Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/ftrace.h>
 20#include <linux/mm.h>
 21#include <linux/err.h>
 22#include <linux/cpu.h>
 23#include <linux/smp.h>
 24#include <linux/seq_file.h>
 25#include <linux/irq.h>
 26#include <linux/percpu.h>
 27#include <linux/clockchips.h>
 28#include <linux/completion.h>
 
 
 29
 30#include <linux/atomic.h>
 
 31#include <asm/cacheflush.h>
 32#include <asm/cpu.h>
 33#include <asm/cputype.h>
 
 
 
 34#include <asm/mmu_context.h>
 35#include <asm/pgtable.h>
 36#include <asm/pgalloc.h>
 37#include <asm/processor.h>
 38#include <asm/sections.h>
 39#include <asm/tlbflush.h>
 40#include <asm/ptrace.h>
 41#include <asm/localtimer.h>
 
 
 
 42
 43/*
 44 * as from 2.5, kernels no longer have an init_tasks structure
 45 * so we need some other way of telling a new secondary core
 46 * where to place its SVC stack
 47 */
 48struct secondary_data secondary_data;
 49
 
 
 
 
 
 
 50enum ipi_msg_type {
 51	IPI_TIMER = 2,
 
 52	IPI_RESCHEDULE,
 53	IPI_CALL_FUNC,
 54	IPI_CALL_FUNC_SINGLE,
 55	IPI_CPU_STOP,
 
 
 56};
 57
 58int __cpuinit __cpu_up(unsigned int cpu)
 
 
 
 
 59{
 60	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
 61	struct task_struct *idle = ci->idle;
 62	pgd_t *pgd;
 63	int ret;
 64
 65	/*
 66	 * Spawn a new process manually, if not already done.
 67	 * Grab a pointer to its task struct so we can mess with it
 68	 */
 69	if (!idle) {
 70		idle = fork_idle(cpu);
 71		if (IS_ERR(idle)) {
 72			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
 73			return PTR_ERR(idle);
 74		}
 75		ci->idle = idle;
 76	} else {
 77		/*
 78		 * Since this idle thread is being re-used, call
 79		 * init_idle() to reinitialize the thread structure.
 80		 */
 81		init_idle(idle, cpu);
 82	}
 83
 84	/*
 85	 * Allocate initial page tables to allow the new CPU to
 86	 * enable the MMU safely.  This essentially means a set
 87	 * of our "standard" page tables, with the addition of
 88	 * a 1:1 mapping for the physical address of the kernel.
 89	 */
 90	pgd = pgd_alloc(&init_mm);
 91	if (!pgd)
 92		return -ENOMEM;
 93
 94	if (PHYS_OFFSET != PAGE_OFFSET) {
 95#ifndef CONFIG_HOTPLUG_CPU
 96		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
 97#endif
 98		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
 99		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100	}
101
102	/*
103	 * We need to tell the secondary core where to find
104	 * its stack and the page tables.
105	 */
106	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107	secondary_data.pgdir = virt_to_phys(pgd);
108	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
109	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
110	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 
 
 
 
 
111
112	/*
113	 * Now bring the CPU into our world.
114	 */
115	ret = boot_secondary(cpu, idle);
116	if (ret == 0) {
117		unsigned long timeout;
118
119		/*
120		 * CPU was successfully started, wait for it
121		 * to come online or time out.
122		 */
123		timeout = jiffies + HZ;
124		while (time_before(jiffies, timeout)) {
125			if (cpu_online(cpu))
126				break;
127
128			udelay(10);
129			barrier();
130		}
131
132		if (!cpu_online(cpu)) {
133			pr_crit("CPU%u: failed to come online\n", cpu);
134			ret = -EIO;
135		}
136	} else {
137		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138	}
139
140	secondary_data.stack = NULL;
141	secondary_data.pgdir = 0;
142
143	if (PHYS_OFFSET != PAGE_OFFSET) {
144#ifndef CONFIG_HOTPLUG_CPU
145		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
146#endif
147		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
148		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
149	}
150
151	pgd_free(&init_mm, pgd);
 
 
 
 
 
152
153	return ret;
 
 
 
 
154}
155
 
 
156#ifdef CONFIG_HOTPLUG_CPU
157static void percpu_timer_stop(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
 
 
 
 
 
 
159/*
160 * __cpu_disable runs on the processor to be shutdown.
161 */
162int __cpu_disable(void)
163{
164	unsigned int cpu = smp_processor_id();
165	struct task_struct *p;
166	int ret;
167
168	ret = platform_cpu_disable(cpu);
169	if (ret)
170		return ret;
171
172	/*
173	 * Take this CPU offline.  Once we clear this, we can't return,
174	 * and we must not schedule until we're ready to give up the cpu.
175	 */
176	set_cpu_online(cpu, false);
177
178	/*
179	 * OK - migrate IRQs away from this CPU
180	 */
181	migrate_irqs();
182
183	/*
184	 * Stop the local timer for this CPU.
185	 */
186	percpu_timer_stop();
187
188	/*
189	 * Flush user cache and TLB mappings, and then remove this CPU
190	 * from the vm mask set of all processes.
 
 
 
191	 */
192	flush_cache_all();
193	local_flush_tlb_all();
194
195	read_lock(&tasklist_lock);
196	for_each_process(p) {
197		if (p->mm)
198			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199	}
200	read_unlock(&tasklist_lock);
201
202	return 0;
203}
204
205static DECLARE_COMPLETION(cpu_died);
206
207/*
208 * called on the thread which is asking for a CPU to be shutdown -
209 * waits until shutdown has completed, or it is timed out.
210 */
211void __cpu_die(unsigned int cpu)
212{
213	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
214		pr_err("CPU%u: cpu didn't die\n", cpu);
215		return;
216	}
217	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218
 
 
 
 
 
 
 
219	if (!platform_cpu_kill(cpu))
220		printk("CPU%u: unable to kill\n", cpu);
221}
222
223/*
224 * Called from the idle thread for the CPU which has been shutdown.
225 *
226 * Note that we disable IRQs here, but do not re-enable them
227 * before returning to the caller. This is also the behaviour
228 * of the other hotplug-cpu capable cores, so presumably coming
229 * out of idle fixes this.
230 */
231void __ref cpu_die(void)
232{
233	unsigned int cpu = smp_processor_id();
234
235	idle_task_exit();
236
237	local_irq_disable();
238	mb();
239
240	/* Tell __cpu_die() that this CPU is now safe to dispose of */
 
 
 
 
 
 
 
 
 
 
 
 
241	complete(&cpu_died);
242
243	/*
244	 * actual CPU shutdown procedure is at least platform (if not
245	 * CPU) specific.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246	 */
247	platform_cpu_die(cpu);
 
 
 
 
248
249	/*
250	 * Do not return to the idle loop - jump back to the secondary
251	 * cpu initialisation.  There's some initialisation which needs
252	 * to be repeated to undo the effects of taking the CPU offline.
253	 */
254	__asm__("mov	sp, %0\n"
255	"	mov	fp, #0\n"
256	"	b	secondary_start_kernel"
257		:
258		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
259}
260#endif /* CONFIG_HOTPLUG_CPU */
261
262/*
263 * Called by both boot and secondaries to move global data into
264 * per-processor storage.
265 */
266static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267{
268	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269
270	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
 
 
271}
272
273/*
274 * This is the secondary CPU boot entry.  We're using this CPUs
275 * idle thread stack, but a set of temporary page tables.
276 */
277asmlinkage void __cpuinit secondary_start_kernel(void)
278{
279	struct mm_struct *mm = &init_mm;
280	unsigned int cpu = smp_processor_id();
281
282	printk("CPU%u: Booted secondary processor\n", cpu);
 
 
 
 
 
 
 
283
284	/*
285	 * All kernel threads share the same mm context; grab a
286	 * reference and switch to it.
287	 */
 
288	atomic_inc(&mm->mm_count);
289	current->active_mm = mm;
290	cpumask_set_cpu(cpu, mm_cpumask(mm));
291	cpu_switch_mm(mm->pgd, mm);
292	enter_lazy_tlb(mm, current);
293	local_flush_tlb_all();
294
295	cpu_init();
 
 
 
296	preempt_disable();
297	trace_hardirqs_off();
298
299	/*
300	 * Give the platform a chance to do its own initialisation.
301	 */
302	platform_secondary_init(cpu);
 
303
304	/*
305	 * Enable local interrupts.
306	 */
307	notify_cpu_starting(cpu);
308	local_irq_enable();
309	local_fiq_enable();
310
311	/*
312	 * Setup the percpu timer for this CPU.
313	 */
314	percpu_timer_setup();
315
316	calibrate_delay();
317
318	smp_store_cpu_info(cpu);
319
320	/*
321	 * OK, now it's safe to let the boot CPU continue.  Wait for
322	 * the CPU migration code to notice that the CPU is online
323	 * before we continue.
324	 */
325	set_cpu_online(cpu, true);
326	while (!cpu_active(cpu))
327		cpu_relax();
 
 
328
329	/*
330	 * OK, it's off to the idle thread for us
331	 */
332	cpu_idle();
333}
334
335void __init smp_cpus_done(unsigned int max_cpus)
336{
337	int cpu;
338	unsigned long bogosum = 0;
339
340	for_each_online_cpu(cpu)
341		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
342
343	printk(KERN_INFO "SMP: Total of %d processors activated "
344	       "(%lu.%02lu BogoMIPS).\n",
345	       num_online_cpus(),
346	       bogosum / (500000/HZ),
347	       (bogosum / (5000/HZ)) % 100);
348}
349
350void __init smp_prepare_boot_cpu(void)
351{
352	unsigned int cpu = smp_processor_id();
353
354	per_cpu(cpu_data, cpu).idle = current;
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359	unsigned int ncores = num_possible_cpus();
360
 
 
361	smp_store_cpu_info(smp_processor_id());
362
363	/*
364	 * are we trying to boot more cores than exist?
365	 */
366	if (max_cpus > ncores)
367		max_cpus = ncores;
368	if (ncores > 1 && max_cpus) {
369		/*
370		 * Enable the local timer or broadcast device for the
371		 * boot CPU, but only if we have more than one CPU.
372		 */
373		percpu_timer_setup();
374
375		/*
376		 * Initialise the present map, which describes the set of CPUs
377		 * actually populated at the present time. A platform should
378		 * re-initialize the map in platform_smp_prepare_cpus() if
379		 * present != possible (e.g. physical hotplug).
380		 */
381		init_cpu_present(&cpu_possible_map);
382
383		/*
384		 * Initialise the SCU if there are more than one CPU
385		 * and let them know where to start.
386		 */
387		platform_smp_prepare_cpus(max_cpus);
 
388	}
389}
390
391static void (*smp_cross_call)(const struct cpumask *, unsigned int);
392
393void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
394{
395	smp_cross_call = fn;
 
396}
397
398void arch_send_call_function_ipi_mask(const struct cpumask *mask)
399{
400	smp_cross_call(mask, IPI_CALL_FUNC);
401}
402
 
 
 
 
 
403void arch_send_call_function_single_ipi(int cpu)
404{
405	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
406}
407
 
 
 
 
 
 
 
 
408static const char *ipi_types[NR_IPI] = {
409#define S(x,s)	[x - IPI_TIMER] = s
 
410	S(IPI_TIMER, "Timer broadcast interrupts"),
411	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
412	S(IPI_CALL_FUNC, "Function call interrupts"),
413	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
414	S(IPI_CPU_STOP, "CPU stop interrupts"),
 
 
415};
416
417void show_ipi_list(struct seq_file *p, int prec)
418{
419	unsigned int cpu, i;
420
421	for (i = 0; i < NR_IPI; i++) {
422		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
423
424		for_each_present_cpu(cpu)
425			seq_printf(p, "%10u ",
426				   __get_irq_stat(cpu, ipi_irqs[i]));
427
428		seq_printf(p, " %s\n", ipi_types[i]);
429	}
430}
431
432u64 smp_irq_stat_cpu(unsigned int cpu)
433{
434	u64 sum = 0;
435	int i;
436
437	for (i = 0; i < NR_IPI; i++)
438		sum += __get_irq_stat(cpu, ipi_irqs[i]);
439
440#ifdef CONFIG_LOCAL_TIMERS
441	sum += __get_irq_stat(cpu, local_timer_irqs);
442#endif
443
444	return sum;
445}
446
447/*
448 * Timer (local or broadcast) support
449 */
450static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
451
452static void ipi_timer(void)
453{
454	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
455	irq_enter();
456	evt->event_handler(evt);
457	irq_exit();
458}
459
460#ifdef CONFIG_LOCAL_TIMERS
461asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
462{
463	struct pt_regs *old_regs = set_irq_regs(regs);
464	int cpu = smp_processor_id();
465
466	if (local_timer_ack()) {
467		__inc_irq_stat(cpu, local_timer_irqs);
468		ipi_timer();
469	}
470
471	set_irq_regs(old_regs);
472}
473
474void show_local_irqs(struct seq_file *p, int prec)
475{
476	unsigned int cpu;
477
478	seq_printf(p, "%*s: ", prec, "LOC");
479
480	for_each_present_cpu(cpu)
481		seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
482
483	seq_printf(p, " Local timer interrupts\n");
484}
485#endif
486
487#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488static void smp_timer_broadcast(const struct cpumask *mask)
489{
490	smp_cross_call(mask, IPI_TIMER);
491}
492#else
493#define smp_timer_broadcast	NULL
494#endif
495
496static void broadcast_timer_set_mode(enum clock_event_mode mode,
497	struct clock_event_device *evt)
498{
499}
500
501static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
502{
503	evt->name	= "dummy_timer";
504	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
505			  CLOCK_EVT_FEAT_PERIODIC |
506			  CLOCK_EVT_FEAT_DUMMY;
507	evt->rating	= 400;
508	evt->mult	= 1;
509	evt->set_mode	= broadcast_timer_set_mode;
510
511	clockevents_register_device(evt);
512}
513
514void __cpuinit percpu_timer_setup(void)
515{
516	unsigned int cpu = smp_processor_id();
517	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
518
519	evt->cpumask = cpumask_of(cpu);
520	evt->broadcast = smp_timer_broadcast;
521
522	if (local_timer_setup(evt))
523		broadcast_timer_setup(evt);
524}
525
526#ifdef CONFIG_HOTPLUG_CPU
527/*
528 * The generic clock events code purposely does not stop the local timer
529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
530 * manually here.
531 */
532static void percpu_timer_stop(void)
533{
534	unsigned int cpu = smp_processor_id();
535	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
536
537	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
538}
539#endif
540
541static DEFINE_SPINLOCK(stop_lock);
542
543/*
544 * ipi_cpu_stop - handle IPI from smp_send_stop()
545 */
546static void ipi_cpu_stop(unsigned int cpu)
547{
548	if (system_state == SYSTEM_BOOTING ||
549	    system_state == SYSTEM_RUNNING) {
550		spin_lock(&stop_lock);
551		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
552		dump_stack();
553		spin_unlock(&stop_lock);
554	}
555
556	set_cpu_online(cpu, false);
557
558	local_fiq_disable();
559	local_irq_disable();
560
561	while (1)
562		cpu_relax();
563}
564
 
 
 
 
 
 
 
 
 
 
 
 
 
565/*
566 * Main handler for inter-processor interrupts
567 */
568asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569{
 
 
 
 
 
570	unsigned int cpu = smp_processor_id();
571	struct pt_regs *old_regs = set_irq_regs(regs);
572
573	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
574		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
575
576	switch (ipinr) {
 
 
 
 
577	case IPI_TIMER:
578		ipi_timer();
 
 
579		break;
 
580
581	case IPI_RESCHEDULE:
582		scheduler_ipi();
583		break;
584
585	case IPI_CALL_FUNC:
 
586		generic_smp_call_function_interrupt();
 
587		break;
588
589	case IPI_CALL_FUNC_SINGLE:
 
590		generic_smp_call_function_single_interrupt();
 
591		break;
592
593	case IPI_CPU_STOP:
 
594		ipi_cpu_stop(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595		break;
596
597	default:
598		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599		       cpu, ipinr);
600		break;
601	}
602	set_irq_regs(old_regs);
603}
604
605void smp_send_reschedule(int cpu)
606{
607	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
608}
609
610void smp_send_stop(void)
611{
612	unsigned long timeout;
 
613
614	if (num_online_cpus() > 1) {
615		cpumask_t mask = cpu_online_map;
616		cpu_clear(smp_processor_id(), mask);
617
618		smp_cross_call(&mask, IPI_CPU_STOP);
619	}
620
621	/* Wait up to one second for other CPUs to stop */
622	timeout = USEC_PER_SEC;
623	while (num_online_cpus() > 1 && timeout--)
624		udelay(1);
625
626	if (num_online_cpus() > 1)
627		pr_warning("SMP: failed to stop secondary CPUs\n");
628}
629
630/*
631 * not supported here
632 */
633int setup_profiling_timer(unsigned int multiplier)
634{
635	return -EINVAL;
636}
v3.15
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 
 22#include <linux/seq_file.h>
 23#include <linux/irq.h>
 24#include <linux/percpu.h>
 25#include <linux/clockchips.h>
 26#include <linux/completion.h>
 27#include <linux/cpufreq.h>
 28#include <linux/irq_work.h>
 29
 30#include <linux/atomic.h>
 31#include <asm/smp.h>
 32#include <asm/cacheflush.h>
 33#include <asm/cpu.h>
 34#include <asm/cputype.h>
 35#include <asm/exception.h>
 36#include <asm/idmap.h>
 37#include <asm/topology.h>
 38#include <asm/mmu_context.h>
 39#include <asm/pgtable.h>
 40#include <asm/pgalloc.h>
 41#include <asm/processor.h>
 42#include <asm/sections.h>
 43#include <asm/tlbflush.h>
 44#include <asm/ptrace.h>
 45#include <asm/smp_plat.h>
 46#include <asm/virt.h>
 47#include <asm/mach/arch.h>
 48#include <asm/mpu.h>
 49
 50/*
 51 * as from 2.5, kernels no longer have an init_tasks structure
 52 * so we need some other way of telling a new secondary core
 53 * where to place its SVC stack
 54 */
 55struct secondary_data secondary_data;
 56
 57/*
 58 * control for which core is the next to come out of the secondary
 59 * boot "holding pen"
 60 */
 61volatile int pen_release = -1;
 62
 63enum ipi_msg_type {
 64	IPI_WAKEUP,
 65	IPI_TIMER,
 66	IPI_RESCHEDULE,
 67	IPI_CALL_FUNC,
 68	IPI_CALL_FUNC_SINGLE,
 69	IPI_CPU_STOP,
 70	IPI_IRQ_WORK,
 71	IPI_COMPLETION,
 72};
 73
 74static DECLARE_COMPLETION(cpu_running);
 75
 76static struct smp_operations smp_ops;
 77
 78void __init smp_set_ops(struct smp_operations *ops)
 79{
 80	if (ops)
 81		smp_ops = *ops;
 82};
 
 83
 84static unsigned long get_arch_pgd(pgd_t *pgd)
 85{
 86	phys_addr_t pgdir = virt_to_idmap(pgd);
 87	BUG_ON(pgdir & ARCH_PGD_MASK);
 88	return pgdir >> ARCH_PGD_SHIFT;
 89}
 
 
 
 
 
 
 
 
 
 
 
 
 90
 91int __cpu_up(unsigned int cpu, struct task_struct *idle)
 92{
 93	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94
 95	/*
 96	 * We need to tell the secondary core where to find
 97	 * its stack and the page tables.
 98	 */
 99	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100#ifdef CONFIG_ARM_MPU
101	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102#endif
103
104#ifdef CONFIG_MMU
105	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107#endif
108	sync_cache_w(&secondary_data);
109
110	/*
111	 * Now bring the CPU into our world.
112	 */
113	ret = boot_secondary(cpu, idle);
114	if (ret == 0) {
 
 
115		/*
116		 * CPU was successfully started, wait for it
117		 * to come online or time out.
118		 */
119		wait_for_completion_timeout(&cpu_running,
120						 msecs_to_jiffies(1000));
 
 
 
 
 
 
121
122		if (!cpu_online(cpu)) {
123			pr_crit("CPU%u: failed to come online\n", cpu);
124			ret = -EIO;
125		}
126	} else {
127		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128	}
129
 
 
130
131	memset(&secondary_data, 0, sizeof(secondary_data));
132	return ret;
133}
 
 
 
 
134
135/* platform specific SMP operations */
136void __init smp_init_cpus(void)
137{
138	if (smp_ops.smp_init_cpus)
139		smp_ops.smp_init_cpus();
140}
141
142int boot_secondary(unsigned int cpu, struct task_struct *idle)
143{
144	if (smp_ops.smp_boot_secondary)
145		return smp_ops.smp_boot_secondary(cpu, idle);
146	return -ENOSYS;
147}
148
149int platform_can_cpu_hotplug(void)
150{
151#ifdef CONFIG_HOTPLUG_CPU
152	if (smp_ops.cpu_kill)
153		return 1;
154#endif
155
156	return 0;
157}
158
159#ifdef CONFIG_HOTPLUG_CPU
160static int platform_cpu_kill(unsigned int cpu)
161{
162	if (smp_ops.cpu_kill)
163		return smp_ops.cpu_kill(cpu);
164	return 1;
165}
166
167static int platform_cpu_disable(unsigned int cpu)
168{
169	if (smp_ops.cpu_disable)
170		return smp_ops.cpu_disable(cpu);
171
172	/*
173	 * By default, allow disabling all CPUs except the first one,
174	 * since this is special on a lot of platforms, e.g. because
175	 * of clock tick interrupts.
176	 */
177	return cpu == 0 ? -EPERM : 0;
178}
179/*
180 * __cpu_disable runs on the processor to be shutdown.
181 */
182int __cpu_disable(void)
183{
184	unsigned int cpu = smp_processor_id();
 
185	int ret;
186
187	ret = platform_cpu_disable(cpu);
188	if (ret)
189		return ret;
190
191	/*
192	 * Take this CPU offline.  Once we clear this, we can't return,
193	 * and we must not schedule until we're ready to give up the cpu.
194	 */
195	set_cpu_online(cpu, false);
196
197	/*
198	 * OK - migrate IRQs away from this CPU
199	 */
200	migrate_irqs();
201
202	/*
 
 
 
 
 
203	 * Flush user cache and TLB mappings, and then remove this CPU
204	 * from the vm mask set of all processes.
205	 *
206	 * Caches are flushed to the Level of Unification Inner Shareable
207	 * to write-back dirty lines to unified caches shared by all CPUs.
208	 */
209	flush_cache_louis();
210	local_flush_tlb_all();
211
212	clear_tasks_mm_cpumask(cpu);
 
 
 
 
 
213
214	return 0;
215}
216
217static DECLARE_COMPLETION(cpu_died);
218
219/*
220 * called on the thread which is asking for a CPU to be shutdown -
221 * waits until shutdown has completed, or it is timed out.
222 */
223void __cpu_die(unsigned int cpu)
224{
225	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
226		pr_err("CPU%u: cpu didn't die\n", cpu);
227		return;
228	}
229	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
230
231	/*
232	 * platform_cpu_kill() is generally expected to do the powering off
233	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
234	 * be done by the CPU which is dying in preference to supporting
235	 * this call, but that means there is _no_ synchronisation between
236	 * the requesting CPU and the dying CPU actually losing power.
237	 */
238	if (!platform_cpu_kill(cpu))
239		printk("CPU%u: unable to kill\n", cpu);
240}
241
242/*
243 * Called from the idle thread for the CPU which has been shutdown.
244 *
245 * Note that we disable IRQs here, but do not re-enable them
246 * before returning to the caller. This is also the behaviour
247 * of the other hotplug-cpu capable cores, so presumably coming
248 * out of idle fixes this.
249 */
250void __ref cpu_die(void)
251{
252	unsigned int cpu = smp_processor_id();
253
254	idle_task_exit();
255
256	local_irq_disable();
 
257
258	/*
259	 * Flush the data out of the L1 cache for this CPU.  This must be
260	 * before the completion to ensure that data is safely written out
261	 * before platform_cpu_kill() gets called - which may disable
262	 * *this* CPU and power down its cache.
263	 */
264	flush_cache_louis();
265
266	/*
267	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
268	 * this returns, power and/or clocks can be removed at any point
269	 * from this CPU and its cache by platform_cpu_kill().
270	 */
271	complete(&cpu_died);
272
273	/*
274	 * Ensure that the cache lines associated with that completion are
275	 * written out.  This covers the case where _this_ CPU is doing the
276	 * powering down, to ensure that the completion is visible to the
277	 * CPU waiting for this one.
278	 */
279	flush_cache_louis();
280
281	/*
282	 * The actual CPU shutdown procedure is at least platform (if not
283	 * CPU) specific.  This may remove power, or it may simply spin.
284	 *
285	 * Platforms are generally expected *NOT* to return from this call,
286	 * although there are some which do because they have no way to
287	 * power down the CPU.  These platforms are the _only_ reason we
288	 * have a return path which uses the fragment of assembly below.
289	 *
290	 * The return path should not be used for platforms which can
291	 * power off the CPU.
292	 */
293	if (smp_ops.cpu_die)
294		smp_ops.cpu_die(cpu);
295
296	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
297		cpu);
298
299	/*
300	 * Do not return to the idle loop - jump back to the secondary
301	 * cpu initialisation.  There's some initialisation which needs
302	 * to be repeated to undo the effects of taking the CPU offline.
303	 */
304	__asm__("mov	sp, %0\n"
305	"	mov	fp, #0\n"
306	"	b	secondary_start_kernel"
307		:
308		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
309}
310#endif /* CONFIG_HOTPLUG_CPU */
311
312/*
313 * Called by both boot and secondaries to move global data into
314 * per-processor storage.
315 */
316static void smp_store_cpu_info(unsigned int cpuid)
317{
318	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
319
320	cpu_info->loops_per_jiffy = loops_per_jiffy;
321	cpu_info->cpuid = read_cpuid_id();
322
323	store_cpu_topology(cpuid);
324}
325
326/*
327 * This is the secondary CPU boot entry.  We're using this CPUs
328 * idle thread stack, but a set of temporary page tables.
329 */
330asmlinkage void secondary_start_kernel(void)
331{
332	struct mm_struct *mm = &init_mm;
333	unsigned int cpu;
334
335	/*
336	 * The identity mapping is uncached (strongly ordered), so
337	 * switch away from it before attempting any exclusive accesses.
338	 */
339	cpu_switch_mm(mm->pgd, mm);
340	local_flush_bp_all();
341	enter_lazy_tlb(mm, current);
342	local_flush_tlb_all();
343
344	/*
345	 * All kernel threads share the same mm context; grab a
346	 * reference and switch to it.
347	 */
348	cpu = smp_processor_id();
349	atomic_inc(&mm->mm_count);
350	current->active_mm = mm;
351	cpumask_set_cpu(cpu, mm_cpumask(mm));
 
 
 
352
353	cpu_init();
354
355	printk("CPU%u: Booted secondary processor\n", cpu);
356
357	preempt_disable();
358	trace_hardirqs_off();
359
360	/*
361	 * Give the platform a chance to do its own initialisation.
362	 */
363	if (smp_ops.smp_secondary_init)
364		smp_ops.smp_secondary_init(cpu);
365
 
 
 
366	notify_cpu_starting(cpu);
 
 
 
 
 
 
 
367
368	calibrate_delay();
369
370	smp_store_cpu_info(cpu);
371
372	/*
373	 * OK, now it's safe to let the boot CPU continue.  Wait for
374	 * the CPU migration code to notice that the CPU is online
375	 * before we continue - which happens after __cpu_up returns.
376	 */
377	set_cpu_online(cpu, true);
378	complete(&cpu_running);
379
380	local_irq_enable();
381	local_fiq_enable();
382
383	/*
384	 * OK, it's off to the idle thread for us
385	 */
386	cpu_startup_entry(CPUHP_ONLINE);
387}
388
389void __init smp_cpus_done(unsigned int max_cpus)
390{
391	printk(KERN_INFO "SMP: Total of %d processors activated.\n",
392	       num_online_cpus());
 
 
 
393
394	hyp_mode_check();
 
 
 
 
395}
396
397void __init smp_prepare_boot_cpu(void)
398{
399	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 
 
400}
401
402void __init smp_prepare_cpus(unsigned int max_cpus)
403{
404	unsigned int ncores = num_possible_cpus();
405
406	init_cpu_topology();
407
408	smp_store_cpu_info(smp_processor_id());
409
410	/*
411	 * are we trying to boot more cores than exist?
412	 */
413	if (max_cpus > ncores)
414		max_cpus = ncores;
415	if (ncores > 1 && max_cpus) {
416		/*
 
 
 
 
 
 
417		 * Initialise the present map, which describes the set of CPUs
418		 * actually populated at the present time. A platform should
419		 * re-initialize the map in the platforms smp_prepare_cpus()
420		 * if present != possible (e.g. physical hotplug).
421		 */
422		init_cpu_present(cpu_possible_mask);
423
424		/*
425		 * Initialise the SCU if there are more than one CPU
426		 * and let them know where to start.
427		 */
428		if (smp_ops.smp_prepare_cpus)
429			smp_ops.smp_prepare_cpus(max_cpus);
430	}
431}
432
433static void (*smp_cross_call)(const struct cpumask *, unsigned int);
434
435void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
436{
437	if (!smp_cross_call)
438		smp_cross_call = fn;
439}
440
441void arch_send_call_function_ipi_mask(const struct cpumask *mask)
442{
443	smp_cross_call(mask, IPI_CALL_FUNC);
444}
445
446void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
447{
448	smp_cross_call(mask, IPI_WAKEUP);
449}
450
451void arch_send_call_function_single_ipi(int cpu)
452{
453	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
454}
455
456#ifdef CONFIG_IRQ_WORK
457void arch_irq_work_raise(void)
458{
459	if (is_smp())
460		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
461}
462#endif
463
464static const char *ipi_types[NR_IPI] = {
465#define S(x,s)	[x] = s
466	S(IPI_WAKEUP, "CPU wakeup interrupts"),
467	S(IPI_TIMER, "Timer broadcast interrupts"),
468	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
469	S(IPI_CALL_FUNC, "Function call interrupts"),
470	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
471	S(IPI_CPU_STOP, "CPU stop interrupts"),
472	S(IPI_IRQ_WORK, "IRQ work interrupts"),
473	S(IPI_COMPLETION, "completion interrupts"),
474};
475
476void show_ipi_list(struct seq_file *p, int prec)
477{
478	unsigned int cpu, i;
479
480	for (i = 0; i < NR_IPI; i++) {
481		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
482
483		for_each_online_cpu(cpu)
484			seq_printf(p, "%10u ",
485				   __get_irq_stat(cpu, ipi_irqs[i]));
486
487		seq_printf(p, " %s\n", ipi_types[i]);
488	}
489}
490
491u64 smp_irq_stat_cpu(unsigned int cpu)
492{
493	u64 sum = 0;
494	int i;
495
496	for (i = 0; i < NR_IPI; i++)
497		sum += __get_irq_stat(cpu, ipi_irqs[i]);
498
 
 
 
 
499	return sum;
500}
501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
503void tick_broadcast(const struct cpumask *mask)
504{
505	smp_cross_call(mask, IPI_TIMER);
506}
 
 
507#endif
508
509static DEFINE_RAW_SPINLOCK(stop_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510
511/*
512 * ipi_cpu_stop - handle IPI from smp_send_stop()
513 */
514static void ipi_cpu_stop(unsigned int cpu)
515{
516	if (system_state == SYSTEM_BOOTING ||
517	    system_state == SYSTEM_RUNNING) {
518		raw_spin_lock(&stop_lock);
519		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
520		dump_stack();
521		raw_spin_unlock(&stop_lock);
522	}
523
524	set_cpu_online(cpu, false);
525
526	local_fiq_disable();
527	local_irq_disable();
528
529	while (1)
530		cpu_relax();
531}
532
533static DEFINE_PER_CPU(struct completion *, cpu_completion);
534
535int register_ipi_completion(struct completion *completion, int cpu)
536{
537	per_cpu(cpu_completion, cpu) = completion;
538	return IPI_COMPLETION;
539}
540
541static void ipi_complete(unsigned int cpu)
542{
543	complete(per_cpu(cpu_completion, cpu));
544}
545
546/*
547 * Main handler for inter-processor interrupts
548 */
549asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
550{
551	handle_IPI(ipinr, regs);
552}
553
554void handle_IPI(int ipinr, struct pt_regs *regs)
555{
556	unsigned int cpu = smp_processor_id();
557	struct pt_regs *old_regs = set_irq_regs(regs);
558
559	if (ipinr < NR_IPI)
560		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
561
562	switch (ipinr) {
563	case IPI_WAKEUP:
564		break;
565
566#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
567	case IPI_TIMER:
568		irq_enter();
569		tick_receive_broadcast();
570		irq_exit();
571		break;
572#endif
573
574	case IPI_RESCHEDULE:
575		scheduler_ipi();
576		break;
577
578	case IPI_CALL_FUNC:
579		irq_enter();
580		generic_smp_call_function_interrupt();
581		irq_exit();
582		break;
583
584	case IPI_CALL_FUNC_SINGLE:
585		irq_enter();
586		generic_smp_call_function_single_interrupt();
587		irq_exit();
588		break;
589
590	case IPI_CPU_STOP:
591		irq_enter();
592		ipi_cpu_stop(cpu);
593		irq_exit();
594		break;
595
596#ifdef CONFIG_IRQ_WORK
597	case IPI_IRQ_WORK:
598		irq_enter();
599		irq_work_run();
600		irq_exit();
601		break;
602#endif
603
604	case IPI_COMPLETION:
605		irq_enter();
606		ipi_complete(cpu);
607		irq_exit();
608		break;
609
610	default:
611		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
612		       cpu, ipinr);
613		break;
614	}
615	set_irq_regs(old_regs);
616}
617
618void smp_send_reschedule(int cpu)
619{
620	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
621}
622
623void smp_send_stop(void)
624{
625	unsigned long timeout;
626	struct cpumask mask;
627
628	cpumask_copy(&mask, cpu_online_mask);
629	cpumask_clear_cpu(smp_processor_id(), &mask);
630	if (!cpumask_empty(&mask))
 
631		smp_cross_call(&mask, IPI_CPU_STOP);
 
632
633	/* Wait up to one second for other CPUs to stop */
634	timeout = USEC_PER_SEC;
635	while (num_online_cpus() > 1 && timeout--)
636		udelay(1);
637
638	if (num_online_cpus() > 1)
639		pr_warning("SMP: failed to stop secondary CPUs\n");
640}
641
642/*
643 * not supported here
644 */
645int setup_profiling_timer(unsigned int multiplier)
646{
647	return -EINVAL;
648}
649
650#ifdef CONFIG_CPU_FREQ
651
652static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
653static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
654static unsigned long global_l_p_j_ref;
655static unsigned long global_l_p_j_ref_freq;
656
657static int cpufreq_callback(struct notifier_block *nb,
658					unsigned long val, void *data)
659{
660	struct cpufreq_freqs *freq = data;
661	int cpu = freq->cpu;
662
663	if (freq->flags & CPUFREQ_CONST_LOOPS)
664		return NOTIFY_OK;
665
666	if (!per_cpu(l_p_j_ref, cpu)) {
667		per_cpu(l_p_j_ref, cpu) =
668			per_cpu(cpu_data, cpu).loops_per_jiffy;
669		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
670		if (!global_l_p_j_ref) {
671			global_l_p_j_ref = loops_per_jiffy;
672			global_l_p_j_ref_freq = freq->old;
673		}
674	}
675
676	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
677	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
678		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
679						global_l_p_j_ref_freq,
680						freq->new);
681		per_cpu(cpu_data, cpu).loops_per_jiffy =
682			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
683					per_cpu(l_p_j_ref_freq, cpu),
684					freq->new);
685	}
686	return NOTIFY_OK;
687}
688
689static struct notifier_block cpufreq_notifier = {
690	.notifier_call  = cpufreq_callback,
691};
692
693static int __init register_cpufreq_notifier(void)
694{
695	return cpufreq_register_notifier(&cpufreq_notifier,
696						CPUFREQ_TRANSITION_NOTIFIER);
697}
698core_initcall(register_cpufreq_notifier);
699
700#endif