\n");
 147	do {
 148		print_ip_sym(pc);
 149		pc = unwind_stack(task, &sp, pc, &ra);
 150	} while (pc);
 151	printk("\n");
 152}
 153
 154/*
 155 * This routine abuses get_user()/put_user() to reference pointers
 156 * with at least a bit of error checking ...
 157 */
 158static void show_stacktrace(struct task_struct *task,
 159	const struct pt_regs *regs)
 160{
 161	const int field = 2 * sizeof(unsigned long);
 162	long stackdata;
 163	int i;
 164	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 165
 166	printk("Stack :");
 167	i = 0;
 168	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 169		if (i && ((i % (64 / field)) == 0))
 170			printk("\n	 ");
 171		if (i > 39) {
 172			printk(" ...");
 173			break;
 174		}
 175
 176		if (__get_user(stackdata, sp++)) {
 177			printk(" (Bad stack address)");
 178			break;
 179		}
 180
 181		printk(" %0*lx", field, stackdata);
 182		i++;
 183	}
 184	printk("\n");
 185	show_backtrace(task, regs);
 186}
 187
 188void show_stack(struct task_struct *task, unsigned long *sp)
 189{
 190	struct pt_regs regs;
 191	if (sp) {
 192		regs.regs[29] = (unsigned long)sp;
 193		regs.regs[31] = 0;
 194		regs.cp0_epc = 0;
 195	} else {
 196		if (task && task != current) {
 197			regs.regs[29] = task->thread.reg29;
 198			regs.regs[31] = 0;
 199			regs.cp0_epc = task->thread.reg31;
 200#ifdef CONFIG_KGDB_KDB
 201		} else if (atomic_read(&kgdb_active) != -1 &&
 202			   kdb_current_regs) {
 203			memcpy(&regs, kdb_current_regs, sizeof(regs));
 204#endif /* CONFIG_KGDB_KDB */
 205		} else {
 206			prepare_frametrace(&regs);
 207		}
 208	}
 209	show_stacktrace(task, &regs);
 210}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 212static void show_code(unsigned int __user *pc)
 213{
 214	long i;
 215	unsigned short __user *pc16 = NULL;
 216
 217	printk("\nCode:");
 218
 219	if ((unsigned long)pc & 1)
 220		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 221	for(i = -3 ; i < 6 ; i++) {
 222		unsigned int insn;
 223		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 224			printk(" (Bad address in epc)\n");
 225			break;
 226		}
 227		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 228	}
 229}
 230
 231static void __show_regs(const struct pt_regs *regs)
 232{
 233	const int field = 2 * sizeof(unsigned long);
 234	unsigned int cause = regs->cp0_cause;
 235	int i;
 236
 237	show_regs_print_info(KERN_DEFAULT);
 238
 239	/*
 240	 * Saved main processor registers
 241	 */
 242	for (i = 0; i < 32; ) {
 243		if ((i % 4) == 0)
 244			printk("$%2d   :", i);
 245		if (i == 0)
 246			printk(" %0*lx", field, 0UL);
 247		else if (i == 26 || i == 27)
 248			printk(" %*s", field, "");
 249		else
 250			printk(" %0*lx", field, regs->regs[i]);
 251
 252		i++;
 253		if ((i % 4) == 0)
 254			printk("\n");
 255	}
 256
 257#ifdef CONFIG_CPU_HAS_SMARTMIPS
 258	printk("Acx    : %0*lx\n", field, regs->acx);
 259#endif
 260	printk("Hi    : %0*lx\n", field, regs->hi);
 261	printk("Lo    : %0*lx\n", field, regs->lo);
 262
 263	/*
 264	 * Saved cp0 registers
 265	 */
 266	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 267	       (void *) regs->cp0_epc);
 268	printk("    %s\n", print_tainted());
 269	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 270	       (void *) regs->regs[31]);
 271
 272	printk("Status: %08x	", (uint32_t) regs->cp0_status);
 273
 274	if (cpu_has_3kex) {
 275		if (regs->cp0_status & ST0_KUO)
 276			printk("KUo ");
 277		if (regs->cp0_status & ST0_IEO)
 278			printk("IEo ");
 279		if (regs->cp0_status & ST0_KUP)
 280			printk("KUp ");
 281		if (regs->cp0_status & ST0_IEP)
 282			printk("IEp ");
 283		if (regs->cp0_status & ST0_KUC)
 284			printk("KUc ");
 285		if (regs->cp0_status & ST0_IEC)
 286			printk("IEc ");
 287	} else if (cpu_has_4kex) {
 288		if (regs->cp0_status & ST0_KX)
 289			printk("KX ");
 290		if (regs->cp0_status & ST0_SX)
 291			printk("SX ");
 292		if (regs->cp0_status & ST0_UX)
 293			printk("UX ");
 294		switch (regs->cp0_status & ST0_KSU) {
 295		case KSU_USER:
 296			printk("USER ");
 297			break;
 298		case KSU_SUPERVISOR:
 299			printk("SUPERVISOR ");
 300			break;
 301		case KSU_KERNEL:
 302			printk("KERNEL ");
 303			break;
 304		default:
 305			printk("BAD_MODE ");
 306			break;
 307		}
 308		if (regs->cp0_status & ST0_ERL)
 309			printk("ERL ");
 310		if (regs->cp0_status & ST0_EXL)
 311			printk("EXL ");
 312		if (regs->cp0_status & ST0_IE)
 313			printk("IE ");
 314	}
 315	printk("\n");
 316
 317	printk("Cause : %08x\n", cause);
 318
 319	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 320	if (1 <= cause && cause <= 5)
 321		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 322
 323	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 324	       cpu_name_string());
 325}
 326
 327/*
 328 * FIXME: really the generic show_regs should take a const pointer argument.
 329 */
 330void show_regs(struct pt_regs *regs)
 331{
 332	__show_regs((struct pt_regs *)regs);
 333}
 334
 335void show_registers(struct pt_regs *regs)
 336{
 337	const int field = 2 * sizeof(unsigned long);
 338	mm_segment_t old_fs = get_fs();
 339
 340	__show_regs(regs);
 341	print_modules();
 342	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 343	       current->comm, current->pid, current_thread_info(), current,
 344	      field, current_thread_info()->tp_value);
 345	if (cpu_has_userlocal) {
 346		unsigned long tls;
 347
 348		tls = read_c0_userlocal();
 349		if (tls != current_thread_info()->tp_value)
 350			printk("*HwTLS: %0*lx\n", field, tls);
 351	}
 352
 353	if (!user_mode(regs))
 354		/* Necessary for getting the correct stack content */
 355		set_fs(KERNEL_DS);
 356	show_stacktrace(current, regs);
 357	show_code((unsigned int __user *) regs->cp0_epc);
 358	printk("\n");
 359	set_fs(old_fs);
 360}
 361
 362static int regs_to_trapnr(struct pt_regs *regs)
 363{
 364	return (regs->cp0_cause >> 2) & 0x1f;
 365}
 366
 367static DEFINE_RAW_SPINLOCK(die_lock);
 368
 369void __noreturn die(const char *str, struct pt_regs *regs)
 370{
 371	static int die_counter;
 372	int sig = SIGSEGV;
 373#ifdef CONFIG_MIPS_MT_SMTC
 374	unsigned long dvpret;
 375#endif /* CONFIG_MIPS_MT_SMTC */
 376
 377	oops_enter();
 378
 379	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
 380		       SIGSEGV) == NOTIFY_STOP)
 381		sig = 0;
 382
 383	console_verbose();
 384	raw_spin_lock_irq(&die_lock);
 385#ifdef CONFIG_MIPS_MT_SMTC
 386	dvpret = dvpe();
 387#endif /* CONFIG_MIPS_MT_SMTC */
 388	bust_spinlocks(1);
 389#ifdef CONFIG_MIPS_MT_SMTC
 390	mips_mt_regdump(dvpret);
 391#endif /* CONFIG_MIPS_MT_SMTC */
 392
 393	printk("%s[#%d]:\n", str, ++die_counter);
 394	show_registers(regs);
 395	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 396	raw_spin_unlock_irq(&die_lock);
 397
 398	oops_exit();
 399
 400	if (in_interrupt())
 401		panic("Fatal exception in interrupt");
 402
 403	if (panic_on_oops) {
 404		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 405		ssleep(5);
 406		panic("Fatal exception");
 407	}
 408
 409	if (regs && kexec_should_crash(current))
 410		crash_kexec(regs);
 411
 412	do_exit(sig);
 413}
 414
 415extern struct exception_table_entry __start___dbe_table[];
 416extern struct exception_table_entry __stop___dbe_table[];
 417
 418__asm__(
 419"	.section	__dbe_table, \"a\"\n"
 420"	.previous			\n");
 421
 422/* Given an address, look for it in the exception tables. */
 423static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 424{
 425	const struct exception_table_entry *e;
 426
 427	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 428	if (!e)
 429		e = search_module_dbetables(addr);
 430	return e;
 431}
 432
 433asmlinkage void do_be(struct pt_regs *regs)
 434{
 435	const int field = 2 * sizeof(unsigned long);
 436	const struct exception_table_entry *fixup = NULL;
 437	int data = regs->cp0_cause & 4;
 438	int action = MIPS_BE_FATAL;
 439	enum ctx_state prev_state;
 440
 441	prev_state = exception_enter();
 442	/* XXX For now.	 Fixme, this searches the wrong table ...  */
 443	if (data && !user_mode(regs))
 444		fixup = search_dbe_tables(exception_epc(regs));
 445
 446	if (fixup)
 447		action = MIPS_BE_FIXUP;
 448
 449	if (board_be_handler)
 450		action = board_be_handler(regs, fixup != NULL);
 451
 452	switch (action) {
 453	case MIPS_BE_DISCARD:
 454		goto out;
 455	case MIPS_BE_FIXUP:
 456		if (fixup) {
 457			regs->cp0_epc = fixup->nextinsn;
 458			goto out;
 459		}
 460		break;
 461	default:
 462		break;
 463	}
 464
 465	/*
 466	 * Assume it would be too dangerous to continue ...
 467	 */
 468	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 469	       data ? "Data" : "Instruction",
 470	       field, regs->cp0_epc, field, regs->regs[31]);
 471	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
 472		       SIGBUS) == NOTIFY_STOP)
 473		goto out;
 474
 475	die_if_kernel("Oops", regs);
 476	force_sig(SIGBUS, current);
 477
 478out:
 479	exception_exit(prev_state);
 480}
 481
 482/*
 483 * ll/sc, rdhwr, sync emulation
 484 */
 485
 486#define OPCODE 0xfc000000
 487#define BASE   0x03e00000
 488#define RT     0x001f0000
 489#define OFFSET 0x0000ffff
 490#define LL     0xc0000000
 491#define SC     0xe0000000
 492#define SPEC0  0x00000000
 493#define SPEC3  0x7c000000
 494#define RD     0x0000f800
 495#define FUNC   0x0000003f
 496#define SYNC   0x0000000f
 497#define RDHWR  0x0000003b
 498
 499/*  microMIPS definitions   */
 500#define MM_POOL32A_FUNC 0xfc00ffff
 501#define MM_RDHWR        0x00006b3c
 502#define MM_RS           0x001f0000
 503#define MM_RT           0x03e00000
 504
 505/*
 506 * The ll_bit is cleared by r*_switch.S
 507 */
 508
 509unsigned int ll_bit;
 510struct task_struct *ll_task;
 511
 512static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 513{
 514	unsigned long value, __user *vaddr;
 515	long offset;
 516
 517	/*
 518	 * analyse the ll instruction that just caused a ri exception
 519	 * and put the referenced address to addr.
 520	 */
 521
 522	/* sign extend offset */
 523	offset = opcode & OFFSET;
 524	offset <<= 16;
 525	offset >>= 16;
 526
 527	vaddr = (unsigned long __user *)
 528		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 529
 530	if ((unsigned long)vaddr & 3)
 531		return SIGBUS;
 532	if (get_user(value, vaddr))
 533		return SIGSEGV;
 534
 535	preempt_disable();
 536
 537	if (ll_task == NULL || ll_task == current) {
 538		ll_bit = 1;
 539	} else {
 540		ll_bit = 0;
 541	}
 542	ll_task = current;
 543
 544	preempt_enable();
 545
 546	regs->regs[(opcode & RT) >> 16] = value;
 547
 548	return 0;
 549}
 550
 551static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 552{
 553	unsigned long __user *vaddr;
 554	unsigned long reg;
 555	long offset;
 556
 557	/*
 558	 * analyse the sc instruction that just caused a ri exception
 559	 * and put the referenced address to addr.
 560	 */
 561
 562	/* sign extend offset */
 563	offset = opcode & OFFSET;
 564	offset <<= 16;
 565	offset >>= 16;
 566
 567	vaddr = (unsigned long __user *)
 568		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 569	reg = (opcode & RT) >> 16;
 570
 571	if ((unsigned long)vaddr & 3)
 572		return SIGBUS;
 573
 574	preempt_disable();
 575
 576	if (ll_bit == 0 || ll_task != current) {
 577		regs->regs[reg] = 0;
 578		preempt_enable();
 579		return 0;
 580	}
 581
 582	preempt_enable();
 583
 584	if (put_user(regs->regs[reg], vaddr))
 585		return SIGSEGV;
 586
 587	regs->regs[reg] = 1;
 588
 589	return 0;
 590}
 591
 592/*
 593 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 594 * opcodes are supposed to result in coprocessor unusable exceptions if
 595 * executed on ll/sc-less processors.  That's the theory.  In practice a
 596 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 597 * instead, so we're doing the emulation thing in both exception handlers.
 598 */
 599static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 600{
 601	if ((opcode & OPCODE) == LL) {
 602		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 603				1, regs, 0);
 604		return simulate_ll(regs, opcode);
 605	}
 606	if ((opcode & OPCODE) == SC) {
 607		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 608				1, regs, 0);
 609		return simulate_sc(regs, opcode);
 610	}
 611
 612	return -1;			/* Must be something else ... */
 613}
 614
 615/*
 616 * Simulate trapping 'rdhwr' instructions to provide user accessible
 617 * registers not implemented in hardware.
 618 */
 619static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 620{
 621	struct thread_info *ti = task_thread_info(current);
 622
 623	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 624			1, regs, 0);
 625	switch (rd) {
 626	case 0:		/* CPU number */
 627		regs->regs[rt] = smp_processor_id();
 628		return 0;
 629	case 1:		/* SYNCI length */
 630		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 631				     current_cpu_data.icache.linesz);
 632		return 0;
 633	case 2:		/* Read count register */
 634		regs->regs[rt] = read_c0_count();
 635		return 0;
 636	case 3:		/* Count register resolution */
 637		switch (current_cpu_type()) {
 638		case CPU_20KC:
 639		case CPU_25KF:
 640			regs->regs[rt] = 1;
 641			break;
 642		default:
 643			regs->regs[rt] = 2;
 644		}
 645		return 0;
 646	case 29:
 647		regs->regs[rt] = ti->tp_value;
 648		return 0;
 649	default:
 650		return -1;
 651	}
 652}
 653
 654static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 655{
 656	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 657		int rd = (opcode & RD) >> 11;
 658		int rt = (opcode & RT) >> 16;
 659
 660		simulate_rdhwr(regs, rd, rt);
 661		return 0;
 662	}
 663
 664	/* Not ours.  */
 665	return -1;
 666}
 667
 668static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
 669{
 670	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 671		int rd = (opcode & MM_RS) >> 16;
 672		int rt = (opcode & MM_RT) >> 21;
 673		simulate_rdhwr(regs, rd, rt);
 674		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 675	}
 676
 677	/* Not ours.  */
 678	return -1;
 679}
 680
 681static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 682{
 683	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 684		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 685				1, regs, 0);
 686		return 0;
 687	}
 688
 689	return -1;			/* Must be something else ... */
 690}
 691
 692asmlinkage void do_ov(struct pt_regs *regs)
 693{
 694	enum ctx_state prev_state;
 695	siginfo_t info;
 696
 697	prev_state = exception_enter();
 698	die_if_kernel("Integer overflow", regs);
 699
 700	info.si_code = FPE_INTOVF;
 701	info.si_signo = SIGFPE;
 702	info.si_errno = 0;
 703	info.si_addr = (void __user *) regs->cp0_epc;
 704	force_sig_info(SIGFPE, &info, current);
 705	exception_exit(prev_state);
 706}
 707
 708int process_fpemu_return(int sig, void __user *fault_addr)
 709{
 710	if (sig == SIGSEGV || sig == SIGBUS) {
 711		struct siginfo si = {0};
 712		si.si_addr = fault_addr;
 713		si.si_signo = sig;
 714		if (sig == SIGSEGV) {
 715			if (find_vma(current->mm, (unsigned long)fault_addr))
 716				si.si_code = SEGV_ACCERR;
 717			else
 718				si.si_code = SEGV_MAPERR;
 719		} else {
 720			si.si_code = BUS_ADRERR;
 721		}
 722		force_sig_info(sig, &si, current);
 723		return 1;
 724	} else if (sig) {
 725		force_sig(sig, current);
 726		return 1;
 727	} else {
 728		return 0;
 729	}
 730}
 731
 732/*
 733 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 734 */
 735asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 736{
 737	enum ctx_state prev_state;
 738	siginfo_t info = {0};
 739
 740	prev_state = exception_enter();
 741	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
 742		       SIGFPE) == NOTIFY_STOP)
 743		goto out;
 744	die_if_kernel("FP exception in kernel code", regs);
 745
 746	if (fcr31 & FPU_CSR_UNI_X) {
 747		int sig;
 748		void __user *fault_addr = NULL;
 749
 750		/*
 751		 * Unimplemented operation exception.  If we've got the full
 752		 * software emulator on-board, let's use it...
 753		 *
 754		 * Force FPU to dump state into task/thread context.  We're
 755		 * moving a lot of data here for what is probably a single
 756		 * instruction, but the alternative is to pre-decode the FP
 757		 * register operands before invoking the emulator, which seems
 758		 * a bit extreme for what should be an infrequent event.
 759		 */
 760		/* Ensure 'resume' not overwrite saved fp context again. */
 761		lose_fpu(1);
 762
 763		/* Run the emulator */
 764		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 765					       &fault_addr);
 766
 767		/*
 768		 * We can't allow the emulated instruction to leave any of
 769		 * the cause bit set in $fcr31.
 770		 */
 771		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 772
 773		/* Restore the hardware register state */
 774		own_fpu(1);	/* Using the FPU again.	 */
 775
 776		/* If something went wrong, signal */
 777		process_fpemu_return(sig, fault_addr);
 778
 779		goto out;
 780	} else if (fcr31 & FPU_CSR_INV_X)
 781		info.si_code = FPE_FLTINV;
 782	else if (fcr31 & FPU_CSR_DIV_X)
 783		info.si_code = FPE_FLTDIV;
 784	else if (fcr31 & FPU_CSR_OVF_X)
 785		info.si_code = FPE_FLTOVF;
 786	else if (fcr31 & FPU_CSR_UDF_X)
 787		info.si_code = FPE_FLTUND;
 788	else if (fcr31 & FPU_CSR_INE_X)
 789		info.si_code = FPE_FLTRES;
 790	else
 791		info.si_code = __SI_FAULT;
 792	info.si_signo = SIGFPE;
 793	info.si_errno = 0;
 794	info.si_addr = (void __user *) regs->cp0_epc;
 795	force_sig_info(SIGFPE, &info, current);
 796
 797out:
 798	exception_exit(prev_state);
 799}
 800
 801static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 802	const char *str)
 803{
 804	siginfo_t info;
 805	char b[40];
 806
 807#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 808	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 809		return;
 810#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 811
 812	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
 813		       SIGTRAP) == NOTIFY_STOP)
 814		return;
 815
 816	/*
 817	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 818	 * insns, even for trap and break codes that indicate arithmetic
 819	 * failures.  Weird ...
 820	 * But should we continue the brokenness???  --macro
 821	 */
 822	switch (code) {
 823	case BRK_OVERFLOW:
 824	case BRK_DIVZERO:
 825		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 826		die_if_kernel(b, regs);
 827		if (code == BRK_DIVZERO)
 828			info.si_code = FPE_INTDIV;
 829		else
 830			info.si_code = FPE_INTOVF;
 831		info.si_signo = SIGFPE;
 832		info.si_errno = 0;
 833		info.si_addr = (void __user *) regs->cp0_epc;
 834		force_sig_info(SIGFPE, &info, current);
 835		break;
 836	case BRK_BUG:
 837		die_if_kernel("Kernel bug detected", regs);
 838		force_sig(SIGTRAP, current);
 839		break;
 840	case BRK_MEMU:
 841		/*
 842		 * Address errors may be deliberately induced by the FPU
 843		 * emulator to retake control of the CPU after executing the
 844		 * instruction in the delay slot of an emulated branch.
 845		 *
 846		 * Terminate if exception was recognized as a delay slot return
 847		 * otherwise handle as normal.
 848		 */
 849		if (do_dsemulret(regs))
 850			return;
 851
 852		die_if_kernel("Math emu break/trap", regs);
 853		force_sig(SIGTRAP, current);
 854		break;
 855	default:
 856		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 857		die_if_kernel(b, regs);
 858		force_sig(SIGTRAP, current);
 859	}
 860}
 861
 862asmlinkage void do_bp(struct pt_regs *regs)
 863{
 864	unsigned int opcode, bcode;
 865	enum ctx_state prev_state;
 866	unsigned long epc;
 867	u16 instr[2];
 868	mm_segment_t seg;
 869
 870	seg = get_fs();
 871	if (!user_mode(regs))
 872		set_fs(KERNEL_DS);
 873
 874	prev_state = exception_enter();
 875	if (get_isa16_mode(regs->cp0_epc)) {
 876		/* Calculate EPC. */
 877		epc = exception_epc(regs);
 878		if (cpu_has_mmips) {
 879			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
 880			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
 881				goto out_sigsegv;
 882			opcode = (instr[0] << 16) | instr[1];
 883		} else {
 884			/* MIPS16e mode */
 885			if (__get_user(instr[0],
 886				       (u16 __user *)msk_isa16_mode(epc)))
 887				goto out_sigsegv;
 888			bcode = (instr[0] >> 6) & 0x3f;
 889			do_trap_or_bp(regs, bcode, "Break");
 890			goto out;
 891		}
 892	} else {
 893		if (__get_user(opcode,
 894			       (unsigned int __user *) exception_epc(regs)))
 895			goto out_sigsegv;
 896	}
 897
 898	/*
 899	 * There is the ancient bug in the MIPS assemblers that the break
 900	 * code starts left to bit 16 instead to bit 6 in the opcode.
 901	 * Gas is bug-compatible, but not always, grrr...
 902	 * We handle both cases with a simple heuristics.  --macro
 903	 */
 904	bcode = ((opcode >> 6) & ((1 << 20) - 1));
 905	if (bcode >= (1 << 10))
 906		bcode >>= 10;
 907
 908	/*
 909	 * notify the kprobe handlers, if instruction is likely to
 910	 * pertain to them.
 911	 */
 912	switch (bcode) {
 913	case BRK_KPROBE_BP:
 914		if (notify_die(DIE_BREAK, "debug", regs, bcode,
 915			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 916			goto out;
 917		else
 918			break;
 919	case BRK_KPROBE_SSTEPBP:
 920		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
 921			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 922			goto out;
 923		else
 924			break;
 925	default:
 926		break;
 927	}
 928
 929	do_trap_or_bp(regs, bcode, "Break");
 930
 931out:
 932	set_fs(seg);
 933	exception_exit(prev_state);
 934	return;
 935
 936out_sigsegv:
 937	force_sig(SIGSEGV, current);
 938	goto out;
 939}
 940
 941asmlinkage void do_tr(struct pt_regs *regs)
 942{
 943	u32 opcode, tcode = 0;
 944	enum ctx_state prev_state;
 945	u16 instr[2];
 946	mm_segment_t seg;
 947	unsigned long epc = msk_isa16_mode(exception_epc(regs));
 948
 949	seg = get_fs();
 950	if (!user_mode(regs))
 951		set_fs(get_ds());
 952
 953	prev_state = exception_enter();
 954	if (get_isa16_mode(regs->cp0_epc)) {
 955		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
 956		    __get_user(instr[1], (u16 __user *)(epc + 2)))
 957			goto out_sigsegv;
 958		opcode = (instr[0] << 16) | instr[1];
 959		/* Immediate versions don't provide a code.  */
 960		if (!(opcode & OPCODE))
 961			tcode = (opcode >> 12) & ((1 << 4) - 1);
 962	} else {
 963		if (__get_user(opcode, (u32 __user *)epc))
 964			goto out_sigsegv;
 965		/* Immediate versions don't provide a code.  */
 966		if (!(opcode & OPCODE))
 967			tcode = (opcode >> 6) & ((1 << 10) - 1);
 968	}
 969
 970	do_trap_or_bp(regs, tcode, "Trap");
 971
 972out:
 973	set_fs(seg);
 974	exception_exit(prev_state);
 975	return;
 976
 977out_sigsegv:
 978	force_sig(SIGSEGV, current);
 979	goto out;
 980}
 981
 982asmlinkage void do_ri(struct pt_regs *regs)
 983{
 984	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 985	unsigned long old_epc = regs->cp0_epc;
 986	unsigned long old31 = regs->regs[31];
 987	enum ctx_state prev_state;
 988	unsigned int opcode = 0;
 989	int status = -1;
 990
 991	prev_state = exception_enter();
 992	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
 993		       SIGILL) == NOTIFY_STOP)
 994		goto out;
 995
 996	die_if_kernel("Reserved instruction in kernel code", regs);
 997
 998	if (unlikely(compute_return_epc(regs) < 0))
 999		goto out;
1000
1001	if (get_isa16_mode(regs->cp0_epc)) {
1002		unsigned short mmop[2] = { 0 };
1003
1004		if (unlikely(get_user(mmop[0], epc) < 0))
1005			status = SIGSEGV;
1006		if (unlikely(get_user(mmop[1], epc) < 0))
1007			status = SIGSEGV;
1008		opcode = (mmop[0] << 16) | mmop[1];
1009
1010		if (status < 0)
1011			status = simulate_rdhwr_mm(regs, opcode);
1012	} else {
1013		if (unlikely(get_user(opcode, epc) < 0))
1014			status = SIGSEGV;
1015
1016		if (!cpu_has_llsc && status < 0)
1017			status = simulate_llsc(regs, opcode);
1018
1019		if (status < 0)
1020			status = simulate_rdhwr_normal(regs, opcode);
1021
1022		if (status < 0)
1023			status = simulate_sync(regs, opcode);
1024	}
1025
1026	if (status < 0)
1027		status = SIGILL;
1028
1029	if (unlikely(status > 0)) {
1030		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1031		regs->regs[31] = old31;
1032		force_sig(status, current);
1033	}
1034
1035out:
1036	exception_exit(prev_state);
1037}
1038
1039/*
1040 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1041 * emulated more than some threshold number of instructions, force migration to
1042 * a "CPU" that has FP support.
1043 */
1044static void mt_ase_fp_affinity(void)
1045{
1046#ifdef CONFIG_MIPS_MT_FPAFF
1047	if (mt_fpemul_threshold > 0 &&
1048	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1049		/*
1050		 * If there's no FPU present, or if the application has already
1051		 * restricted the allowed set to exclude any CPUs with FPUs,
1052		 * we'll skip the procedure.
1053		 */
1054		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1055			cpumask_t tmask;
1056
1057			current->thread.user_cpus_allowed
1058				= current->cpus_allowed;
1059			cpus_and(tmask, current->cpus_allowed,
1060				mt_fpu_cpumask);
1061			set_cpus_allowed_ptr(current, &tmask);
1062			set_thread_flag(TIF_FPUBOUND);
1063		}
1064	}
1065#endif /* CONFIG_MIPS_MT_FPAFF */
1066}
1067
1068/*
1069 * No lock; only written during early bootup by CPU 0.
1070 */
1071static RAW_NOTIFIER_HEAD(cu2_chain);
1072
1073int __ref register_cu2_notifier(struct notifier_block *nb)
1074{
1075	return raw_notifier_chain_register(&cu2_chain, nb);
1076}
1077
1078int cu2_notifier_call_chain(unsigned long val, void *v)
1079{
1080	return raw_notifier_call_chain(&cu2_chain, val, v);
1081}
1082
1083static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1084	void *data)
1085{
1086	struct pt_regs *regs = data;
1087
1088	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
 
 
1089			      "instruction", regs);
1090	force_sig(SIGILL, current);
1091
1092	return NOTIFY_OK;
1093}
1094
1095static int enable_restore_fp_context(int msa)
1096{
1097	int err, was_fpu_owner;
1098
1099	if (!used_math()) {
1100		/* First time FP context user. */
1101		err = init_fpu();
1102		if (msa && !err)
1103			enable_msa();
1104		if (!err)
1105			set_used_math();
1106		return err;
1107	}
1108
1109	/*
1110	 * This task has formerly used the FP context.
1111	 *
1112	 * If this thread has no live MSA vector context then we can simply
1113	 * restore the scalar FP context. If it has live MSA vector context
1114	 * (that is, it has or may have used MSA since last performing a
1115	 * function call) then we'll need to restore the vector context. This
1116	 * applies even if we're currently only executing a scalar FP
1117	 * instruction. This is because if we were to later execute an MSA
1118	 * instruction then we'd either have to:
1119	 *
1120	 *  - Restore the vector context & clobber any registers modified by
1121	 *    scalar FP instructions between now & then.
1122	 *
1123	 * or
1124	 *
1125	 *  - Not restore the vector context & lose the most significant bits
1126	 *    of all vector registers.
1127	 *
1128	 * Neither of those options is acceptable. We cannot restore the least
1129	 * significant bits of the registers now & only restore the most
1130	 * significant bits later because the most significant bits of any
1131	 * vector registers whose aliased FP register is modified now will have
1132	 * been zeroed. We'd have no way to know that when restoring the vector
1133	 * context & thus may load an outdated value for the most significant
1134	 * bits of a vector register.
1135	 */
1136	if (!msa && !thread_msa_context_live())
1137		return own_fpu(1);
1138
1139	/*
1140	 * This task is using or has previously used MSA. Thus we require
1141	 * that Status.FR == 1.
1142	 */
1143	was_fpu_owner = is_fpu_owner();
1144	err = own_fpu(0);
1145	if (err)
1146		return err;
1147
1148	enable_msa();
1149	write_msa_csr(current->thread.fpu.msacsr);
1150	set_thread_flag(TIF_USEDMSA);
1151
1152	/*
1153	 * If this is the first time that the task is using MSA and it has
1154	 * previously used scalar FP in this time slice then we already nave
1155	 * FP context which we shouldn't clobber.
1156	 */
1157	if (!test_and_set_thread_flag(TIF_MSA_CTX_LIVE) && was_fpu_owner)
1158		return 0;
1159
1160	/* We need to restore the vector context. */
1161	restore_msa(current);
1162	return 0;
1163}
1164
1165asmlinkage void do_cpu(struct pt_regs *regs)
1166{
1167	enum ctx_state prev_state;
1168	unsigned int __user *epc;
1169	unsigned long old_epc, old31;
1170	unsigned int opcode;
1171	unsigned int cpid;
1172	int status, err;
1173	unsigned long __maybe_unused flags;
1174
1175	prev_state = exception_enter();
 
1176	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1177
1178	if (cpid != 2)
1179		die_if_kernel("do_cpu invoked from kernel context!", regs);
1180
1181	switch (cpid) {
1182	case 0:
1183		epc = (unsigned int __user *)exception_epc(regs);
1184		old_epc = regs->cp0_epc;
1185		old31 = regs->regs[31];
1186		opcode = 0;
1187		status = -1;
1188
1189		if (unlikely(compute_return_epc(regs) < 0))
1190			goto out;
1191
1192		if (get_isa16_mode(regs->cp0_epc)) {
1193			unsigned short mmop[2] = { 0 };
1194
1195			if (unlikely(get_user(mmop[0], epc) < 0))
1196				status = SIGSEGV;
1197			if (unlikely(get_user(mmop[1], epc) < 0))
1198				status = SIGSEGV;
1199			opcode = (mmop[0] << 16) | mmop[1];
1200
1201			if (status < 0)
1202				status = simulate_rdhwr_mm(regs, opcode);
1203		} else {
1204			if (unlikely(get_user(opcode, epc) < 0))
1205				status = SIGSEGV;
1206
1207			if (!cpu_has_llsc && status < 0)
1208				status = simulate_llsc(regs, opcode);
1209
1210			if (status < 0)
1211				status = simulate_rdhwr_normal(regs, opcode);
1212		}
1213
1214		if (status < 0)
1215			status = SIGILL;
1216
1217		if (unlikely(status > 0)) {
1218			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1219			regs->regs[31] = old31;
1220			force_sig(status, current);
1221		}
1222
1223		goto out;
1224
1225	case 3:
1226		/*
1227		 * Old (MIPS I and MIPS II) processors will set this code
1228		 * for COP1X opcode instructions that replaced the original
1229		 * COP3 space.	We don't limit COP1 space instructions in
1230		 * the emulator according to the CPU ISA, so we want to
1231		 * treat COP1X instructions consistently regardless of which
1232		 * code the CPU chose.	Therefore we redirect this trap to
1233		 * the FP emulator too.
1234		 *
1235		 * Then some newer FPU-less processors use this code
1236		 * erroneously too, so they are covered by this choice
1237		 * as well.
1238		 */
1239		if (raw_cpu_has_fpu)
1240			break;
1241		/* Fall through.  */
1242
1243	case 1:
1244		err = enable_restore_fp_context(0);
 
 
 
 
 
1245
1246		if (!raw_cpu_has_fpu || err) {
1247			int sig;
1248			void __user *fault_addr = NULL;
1249			sig = fpu_emulator_cop1Handler(regs,
1250						       &current->thread.fpu,
1251						       0, &fault_addr);
1252			if (!process_fpemu_return(sig, fault_addr) && !err)
1253				mt_ase_fp_affinity();
1254		}
1255
1256		goto out;
1257
1258	case 2:
1259		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1260		goto out;
 
 
 
1261	}
1262
1263	force_sig(SIGILL, current);
1264
1265out:
1266	exception_exit(prev_state);
1267}
1268
1269asmlinkage void do_msa_fpe(struct pt_regs *regs)
1270{
1271	enum ctx_state prev_state;
1272
1273	prev_state = exception_enter();
1274	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1275	force_sig(SIGFPE, current);
1276	exception_exit(prev_state);
1277}
1278
1279asmlinkage void do_msa(struct pt_regs *regs)
1280{
1281	enum ctx_state prev_state;
1282	int err;
1283
1284	prev_state = exception_enter();
1285
1286	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1287		force_sig(SIGILL, current);
1288		goto out;
1289	}
1290
1291	die_if_kernel("do_msa invoked from kernel context!", regs);
1292
1293	err = enable_restore_fp_context(1);
1294	if (err)
1295		force_sig(SIGILL, current);
1296out:
1297	exception_exit(prev_state);
1298}
1299
1300asmlinkage void do_mdmx(struct pt_regs *regs)
1301{
1302	enum ctx_state prev_state;
1303
1304	prev_state = exception_enter();
1305	force_sig(SIGILL, current);
1306	exception_exit(prev_state);
1307}
1308
1309/*
1310 * Called with interrupts disabled.
1311 */
1312asmlinkage void do_watch(struct pt_regs *regs)
1313{
1314	enum ctx_state prev_state;
1315	u32 cause;
1316
1317	prev_state = exception_enter();
1318	/*
1319	 * Clear WP (bit 22) bit of cause register so we don't loop
1320	 * forever.
1321	 */
1322	cause = read_c0_cause();
1323	cause &= ~(1 << 22);
1324	write_c0_cause(cause);
1325
1326	/*
1327	 * If the current thread has the watch registers loaded, save
1328	 * their values and send SIGTRAP.  Otherwise another thread
1329	 * left the registers set, clear them and continue.
1330	 */
1331	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1332		mips_read_watch_registers();
1333		local_irq_enable();
1334		force_sig(SIGTRAP, current);
1335	} else {
1336		mips_clear_watch_registers();
1337		local_irq_enable();
1338	}
1339	exception_exit(prev_state);
1340}
1341
1342asmlinkage void do_mcheck(struct pt_regs *regs)
1343{
1344	const int field = 2 * sizeof(unsigned long);
1345	int multi_match = regs->cp0_status & ST0_TS;
1346	enum ctx_state prev_state;
1347
1348	prev_state = exception_enter();
1349	show_regs(regs);
1350
1351	if (multi_match) {
1352		printk("Index	: %0x\n", read_c0_index());
1353		printk("Pagemask: %0x\n", read_c0_pagemask());
1354		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1355		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1356		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1357		printk("\n");
1358		dump_tlb_all();
1359	}
1360
1361	show_code((unsigned int __user *) regs->cp0_epc);
1362
1363	/*
1364	 * Some chips may have other causes of machine check (e.g. SB1
1365	 * graduation timer)
1366	 */
1367	panic("Caught Machine Check exception - %scaused by multiple "
1368	      "matching entries in the TLB.",
1369	      (multi_match) ? "" : "not ");
1370}
1371
1372asmlinkage void do_mt(struct pt_regs *regs)
1373{
1374	int subcode;
1375
1376	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1377			>> VPECONTROL_EXCPT_SHIFT;
1378	switch (subcode) {
1379	case 0:
1380		printk(KERN_DEBUG "Thread Underflow\n");
1381		break;
1382	case 1:
1383		printk(KERN_DEBUG "Thread Overflow\n");
1384		break;
1385	case 2:
1386		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1387		break;
1388	case 3:
1389		printk(KERN_DEBUG "Gating Storage Exception\n");
1390		break;
1391	case 4:
1392		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1393		break;
1394	case 5:
1395		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1396		break;
1397	default:
1398		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1399			subcode);
1400		break;
1401	}
1402	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1403
1404	force_sig(SIGILL, current);
1405}
1406
1407
1408asmlinkage void do_dsp(struct pt_regs *regs)
1409{
1410	if (cpu_has_dsp)
1411		panic("Unexpected DSP exception");
1412
1413	force_sig(SIGILL, current);
1414}
1415
1416asmlinkage void do_reserved(struct pt_regs *regs)
1417{
1418	/*
1419	 * Game over - no way to handle this if it ever occurs.	 Most probably
1420	 * caused by a new unknown cpu type or after another deadly
1421	 * hard/software error.
1422	 */
1423	show_regs(regs);
1424	panic("Caught reserved exception %ld - should not happen.",
1425	      (regs->cp0_cause & 0x7f) >> 2);
1426}
1427
1428static int __initdata l1parity = 1;
1429static int __init nol1parity(char *s)
1430{
1431	l1parity = 0;
1432	return 1;
1433}
1434__setup("nol1par", nol1parity);
1435static int __initdata l2parity = 1;
1436static int __init nol2parity(char *s)
1437{
1438	l2parity = 0;
1439	return 1;
1440}
1441__setup("nol2par", nol2parity);
1442
1443/*
1444 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1445 * it different ways.
1446 */
1447static inline void parity_protection_init(void)
1448{
1449	switch (current_cpu_type()) {
1450	case CPU_24K:
1451	case CPU_34K:
1452	case CPU_74K:
1453	case CPU_1004K:
1454	case CPU_1074K:
1455	case CPU_INTERAPTIV:
1456	case CPU_PROAPTIV:
1457	case CPU_P5600:
1458		{
1459#define ERRCTL_PE	0x80000000
1460#define ERRCTL_L2P	0x00800000
1461			unsigned long errctl;
1462			unsigned int l1parity_present, l2parity_present;
1463
1464			errctl = read_c0_ecc();
1465			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1466
1467			/* probe L1 parity support */
1468			write_c0_ecc(errctl | ERRCTL_PE);
1469			back_to_back_c0_hazard();
1470			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1471
1472			/* probe L2 parity support */
1473			write_c0_ecc(errctl|ERRCTL_L2P);
1474			back_to_back_c0_hazard();
1475			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1476
1477			if (l1parity_present && l2parity_present) {
1478				if (l1parity)
1479					errctl |= ERRCTL_PE;
1480				if (l1parity ^ l2parity)
1481					errctl |= ERRCTL_L2P;
1482			} else if (l1parity_present) {
1483				if (l1parity)
1484					errctl |= ERRCTL_PE;
1485			} else if (l2parity_present) {
1486				if (l2parity)
1487					errctl |= ERRCTL_L2P;
1488			} else {
1489				/* No parity available */
1490			}
1491
1492			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1493
1494			write_c0_ecc(errctl);
1495			back_to_back_c0_hazard();
1496			errctl = read_c0_ecc();
1497			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1498
1499			if (l1parity_present)
1500				printk(KERN_INFO "Cache parity protection %sabled\n",
1501				       (errctl & ERRCTL_PE) ? "en" : "dis");
1502
1503			if (l2parity_present) {
1504				if (l1parity_present && l1parity)
1505					errctl ^= ERRCTL_L2P;
1506				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1507				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1508			}
1509		}
1510		break;
1511
1512	case CPU_5KC:
1513	case CPU_5KE:
1514	case CPU_LOONGSON1:
1515		write_c0_ecc(0x80000000);
1516		back_to_back_c0_hazard();
1517		/* Set the PE bit (bit 31) in the c0_errctl register. */
1518		printk(KERN_INFO "Cache parity protection %sabled\n",
1519		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1520		break;
1521	case CPU_20KC:
1522	case CPU_25KF:
1523		/* Clear the DE bit (bit 16) in the c0_status register. */
1524		printk(KERN_INFO "Enable cache parity protection for "
1525		       "MIPS 20KC/25KF CPUs.\n");
1526		clear_c0_status(ST0_DE);
1527		break;
1528	default:
1529		break;
1530	}
1531}
1532
1533asmlinkage void cache_parity_error(void)
1534{
1535	const int field = 2 * sizeof(unsigned long);
1536	unsigned int reg_val;
1537
1538	/* For the moment, report the problem and hang. */
1539	printk("Cache error exception:\n");
1540	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1541	reg_val = read_c0_cacheerr();
1542	printk("c0_cacheerr == %08x\n", reg_val);
1543
1544	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1545	       reg_val & (1<<30) ? "secondary" : "primary",
1546	       reg_val & (1<<31) ? "data" : "insn");
1547	if (cpu_has_mips_r2 &&
1548	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1549		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1550			reg_val & (1<<29) ? "ED " : "",
1551			reg_val & (1<<28) ? "ET " : "",
1552			reg_val & (1<<27) ? "ES " : "",
1553			reg_val & (1<<26) ? "EE " : "",
1554			reg_val & (1<<25) ? "EB " : "",
1555			reg_val & (1<<24) ? "EI " : "",
1556			reg_val & (1<<23) ? "E1 " : "",
1557			reg_val & (1<<22) ? "E0 " : "");
1558	} else {
1559		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1560			reg_val & (1<<29) ? "ED " : "",
1561			reg_val & (1<<28) ? "ET " : "",
1562			reg_val & (1<<26) ? "EE " : "",
1563			reg_val & (1<<25) ? "EB " : "",
1564			reg_val & (1<<24) ? "EI " : "",
1565			reg_val & (1<<23) ? "E1 " : "",
1566			reg_val & (1<<22) ? "E0 " : "");
1567	}
1568	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1569
1570#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1571	if (reg_val & (1<<22))
1572		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1573
1574	if (reg_val & (1<<23))
1575		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1576#endif
1577
1578	panic("Can't handle the cache error!");
1579}
1580
1581asmlinkage void do_ftlb(void)
1582{
1583	const int field = 2 * sizeof(unsigned long);
1584	unsigned int reg_val;
1585
1586	/* For the moment, report the problem and hang. */
1587	if (cpu_has_mips_r2 &&
1588	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1589		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1590		       read_c0_ecc());
1591		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1592		reg_val = read_c0_cacheerr();
1593		pr_err("c0_cacheerr == %08x\n", reg_val);
1594
1595		if ((reg_val & 0xc0000000) == 0xc0000000) {
1596			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1597		} else {
1598			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1599			       reg_val & (1<<30) ? "secondary" : "primary",
1600			       reg_val & (1<<31) ? "data" : "insn");
1601		}
1602	} else {
1603		pr_err("FTLB error exception\n");
1604	}
1605	/* Just print the cacheerr bits for now */
1606	cache_parity_error();
1607}
1608
1609/*
1610 * SDBBP EJTAG debug exception handler.
1611 * We skip the instruction and return to the next instruction.
1612 */
1613void ejtag_exception_handler(struct pt_regs *regs)
1614{
1615	const int field = 2 * sizeof(unsigned long);
1616	unsigned long depc, old_epc, old_ra;
1617	unsigned int debug;
1618
1619	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1620	depc = read_c0_depc();
1621	debug = read_c0_debug();
1622	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1623	if (debug & 0x80000000) {
1624		/*
1625		 * In branch delay slot.
1626		 * We cheat a little bit here and use EPC to calculate the
1627		 * debug return address (DEPC). EPC is restored after the
1628		 * calculation.
1629		 */
1630		old_epc = regs->cp0_epc;
1631		old_ra = regs->regs[31];
1632		regs->cp0_epc = depc;
1633		compute_return_epc(regs);
1634		depc = regs->cp0_epc;
1635		regs->cp0_epc = old_epc;
1636		regs->regs[31] = old_ra;
1637	} else
1638		depc += 4;
1639	write_c0_depc(depc);
1640
1641#if 0
1642	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1643	write_c0_debug(debug | 0x100);
1644#endif
1645}
1646
1647/*
1648 * NMI exception handler.
1649 * No lock; only written during early bootup by CPU 0.
1650 */
1651static RAW_NOTIFIER_HEAD(nmi_chain);
1652
1653int register_nmi_notifier(struct notifier_block *nb)
1654{
1655	return raw_notifier_chain_register(&nmi_chain, nb);
1656}
1657
1658void __noreturn nmi_exception_handler(struct pt_regs *regs)
1659{
1660	char str[100];
1661
1662	raw_notifier_call_chain(&nmi_chain, 0, regs);
1663	bust_spinlocks(1);
1664	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1665		 smp_processor_id(), regs->cp0_epc);
1666	regs->cp0_epc = read_c0_errorepc();
1667	die(str, regs);
1668}
1669
1670#define VECTORSPACING 0x100	/* for EI/VI mode */
1671
1672unsigned long ebase;
1673unsigned long exception_handlers[32];
1674unsigned long vi_handlers[64];
1675
1676void __init *set_except_vector(int n, void *addr)
1677{
1678	unsigned long handler = (unsigned long) addr;
1679	unsigned long old_handler;
1680
1681#ifdef CONFIG_CPU_MICROMIPS
1682	/*
1683	 * Only the TLB handlers are cache aligned with an even
1684	 * address. All other handlers are on an odd address and
1685	 * require no modification. Otherwise, MIPS32 mode will
1686	 * be entered when handling any TLB exceptions. That
1687	 * would be bad...since we must stay in microMIPS mode.
1688	 */
1689	if (!(handler & 0x1))
1690		handler |= 1;
1691#endif
1692	old_handler = xchg(&exception_handlers[n], handler);
1693
 
1694	if (n == 0 && cpu_has_divec) {
1695#ifdef CONFIG_CPU_MICROMIPS
1696		unsigned long jump_mask = ~((1 << 27) - 1);
1697#else
1698		unsigned long jump_mask = ~((1 << 28) - 1);
1699#endif
1700		u32 *buf = (u32 *)(ebase + 0x200);
1701		unsigned int k0 = 26;
1702		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1703			uasm_i_j(&buf, handler & ~jump_mask);
1704			uasm_i_nop(&buf);
1705		} else {
1706			UASM_i_LA(&buf, k0, handler);
1707			uasm_i_jr(&buf, k0);
1708			uasm_i_nop(&buf);
1709		}
1710		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1711	}
1712	return (void *)old_handler;
1713}
1714
1715static void do_default_vi(void)
1716{
1717	show_regs(get_irq_regs());
1718	panic("Caught unexpected vectored interrupt.");
1719}
1720
1721static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1722{
1723	unsigned long handler;
1724	unsigned long old_handler = vi_handlers[n];
1725	int srssets = current_cpu_data.srsets;
1726	u16 *h;
1727	unsigned char *b;
1728
1729	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1730
1731	if (addr == NULL) {
1732		handler = (unsigned long) do_default_vi;
1733		srs = 0;
1734	} else
1735		handler = (unsigned long) addr;
1736	vi_handlers[n] = handler;
1737
1738	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1739
1740	if (srs >= srssets)
1741		panic("Shadow register set %d not supported", srs);
1742
1743	if (cpu_has_veic) {
1744		if (board_bind_eic_interrupt)
1745			board_bind_eic_interrupt(n, srs);
1746	} else if (cpu_has_vint) {
1747		/* SRSMap is only defined if shadow sets are implemented */
1748		if (srssets > 1)
1749			change_c0_srsmap(0xf << n*4, srs << n*4);
1750	}
1751
1752	if (srs == 0) {
1753		/*
1754		 * If no shadow set is selected then use the default handler
1755		 * that does normal register saving and standard interrupt exit
1756		 */
 
1757		extern char except_vec_vi, except_vec_vi_lui;
1758		extern char except_vec_vi_ori, except_vec_vi_end;
1759		extern char rollback_except_vec_vi;
1760		char *vec_start = using_rollback_handler() ?
1761			&rollback_except_vec_vi : &except_vec_vi;
1762#ifdef CONFIG_MIPS_MT_SMTC
1763		/*
1764		 * We need to provide the SMTC vectored interrupt handler
1765		 * not only with the address of the handler, but with the
1766		 * Status.IM bit to be masked before going there.
1767		 */
1768		extern char except_vec_vi_mori;
1769#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1770		const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1771#else
1772		const int mori_offset = &except_vec_vi_mori - vec_start;
1773#endif
1774#endif /* CONFIG_MIPS_MT_SMTC */
1775#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1776		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1777		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1778#else
1779		const int lui_offset = &except_vec_vi_lui - vec_start;
1780		const int ori_offset = &except_vec_vi_ori - vec_start;
1781#endif
1782		const int handler_len = &except_vec_vi_end - vec_start;
1783
1784		if (handler_len > VECTORSPACING) {
1785			/*
1786			 * Sigh... panicing won't help as the console
1787			 * is probably not configured :(
1788			 */
1789			panic("VECTORSPACING too small");
1790		}
1791
1792		set_handler(((unsigned long)b - ebase), vec_start,
1793#ifdef CONFIG_CPU_MICROMIPS
1794				(handler_len - 1));
1795#else
1796				handler_len);
1797#endif
1798#ifdef CONFIG_MIPS_MT_SMTC
1799		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1800
1801		h = (u16 *)(b + mori_offset);
1802		*h = (0x100 << n);
1803#endif /* CONFIG_MIPS_MT_SMTC */
1804		h = (u16 *)(b + lui_offset);
1805		*h = (handler >> 16) & 0xffff;
1806		h = (u16 *)(b + ori_offset);
1807		*h = (handler & 0xffff);
1808		local_flush_icache_range((unsigned long)b,
1809					 (unsigned long)(b+handler_len));
1810	}
1811	else {
1812		/*
1813		 * In other cases jump directly to the interrupt handler. It
1814		 * is the handler's responsibility to save registers if required
1815		 * (eg hi/lo) and return from the exception using "eret".
 
1816		 */
1817		u32 insn;
1818
1819		h = (u16 *)b;
1820		/* j handler */
1821#ifdef CONFIG_CPU_MICROMIPS
1822		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1823#else
1824		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1825#endif
1826		h[0] = (insn >> 16) & 0xffff;
1827		h[1] = insn & 0xffff;
1828		h[2] = 0;
1829		h[3] = 0;
1830		local_flush_icache_range((unsigned long)b,
1831					 (unsigned long)(b+8));
1832	}
1833
1834	return (void *)old_handler;
1835}
1836
1837void *set_vi_handler(int n, vi_handler_t addr)
1838{
1839	return set_vi_srs_handler(n, addr, 0);
1840}
1841
 
1842extern void tlb_init(void);
 
1843
1844/*
1845 * Timer interrupt
1846 */
1847int cp0_compare_irq;
1848EXPORT_SYMBOL_GPL(cp0_compare_irq);
1849int cp0_compare_irq_shift;
1850
1851/*
1852 * Performance counter IRQ or -1 if shared with timer
1853 */
1854int cp0_perfcount_irq;
1855EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1856
1857static int noulri;
1858
1859static int __init ulri_disable(char *s)
1860{
1861	pr_info("Disabling ulri\n");
1862	noulri = 1;
1863
1864	return 1;
1865}
1866__setup("noulri", ulri_disable);
1867
1868void per_cpu_trap_init(bool is_boot_cpu)
1869{
1870	unsigned int cpu = smp_processor_id();
1871	unsigned int status_set = ST0_CU0;
1872	unsigned int hwrena = cpu_hwrena_impl_bits;
1873#ifdef CONFIG_MIPS_MT_SMTC
1874	int secondaryTC = 0;
1875	int bootTC = (cpu == 0);
1876
1877	/*
1878	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1879	 * Note that this hack assumes that the SMTC init code
1880	 * assigns TCs consecutively and in ascending order.
1881	 */
1882
1883	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1884	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1885		secondaryTC = 1;
1886#endif /* CONFIG_MIPS_MT_SMTC */
1887
1888	/*
1889	 * Disable coprocessors and select 32-bit or 64-bit addressing
1890	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1891	 * flag that some firmware may have left set and the TS bit (for
1892	 * IP27).  Set XX for ISA IV code to work.
1893	 */
1894#ifdef CONFIG_64BIT
1895	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1896#endif
1897	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1898		status_set |= ST0_XX;
1899	if (cpu_has_dsp)
1900		status_set |= ST0_MX;
1901
1902	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1903			 status_set);
1904
1905	if (cpu_has_mips_r2)
1906		hwrena |= 0x0000000f;
1907
1908	if (!noulri && cpu_has_userlocal)
1909		hwrena |= (1 << 29);
1910
1911	if (hwrena)
1912		write_c0_hwrena(hwrena);
1913
1914#ifdef CONFIG_MIPS_MT_SMTC
1915	if (!secondaryTC) {
1916#endif /* CONFIG_MIPS_MT_SMTC */
1917
1918	if (cpu_has_veic || cpu_has_vint) {
1919		unsigned long sr = set_c0_status(ST0_BEV);
1920		write_c0_ebase(ebase);
1921		write_c0_status(sr);
1922		/* Setting vector spacing enables EI/VI mode  */
1923		change_c0_intctl(0x3e0, VECTORSPACING);
1924	}
1925	if (cpu_has_divec) {
1926		if (cpu_has_mipsmt) {
1927			unsigned int vpflags = dvpe();
1928			set_c0_cause(CAUSEF_IV);
1929			evpe(vpflags);
1930		} else
1931			set_c0_cause(CAUSEF_IV);
1932	}
1933
1934	/*
1935	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1936	 *
1937	 *  o read IntCtl.IPTI to determine the timer interrupt
1938	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1939	 */
1940	if (cpu_has_mips_r2) {
1941		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1942		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1943		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1944		if (cp0_perfcount_irq == cp0_compare_irq)
1945			cp0_perfcount_irq = -1;
1946	} else {
1947		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1948		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1949		cp0_perfcount_irq = -1;
1950	}
1951
1952#ifdef CONFIG_MIPS_MT_SMTC
1953	}
1954#endif /* CONFIG_MIPS_MT_SMTC */
1955
1956	if (!cpu_data[cpu].asid_cache)
1957		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1958
1959	atomic_inc(&init_mm.mm_count);
1960	current->active_mm = &init_mm;
1961	BUG_ON(current->mm);
1962	enter_lazy_tlb(&init_mm, current);
1963
1964#ifdef CONFIG_MIPS_MT_SMTC
1965	if (bootTC) {
1966#endif /* CONFIG_MIPS_MT_SMTC */
1967		/* Boot CPU's cache setup in setup_arch(). */
1968		if (!is_boot_cpu)
1969			cpu_cache_init();
1970		tlb_init();
1971#ifdef CONFIG_MIPS_MT_SMTC
1972	} else if (!secondaryTC) {
1973		/*
1974		 * First TC in non-boot VPE must do subset of tlb_init()
1975		 * for MMU countrol registers.
1976		 */
1977		write_c0_pagemask(PM_DEFAULT_MASK);
1978		write_c0_wired(0);
1979	}
1980#endif /* CONFIG_MIPS_MT_SMTC */
1981	TLBMISS_HANDLER_SETUP();
1982}
1983
1984/* Install CPU exception handler */
1985void set_handler(unsigned long offset, void *addr, unsigned long size)
1986{
1987#ifdef CONFIG_CPU_MICROMIPS
1988	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1989#else
1990	memcpy((void *)(ebase + offset), addr, size);
1991#endif
1992	local_flush_icache_range(ebase + offset, ebase + offset + size);
1993}
1994
1995static char panic_null_cerr[] =
1996	"Trying to set NULL cache error exception handler";
1997
1998/*
1999 * Install uncached CPU exception handler.
2000 * This is suitable only for the cache error exception which is the only
2001 * exception handler that is being run uncached.
2002 */
2003void set_uncached_handler(unsigned long offset, void *addr,
2004	unsigned long size)
2005{
2006	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2007
2008	if (!addr)
2009		panic(panic_null_cerr);
2010
2011	memcpy((void *)(uncached_ebase + offset), addr, size);
2012}
2013
2014static int __initdata rdhwr_noopt;
2015static int __init set_rdhwr_noopt(char *str)
2016{
2017	rdhwr_noopt = 1;
2018	return 1;
2019}
2020
2021__setup("rdhwr_noopt", set_rdhwr_noopt);
2022
2023void __init trap_init(void)
2024{
2025	extern char except_vec3_generic;
2026	extern char except_vec4;
2027	extern char except_vec3_r4000;
2028	unsigned long i;
 
2029
2030	check_wait();
 
2031
2032#if defined(CONFIG_KGDB)
2033	if (kgdb_early_setup)
2034		return; /* Already done */
2035#endif
2036
2037	if (cpu_has_veic || cpu_has_vint) {
2038		unsigned long size = 0x200 + VECTORSPACING*64;
2039		ebase = (unsigned long)
2040			__alloc_bootmem(size, 1 << fls(size), 0);
2041	} else {
2042#ifdef CONFIG_KVM_GUEST
2043#define KVM_GUEST_KSEG0     0x40000000
2044        ebase = KVM_GUEST_KSEG0;
2045#else
2046        ebase = CKSEG0;
2047#endif
2048		if (cpu_has_mips_r2)
2049			ebase += (read_c0_ebase() & 0x3ffff000);
2050	}
2051
2052	if (cpu_has_mmips) {
2053		unsigned int config3 = read_c0_config3();
2054
2055		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2056			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2057		else
2058			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2059	}
2060
2061	if (board_ebase_setup)
2062		board_ebase_setup();
2063	per_cpu_trap_init(true);
2064
2065	/*
2066	 * Copy the generic exception handlers to their final destination.
2067	 * This will be overriden later as suitable for a particular
2068	 * configuration.
2069	 */
2070	set_handler(0x180, &except_vec3_generic, 0x80);
2071
2072	/*
2073	 * Setup default vectors
2074	 */
2075	for (i = 0; i <= 31; i++)
2076		set_except_vector(i, handle_reserved);
2077
2078	/*
2079	 * Copy the EJTAG debug exception vector handler code to it's final
2080	 * destination.
2081	 */
2082	if (cpu_has_ejtag && board_ejtag_handler_setup)
2083		board_ejtag_handler_setup();
2084
2085	/*
2086	 * Only some CPUs have the watch exceptions.
2087	 */
2088	if (cpu_has_watch)
2089		set_except_vector(23, handle_watch);
2090
2091	/*
2092	 * Initialise interrupt handlers
2093	 */
2094	if (cpu_has_veic || cpu_has_vint) {
2095		int nvec = cpu_has_veic ? 64 : 8;
2096		for (i = 0; i < nvec; i++)
2097			set_vi_handler(i, NULL);
2098	}
2099	else if (cpu_has_divec)
2100		set_handler(0x200, &except_vec4, 0x8);
2101
2102	/*
2103	 * Some CPUs can enable/disable for cache parity detection, but does
2104	 * it different ways.
2105	 */
2106	parity_protection_init();
2107
2108	/*
2109	 * The Data Bus Errors / Instruction Bus Errors are signaled
2110	 * by external hardware.  Therefore these two exceptions
2111	 * may have board specific handlers.
2112	 */
2113	if (board_be_init)
2114		board_be_init();
2115
2116	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2117						      : handle_int);
2118	set_except_vector(1, handle_tlbm);
2119	set_except_vector(2, handle_tlbl);
2120	set_except_vector(3, handle_tlbs);
2121
2122	set_except_vector(4, handle_adel);
2123	set_except_vector(5, handle_ades);
2124
2125	set_except_vector(6, handle_ibe);
2126	set_except_vector(7, handle_dbe);
2127
2128	set_except_vector(8, handle_sys);
2129	set_except_vector(9, handle_bp);
2130	set_except_vector(10, rdhwr_noopt ? handle_ri :
2131			  (cpu_has_vtag_icache ?
2132			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2133	set_except_vector(11, handle_cpu);
2134	set_except_vector(12, handle_ov);
2135	set_except_vector(13, handle_tr);
2136	set_except_vector(14, handle_msa_fpe);
2137
2138	if (current_cpu_type() == CPU_R6000 ||
2139	    current_cpu_type() == CPU_R6000A) {
2140		/*
2141		 * The R6000 is the only R-series CPU that features a machine
2142		 * check exception (similar to the R4000 cache error) and
2143		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2144		 * written yet.	 Well, anyway there is no R6000 machine on the
2145		 * current list of targets for Linux/MIPS.
2146		 * (Duh, crap, there is someone with a triple R6k machine)
2147		 */
2148		//set_except_vector(14, handle_mc);
2149		//set_except_vector(15, handle_ndc);
2150	}
2151
2152
2153	if (board_nmi_handler_setup)
2154		board_nmi_handler_setup();
2155
2156	if (cpu_has_fpu && !cpu_has_nofpuex)
2157		set_except_vector(15, handle_fpe);
2158
2159	set_except_vector(16, handle_ftlb);
2160	set_except_vector(21, handle_msa);
2161	set_except_vector(22, handle_mdmx);
2162
2163	if (cpu_has_mcheck)
2164		set_except_vector(24, handle_mcheck);
2165
2166	if (cpu_has_mipsmt)
2167		set_except_vector(25, handle_mt);
2168
2169	set_except_vector(26, handle_dsp);
2170
2171	if (board_cache_error_setup)
2172		board_cache_error_setup();
2173
2174	if (cpu_has_vce)
2175		/* Special exception: R4[04]00 uses also the divec space. */
2176		set_handler(0x180, &except_vec3_r4000, 0x100);
2177	else if (cpu_has_4kex)
2178		set_handler(0x180, &except_vec3_generic, 0x80);
2179	else
2180		set_handler(0x080, &except_vec3_generic, 0x80);
2181
2182	local_flush_icache_range(ebase, ebase + 0x400);
 
2183
2184	sort_extable(__start___dbe_table, __stop___dbe_table);
2185
2186	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2187}