Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2023 Red Hat Inc, Daniel Bristot de Oliveira <bristot@kernel.org> */ #include <stdlib.h> #include <errno.h> #include "utils.h" #include "osnoise.h" #include "timerlat.h" #include <unistd.h> enum timelat_state { TIMERLAT_INIT = 0, TIMERLAT_WAITING_IRQ, TIMERLAT_WAITING_THREAD, }; #define MAX_COMM 24 /* * Per-cpu data statistics and data. */ struct timerlat_aa_data { /* Current CPU state */ int curr_state; /* timerlat IRQ latency */ unsigned long long tlat_irq_seqnum; unsigned long long tlat_irq_latency; unsigned long long tlat_irq_timstamp; /* timerlat Thread latency */ unsigned long long tlat_thread_seqnum; unsigned long long tlat_thread_latency; unsigned long long tlat_thread_timstamp; /* * Information about the thread running when the IRQ * arrived. * * This can be blocking or interference, depending on the * priority of the thread. Assuming timerlat is the highest * prio, it is blocking. If timerlat has a lower prio, it is * interference. * note: "unsigned long long" because they are fetch using tep_get_field_val(); */ unsigned long long run_thread_pid; char run_thread_comm[MAX_COMM]; unsigned long long thread_blocking_duration; unsigned long long max_exit_idle_latency; /* Information about the timerlat timer irq */ unsigned long long timer_irq_start_time; unsigned long long timer_irq_start_delay; unsigned long long timer_irq_duration; unsigned long long timer_exit_from_idle; /* * Information about the last IRQ before the timerlat irq * arrived. * * If now - timestamp is <= latency, it might have influenced * in the timerlat irq latency. Otherwise, ignore it. */ unsigned long long prev_irq_duration; unsigned long long prev_irq_timstamp; /* * Interference sum. */ unsigned long long thread_nmi_sum; unsigned long long thread_irq_sum; unsigned long long thread_softirq_sum; unsigned long long thread_thread_sum; /* * Interference task information. */ struct trace_seq *prev_irqs_seq; struct trace_seq *nmi_seq; struct trace_seq *irqs_seq; struct trace_seq *softirqs_seq; struct trace_seq *threads_seq; struct trace_seq *stack_seq; /* * Current thread. */ char current_comm[MAX_COMM]; unsigned long long current_pid; /* * Is the system running a kworker? */ unsigned long long kworker; unsigned long long kworker_func; }; /* * The analysis context and system wide view */ struct timerlat_aa_context { int nr_cpus; int dump_tasks; /* per CPU data */ struct timerlat_aa_data *taa_data; /* * required to translate function names and register * events. */ struct osnoise_tool *tool; }; /* * The data is stored as a local variable, but accessed via a helper function. * * It could be stored inside the trace context. But every access would * require container_of() + a series of pointers. Do we need it? Not sure. * * For now keep it simple. If needed, store it in the tool, add the *context * as a parameter in timerlat_aa_get_ctx() and do the magic there. */ static struct timerlat_aa_context *__timerlat_aa_ctx; static struct timerlat_aa_context *timerlat_aa_get_ctx(void) { return __timerlat_aa_ctx; } /* * timerlat_aa_get_data - Get the per-cpu data from the timerlat context */ static struct timerlat_aa_data *timerlat_aa_get_data(struct timerlat_aa_context *taa_ctx, int cpu) { return &taa_ctx->taa_data[cpu]; } /* * timerlat_aa_irq_latency - Handles timerlat IRQ event */ static int timerlat_aa_irq_latency(struct timerlat_aa_data *taa_data, struct trace_seq *s, struct tep_record *record, struct tep_event *event) { /* * For interference, we start now looking for things that can delay * the thread. */ taa_data->curr_state = TIMERLAT_WAITING_THREAD; taa_data->tlat_irq_timstamp = record->ts; /* * Zero values. */ taa_data->thread_nmi_sum = 0; taa_data->thread_irq_sum = 0; taa_data->thread_softirq_sum = 0; taa_data->thread_thread_sum = 0; taa_data->thread_blocking_duration = 0; taa_data->timer_irq_start_time = 0; taa_data->timer_irq_duration = 0; taa_data->timer_exit_from_idle = 0; /* * Zero interference tasks. */ trace_seq_reset(taa_data->nmi_seq); trace_seq_reset(taa_data->irqs_seq); trace_seq_reset(taa_data->softirqs_seq); trace_seq_reset(taa_data->threads_seq); /* IRQ latency values */ tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_irq_latency, 1); tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_irq_seqnum, 1); /* The thread that can cause blocking */ tep_get_common_field_val(s, event, "common_pid", record, &taa_data->run_thread_pid, 1); /* * Get exit from idle case. * * If it is not idle thread: */ if (taa_data->run_thread_pid) return 0; /* * if the latency is shorter than the known exit from idle: */ if (taa_data->tlat_irq_latency < taa_data->max_exit_idle_latency) return 0; /* * To be safe, ignore the cases in which an IRQ/NMI could have * interfered with the timerlat IRQ. */ if (taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration) return 0; taa_data->max_exit_idle_latency = taa_data->tlat_irq_latency; return 0; } /* * timerlat_aa_thread_latency - Handles timerlat thread event */ static int timerlat_aa_thread_latency(struct timerlat_aa_data *taa_data, struct trace_seq *s, struct tep_record *record, struct tep_event *event) { /* * For interference, we start now looking for things that can delay * the IRQ of the next cycle. */ taa_data->curr_state = TIMERLAT_WAITING_IRQ; taa_data->tlat_thread_timstamp = record->ts; /* Thread latency values */ tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_thread_latency, 1); tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_thread_seqnum, 1); return 0; } /* * timerlat_aa_handler - Handle timerlat events * * This function is called to handle timerlat events recording statistics. * * Returns 0 on success, -1 otherwise. */ static int timerlat_aa_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); unsigned long long thread; if (!taa_data) return -1; tep_get_field_val(s, event, "context", record, &thread, 1); if (!thread) return timerlat_aa_irq_latency(taa_data, s, record, event); else return timerlat_aa_thread_latency(taa_data, s, record, event); } /* * timerlat_aa_nmi_handler - Handles NMI noise * * It is used to collect information about interferences from NMI. It is * hooked to the osnoise:nmi_noise event. */ static int timerlat_aa_nmi_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); unsigned long long duration; unsigned long long start; tep_get_field_val(s, event, "duration", record, &duration, 1); tep_get_field_val(s, event, "start", record, &start, 1); if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) { taa_data->prev_irq_duration = duration; taa_data->prev_irq_timstamp = start; trace_seq_reset(taa_data->prev_irqs_seq); trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s \t\t\t%9.2f us\n", "nmi", ns_to_usf(duration)); return 0; } taa_data->thread_nmi_sum += duration; trace_seq_printf(taa_data->nmi_seq, " %24s \t\t\t%9.2f us\n", "nmi", ns_to_usf(duration)); return 0; } /* * timerlat_aa_irq_handler - Handles IRQ noise * * It is used to collect information about interferences from IRQ. It is * hooked to the osnoise:irq_noise event. * * It is a little bit more complex than the other because it measures: * - The IRQs that can delay the timer IRQ before it happened. * - The Timerlat IRQ handler * - The IRQs that happened between the timerlat IRQ and the timerlat thread * (IRQ interference). */ static int timerlat_aa_irq_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); unsigned long long expected_start; unsigned long long duration; unsigned long long vector; unsigned long long start; char *desc; int val; tep_get_field_val(s, event, "duration", record, &duration, 1); tep_get_field_val(s, event, "start", record, &start, 1); tep_get_field_val(s, event, "vector", record, &vector, 1); desc = tep_get_field_raw(s, event, "desc", record, &val, 1); /* * Before the timerlat IRQ. */ if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) { taa_data->prev_irq_duration = duration; taa_data->prev_irq_timstamp = start; trace_seq_reset(taa_data->prev_irqs_seq); trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s:%-3llu \t\t%9.2f us\n", desc, vector, ns_to_usf(duration)); return 0; } /* * The timerlat IRQ: taa_data->timer_irq_start_time is zeroed at * the timerlat irq handler. */ if (!taa_data->timer_irq_start_time) { expected_start = taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency; taa_data->timer_irq_start_time = start; taa_data->timer_irq_duration = duration; /* * We are dealing with two different clock sources: the * external clock source that timerlat uses as a reference * and the clock used by the tracer. There are also two * moments: the time reading the clock and the timer in * which the event is placed in the buffer (the trace * event timestamp). If the processor is slow or there * is some hardware noise, the difference between the * timestamp and the external clock read can be longer * than the IRQ handler delay, resulting in a negative * time. If so, set IRQ start delay as 0. In the end, * it is less relevant than the noise. */ if (expected_start < taa_data->timer_irq_start_time) taa_data->timer_irq_start_delay = taa_data->timer_irq_start_time - expected_start; else taa_data->timer_irq_start_delay = 0; /* * not exit from idle. */ if (taa_data->run_thread_pid) return 0; if (expected_start > taa_data->prev_irq_timstamp + taa_data->prev_irq_duration) taa_data->timer_exit_from_idle = taa_data->timer_irq_start_delay; return 0; } /* * IRQ interference. */ taa_data->thread_irq_sum += duration; trace_seq_printf(taa_data->irqs_seq, " %24s:%-3llu \t %9.2f us\n", desc, vector, ns_to_usf(duration)); return 0; } static char *softirq_name[] = { "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "IRQ_POLL", "TASKLET", "SCHED", "HRTIMER", "RCU" }; /* * timerlat_aa_softirq_handler - Handles Softirq noise * * It is used to collect information about interferences from Softirq. It is * hooked to the osnoise:softirq_noise event. * * It is only printed in the non-rt kernel, as softirqs become thread on RT. */ static int timerlat_aa_softirq_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); unsigned long long duration; unsigned long long vector; unsigned long long start; if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) return 0; tep_get_field_val(s, event, "duration", record, &duration, 1); tep_get_field_val(s, event, "start", record, &start, 1); tep_get_field_val(s, event, "vector", record, &vector, 1); taa_data->thread_softirq_sum += duration; trace_seq_printf(taa_data->softirqs_seq, "\t%24s:%-3llu \t %9.2f us\n", softirq_name[vector], vector, ns_to_usf(duration)); return 0; } /* * timerlat_aa_softirq_handler - Handles thread noise * * It is used to collect information about interferences from threads. It is * hooked to the osnoise:thread_noise event. * * Note: if you see thread noise, your timerlat thread was not the highest prio one. */ static int timerlat_aa_thread_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); unsigned long long duration; unsigned long long start; unsigned long long pid; const char *comm; int val; if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) return 0; tep_get_field_val(s, event, "duration", record, &duration, 1); tep_get_field_val(s, event, "start", record, &start, 1); tep_get_common_field_val(s, event, "common_pid", record, &pid, 1); comm = tep_get_field_raw(s, event, "comm", record, &val, 1); if (pid == taa_data->run_thread_pid && !taa_data->thread_blocking_duration) { taa_data->thread_blocking_duration = duration; if (comm) strncpy(taa_data->run_thread_comm, comm, MAX_COMM); else sprintf(taa_data->run_thread_comm, "<...>"); } else { taa_data->thread_thread_sum += duration; trace_seq_printf(taa_data->threads_seq, "\t%24s:%-3llu \t\t%9.2f us\n", comm, pid, ns_to_usf(duration)); } return 0; } /* * timerlat_aa_stack_handler - Handles timerlat IRQ stack trace * * Saves and parse the stack trace generated by the timerlat IRQ. */ static int timerlat_aa_stack_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); unsigned long *caller; const char *function; int val, i; trace_seq_reset(taa_data->stack_seq); trace_seq_printf(taa_data->stack_seq, " Blocking thread stack trace\n"); caller = tep_get_field_raw(s, event, "caller", record, &val, 1); if (caller) { for (i = 0; ; i++) { function = tep_find_function(taa_ctx->tool->trace.tep, caller[i]); if (!function) break; trace_seq_printf(taa_data->stack_seq, "\t\t-> %s\n", function); } } return 0; } /* * timerlat_aa_sched_switch_handler - Tracks the current thread running on the CPU * * Handles the sched:sched_switch event to trace the current thread running on the * CPU. It is used to display the threads running on the other CPUs when the trace * stops. */ static int timerlat_aa_sched_switch_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); const char *comm; int val; tep_get_field_val(s, event, "next_pid", record, &taa_data->current_pid, 1); comm = tep_get_field_raw(s, event, "next_comm", record, &val, 1); strncpy(taa_data->current_comm, comm, MAX_COMM); /* * If this was a kworker, clean the last kworkers that ran. */ taa_data->kworker = 0; taa_data->kworker_func = 0; return 0; } /* * timerlat_aa_kworker_start_handler - Tracks a kworker running on the CPU * * Handles workqueue:workqueue_execute_start event, keeping track of * the job that a kworker could be doing in the CPU. * * We already catch problems of hardware related latencies caused by work queues * running driver code that causes hardware stall. For example, with DRM drivers. */ static int timerlat_aa_kworker_start_handler(struct trace_seq *s, struct tep_record *record, struct tep_event *event, void *context) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); tep_get_field_val(s, event, "work", record, &taa_data->kworker, 1); tep_get_field_val(s, event, "function", record, &taa_data->kworker_func, 1); return 0; } /* * timerlat_thread_analysis - Prints the analysis of a CPU that hit a stop tracing * * This is the core of the analysis. */ static void timerlat_thread_analysis(struct timerlat_aa_data *taa_data, int cpu, int irq_thresh, int thread_thresh) { long long exp_irq_ts; int total; int irq; /* * IRQ latency or Thread latency? */ if (taa_data->tlat_irq_seqnum > taa_data->tlat_thread_seqnum) { irq = 1; total = taa_data->tlat_irq_latency; } else { irq = 0; total = taa_data->tlat_thread_latency; } /* * Expected IRQ arrival time using the trace clock as the base. * * TODO: Add a list of previous IRQ, and then run the list backwards. */ exp_irq_ts = taa_data->timer_irq_start_time - taa_data->timer_irq_start_delay; if (exp_irq_ts < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration) { if (taa_data->prev_irq_timstamp < taa_data->timer_irq_start_time) printf(" Previous IRQ interference: \t\t up to %9.2f us\n", ns_to_usf(taa_data->prev_irq_duration)); } /* * The delay that the IRQ suffered before starting. */ printf(" IRQ handler delay: %16s %9.2f us (%.2f %%)\n", (ns_to_usf(taa_data->timer_exit_from_idle) > 10) ? "(exit from idle)" : "", ns_to_usf(taa_data->timer_irq_start_delay), ns_to_per(total, taa_data->timer_irq_start_delay)); /* * Timerlat IRQ. */ printf(" IRQ latency: \t\t\t\t %9.2f us\n", ns_to_usf(taa_data->tlat_irq_latency)); if (irq) { /* * If the trace stopped due to IRQ, the other events will not happen * because... the trace stopped :-). * * That is all folks, the stack trace was printed before the stop, * so it will be displayed, it is the key. */ printf(" Blocking thread:\n"); printf(" %24s:%-9llu\n", taa_data->run_thread_comm, taa_data->run_thread_pid); } else { /* * The duration of the IRQ handler that handled the timerlat IRQ. */ printf(" Timerlat IRQ duration: \t\t %9.2f us (%.2f %%)\n", ns_to_usf(taa_data->timer_irq_duration), ns_to_per(total, taa_data->timer_irq_duration)); /* * The amount of time that the current thread postponed the scheduler. * * Recalling that it is net from NMI/IRQ/Softirq interference, so there * is no need to compute values here. */ printf(" Blocking thread: \t\t\t %9.2f us (%.2f %%)\n", ns_to_usf(taa_data->thread_blocking_duration), ns_to_per(total, taa_data->thread_blocking_duration)); printf(" %24s:%-9llu %9.2f us\n", taa_data->run_thread_comm, taa_data->run_thread_pid, ns_to_usf(taa_data->thread_blocking_duration)); } /* * Print the stack trace! */ trace_seq_do_printf(taa_data->stack_seq); /* * NMIs can happen during the IRQ, so they are always possible. */ if (taa_data->thread_nmi_sum) printf(" NMI interference \t\t\t %9.2f us (%.2f %%)\n", ns_to_usf(taa_data->thread_nmi_sum), ns_to_per(total, taa_data->thread_nmi_sum)); /* * If it is an IRQ latency, the other factors can be skipped. */ if (irq) goto print_total; /* * Prints the interference caused by IRQs to the thread latency. */ if (taa_data->thread_irq_sum) { printf(" IRQ interference \t\t\t %9.2f us (%.2f %%)\n", ns_to_usf(taa_data->thread_irq_sum), ns_to_per(total, taa_data->thread_irq_sum)); trace_seq_do_printf(taa_data->irqs_seq); } /* * Prints the interference caused by Softirqs to the thread latency. */ if (taa_data->thread_softirq_sum) { printf(" Softirq interference \t\t\t %9.2f us (%.2f %%)\n", ns_to_usf(taa_data->thread_softirq_sum), ns_to_per(total, taa_data->thread_softirq_sum)); trace_seq_do_printf(taa_data->softirqs_seq); } /* * Prints the interference caused by other threads to the thread latency. * * If this happens, your timerlat is not the highest prio. OK, migration * thread can happen. But otherwise, you are not measuring the "scheduling * latency" only, and here is the difference from scheduling latency and * timer handling latency. */ if (taa_data->thread_thread_sum) { printf(" Thread interference \t\t\t %9.2f us (%.2f %%)\n", ns_to_usf(taa_data->thread_thread_sum), ns_to_per(total, taa_data->thread_thread_sum)); trace_seq_do_printf(taa_data->threads_seq); } /* * Done. */ print_total: printf("------------------------------------------------------------------------\n"); printf(" %s latency: \t\t\t %9.2f us (100%%)\n", irq ? "IRQ" : "Thread", ns_to_usf(total)); } static int timerlat_auto_analysis_collect_trace(struct timerlat_aa_context *taa_ctx) { struct trace_instance *trace = &taa_ctx->tool->trace; int retval; retval = tracefs_iterate_raw_events(trace->tep, trace->inst, NULL, 0, collect_registered_events, trace); if (retval < 0) { err_msg("Error iterating on events\n"); return 0; } return 1; } /** * timerlat_auto_analysis - Analyze the collected data */ void timerlat_auto_analysis(int irq_thresh, int thread_thresh) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); unsigned long long max_exit_from_idle = 0; struct timerlat_aa_data *taa_data; int max_exit_from_idle_cpu; struct tep_handle *tep; int cpu; timerlat_auto_analysis_collect_trace(taa_ctx); /* bring stop tracing to the ns scale */ irq_thresh = irq_thresh * 1000; thread_thresh = thread_thresh * 1000; for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) { taa_data = timerlat_aa_get_data(taa_ctx, cpu); if (irq_thresh && taa_data->tlat_irq_latency >= irq_thresh) { printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu); timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh); } else if (thread_thresh && (taa_data->tlat_thread_latency) >= thread_thresh) { printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu); timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh); } if (taa_data->max_exit_idle_latency > max_exit_from_idle) { max_exit_from_idle = taa_data->max_exit_idle_latency; max_exit_from_idle_cpu = cpu; } } if (max_exit_from_idle) { printf("\n"); printf("Max timerlat IRQ latency from idle: %.2f us in cpu %d\n", ns_to_usf(max_exit_from_idle), max_exit_from_idle_cpu); } if (!taa_ctx->dump_tasks) return; printf("\n"); printf("Printing CPU tasks:\n"); for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) { taa_data = timerlat_aa_get_data(taa_ctx, cpu); tep = taa_ctx->tool->trace.tep; printf(" [%.3d] %24s:%llu", cpu, taa_data->current_comm, taa_data->current_pid); if (taa_data->kworker_func) printf(" kworker:%s:%s", tep_find_function(tep, taa_data->kworker) ? : "<...>", tep_find_function(tep, taa_data->kworker_func)); printf("\n"); } } /* * timerlat_aa_destroy_seqs - Destroy seq files used to store parsed data */ static void timerlat_aa_destroy_seqs(struct timerlat_aa_context *taa_ctx) { struct timerlat_aa_data *taa_data; int i; if (!taa_ctx->taa_data) return; for (i = 0; i < taa_ctx->nr_cpus; i++) { taa_data = timerlat_aa_get_data(taa_ctx, i); if (taa_data->prev_irqs_seq) { trace_seq_destroy(taa_data->prev_irqs_seq); free(taa_data->prev_irqs_seq); } if (taa_data->nmi_seq) { trace_seq_destroy(taa_data->nmi_seq); free(taa_data->nmi_seq); } if (taa_data->irqs_seq) { trace_seq_destroy(taa_data->irqs_seq); free(taa_data->irqs_seq); } if (taa_data->softirqs_seq) { trace_seq_destroy(taa_data->softirqs_seq); free(taa_data->softirqs_seq); } if (taa_data->threads_seq) { trace_seq_destroy(taa_data->threads_seq); free(taa_data->threads_seq); } if (taa_data->stack_seq) { trace_seq_destroy(taa_data->stack_seq); free(taa_data->stack_seq); } } } /* * timerlat_aa_init_seqs - Init seq files used to store parsed information * * Instead of keeping data structures to store raw data, use seq files to * store parsed data. * * Allocates and initialize seq files. * * Returns 0 on success, -1 otherwise. */ static int timerlat_aa_init_seqs(struct timerlat_aa_context *taa_ctx) { struct timerlat_aa_data *taa_data; int i; for (i = 0; i < taa_ctx->nr_cpus; i++) { taa_data = timerlat_aa_get_data(taa_ctx, i); taa_data->prev_irqs_seq = calloc(1, sizeof(*taa_data->prev_irqs_seq)); if (!taa_data->prev_irqs_seq) goto out_err; trace_seq_init(taa_data->prev_irqs_seq); taa_data->nmi_seq = calloc(1, sizeof(*taa_data->nmi_seq)); if (!taa_data->nmi_seq) goto out_err; trace_seq_init(taa_data->nmi_seq); taa_data->irqs_seq = calloc(1, sizeof(*taa_data->irqs_seq)); if (!taa_data->irqs_seq) goto out_err; trace_seq_init(taa_data->irqs_seq); taa_data->softirqs_seq = calloc(1, sizeof(*taa_data->softirqs_seq)); if (!taa_data->softirqs_seq) goto out_err; trace_seq_init(taa_data->softirqs_seq); taa_data->threads_seq = calloc(1, sizeof(*taa_data->threads_seq)); if (!taa_data->threads_seq) goto out_err; trace_seq_init(taa_data->threads_seq); taa_data->stack_seq = calloc(1, sizeof(*taa_data->stack_seq)); if (!taa_data->stack_seq) goto out_err; trace_seq_init(taa_data->stack_seq); } return 0; out_err: timerlat_aa_destroy_seqs(taa_ctx); return -1; } /* * timerlat_aa_unregister_events - Unregister events used in the auto-analysis */ static void timerlat_aa_unregister_events(struct osnoise_tool *tool, int dump_tasks) { tep_unregister_event_handler(tool->trace.tep, -1, "ftrace", "timerlat", timerlat_aa_handler, tool); tracefs_event_disable(tool->trace.inst, "osnoise", NULL); tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise", timerlat_aa_nmi_handler, tool); tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise", timerlat_aa_irq_handler, tool); tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise", timerlat_aa_softirq_handler, tool); tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise", timerlat_aa_thread_handler, tool); tep_unregister_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack", timerlat_aa_stack_handler, tool); if (!dump_tasks) return; tracefs_event_disable(tool->trace.inst, "sched", "sched_switch"); tep_unregister_event_handler(tool->trace.tep, -1, "sched", "sched_switch", timerlat_aa_sched_switch_handler, tool); tracefs_event_disable(tool->trace.inst, "workqueue", "workqueue_execute_start"); tep_unregister_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start", timerlat_aa_kworker_start_handler, tool); } /* * timerlat_aa_register_events - Register events used in the auto-analysis * * Returns 0 on success, -1 otherwise. */ static int timerlat_aa_register_events(struct osnoise_tool *tool, int dump_tasks) { int retval; tep_register_event_handler(tool->trace.tep, -1, "ftrace", "timerlat", timerlat_aa_handler, tool); /* * register auto-analysis handlers. */ retval = tracefs_event_enable(tool->trace.inst, "osnoise", NULL); if (retval < 0 && !errno) { err_msg("Could not find osnoise events\n"); goto out_err; } tep_register_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise", timerlat_aa_nmi_handler, tool); tep_register_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise", timerlat_aa_irq_handler, tool); tep_register_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise", timerlat_aa_softirq_handler, tool); tep_register_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise", timerlat_aa_thread_handler, tool); tep_register_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack", timerlat_aa_stack_handler, tool); if (!dump_tasks) return 0; /* * Dump task events. */ retval = tracefs_event_enable(tool->trace.inst, "sched", "sched_switch"); if (retval < 0 && !errno) { err_msg("Could not find sched_switch\n"); goto out_err; } tep_register_event_handler(tool->trace.tep, -1, "sched", "sched_switch", timerlat_aa_sched_switch_handler, tool); retval = tracefs_event_enable(tool->trace.inst, "workqueue", "workqueue_execute_start"); if (retval < 0 && !errno) { err_msg("Could not find workqueue_execute_start\n"); goto out_err; } tep_register_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start", timerlat_aa_kworker_start_handler, tool); return 0; out_err: timerlat_aa_unregister_events(tool, dump_tasks); return -1; } /** * timerlat_aa_destroy - Destroy timerlat auto-analysis */ void timerlat_aa_destroy(void) { struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); if (!taa_ctx) return; if (!taa_ctx->taa_data) goto out_ctx; timerlat_aa_unregister_events(taa_ctx->tool, taa_ctx->dump_tasks); timerlat_aa_destroy_seqs(taa_ctx); free(taa_ctx->taa_data); out_ctx: free(taa_ctx); } /** * timerlat_aa_init - Initialize timerlat auto-analysis * * Returns 0 on success, -1 otherwise. */ int timerlat_aa_init(struct osnoise_tool *tool, int dump_tasks) { int nr_cpus = sysconf(_SC_NPROCESSORS_CONF); struct timerlat_aa_context *taa_ctx; int retval; taa_ctx = calloc(1, sizeof(*taa_ctx)); if (!taa_ctx) return -1; __timerlat_aa_ctx = taa_ctx; taa_ctx->nr_cpus = nr_cpus; taa_ctx->tool = tool; taa_ctx->dump_tasks = dump_tasks; taa_ctx->taa_data = calloc(nr_cpus, sizeof(*taa_ctx->taa_data)); if (!taa_ctx->taa_data) goto out_err; retval = timerlat_aa_init_seqs(taa_ctx); if (retval) goto out_err; retval = timerlat_aa_register_events(tool, dump_tasks); if (retval) goto out_err; return 0; out_err: timerlat_aa_destroy(); return -1; } |