Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020, Sandipan Das, IBM Corp. * * Test if the signal information reports the correct memory protection * key upon getting a key access violation fault for a page that was * attempted to be protected by two different keys from two competing * threads at the same time. */ #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <string.h> #include <signal.h> #include <unistd.h> #include <pthread.h> #include <sys/mman.h> #include "pkeys.h" #define PPC_INST_NOP 0x60000000 #define PPC_INST_BLR 0x4e800020 #define PROT_RWX (PROT_READ | PROT_WRITE | PROT_EXEC) #define NUM_ITERATIONS 1000000 static volatile sig_atomic_t perm_pkey, rest_pkey; static volatile sig_atomic_t rights, fault_count; static volatile unsigned int *volatile fault_addr; static pthread_barrier_t iteration_barrier; static void segv_handler(int signum, siginfo_t *sinfo, void *ctx) { void *pgstart; size_t pgsize; int pkey; pkey = siginfo_pkey(sinfo); /* Check if this fault originated from a pkey access violation */ if (sinfo->si_code != SEGV_PKUERR) { sigsafe_err("got a fault for an unexpected reason\n"); _exit(1); } /* Check if this fault originated from the expected address */ if (sinfo->si_addr != (void *) fault_addr) { sigsafe_err("got a fault for an unexpected address\n"); _exit(1); } /* Check if this fault originated from the restrictive pkey */ if (pkey != rest_pkey) { sigsafe_err("got a fault for an unexpected pkey\n"); _exit(1); } /* Check if too many faults have occurred for the same iteration */ if (fault_count > 0) { sigsafe_err("got too many faults for the same address\n"); _exit(1); } pgsize = getpagesize(); pgstart = (void *) ((unsigned long) fault_addr & ~(pgsize - 1)); /* * If the current fault occurred due to lack of execute rights, * reassociate the page with the exec-only pkey since execute * rights cannot be changed directly for the faulting pkey as * IAMR is inaccessible from userspace. * * Otherwise, if the current fault occurred due to lack of * read-write rights, change the AMR permission bits for the * pkey. * * This will let the test continue. */ if (rights == PKEY_DISABLE_EXECUTE && mprotect(pgstart, pgsize, PROT_EXEC)) _exit(1); else pkey_set_rights(pkey, 0); fault_count++; } struct region { unsigned long rights; unsigned int *base; size_t size; }; static void *protect(void *p) { unsigned long rights; unsigned int *base; size_t size; int tid, i; tid = gettid(); base = ((struct region *) p)->base; size = ((struct region *) p)->size; FAIL_IF_EXIT(!base); /* No read, write and execute restrictions */ rights = 0; printf("tid %d, pkey permissions are %s\n", tid, pkey_rights(rights)); /* Allocate the permissive pkey */ perm_pkey = sys_pkey_alloc(0, rights); FAIL_IF_EXIT(perm_pkey < 0); /* * Repeatedly try to protect the common region with a permissive * pkey */ for (i = 0; i < NUM_ITERATIONS; i++) { /* * Wait until the other thread has finished allocating the * restrictive pkey or until the next iteration has begun */ pthread_barrier_wait(&iteration_barrier); /* Try to associate the permissive pkey with the region */ FAIL_IF_EXIT(sys_pkey_mprotect(base, size, PROT_RWX, perm_pkey)); } /* Free the permissive pkey */ sys_pkey_free(perm_pkey); return NULL; } static void *protect_access(void *p) { size_t size, numinsns; unsigned int *base; int tid, i; tid = gettid(); base = ((struct region *) p)->base; size = ((struct region *) p)->size; rights = ((struct region *) p)->rights; numinsns = size / sizeof(base[0]); FAIL_IF_EXIT(!base); /* Allocate the restrictive pkey */ rest_pkey = sys_pkey_alloc(0, rights); FAIL_IF_EXIT(rest_pkey < 0); printf("tid %d, pkey permissions are %s\n", tid, pkey_rights(rights)); printf("tid %d, %s randomly in range [%p, %p]\n", tid, (rights == PKEY_DISABLE_EXECUTE) ? "execute" : (rights == PKEY_DISABLE_WRITE) ? "write" : "read", base, base + numinsns); /* * Repeatedly try to protect the common region with a restrictive * pkey and read, write or execute from it */ for (i = 0; i < NUM_ITERATIONS; i++) { /* * Wait until the other thread has finished allocating the * permissive pkey or until the next iteration has begun */ pthread_barrier_wait(&iteration_barrier); /* Try to associate the restrictive pkey with the region */ FAIL_IF_EXIT(sys_pkey_mprotect(base, size, PROT_RWX, rest_pkey)); /* Choose a random instruction word address from the region */ fault_addr = base + (rand() % numinsns); fault_count = 0; switch (rights) { /* Read protection test */ case PKEY_DISABLE_ACCESS: /* * Read an instruction word from the region and * verify if it has not been overwritten to * something unexpected */ FAIL_IF_EXIT(*fault_addr != PPC_INST_NOP && *fault_addr != PPC_INST_BLR); break; /* Write protection test */ case PKEY_DISABLE_WRITE: /* * Write an instruction word to the region and * verify if the overwrite has succeeded */ *fault_addr = PPC_INST_BLR; FAIL_IF_EXIT(*fault_addr != PPC_INST_BLR); break; /* Execute protection test */ case PKEY_DISABLE_EXECUTE: /* Jump to the region and execute instructions */ asm volatile( "mtctr %0; bctrl" : : "r"(fault_addr) : "ctr", "lr"); break; } /* * Restore the restrictions originally imposed by the * restrictive pkey as the signal handler would have * cleared out the corresponding AMR bits */ pkey_set_rights(rest_pkey, rights); } /* Free restrictive pkey */ sys_pkey_free(rest_pkey); return NULL; } static void reset_pkeys(unsigned long rights) { int pkeys[NR_PKEYS], i; /* Exhaustively allocate all available pkeys */ for (i = 0; i < NR_PKEYS; i++) pkeys[i] = sys_pkey_alloc(0, rights); /* Free all allocated pkeys */ for (i = 0; i < NR_PKEYS; i++) sys_pkey_free(pkeys[i]); } static int test(void) { pthread_t prot_thread, pacc_thread; struct sigaction act; pthread_attr_t attr; size_t numinsns; struct region r; int ret, i; srand(time(NULL)); ret = pkeys_unsupported(); if (ret) return ret; /* Allocate the region */ r.size = getpagesize(); r.base = mmap(NULL, r.size, PROT_RWX, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); FAIL_IF(r.base == MAP_FAILED); /* * Fill the region with no-ops with a branch at the end * for returning to the caller */ numinsns = r.size / sizeof(r.base[0]); for (i = 0; i < numinsns - 1; i++) r.base[i] = PPC_INST_NOP; r.base[i] = PPC_INST_BLR; /* Setup SIGSEGV handler */ act.sa_handler = 0; act.sa_sigaction = segv_handler; FAIL_IF(sigprocmask(SIG_SETMASK, 0, &act.sa_mask) != 0); act.sa_flags = SA_SIGINFO; act.sa_restorer = 0; FAIL_IF(sigaction(SIGSEGV, &act, NULL) != 0); /* * For these tests, the parent process should clear all bits of * AMR and IAMR, i.e. impose no restrictions, for all available * pkeys. This will be the base for the initial AMR and IAMR * values for all the test thread pairs. * * If the AMR and IAMR bits of all available pkeys are cleared * before running the tests and a fault is generated when * attempting to read, write or execute instructions from a * pkey protected region, the pkey responsible for this must be * the one from the protect-and-access thread since the other * one is fully permissive. Despite that, if the pkey reported * by siginfo is not the restrictive pkey, then there must be a * kernel bug. */ reset_pkeys(0); /* Setup barrier for protect and protect-and-access threads */ FAIL_IF(pthread_attr_init(&attr) != 0); FAIL_IF(pthread_barrier_init(&iteration_barrier, NULL, 2) != 0); /* Setup and start protect and protect-and-read threads */ puts("starting thread pair (protect, protect-and-read)"); r.rights = PKEY_DISABLE_ACCESS; FAIL_IF(pthread_create(&prot_thread, &attr, &protect, &r) != 0); FAIL_IF(pthread_create(&pacc_thread, &attr, &protect_access, &r) != 0); FAIL_IF(pthread_join(prot_thread, NULL) != 0); FAIL_IF(pthread_join(pacc_thread, NULL) != 0); /* Setup and start protect and protect-and-write threads */ puts("starting thread pair (protect, protect-and-write)"); r.rights = PKEY_DISABLE_WRITE; FAIL_IF(pthread_create(&prot_thread, &attr, &protect, &r) != 0); FAIL_IF(pthread_create(&pacc_thread, &attr, &protect_access, &r) != 0); FAIL_IF(pthread_join(prot_thread, NULL) != 0); FAIL_IF(pthread_join(pacc_thread, NULL) != 0); /* Setup and start protect and protect-and-execute threads */ puts("starting thread pair (protect, protect-and-execute)"); r.rights = PKEY_DISABLE_EXECUTE; FAIL_IF(pthread_create(&prot_thread, &attr, &protect, &r) != 0); FAIL_IF(pthread_create(&pacc_thread, &attr, &protect_access, &r) != 0); FAIL_IF(pthread_join(prot_thread, NULL) != 0); FAIL_IF(pthread_join(pacc_thread, NULL) != 0); /* Cleanup */ FAIL_IF(pthread_attr_destroy(&attr) != 0); FAIL_IF(pthread_barrier_destroy(&iteration_barrier) != 0); munmap(r.base, r.size); return 0; } int main(void) { return test_harness(test, "pkey_siginfo"); } |