Loading...
1/*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/cache.h>
17#include <linux/profile.h>
18#include <linux/errno.h>
19#include <linux/ftrace.h>
20#include <linux/mm.h>
21#include <linux/err.h>
22#include <linux/cpu.h>
23#include <linux/smp.h>
24#include <linux/seq_file.h>
25#include <linux/irq.h>
26#include <linux/percpu.h>
27#include <linux/clockchips.h>
28#include <linux/completion.h>
29
30#include <linux/atomic.h>
31#include <asm/cacheflush.h>
32#include <asm/cpu.h>
33#include <asm/cputype.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/pgalloc.h>
37#include <asm/processor.h>
38#include <asm/sections.h>
39#include <asm/tlbflush.h>
40#include <asm/ptrace.h>
41#include <asm/localtimer.h>
42
43/*
44 * as from 2.5, kernels no longer have an init_tasks structure
45 * so we need some other way of telling a new secondary core
46 * where to place its SVC stack
47 */
48struct secondary_data secondary_data;
49
50enum ipi_msg_type {
51 IPI_TIMER = 2,
52 IPI_RESCHEDULE,
53 IPI_CALL_FUNC,
54 IPI_CALL_FUNC_SINGLE,
55 IPI_CPU_STOP,
56};
57
58int __cpuinit __cpu_up(unsigned int cpu)
59{
60 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
61 struct task_struct *idle = ci->idle;
62 pgd_t *pgd;
63 int ret;
64
65 /*
66 * Spawn a new process manually, if not already done.
67 * Grab a pointer to its task struct so we can mess with it
68 */
69 if (!idle) {
70 idle = fork_idle(cpu);
71 if (IS_ERR(idle)) {
72 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
73 return PTR_ERR(idle);
74 }
75 ci->idle = idle;
76 } else {
77 /*
78 * Since this idle thread is being re-used, call
79 * init_idle() to reinitialize the thread structure.
80 */
81 init_idle(idle, cpu);
82 }
83
84 /*
85 * Allocate initial page tables to allow the new CPU to
86 * enable the MMU safely. This essentially means a set
87 * of our "standard" page tables, with the addition of
88 * a 1:1 mapping for the physical address of the kernel.
89 */
90 pgd = pgd_alloc(&init_mm);
91 if (!pgd)
92 return -ENOMEM;
93
94 if (PHYS_OFFSET != PAGE_OFFSET) {
95#ifndef CONFIG_HOTPLUG_CPU
96 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
97#endif
98 identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
99 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100 }
101
102 /*
103 * We need to tell the secondary core where to find
104 * its stack and the page tables.
105 */
106 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107 secondary_data.pgdir = virt_to_phys(pgd);
108 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
109 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
110 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
111
112 /*
113 * Now bring the CPU into our world.
114 */
115 ret = boot_secondary(cpu, idle);
116 if (ret == 0) {
117 unsigned long timeout;
118
119 /*
120 * CPU was successfully started, wait for it
121 * to come online or time out.
122 */
123 timeout = jiffies + HZ;
124 while (time_before(jiffies, timeout)) {
125 if (cpu_online(cpu))
126 break;
127
128 udelay(10);
129 barrier();
130 }
131
132 if (!cpu_online(cpu)) {
133 pr_crit("CPU%u: failed to come online\n", cpu);
134 ret = -EIO;
135 }
136 } else {
137 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138 }
139
140 secondary_data.stack = NULL;
141 secondary_data.pgdir = 0;
142
143 if (PHYS_OFFSET != PAGE_OFFSET) {
144#ifndef CONFIG_HOTPLUG_CPU
145 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
146#endif
147 identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
148 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
149 }
150
151 pgd_free(&init_mm, pgd);
152
153 return ret;
154}
155
156#ifdef CONFIG_HOTPLUG_CPU
157static void percpu_timer_stop(void);
158
159/*
160 * __cpu_disable runs on the processor to be shutdown.
161 */
162int __cpu_disable(void)
163{
164 unsigned int cpu = smp_processor_id();
165 struct task_struct *p;
166 int ret;
167
168 ret = platform_cpu_disable(cpu);
169 if (ret)
170 return ret;
171
172 /*
173 * Take this CPU offline. Once we clear this, we can't return,
174 * and we must not schedule until we're ready to give up the cpu.
175 */
176 set_cpu_online(cpu, false);
177
178 /*
179 * OK - migrate IRQs away from this CPU
180 */
181 migrate_irqs();
182
183 /*
184 * Stop the local timer for this CPU.
185 */
186 percpu_timer_stop();
187
188 /*
189 * Flush user cache and TLB mappings, and then remove this CPU
190 * from the vm mask set of all processes.
191 */
192 flush_cache_all();
193 local_flush_tlb_all();
194
195 read_lock(&tasklist_lock);
196 for_each_process(p) {
197 if (p->mm)
198 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199 }
200 read_unlock(&tasklist_lock);
201
202 return 0;
203}
204
205static DECLARE_COMPLETION(cpu_died);
206
207/*
208 * called on the thread which is asking for a CPU to be shutdown -
209 * waits until shutdown has completed, or it is timed out.
210 */
211void __cpu_die(unsigned int cpu)
212{
213 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
214 pr_err("CPU%u: cpu didn't die\n", cpu);
215 return;
216 }
217 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218
219 if (!platform_cpu_kill(cpu))
220 printk("CPU%u: unable to kill\n", cpu);
221}
222
223/*
224 * Called from the idle thread for the CPU which has been shutdown.
225 *
226 * Note that we disable IRQs here, but do not re-enable them
227 * before returning to the caller. This is also the behaviour
228 * of the other hotplug-cpu capable cores, so presumably coming
229 * out of idle fixes this.
230 */
231void __ref cpu_die(void)
232{
233 unsigned int cpu = smp_processor_id();
234
235 idle_task_exit();
236
237 local_irq_disable();
238 mb();
239
240 /* Tell __cpu_die() that this CPU is now safe to dispose of */
241 complete(&cpu_died);
242
243 /*
244 * actual CPU shutdown procedure is at least platform (if not
245 * CPU) specific.
246 */
247 platform_cpu_die(cpu);
248
249 /*
250 * Do not return to the idle loop - jump back to the secondary
251 * cpu initialisation. There's some initialisation which needs
252 * to be repeated to undo the effects of taking the CPU offline.
253 */
254 __asm__("mov sp, %0\n"
255 " mov fp, #0\n"
256 " b secondary_start_kernel"
257 :
258 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
259}
260#endif /* CONFIG_HOTPLUG_CPU */
261
262/*
263 * Called by both boot and secondaries to move global data into
264 * per-processor storage.
265 */
266static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267{
268 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269
270 cpu_info->loops_per_jiffy = loops_per_jiffy;
271}
272
273/*
274 * This is the secondary CPU boot entry. We're using this CPUs
275 * idle thread stack, but a set of temporary page tables.
276 */
277asmlinkage void __cpuinit secondary_start_kernel(void)
278{
279 struct mm_struct *mm = &init_mm;
280 unsigned int cpu = smp_processor_id();
281
282 printk("CPU%u: Booted secondary processor\n", cpu);
283
284 /*
285 * All kernel threads share the same mm context; grab a
286 * reference and switch to it.
287 */
288 atomic_inc(&mm->mm_count);
289 current->active_mm = mm;
290 cpumask_set_cpu(cpu, mm_cpumask(mm));
291 cpu_switch_mm(mm->pgd, mm);
292 enter_lazy_tlb(mm, current);
293 local_flush_tlb_all();
294
295 cpu_init();
296 preempt_disable();
297 trace_hardirqs_off();
298
299 /*
300 * Give the platform a chance to do its own initialisation.
301 */
302 platform_secondary_init(cpu);
303
304 /*
305 * Enable local interrupts.
306 */
307 notify_cpu_starting(cpu);
308 local_irq_enable();
309 local_fiq_enable();
310
311 /*
312 * Setup the percpu timer for this CPU.
313 */
314 percpu_timer_setup();
315
316 calibrate_delay();
317
318 smp_store_cpu_info(cpu);
319
320 /*
321 * OK, now it's safe to let the boot CPU continue. Wait for
322 * the CPU migration code to notice that the CPU is online
323 * before we continue.
324 */
325 set_cpu_online(cpu, true);
326 while (!cpu_active(cpu))
327 cpu_relax();
328
329 /*
330 * OK, it's off to the idle thread for us
331 */
332 cpu_idle();
333}
334
335void __init smp_cpus_done(unsigned int max_cpus)
336{
337 int cpu;
338 unsigned long bogosum = 0;
339
340 for_each_online_cpu(cpu)
341 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
342
343 printk(KERN_INFO "SMP: Total of %d processors activated "
344 "(%lu.%02lu BogoMIPS).\n",
345 num_online_cpus(),
346 bogosum / (500000/HZ),
347 (bogosum / (5000/HZ)) % 100);
348}
349
350void __init smp_prepare_boot_cpu(void)
351{
352 unsigned int cpu = smp_processor_id();
353
354 per_cpu(cpu_data, cpu).idle = current;
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359 unsigned int ncores = num_possible_cpus();
360
361 smp_store_cpu_info(smp_processor_id());
362
363 /*
364 * are we trying to boot more cores than exist?
365 */
366 if (max_cpus > ncores)
367 max_cpus = ncores;
368 if (ncores > 1 && max_cpus) {
369 /*
370 * Enable the local timer or broadcast device for the
371 * boot CPU, but only if we have more than one CPU.
372 */
373 percpu_timer_setup();
374
375 /*
376 * Initialise the present map, which describes the set of CPUs
377 * actually populated at the present time. A platform should
378 * re-initialize the map in platform_smp_prepare_cpus() if
379 * present != possible (e.g. physical hotplug).
380 */
381 init_cpu_present(&cpu_possible_map);
382
383 /*
384 * Initialise the SCU if there are more than one CPU
385 * and let them know where to start.
386 */
387 platform_smp_prepare_cpus(max_cpus);
388 }
389}
390
391static void (*smp_cross_call)(const struct cpumask *, unsigned int);
392
393void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
394{
395 smp_cross_call = fn;
396}
397
398void arch_send_call_function_ipi_mask(const struct cpumask *mask)
399{
400 smp_cross_call(mask, IPI_CALL_FUNC);
401}
402
403void arch_send_call_function_single_ipi(int cpu)
404{
405 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
406}
407
408static const char *ipi_types[NR_IPI] = {
409#define S(x,s) [x - IPI_TIMER] = s
410 S(IPI_TIMER, "Timer broadcast interrupts"),
411 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
412 S(IPI_CALL_FUNC, "Function call interrupts"),
413 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
414 S(IPI_CPU_STOP, "CPU stop interrupts"),
415};
416
417void show_ipi_list(struct seq_file *p, int prec)
418{
419 unsigned int cpu, i;
420
421 for (i = 0; i < NR_IPI; i++) {
422 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
423
424 for_each_present_cpu(cpu)
425 seq_printf(p, "%10u ",
426 __get_irq_stat(cpu, ipi_irqs[i]));
427
428 seq_printf(p, " %s\n", ipi_types[i]);
429 }
430}
431
432u64 smp_irq_stat_cpu(unsigned int cpu)
433{
434 u64 sum = 0;
435 int i;
436
437 for (i = 0; i < NR_IPI; i++)
438 sum += __get_irq_stat(cpu, ipi_irqs[i]);
439
440#ifdef CONFIG_LOCAL_TIMERS
441 sum += __get_irq_stat(cpu, local_timer_irqs);
442#endif
443
444 return sum;
445}
446
447/*
448 * Timer (local or broadcast) support
449 */
450static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
451
452static void ipi_timer(void)
453{
454 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
455 irq_enter();
456 evt->event_handler(evt);
457 irq_exit();
458}
459
460#ifdef CONFIG_LOCAL_TIMERS
461asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
462{
463 struct pt_regs *old_regs = set_irq_regs(regs);
464 int cpu = smp_processor_id();
465
466 if (local_timer_ack()) {
467 __inc_irq_stat(cpu, local_timer_irqs);
468 ipi_timer();
469 }
470
471 set_irq_regs(old_regs);
472}
473
474void show_local_irqs(struct seq_file *p, int prec)
475{
476 unsigned int cpu;
477
478 seq_printf(p, "%*s: ", prec, "LOC");
479
480 for_each_present_cpu(cpu)
481 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
482
483 seq_printf(p, " Local timer interrupts\n");
484}
485#endif
486
487#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488static void smp_timer_broadcast(const struct cpumask *mask)
489{
490 smp_cross_call(mask, IPI_TIMER);
491}
492#else
493#define smp_timer_broadcast NULL
494#endif
495
496static void broadcast_timer_set_mode(enum clock_event_mode mode,
497 struct clock_event_device *evt)
498{
499}
500
501static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
502{
503 evt->name = "dummy_timer";
504 evt->features = CLOCK_EVT_FEAT_ONESHOT |
505 CLOCK_EVT_FEAT_PERIODIC |
506 CLOCK_EVT_FEAT_DUMMY;
507 evt->rating = 400;
508 evt->mult = 1;
509 evt->set_mode = broadcast_timer_set_mode;
510
511 clockevents_register_device(evt);
512}
513
514void __cpuinit percpu_timer_setup(void)
515{
516 unsigned int cpu = smp_processor_id();
517 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
518
519 evt->cpumask = cpumask_of(cpu);
520 evt->broadcast = smp_timer_broadcast;
521
522 if (local_timer_setup(evt))
523 broadcast_timer_setup(evt);
524}
525
526#ifdef CONFIG_HOTPLUG_CPU
527/*
528 * The generic clock events code purposely does not stop the local timer
529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
530 * manually here.
531 */
532static void percpu_timer_stop(void)
533{
534 unsigned int cpu = smp_processor_id();
535 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
536
537 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
538}
539#endif
540
541static DEFINE_SPINLOCK(stop_lock);
542
543/*
544 * ipi_cpu_stop - handle IPI from smp_send_stop()
545 */
546static void ipi_cpu_stop(unsigned int cpu)
547{
548 if (system_state == SYSTEM_BOOTING ||
549 system_state == SYSTEM_RUNNING) {
550 spin_lock(&stop_lock);
551 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
552 dump_stack();
553 spin_unlock(&stop_lock);
554 }
555
556 set_cpu_online(cpu, false);
557
558 local_fiq_disable();
559 local_irq_disable();
560
561 while (1)
562 cpu_relax();
563}
564
565/*
566 * Main handler for inter-processor interrupts
567 */
568asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569{
570 unsigned int cpu = smp_processor_id();
571 struct pt_regs *old_regs = set_irq_regs(regs);
572
573 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
574 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
575
576 switch (ipinr) {
577 case IPI_TIMER:
578 ipi_timer();
579 break;
580
581 case IPI_RESCHEDULE:
582 scheduler_ipi();
583 break;
584
585 case IPI_CALL_FUNC:
586 generic_smp_call_function_interrupt();
587 break;
588
589 case IPI_CALL_FUNC_SINGLE:
590 generic_smp_call_function_single_interrupt();
591 break;
592
593 case IPI_CPU_STOP:
594 ipi_cpu_stop(cpu);
595 break;
596
597 default:
598 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599 cpu, ipinr);
600 break;
601 }
602 set_irq_regs(old_regs);
603}
604
605void smp_send_reschedule(int cpu)
606{
607 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
608}
609
610void smp_send_stop(void)
611{
612 unsigned long timeout;
613
614 if (num_online_cpus() > 1) {
615 cpumask_t mask = cpu_online_map;
616 cpu_clear(smp_processor_id(), mask);
617
618 smp_cross_call(&mask, IPI_CPU_STOP);
619 }
620
621 /* Wait up to one second for other CPUs to stop */
622 timeout = USEC_PER_SEC;
623 while (num_online_cpus() > 1 && timeout--)
624 udelay(1);
625
626 if (num_online_cpus() > 1)
627 pr_warning("SMP: failed to stop secondary CPUs\n");
628}
629
630/*
631 * not supported here
632 */
633int setup_profiling_timer(unsigned int multiplier)
634{
635 return -EINVAL;
636}
1/*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/cache.h>
17#include <linux/profile.h>
18#include <linux/errno.h>
19#include <linux/mm.h>
20#include <linux/err.h>
21#include <linux/cpu.h>
22#include <linux/seq_file.h>
23#include <linux/irq.h>
24#include <linux/percpu.h>
25#include <linux/clockchips.h>
26#include <linux/completion.h>
27#include <linux/cpufreq.h>
28#include <linux/irq_work.h>
29
30#include <linux/atomic.h>
31#include <asm/smp.h>
32#include <asm/cacheflush.h>
33#include <asm/cpu.h>
34#include <asm/cputype.h>
35#include <asm/exception.h>
36#include <asm/idmap.h>
37#include <asm/topology.h>
38#include <asm/mmu_context.h>
39#include <asm/pgtable.h>
40#include <asm/pgalloc.h>
41#include <asm/processor.h>
42#include <asm/sections.h>
43#include <asm/tlbflush.h>
44#include <asm/ptrace.h>
45#include <asm/smp_plat.h>
46#include <asm/virt.h>
47#include <asm/mach/arch.h>
48#include <asm/mpu.h>
49
50/*
51 * as from 2.5, kernels no longer have an init_tasks structure
52 * so we need some other way of telling a new secondary core
53 * where to place its SVC stack
54 */
55struct secondary_data secondary_data;
56
57/*
58 * control for which core is the next to come out of the secondary
59 * boot "holding pen"
60 */
61volatile int pen_release = -1;
62
63enum ipi_msg_type {
64 IPI_WAKEUP,
65 IPI_TIMER,
66 IPI_RESCHEDULE,
67 IPI_CALL_FUNC,
68 IPI_CALL_FUNC_SINGLE,
69 IPI_CPU_STOP,
70 IPI_IRQ_WORK,
71 IPI_COMPLETION,
72};
73
74static DECLARE_COMPLETION(cpu_running);
75
76static struct smp_operations smp_ops;
77
78void __init smp_set_ops(struct smp_operations *ops)
79{
80 if (ops)
81 smp_ops = *ops;
82};
83
84static unsigned long get_arch_pgd(pgd_t *pgd)
85{
86 phys_addr_t pgdir = virt_to_idmap(pgd);
87 BUG_ON(pgdir & ARCH_PGD_MASK);
88 return pgdir >> ARCH_PGD_SHIFT;
89}
90
91int __cpu_up(unsigned int cpu, struct task_struct *idle)
92{
93 int ret;
94
95 /*
96 * We need to tell the secondary core where to find
97 * its stack and the page tables.
98 */
99 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100#ifdef CONFIG_ARM_MPU
101 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102#endif
103
104#ifdef CONFIG_MMU
105 secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107#endif
108 sync_cache_w(&secondary_data);
109
110 /*
111 * Now bring the CPU into our world.
112 */
113 ret = boot_secondary(cpu, idle);
114 if (ret == 0) {
115 /*
116 * CPU was successfully started, wait for it
117 * to come online or time out.
118 */
119 wait_for_completion_timeout(&cpu_running,
120 msecs_to_jiffies(1000));
121
122 if (!cpu_online(cpu)) {
123 pr_crit("CPU%u: failed to come online\n", cpu);
124 ret = -EIO;
125 }
126 } else {
127 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128 }
129
130
131 memset(&secondary_data, 0, sizeof(secondary_data));
132 return ret;
133}
134
135/* platform specific SMP operations */
136void __init smp_init_cpus(void)
137{
138 if (smp_ops.smp_init_cpus)
139 smp_ops.smp_init_cpus();
140}
141
142int boot_secondary(unsigned int cpu, struct task_struct *idle)
143{
144 if (smp_ops.smp_boot_secondary)
145 return smp_ops.smp_boot_secondary(cpu, idle);
146 return -ENOSYS;
147}
148
149int platform_can_cpu_hotplug(void)
150{
151#ifdef CONFIG_HOTPLUG_CPU
152 if (smp_ops.cpu_kill)
153 return 1;
154#endif
155
156 return 0;
157}
158
159#ifdef CONFIG_HOTPLUG_CPU
160static int platform_cpu_kill(unsigned int cpu)
161{
162 if (smp_ops.cpu_kill)
163 return smp_ops.cpu_kill(cpu);
164 return 1;
165}
166
167static int platform_cpu_disable(unsigned int cpu)
168{
169 if (smp_ops.cpu_disable)
170 return smp_ops.cpu_disable(cpu);
171
172 /*
173 * By default, allow disabling all CPUs except the first one,
174 * since this is special on a lot of platforms, e.g. because
175 * of clock tick interrupts.
176 */
177 return cpu == 0 ? -EPERM : 0;
178}
179/*
180 * __cpu_disable runs on the processor to be shutdown.
181 */
182int __cpu_disable(void)
183{
184 unsigned int cpu = smp_processor_id();
185 int ret;
186
187 ret = platform_cpu_disable(cpu);
188 if (ret)
189 return ret;
190
191 /*
192 * Take this CPU offline. Once we clear this, we can't return,
193 * and we must not schedule until we're ready to give up the cpu.
194 */
195 set_cpu_online(cpu, false);
196
197 /*
198 * OK - migrate IRQs away from this CPU
199 */
200 migrate_irqs();
201
202 /*
203 * Flush user cache and TLB mappings, and then remove this CPU
204 * from the vm mask set of all processes.
205 *
206 * Caches are flushed to the Level of Unification Inner Shareable
207 * to write-back dirty lines to unified caches shared by all CPUs.
208 */
209 flush_cache_louis();
210 local_flush_tlb_all();
211
212 clear_tasks_mm_cpumask(cpu);
213
214 return 0;
215}
216
217static DECLARE_COMPLETION(cpu_died);
218
219/*
220 * called on the thread which is asking for a CPU to be shutdown -
221 * waits until shutdown has completed, or it is timed out.
222 */
223void __cpu_die(unsigned int cpu)
224{
225 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
226 pr_err("CPU%u: cpu didn't die\n", cpu);
227 return;
228 }
229 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
230
231 /*
232 * platform_cpu_kill() is generally expected to do the powering off
233 * and/or cutting of clocks to the dying CPU. Optionally, this may
234 * be done by the CPU which is dying in preference to supporting
235 * this call, but that means there is _no_ synchronisation between
236 * the requesting CPU and the dying CPU actually losing power.
237 */
238 if (!platform_cpu_kill(cpu))
239 printk("CPU%u: unable to kill\n", cpu);
240}
241
242/*
243 * Called from the idle thread for the CPU which has been shutdown.
244 *
245 * Note that we disable IRQs here, but do not re-enable them
246 * before returning to the caller. This is also the behaviour
247 * of the other hotplug-cpu capable cores, so presumably coming
248 * out of idle fixes this.
249 */
250void __ref cpu_die(void)
251{
252 unsigned int cpu = smp_processor_id();
253
254 idle_task_exit();
255
256 local_irq_disable();
257
258 /*
259 * Flush the data out of the L1 cache for this CPU. This must be
260 * before the completion to ensure that data is safely written out
261 * before platform_cpu_kill() gets called - which may disable
262 * *this* CPU and power down its cache.
263 */
264 flush_cache_louis();
265
266 /*
267 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
268 * this returns, power and/or clocks can be removed at any point
269 * from this CPU and its cache by platform_cpu_kill().
270 */
271 complete(&cpu_died);
272
273 /*
274 * Ensure that the cache lines associated with that completion are
275 * written out. This covers the case where _this_ CPU is doing the
276 * powering down, to ensure that the completion is visible to the
277 * CPU waiting for this one.
278 */
279 flush_cache_louis();
280
281 /*
282 * The actual CPU shutdown procedure is at least platform (if not
283 * CPU) specific. This may remove power, or it may simply spin.
284 *
285 * Platforms are generally expected *NOT* to return from this call,
286 * although there are some which do because they have no way to
287 * power down the CPU. These platforms are the _only_ reason we
288 * have a return path which uses the fragment of assembly below.
289 *
290 * The return path should not be used for platforms which can
291 * power off the CPU.
292 */
293 if (smp_ops.cpu_die)
294 smp_ops.cpu_die(cpu);
295
296 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
297 cpu);
298
299 /*
300 * Do not return to the idle loop - jump back to the secondary
301 * cpu initialisation. There's some initialisation which needs
302 * to be repeated to undo the effects of taking the CPU offline.
303 */
304 __asm__("mov sp, %0\n"
305 " mov fp, #0\n"
306 " b secondary_start_kernel"
307 :
308 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
309}
310#endif /* CONFIG_HOTPLUG_CPU */
311
312/*
313 * Called by both boot and secondaries to move global data into
314 * per-processor storage.
315 */
316static void smp_store_cpu_info(unsigned int cpuid)
317{
318 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
319
320 cpu_info->loops_per_jiffy = loops_per_jiffy;
321 cpu_info->cpuid = read_cpuid_id();
322
323 store_cpu_topology(cpuid);
324}
325
326/*
327 * This is the secondary CPU boot entry. We're using this CPUs
328 * idle thread stack, but a set of temporary page tables.
329 */
330asmlinkage void secondary_start_kernel(void)
331{
332 struct mm_struct *mm = &init_mm;
333 unsigned int cpu;
334
335 /*
336 * The identity mapping is uncached (strongly ordered), so
337 * switch away from it before attempting any exclusive accesses.
338 */
339 cpu_switch_mm(mm->pgd, mm);
340 local_flush_bp_all();
341 enter_lazy_tlb(mm, current);
342 local_flush_tlb_all();
343
344 /*
345 * All kernel threads share the same mm context; grab a
346 * reference and switch to it.
347 */
348 cpu = smp_processor_id();
349 atomic_inc(&mm->mm_count);
350 current->active_mm = mm;
351 cpumask_set_cpu(cpu, mm_cpumask(mm));
352
353 cpu_init();
354
355 printk("CPU%u: Booted secondary processor\n", cpu);
356
357 preempt_disable();
358 trace_hardirqs_off();
359
360 /*
361 * Give the platform a chance to do its own initialisation.
362 */
363 if (smp_ops.smp_secondary_init)
364 smp_ops.smp_secondary_init(cpu);
365
366 notify_cpu_starting(cpu);
367
368 calibrate_delay();
369
370 smp_store_cpu_info(cpu);
371
372 /*
373 * OK, now it's safe to let the boot CPU continue. Wait for
374 * the CPU migration code to notice that the CPU is online
375 * before we continue - which happens after __cpu_up returns.
376 */
377 set_cpu_online(cpu, true);
378 complete(&cpu_running);
379
380 local_irq_enable();
381 local_fiq_enable();
382
383 /*
384 * OK, it's off to the idle thread for us
385 */
386 cpu_startup_entry(CPUHP_ONLINE);
387}
388
389void __init smp_cpus_done(unsigned int max_cpus)
390{
391 printk(KERN_INFO "SMP: Total of %d processors activated.\n",
392 num_online_cpus());
393
394 hyp_mode_check();
395}
396
397void __init smp_prepare_boot_cpu(void)
398{
399 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
400}
401
402void __init smp_prepare_cpus(unsigned int max_cpus)
403{
404 unsigned int ncores = num_possible_cpus();
405
406 init_cpu_topology();
407
408 smp_store_cpu_info(smp_processor_id());
409
410 /*
411 * are we trying to boot more cores than exist?
412 */
413 if (max_cpus > ncores)
414 max_cpus = ncores;
415 if (ncores > 1 && max_cpus) {
416 /*
417 * Initialise the present map, which describes the set of CPUs
418 * actually populated at the present time. A platform should
419 * re-initialize the map in the platforms smp_prepare_cpus()
420 * if present != possible (e.g. physical hotplug).
421 */
422 init_cpu_present(cpu_possible_mask);
423
424 /*
425 * Initialise the SCU if there are more than one CPU
426 * and let them know where to start.
427 */
428 if (smp_ops.smp_prepare_cpus)
429 smp_ops.smp_prepare_cpus(max_cpus);
430 }
431}
432
433static void (*smp_cross_call)(const struct cpumask *, unsigned int);
434
435void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
436{
437 if (!smp_cross_call)
438 smp_cross_call = fn;
439}
440
441void arch_send_call_function_ipi_mask(const struct cpumask *mask)
442{
443 smp_cross_call(mask, IPI_CALL_FUNC);
444}
445
446void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
447{
448 smp_cross_call(mask, IPI_WAKEUP);
449}
450
451void arch_send_call_function_single_ipi(int cpu)
452{
453 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
454}
455
456#ifdef CONFIG_IRQ_WORK
457void arch_irq_work_raise(void)
458{
459 if (is_smp())
460 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
461}
462#endif
463
464static const char *ipi_types[NR_IPI] = {
465#define S(x,s) [x] = s
466 S(IPI_WAKEUP, "CPU wakeup interrupts"),
467 S(IPI_TIMER, "Timer broadcast interrupts"),
468 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
469 S(IPI_CALL_FUNC, "Function call interrupts"),
470 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
471 S(IPI_CPU_STOP, "CPU stop interrupts"),
472 S(IPI_IRQ_WORK, "IRQ work interrupts"),
473 S(IPI_COMPLETION, "completion interrupts"),
474};
475
476void show_ipi_list(struct seq_file *p, int prec)
477{
478 unsigned int cpu, i;
479
480 for (i = 0; i < NR_IPI; i++) {
481 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
482
483 for_each_online_cpu(cpu)
484 seq_printf(p, "%10u ",
485 __get_irq_stat(cpu, ipi_irqs[i]));
486
487 seq_printf(p, " %s\n", ipi_types[i]);
488 }
489}
490
491u64 smp_irq_stat_cpu(unsigned int cpu)
492{
493 u64 sum = 0;
494 int i;
495
496 for (i = 0; i < NR_IPI; i++)
497 sum += __get_irq_stat(cpu, ipi_irqs[i]);
498
499 return sum;
500}
501
502#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
503void tick_broadcast(const struct cpumask *mask)
504{
505 smp_cross_call(mask, IPI_TIMER);
506}
507#endif
508
509static DEFINE_RAW_SPINLOCK(stop_lock);
510
511/*
512 * ipi_cpu_stop - handle IPI from smp_send_stop()
513 */
514static void ipi_cpu_stop(unsigned int cpu)
515{
516 if (system_state == SYSTEM_BOOTING ||
517 system_state == SYSTEM_RUNNING) {
518 raw_spin_lock(&stop_lock);
519 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
520 dump_stack();
521 raw_spin_unlock(&stop_lock);
522 }
523
524 set_cpu_online(cpu, false);
525
526 local_fiq_disable();
527 local_irq_disable();
528
529 while (1)
530 cpu_relax();
531}
532
533static DEFINE_PER_CPU(struct completion *, cpu_completion);
534
535int register_ipi_completion(struct completion *completion, int cpu)
536{
537 per_cpu(cpu_completion, cpu) = completion;
538 return IPI_COMPLETION;
539}
540
541static void ipi_complete(unsigned int cpu)
542{
543 complete(per_cpu(cpu_completion, cpu));
544}
545
546/*
547 * Main handler for inter-processor interrupts
548 */
549asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
550{
551 handle_IPI(ipinr, regs);
552}
553
554void handle_IPI(int ipinr, struct pt_regs *regs)
555{
556 unsigned int cpu = smp_processor_id();
557 struct pt_regs *old_regs = set_irq_regs(regs);
558
559 if (ipinr < NR_IPI)
560 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
561
562 switch (ipinr) {
563 case IPI_WAKEUP:
564 break;
565
566#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
567 case IPI_TIMER:
568 irq_enter();
569 tick_receive_broadcast();
570 irq_exit();
571 break;
572#endif
573
574 case IPI_RESCHEDULE:
575 scheduler_ipi();
576 break;
577
578 case IPI_CALL_FUNC:
579 irq_enter();
580 generic_smp_call_function_interrupt();
581 irq_exit();
582 break;
583
584 case IPI_CALL_FUNC_SINGLE:
585 irq_enter();
586 generic_smp_call_function_single_interrupt();
587 irq_exit();
588 break;
589
590 case IPI_CPU_STOP:
591 irq_enter();
592 ipi_cpu_stop(cpu);
593 irq_exit();
594 break;
595
596#ifdef CONFIG_IRQ_WORK
597 case IPI_IRQ_WORK:
598 irq_enter();
599 irq_work_run();
600 irq_exit();
601 break;
602#endif
603
604 case IPI_COMPLETION:
605 irq_enter();
606 ipi_complete(cpu);
607 irq_exit();
608 break;
609
610 default:
611 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
612 cpu, ipinr);
613 break;
614 }
615 set_irq_regs(old_regs);
616}
617
618void smp_send_reschedule(int cpu)
619{
620 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
621}
622
623void smp_send_stop(void)
624{
625 unsigned long timeout;
626 struct cpumask mask;
627
628 cpumask_copy(&mask, cpu_online_mask);
629 cpumask_clear_cpu(smp_processor_id(), &mask);
630 if (!cpumask_empty(&mask))
631 smp_cross_call(&mask, IPI_CPU_STOP);
632
633 /* Wait up to one second for other CPUs to stop */
634 timeout = USEC_PER_SEC;
635 while (num_online_cpus() > 1 && timeout--)
636 udelay(1);
637
638 if (num_online_cpus() > 1)
639 pr_warning("SMP: failed to stop secondary CPUs\n");
640}
641
642/*
643 * not supported here
644 */
645int setup_profiling_timer(unsigned int multiplier)
646{
647 return -EINVAL;
648}
649
650#ifdef CONFIG_CPU_FREQ
651
652static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
653static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
654static unsigned long global_l_p_j_ref;
655static unsigned long global_l_p_j_ref_freq;
656
657static int cpufreq_callback(struct notifier_block *nb,
658 unsigned long val, void *data)
659{
660 struct cpufreq_freqs *freq = data;
661 int cpu = freq->cpu;
662
663 if (freq->flags & CPUFREQ_CONST_LOOPS)
664 return NOTIFY_OK;
665
666 if (!per_cpu(l_p_j_ref, cpu)) {
667 per_cpu(l_p_j_ref, cpu) =
668 per_cpu(cpu_data, cpu).loops_per_jiffy;
669 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
670 if (!global_l_p_j_ref) {
671 global_l_p_j_ref = loops_per_jiffy;
672 global_l_p_j_ref_freq = freq->old;
673 }
674 }
675
676 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
677 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
678 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
679 global_l_p_j_ref_freq,
680 freq->new);
681 per_cpu(cpu_data, cpu).loops_per_jiffy =
682 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
683 per_cpu(l_p_j_ref_freq, cpu),
684 freq->new);
685 }
686 return NOTIFY_OK;
687}
688
689static struct notifier_block cpufreq_notifier = {
690 .notifier_call = cpufreq_callback,
691};
692
693static int __init register_cpufreq_notifier(void)
694{
695 return cpufreq_register_notifier(&cpufreq_notifier,
696 CPUFREQ_TRANSITION_NOTIFIER);
697}
698core_initcall(register_cpufreq_notifier);
699
700#endif