Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2022, Google LLC. */ #define _GNU_SOURCE /* for program_invocation_short_name */ #include <fcntl.h> #include <limits.h> #include <pthread.h> #include <sched.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/kvm_para.h> #include <linux/memfd.h> #include <linux/sizes.h> #include <test_util.h> #include <kvm_util.h> #include <processor.h> #define BASE_DATA_SLOT 10 #define BASE_DATA_GPA ((uint64_t)(1ull << 32)) #define PER_CPU_DATA_SIZE ((uint64_t)(SZ_2M + PAGE_SIZE)) /* Horrific macro so that the line info is captured accurately :-( */ #define memcmp_g(gpa, pattern, size) \ do { \ uint8_t *mem = (uint8_t *)gpa; \ size_t i; \ \ for (i = 0; i < size; i++) \ __GUEST_ASSERT(mem[i] == pattern, \ "Guest expected 0x%x at offset %lu (gpa 0x%lx), got 0x%x", \ pattern, i, gpa + i, mem[i]); \ } while (0) static void memcmp_h(uint8_t *mem, uint64_t gpa, uint8_t pattern, size_t size) { size_t i; for (i = 0; i < size; i++) TEST_ASSERT(mem[i] == pattern, "Host expected 0x%x at gpa 0x%lx, got 0x%x", pattern, gpa + i, mem[i]); } /* * Run memory conversion tests with explicit conversion: * Execute KVM hypercall to map/unmap gpa range which will cause userspace exit * to back/unback private memory. Subsequent accesses by guest to the gpa range * will not cause exit to userspace. * * Test memory conversion scenarios with following steps: * 1) Access private memory using private access and verify that memory contents * are not visible to userspace. * 2) Convert memory to shared using explicit conversions and ensure that * userspace is able to access the shared regions. * 3) Convert memory back to private using explicit conversions and ensure that * userspace is again not able to access converted private regions. */ #define GUEST_STAGE(o, s) { .offset = o, .size = s } enum ucall_syncs { SYNC_SHARED, SYNC_PRIVATE, }; static void guest_sync_shared(uint64_t gpa, uint64_t size, uint8_t current_pattern, uint8_t new_pattern) { GUEST_SYNC5(SYNC_SHARED, gpa, size, current_pattern, new_pattern); } static void guest_sync_private(uint64_t gpa, uint64_t size, uint8_t pattern) { GUEST_SYNC4(SYNC_PRIVATE, gpa, size, pattern); } /* Arbitrary values, KVM doesn't care about the attribute flags. */ #define MAP_GPA_SET_ATTRIBUTES BIT(0) #define MAP_GPA_SHARED BIT(1) #define MAP_GPA_DO_FALLOCATE BIT(2) static void guest_map_mem(uint64_t gpa, uint64_t size, bool map_shared, bool do_fallocate) { uint64_t flags = MAP_GPA_SET_ATTRIBUTES; if (map_shared) flags |= MAP_GPA_SHARED; if (do_fallocate) flags |= MAP_GPA_DO_FALLOCATE; kvm_hypercall_map_gpa_range(gpa, size, flags); } static void guest_map_shared(uint64_t gpa, uint64_t size, bool do_fallocate) { guest_map_mem(gpa, size, true, do_fallocate); } static void guest_map_private(uint64_t gpa, uint64_t size, bool do_fallocate) { guest_map_mem(gpa, size, false, do_fallocate); } struct { uint64_t offset; uint64_t size; } static const test_ranges[] = { GUEST_STAGE(0, PAGE_SIZE), GUEST_STAGE(0, SZ_2M), GUEST_STAGE(PAGE_SIZE, PAGE_SIZE), GUEST_STAGE(PAGE_SIZE, SZ_2M), GUEST_STAGE(SZ_2M, PAGE_SIZE), }; static void guest_test_explicit_conversion(uint64_t base_gpa, bool do_fallocate) { const uint8_t def_p = 0xaa; const uint8_t init_p = 0xcc; uint64_t j; int i; /* Memory should be shared by default. */ memset((void *)base_gpa, def_p, PER_CPU_DATA_SIZE); memcmp_g(base_gpa, def_p, PER_CPU_DATA_SIZE); guest_sync_shared(base_gpa, PER_CPU_DATA_SIZE, def_p, init_p); memcmp_g(base_gpa, init_p, PER_CPU_DATA_SIZE); for (i = 0; i < ARRAY_SIZE(test_ranges); i++) { uint64_t gpa = base_gpa + test_ranges[i].offset; uint64_t size = test_ranges[i].size; uint8_t p1 = 0x11; uint8_t p2 = 0x22; uint8_t p3 = 0x33; uint8_t p4 = 0x44; /* * Set the test region to pattern one to differentiate it from * the data range as a whole (contains the initial pattern). */ memset((void *)gpa, p1, size); /* * Convert to private, set and verify the private data, and * then verify that the rest of the data (map shared) still * holds the initial pattern, and that the host always sees the * shared memory (initial pattern). Unlike shared memory, * punching a hole in private memory is destructive, i.e. * previous values aren't guaranteed to be preserved. */ guest_map_private(gpa, size, do_fallocate); if (size > PAGE_SIZE) { memset((void *)gpa, p2, PAGE_SIZE); goto skip; } memset((void *)gpa, p2, size); guest_sync_private(gpa, size, p1); /* * Verify that the private memory was set to pattern two, and * that shared memory still holds the initial pattern. */ memcmp_g(gpa, p2, size); if (gpa > base_gpa) memcmp_g(base_gpa, init_p, gpa - base_gpa); if (gpa + size < base_gpa + PER_CPU_DATA_SIZE) memcmp_g(gpa + size, init_p, (base_gpa + PER_CPU_DATA_SIZE) - (gpa + size)); /* * Convert odd-number page frames back to shared to verify KVM * also correctly handles holes in private ranges. */ for (j = 0; j < size; j += PAGE_SIZE) { if ((j >> PAGE_SHIFT) & 1) { guest_map_shared(gpa + j, PAGE_SIZE, do_fallocate); guest_sync_shared(gpa + j, PAGE_SIZE, p1, p3); memcmp_g(gpa + j, p3, PAGE_SIZE); } else { guest_sync_private(gpa + j, PAGE_SIZE, p1); } } skip: /* * Convert the entire region back to shared, explicitly write * pattern three to fill in the even-number frames before * asking the host to verify (and write pattern four). */ guest_map_shared(gpa, size, do_fallocate); memset((void *)gpa, p3, size); guest_sync_shared(gpa, size, p3, p4); memcmp_g(gpa, p4, size); /* Reset the shared memory back to the initial pattern. */ memset((void *)gpa, init_p, size); /* * Free (via PUNCH_HOLE) *all* private memory so that the next * iteration starts from a clean slate, e.g. with respect to * whether or not there are pages/folios in guest_mem. */ guest_map_shared(base_gpa, PER_CPU_DATA_SIZE, true); } } static void guest_punch_hole(uint64_t gpa, uint64_t size) { /* "Mapping" memory shared via fallocate() is done via PUNCH_HOLE. */ uint64_t flags = MAP_GPA_SHARED | MAP_GPA_DO_FALLOCATE; kvm_hypercall_map_gpa_range(gpa, size, flags); } /* * Test that PUNCH_HOLE actually frees memory by punching holes without doing a * proper conversion. Freeing (PUNCH_HOLE) should zap SPTEs, and reallocating * (subsequent fault) should zero memory. */ static void guest_test_punch_hole(uint64_t base_gpa, bool precise) { const uint8_t init_p = 0xcc; int i; /* * Convert the entire range to private, this testcase is all about * punching holes in guest_memfd, i.e. shared mappings aren't needed. */ guest_map_private(base_gpa, PER_CPU_DATA_SIZE, false); for (i = 0; i < ARRAY_SIZE(test_ranges); i++) { uint64_t gpa = base_gpa + test_ranges[i].offset; uint64_t size = test_ranges[i].size; /* * Free all memory before each iteration, even for the !precise * case where the memory will be faulted back in. Freeing and * reallocating should obviously work, and freeing all memory * minimizes the probability of cross-testcase influence. */ guest_punch_hole(base_gpa, PER_CPU_DATA_SIZE); /* Fault-in and initialize memory, and verify the pattern. */ if (precise) { memset((void *)gpa, init_p, size); memcmp_g(gpa, init_p, size); } else { memset((void *)base_gpa, init_p, PER_CPU_DATA_SIZE); memcmp_g(base_gpa, init_p, PER_CPU_DATA_SIZE); } /* * Punch a hole at the target range and verify that reads from * the guest succeed and return zeroes. */ guest_punch_hole(gpa, size); memcmp_g(gpa, 0, size); } } static void guest_code(uint64_t base_gpa) { /* * Run the conversion test twice, with and without doing fallocate() on * the guest_memfd backing when converting between shared and private. */ guest_test_explicit_conversion(base_gpa, false); guest_test_explicit_conversion(base_gpa, true); /* * Run the PUNCH_HOLE test twice too, once with the entire guest_memfd * faulted in, once with only the target range faulted in. */ guest_test_punch_hole(base_gpa, false); guest_test_punch_hole(base_gpa, true); GUEST_DONE(); } static void handle_exit_hypercall(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; uint64_t gpa = run->hypercall.args[0]; uint64_t size = run->hypercall.args[1] * PAGE_SIZE; bool set_attributes = run->hypercall.args[2] & MAP_GPA_SET_ATTRIBUTES; bool map_shared = run->hypercall.args[2] & MAP_GPA_SHARED; bool do_fallocate = run->hypercall.args[2] & MAP_GPA_DO_FALLOCATE; struct kvm_vm *vm = vcpu->vm; TEST_ASSERT(run->hypercall.nr == KVM_HC_MAP_GPA_RANGE, "Wanted MAP_GPA_RANGE (%u), got '%llu'", KVM_HC_MAP_GPA_RANGE, run->hypercall.nr); if (do_fallocate) vm_guest_mem_fallocate(vm, gpa, size, map_shared); if (set_attributes) vm_set_memory_attributes(vm, gpa, size, map_shared ? 0 : KVM_MEMORY_ATTRIBUTE_PRIVATE); run->hypercall.ret = 0; } static bool run_vcpus; static void *__test_mem_conversions(void *__vcpu) { struct kvm_vcpu *vcpu = __vcpu; struct kvm_run *run = vcpu->run; struct kvm_vm *vm = vcpu->vm; struct ucall uc; while (!READ_ONCE(run_vcpus)) ; for ( ;; ) { vcpu_run(vcpu); if (run->exit_reason == KVM_EXIT_HYPERCALL) { handle_exit_hypercall(vcpu); continue; } TEST_ASSERT(run->exit_reason == KVM_EXIT_IO, "Wanted KVM_EXIT_IO, got exit reason: %u (%s)", run->exit_reason, exit_reason_str(run->exit_reason)); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); case UCALL_SYNC: { uint64_t gpa = uc.args[1]; size_t size = uc.args[2]; size_t i; TEST_ASSERT(uc.args[0] == SYNC_SHARED || uc.args[0] == SYNC_PRIVATE, "Unknown sync command '%ld'", uc.args[0]); for (i = 0; i < size; i += vm->page_size) { size_t nr_bytes = min_t(size_t, vm->page_size, size - i); uint8_t *hva = addr_gpa2hva(vm, gpa + i); /* In all cases, the host should observe the shared data. */ memcmp_h(hva, gpa + i, uc.args[3], nr_bytes); /* For shared, write the new pattern to guest memory. */ if (uc.args[0] == SYNC_SHARED) memset(hva, uc.args[4], nr_bytes); } break; } case UCALL_DONE: return NULL; default: TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd); } } } static void test_mem_conversions(enum vm_mem_backing_src_type src_type, uint32_t nr_vcpus, uint32_t nr_memslots) { /* * Allocate enough memory so that each vCPU's chunk of memory can be * naturally aligned with respect to the size of the backing store. */ const size_t alignment = max_t(size_t, SZ_2M, get_backing_src_pagesz(src_type)); const size_t per_cpu_size = align_up(PER_CPU_DATA_SIZE, alignment); const size_t memfd_size = per_cpu_size * nr_vcpus; const size_t slot_size = memfd_size / nr_memslots; struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; pthread_t threads[KVM_MAX_VCPUS]; struct kvm_vm *vm; int memfd, i, r; const struct vm_shape shape = { .mode = VM_MODE_DEFAULT, .type = KVM_X86_SW_PROTECTED_VM, }; TEST_ASSERT(slot_size * nr_memslots == memfd_size, "The memfd size (0x%lx) needs to be cleanly divisible by the number of memslots (%u)", memfd_size, nr_memslots); vm = __vm_create_with_vcpus(shape, nr_vcpus, 0, guest_code, vcpus); vm_enable_cap(vm, KVM_CAP_EXIT_HYPERCALL, (1 << KVM_HC_MAP_GPA_RANGE)); memfd = vm_create_guest_memfd(vm, memfd_size, 0); for (i = 0; i < nr_memslots; i++) vm_mem_add(vm, src_type, BASE_DATA_GPA + slot_size * i, BASE_DATA_SLOT + i, slot_size / vm->page_size, KVM_MEM_GUEST_MEMFD, memfd, slot_size * i); for (i = 0; i < nr_vcpus; i++) { uint64_t gpa = BASE_DATA_GPA + i * per_cpu_size; vcpu_args_set(vcpus[i], 1, gpa); /* * Map only what is needed so that an out-of-bounds access * results #PF => SHUTDOWN instead of data corruption. */ virt_map(vm, gpa, gpa, PER_CPU_DATA_SIZE / vm->page_size); pthread_create(&threads[i], NULL, __test_mem_conversions, vcpus[i]); } WRITE_ONCE(run_vcpus, true); for (i = 0; i < nr_vcpus; i++) pthread_join(threads[i], NULL); kvm_vm_free(vm); /* * Allocate and free memory from the guest_memfd after closing the VM * fd. The guest_memfd is gifted a reference to its owning VM, i.e. * should prevent the VM from being fully destroyed until the last * reference to the guest_memfd is also put. */ r = fallocate(memfd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, 0, memfd_size); TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); r = fallocate(memfd, FALLOC_FL_KEEP_SIZE, 0, memfd_size); TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); close(memfd); } static void usage(const char *cmd) { puts(""); printf("usage: %s [-h] [-m nr_memslots] [-s mem_type] [-n nr_vcpus]\n", cmd); puts(""); backing_src_help("-s"); puts(""); puts(" -n: specify the number of vcpus (default: 1)"); puts(""); puts(" -m: specify the number of memslots (default: 1)"); puts(""); } int main(int argc, char *argv[]) { enum vm_mem_backing_src_type src_type = DEFAULT_VM_MEM_SRC; uint32_t nr_memslots = 1; uint32_t nr_vcpus = 1; int opt; TEST_REQUIRE(kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM)); while ((opt = getopt(argc, argv, "hm:s:n:")) != -1) { switch (opt) { case 's': src_type = parse_backing_src_type(optarg); break; case 'n': nr_vcpus = atoi_positive("nr_vcpus", optarg); break; case 'm': nr_memslots = atoi_positive("nr_memslots", optarg); break; case 'h': default: usage(argv[0]); exit(0); } } test_mem_conversions(src_type, nr_vcpus, nr_memslots); return 0; } |