Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | /* * Strictly speaking, this is not a test. But it can report during test * runs so relative performace can be measured. */ #define _GNU_SOURCE #include <assert.h> #include <err.h> #include <limits.h> #include <sched.h> #include <stdbool.h> #include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <time.h> #include <unistd.h> #include <linux/filter.h> #include <linux/seccomp.h> #include <sys/param.h> #include <sys/prctl.h> #include <sys/syscall.h> #include <sys/types.h> #include "../kselftest.h" unsigned long long timing(clockid_t clk_id, unsigned long long samples) { struct timespec start, finish; unsigned long long i; pid_t pid, ret; pid = getpid(); assert(clock_gettime(clk_id, &start) == 0); for (i = 0; i < samples; i++) { ret = syscall(__NR_getpid); assert(pid == ret); } assert(clock_gettime(clk_id, &finish) == 0); i = finish.tv_sec - start.tv_sec; i *= 1000000000ULL; i += finish.tv_nsec - start.tv_nsec; ksft_print_msg("%lu.%09lu - %lu.%09lu = %llu (%.1fs)\n", finish.tv_sec, finish.tv_nsec, start.tv_sec, start.tv_nsec, i, (double)i / 1000000000.0); return i; } unsigned long long calibrate(void) { struct timespec start, finish; unsigned long long i, samples, step = 9973; pid_t pid, ret; int seconds = 15; ksft_print_msg("Calibrating sample size for %d seconds worth of syscalls ...\n", seconds); samples = 0; pid = getpid(); assert(clock_gettime(CLOCK_MONOTONIC, &start) == 0); do { for (i = 0; i < step; i++) { ret = syscall(__NR_getpid); assert(pid == ret); } assert(clock_gettime(CLOCK_MONOTONIC, &finish) == 0); samples += step; i = finish.tv_sec - start.tv_sec; i *= 1000000000ULL; i += finish.tv_nsec - start.tv_nsec; } while (i < 1000000000ULL); return samples * seconds; } bool approx(int i_one, int i_two) { /* * This continues to be a noisy test. Instead of a 1% comparison * go with 10%. */ double one = i_one, one_bump = one * 0.1; double two = i_two, two_bump = two * 0.1; one_bump = one + MAX(one_bump, 2.0); two_bump = two + MAX(two_bump, 2.0); /* Equal to, or within 1% or 2 digits */ if (one == two || (one > two && one <= two_bump) || (two > one && two <= one_bump)) return true; return false; } bool le(int i_one, int i_two) { if (i_one <= i_two) return true; return false; } long compare(const char *name_one, const char *name_eval, const char *name_two, unsigned long long one, bool (*eval)(int, int), unsigned long long two, bool skip) { bool good; if (skip) { ksft_test_result_skip("%s %s %s\n", name_one, name_eval, name_two); return 0; } ksft_print_msg("\t%s %s %s (%lld %s %lld): ", name_one, name_eval, name_two, (long long)one, name_eval, (long long)two); if (one > INT_MAX) { ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)one); good = false; goto out; } if (two > INT_MAX) { ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)two); good = false; goto out; } good = eval(one, two); printf("%s\n", good ? "✔️" : "❌"); out: ksft_test_result(good, "%s %s %s\n", name_one, name_eval, name_two); return good ? 0 : 1; } /* Pin to a single CPU so the benchmark won't bounce around the system. */ void affinity(void) { long cpu; ulong ncores = sysconf(_SC_NPROCESSORS_CONF); cpu_set_t *setp = CPU_ALLOC(ncores); ulong setsz = CPU_ALLOC_SIZE(ncores); /* * Totally unscientific way to avoid CPUs that might be busier: * choose the highest CPU instead of the lowest. */ for (cpu = ncores - 1; cpu >= 0; cpu--) { CPU_ZERO_S(setsz, setp); CPU_SET_S(cpu, setsz, setp); if (sched_setaffinity(getpid(), setsz, setp) == -1) continue; printf("Pinned to CPU %lu of %lu\n", cpu + 1, ncores); goto out; } fprintf(stderr, "Could not set CPU affinity -- calibration may not work well"); out: CPU_FREE(setp); } int main(int argc, char *argv[]) { struct sock_filter bitmap_filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog bitmap_prog = { .len = (unsigned short)ARRAY_SIZE(bitmap_filter), .filter = bitmap_filter, }; struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, args[0])), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret, bits; unsigned long long samples, calc; unsigned long long native, filter1, filter2, bitmap1, bitmap2; unsigned long long entry, per_filter1, per_filter2; bool skip = false; setbuf(stdout, NULL); ksft_print_header(); ksft_set_plan(7); ksft_print_msg("Running on:\n"); ksft_print_msg(""); system("uname -a"); ksft_print_msg("Current BPF sysctl settings:\n"); /* Avoid using "sysctl" which may not be installed. */ ksft_print_msg(""); system("grep -H . /proc/sys/net/core/bpf_jit_enable"); ksft_print_msg(""); system("grep -H . /proc/sys/net/core/bpf_jit_harden"); affinity(); if (argc > 1) samples = strtoull(argv[1], NULL, 0); else samples = calibrate(); ksft_print_msg("Benchmarking %llu syscalls...\n", samples); /* Native call */ native = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid native: %llu ns\n", native); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); assert(ret == 0); /* One filter resulting in a bitmap */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); assert(ret == 0); bitmap1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 1 filter (bitmap): %llu ns\n", bitmap1); /* Second filter resulting in a bitmap */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); assert(ret == 0); bitmap2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 2 filters (bitmap): %llu ns\n", bitmap2); /* Third filter, can no longer be converted to bitmap */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); assert(ret == 0); filter1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 3 filters (full): %llu ns\n", filter1); /* Fourth filter, can not be converted to bitmap because of filter 3 */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); assert(ret == 0); filter2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 4 filters (full): %llu ns\n", filter2); /* Estimations */ #define ESTIMATE(fmt, var, what) do { \ var = (what); \ ksft_print_msg("Estimated " fmt ": %llu ns\n", var); \ if (var > INT_MAX) { \ skip = true; \ ret |= 1; \ } \ } while (0) ESTIMATE("total seccomp overhead for 1 bitmapped filter", calc, bitmap1 - native); ESTIMATE("total seccomp overhead for 2 bitmapped filters", calc, bitmap2 - native); ESTIMATE("total seccomp overhead for 3 full filters", calc, filter1 - native); ESTIMATE("total seccomp overhead for 4 full filters", calc, filter2 - native); ESTIMATE("seccomp entry overhead", entry, bitmap1 - native - (bitmap2 - bitmap1)); ESTIMATE("seccomp per-filter overhead (last 2 diff)", per_filter1, filter2 - filter1); ESTIMATE("seccomp per-filter overhead (filters / 4)", per_filter2, (filter2 - native - entry) / 4); ksft_print_msg("Expectations:\n"); ret |= compare("native", "≤", "1 bitmap", native, le, bitmap1, skip); bits = compare("native", "≤", "1 filter", native, le, filter1, skip); if (bits) skip = true; ret |= compare("per-filter (last 2 diff)", "≈", "per-filter (filters / 4)", per_filter1, approx, per_filter2, skip); bits = compare("1 bitmapped", "≈", "2 bitmapped", bitmap1 - native, approx, bitmap2 - native, skip); if (bits) { ksft_print_msg("Skipping constant action bitmap expectations: they appear unsupported.\n"); skip = true; } ret |= compare("entry", "≈", "1 bitmapped", entry, approx, bitmap1 - native, skip); ret |= compare("entry", "≈", "2 bitmapped", entry, approx, bitmap2 - native, skip); ret |= compare("native + entry + (per filter * 4)", "≈", "4 filters total", entry + (per_filter1 * 4) + native, approx, filter2, skip); if (ret) ksft_print_msg("Saw unexpected benchmark result. Try running again with more samples?\n"); ksft_finished(); } |