Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | // SPDX-License-Identifier: GPL-2.0 /* * It tests the mlock/mlock2() when they are invoked * on randomly memory region. */ #include <unistd.h> #include <sys/resource.h> #include <sys/capability.h> #include <sys/mman.h> #include <linux/mman.h> #include <fcntl.h> #include <string.h> #include <sys/ipc.h> #include <sys/shm.h> #include <time.h> #include "../kselftest.h" #include "mlock2.h" #define CHUNK_UNIT (128 * 1024) #define MLOCK_RLIMIT_SIZE (CHUNK_UNIT * 2) #define MLOCK_WITHIN_LIMIT_SIZE CHUNK_UNIT #define MLOCK_OUTOF_LIMIT_SIZE (CHUNK_UNIT * 3) #define TEST_LOOP 100 #define PAGE_ALIGN(size, ps) (((size) + ((ps) - 1)) & ~((ps) - 1)) int set_cap_limits(rlim_t max) { struct rlimit new; cap_t cap = cap_init(); new.rlim_cur = max; new.rlim_max = max; if (setrlimit(RLIMIT_MEMLOCK, &new)) { ksft_perror("setrlimit() returns error\n"); return -1; } /* drop capabilities including CAP_IPC_LOCK */ if (cap_set_proc(cap)) { ksft_perror("cap_set_proc() returns error\n"); return -1; } return 0; } int get_proc_locked_vm_size(void) { FILE *f; int ret = -1; char line[1024] = {0}; unsigned long lock_size = 0; f = fopen("/proc/self/status", "r"); if (!f) ksft_exit_fail_msg("fopen: %s\n", strerror(errno)); while (fgets(line, 1024, f)) { if (strstr(line, "VmLck")) { ret = sscanf(line, "VmLck:\t%8lu kB", &lock_size); if (ret <= 0) { fclose(f); ksft_exit_fail_msg("sscanf() on VmLck error: %s: %d\n", line, ret); } fclose(f); return (int)(lock_size << 10); } } fclose(f); ksft_exit_fail_msg("cannot parse VmLck in /proc/self/status: %s\n", strerror(errno)); return -1; } /* * Get the MMUPageSize of the memory region including input * address from proc file. * * return value: on error case, 0 will be returned. * Otherwise the page size(in bytes) is returned. */ int get_proc_page_size(unsigned long addr) { FILE *smaps; char *line; unsigned long mmupage_size = 0; size_t size; smaps = seek_to_smaps_entry(addr); if (!smaps) ksft_exit_fail_msg("Unable to parse /proc/self/smaps\n"); while (getline(&line, &size, smaps) > 0) { if (!strstr(line, "MMUPageSize")) { free(line); line = NULL; size = 0; continue; } /* found the MMUPageSize of this section */ if (sscanf(line, "MMUPageSize: %8lu kB", &mmupage_size) < 1) ksft_exit_fail_msg("Unable to parse smaps entry for Size:%s\n", line); } free(line); if (smaps) fclose(smaps); return mmupage_size << 10; } /* * Test mlock/mlock2() on provided memory chunk. * It expects the mlock/mlock2() to be successful (within rlimit) * * With allocated memory chunk [p, p + alloc_size), this * test will choose start/len randomly to perform mlock/mlock2 * [start, start + len] memory range. The range is within range * of the allocated chunk. * * The memory region size alloc_size is within the rlimit. * So we always expect a success of mlock/mlock2. * * VmLck is assumed to be 0 before this test. * * return value: 0 - success * else: failure */ static void test_mlock_within_limit(char *p, int alloc_size) { int i; int ret = 0; int locked_vm_size = 0; struct rlimit cur; int page_size = 0; getrlimit(RLIMIT_MEMLOCK, &cur); if (cur.rlim_cur < alloc_size) ksft_exit_fail_msg("alloc_size[%d] < %u rlimit,lead to mlock failure\n", alloc_size, (unsigned int)cur.rlim_cur); srand(time(NULL)); for (i = 0; i < TEST_LOOP; i++) { /* * - choose mlock/mlock2 randomly * - choose lock_size randomly but lock_size < alloc_size * - choose start_offset randomly but p+start_offset+lock_size * < p+alloc_size */ int is_mlock = !!(rand() % 2); int lock_size = rand() % alloc_size; int start_offset = rand() % (alloc_size - lock_size); if (is_mlock) ret = mlock(p + start_offset, lock_size); else ret = mlock2_(p + start_offset, lock_size, MLOCK_ONFAULT); if (ret) ksft_exit_fail_msg("%s() failure at |%p(%d)| mlock:|%p(%d)|\n", is_mlock ? "mlock" : "mlock2", p, alloc_size, p + start_offset, lock_size); } /* * Check VmLck left by the tests. */ locked_vm_size = get_proc_locked_vm_size(); page_size = get_proc_page_size((unsigned long)p); if (locked_vm_size > PAGE_ALIGN(alloc_size, page_size) + page_size) ksft_exit_fail_msg("%s left VmLck:%d on %d chunk\n", __func__, locked_vm_size, alloc_size); ksft_test_result_pass("%s\n", __func__); } /* * We expect the mlock/mlock2() to be fail (outof limitation) * * With allocated memory chunk [p, p + alloc_size), this * test will randomly choose start/len and perform mlock/mlock2 * on [start, start+len] range. * * The memory region size alloc_size is above the rlimit. * And the len to be locked is higher than rlimit. * So we always expect a failure of mlock/mlock2. * No locked page number should be increased as a side effect. * * return value: 0 - success * else: failure */ static void test_mlock_outof_limit(char *p, int alloc_size) { int i; int ret = 0; int locked_vm_size = 0, old_locked_vm_size = 0; struct rlimit cur; getrlimit(RLIMIT_MEMLOCK, &cur); if (cur.rlim_cur >= alloc_size) ksft_exit_fail_msg("alloc_size[%d] >%u rlimit, violates test condition\n", alloc_size, (unsigned int)cur.rlim_cur); old_locked_vm_size = get_proc_locked_vm_size(); srand(time(NULL)); for (i = 0; i < TEST_LOOP; i++) { int is_mlock = !!(rand() % 2); int lock_size = (rand() % (alloc_size - cur.rlim_cur)) + cur.rlim_cur; int start_offset = rand() % (alloc_size - lock_size); if (is_mlock) ret = mlock(p + start_offset, lock_size); else ret = mlock2_(p + start_offset, lock_size, MLOCK_ONFAULT); if (ret == 0) ksft_exit_fail_msg("%s() succeeds? on %p(%d) mlock%p(%d)\n", is_mlock ? "mlock" : "mlock2", p, alloc_size, p + start_offset, lock_size); } locked_vm_size = get_proc_locked_vm_size(); if (locked_vm_size != old_locked_vm_size) ksft_exit_fail_msg("tests leads to new mlocked page: old[%d], new[%d]\n", old_locked_vm_size, locked_vm_size); ksft_test_result_pass("%s\n", __func__); } int main(int argc, char **argv) { char *p = NULL; ksft_print_header(); if (set_cap_limits(MLOCK_RLIMIT_SIZE)) ksft_finished(); ksft_set_plan(2); p = malloc(MLOCK_WITHIN_LIMIT_SIZE); if (p == NULL) ksft_exit_fail_msg("malloc() failure: %s\n", strerror(errno)); test_mlock_within_limit(p, MLOCK_WITHIN_LIMIT_SIZE); munlock(p, MLOCK_WITHIN_LIMIT_SIZE); free(p); p = malloc(MLOCK_OUTOF_LIMIT_SIZE); if (p == NULL) ksft_exit_fail_msg("malloc() failure: %s\n", strerror(errno)); test_mlock_outof_limit(p, MLOCK_OUTOF_LIMIT_SIZE); munlock(p, MLOCK_OUTOF_LIMIT_SIZE); free(p); ksft_finished(); } |