Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 | // SPDX-License-Identifier: GPL-2.0-only /* * Sparse bit array * * Copyright (C) 2018, Google LLC. * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver) * * This library provides functions to support a memory efficient bit array, * with an index size of 2^64. A sparsebit array is allocated through * the use sparsebit_alloc() and free'd via sparsebit_free(), * such as in the following: * * struct sparsebit *s; * s = sparsebit_alloc(); * sparsebit_free(&s); * * The struct sparsebit type resolves down to a struct sparsebit. * Note that, sparsebit_free() takes a pointer to the sparsebit * structure. This is so that sparsebit_free() is able to poison * the pointer (e.g. set it to NULL) to the struct sparsebit before * returning to the caller. * * Between the return of sparsebit_alloc() and the call of * sparsebit_free(), there are multiple query and modifying operations * that can be performed on the allocated sparsebit array. All of * these operations take as a parameter the value returned from * sparsebit_alloc() and most also take a bit index. Frequently * used routines include: * * ---- Query Operations * sparsebit_is_set(s, idx) * sparsebit_is_clear(s, idx) * sparsebit_any_set(s) * sparsebit_first_set(s) * sparsebit_next_set(s, prev_idx) * * ---- Modifying Operations * sparsebit_set(s, idx) * sparsebit_clear(s, idx) * sparsebit_set_num(s, idx, num); * sparsebit_clear_num(s, idx, num); * * A common operation, is to itterate over all the bits set in a test * sparsebit array. This can be done via code with the following structure: * * sparsebit_idx_t idx; * if (sparsebit_any_set(s)) { * idx = sparsebit_first_set(s); * do { * ... * idx = sparsebit_next_set(s, idx); * } while (idx != 0); * } * * The index of the first bit set needs to be obtained via * sparsebit_first_set(), because sparsebit_next_set(), needs * the index of the previously set. The sparsebit_idx_t type is * unsigned, so there is no previous index before 0 that is available. * Also, the call to sparsebit_first_set() is not made unless there * is at least 1 bit in the array set. This is because sparsebit_first_set() * aborts if sparsebit_first_set() is called with no bits set. * It is the callers responsibility to assure that the * sparsebit array has at least a single bit set before calling * sparsebit_first_set(). * * ==== Implementation Overview ==== * For the most part the internal implementation of sparsebit is * opaque to the caller. One important implementation detail that the * caller may need to be aware of is the spatial complexity of the * implementation. This implementation of a sparsebit array is not * only sparse, in that it uses memory proportional to the number of bits * set. It is also efficient in memory usage when most of the bits are * set. * * At a high-level the state of the bit settings are maintained through * the use of a binary-search tree, where each node contains at least * the following members: * * typedef uint64_t sparsebit_idx_t; * typedef uint64_t sparsebit_num_t; * * sparsebit_idx_t idx; * uint32_t mask; * sparsebit_num_t num_after; * * The idx member contains the bit index of the first bit described by this * node, while the mask member stores the setting of the first 32-bits. * The setting of the bit at idx + n, where 0 <= n < 32, is located in the * mask member at 1 << n. * * Nodes are sorted by idx and the bits described by two nodes will never * overlap. The idx member is always aligned to the mask size, i.e. a * multiple of 32. * * Beyond a typical implementation, the nodes in this implementation also * contains a member named num_after. The num_after member holds the * number of bits immediately after the mask bits that are contiguously set. * The use of the num_after member allows this implementation to efficiently * represent cases where most bits are set. For example, the case of all * but the last two bits set, is represented by the following two nodes: * * node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0 * node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0 * * ==== Invariants ==== * This implementation usses the following invariants: * * + Node are only used to represent bits that are set. * Nodes with a mask of 0 and num_after of 0 are not allowed. * * + Sum of bits set in all the nodes is equal to the value of * the struct sparsebit_pvt num_set member. * * + The setting of at least one bit is always described in a nodes * mask (mask >= 1). * * + A node with all mask bits set only occurs when the last bit * described by the previous node is not equal to this nodes * starting index - 1. All such occurences of this condition are * avoided by moving the setting of the nodes mask bits into * the previous nodes num_after setting. * * + Node starting index is evenly divisible by the number of bits * within a nodes mask member. * * + Nodes never represent a range of bits that wrap around the * highest supported index. * * (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1) * * As a consequence of the above, the num_after member of a node * will always be <=: * * maximum_index - nodes_starting_index - number_of_mask_bits * * + Nodes within the binary search tree are sorted based on each * nodes starting index. * * + The range of bits described by any two nodes do not overlap. The * range of bits described by a single node is: * * start: node->idx * end (inclusive): node->idx + MASK_BITS + node->num_after - 1; * * Note, at times these invariants are temporarily violated for a * specific portion of the code. For example, when setting a mask * bit, there is a small delay between when the mask bit is set and the * value in the struct sparsebit_pvt num_set member is updated. Other * temporary violations occur when node_split() is called with a specified * index and assures that a node where its mask represents the bit * at the specified index exists. At times to do this node_split() * must split an existing node into two nodes or create a node that * has no bits set. Such temporary violations must be corrected before * returning to the caller. These corrections are typically performed * by the local function node_reduce(). */ #include "test_util.h" #include "sparsebit.h" #include <limits.h> #include <assert.h> #define DUMP_LINE_MAX 100 /* Does not include indent amount */ typedef uint32_t mask_t; #define MASK_BITS (sizeof(mask_t) * CHAR_BIT) struct node { struct node *parent; struct node *left; struct node *right; sparsebit_idx_t idx; /* index of least-significant bit in mask */ sparsebit_num_t num_after; /* num contiguously set after mask */ mask_t mask; }; struct sparsebit { /* * Points to root node of the binary search * tree. Equal to NULL when no bits are set in * the entire sparsebit array. */ struct node *root; /* * A redundant count of the total number of bits set. Used for * diagnostic purposes and to change the time complexity of * sparsebit_num_set() from O(n) to O(1). * Note: Due to overflow, a value of 0 means none or all set. */ sparsebit_num_t num_set; }; /* Returns the number of set bits described by the settings * of the node pointed to by nodep. */ static sparsebit_num_t node_num_set(struct node *nodep) { return nodep->num_after + __builtin_popcount(nodep->mask); } /* Returns a pointer to the node that describes the * lowest bit index. */ static struct node *node_first(const struct sparsebit *s) { struct node *nodep; for (nodep = s->root; nodep && nodep->left; nodep = nodep->left) ; return nodep; } /* Returns a pointer to the node that describes the * lowest bit index > the index of the node pointed to by np. * Returns NULL if no node with a higher index exists. */ static struct node *node_next(const struct sparsebit *s, struct node *np) { struct node *nodep = np; /* * If current node has a right child, next node is the left-most * of the right child. */ if (nodep->right) { for (nodep = nodep->right; nodep->left; nodep = nodep->left) ; return nodep; } /* * No right child. Go up until node is left child of a parent. * That parent is then the next node. */ while (nodep->parent && nodep == nodep->parent->right) nodep = nodep->parent; return nodep->parent; } /* Searches for and returns a pointer to the node that describes the * highest index < the index of the node pointed to by np. * Returns NULL if no node with a lower index exists. */ static struct node *node_prev(const struct sparsebit *s, struct node *np) { struct node *nodep = np; /* * If current node has a left child, next node is the right-most * of the left child. */ if (nodep->left) { for (nodep = nodep->left; nodep->right; nodep = nodep->right) ; return (struct node *) nodep; } /* * No left child. Go up until node is right child of a parent. * That parent is then the next node. */ while (nodep->parent && nodep == nodep->parent->left) nodep = nodep->parent; return (struct node *) nodep->parent; } /* Allocates space to hold a copy of the node sub-tree pointed to by * subtree and duplicates the bit settings to the newly allocated nodes. * Returns the newly allocated copy of subtree. */ static struct node *node_copy_subtree(const struct node *subtree) { struct node *root; /* Duplicate the node at the root of the subtree */ root = calloc(1, sizeof(*root)); if (!root) { perror("calloc"); abort(); } root->idx = subtree->idx; root->mask = subtree->mask; root->num_after = subtree->num_after; /* As needed, recursively duplicate the left and right subtrees */ if (subtree->left) { root->left = node_copy_subtree(subtree->left); root->left->parent = root; } if (subtree->right) { root->right = node_copy_subtree(subtree->right); root->right->parent = root; } return root; } /* Searches for and returns a pointer to the node that describes the setting * of the bit given by idx. A node describes the setting of a bit if its * index is within the bits described by the mask bits or the number of * contiguous bits set after the mask. Returns NULL if there is no such node. */ static struct node *node_find(const struct sparsebit *s, sparsebit_idx_t idx) { struct node *nodep; /* Find the node that describes the setting of the bit at idx */ for (nodep = s->root; nodep; nodep = nodep->idx > idx ? nodep->left : nodep->right) { if (idx >= nodep->idx && idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) break; } return nodep; } /* Entry Requirements: * + A node that describes the setting of idx is not already present. * * Adds a new node to describe the setting of the bit at the index given * by idx. Returns a pointer to the newly added node. * * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced. */ static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx) { struct node *nodep, *parentp, *prev; /* Allocate and initialize the new node. */ nodep = calloc(1, sizeof(*nodep)); if (!nodep) { perror("calloc"); abort(); } nodep->idx = idx & -MASK_BITS; /* If no nodes, set it up as the root node. */ if (!s->root) { s->root = nodep; return nodep; } /* * Find the parent where the new node should be attached * and add the node there. */ parentp = s->root; while (true) { if (idx < parentp->idx) { if (!parentp->left) { parentp->left = nodep; nodep->parent = parentp; break; } parentp = parentp->left; } else { assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1); if (!parentp->right) { parentp->right = nodep; nodep->parent = parentp; break; } parentp = parentp->right; } } /* * Does num_after bits of previous node overlap with the mask * of the new node? If so set the bits in the new nodes mask * and reduce the previous nodes num_after. */ prev = node_prev(s, nodep); while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) { unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1) - nodep->idx; assert(prev->num_after > 0); assert(n1 < MASK_BITS); assert(!(nodep->mask & (1 << n1))); nodep->mask |= (1 << n1); prev->num_after--; } return nodep; } /* Returns whether all the bits in the sparsebit array are set. */ bool sparsebit_all_set(const struct sparsebit *s) { /* * If any nodes there must be at least one bit set. Only case * where a bit is set and total num set is 0, is when all bits * are set. */ return s->root && s->num_set == 0; } /* Clears all bits described by the node pointed to by nodep, then * removes the node. */ static void node_rm(struct sparsebit *s, struct node *nodep) { struct node *tmp; sparsebit_num_t num_set; num_set = node_num_set(nodep); assert(s->num_set >= num_set || sparsebit_all_set(s)); s->num_set -= node_num_set(nodep); /* Have both left and right child */ if (nodep->left && nodep->right) { /* * Move left children to the leftmost leaf node * of the right child. */ for (tmp = nodep->right; tmp->left; tmp = tmp->left) ; tmp->left = nodep->left; nodep->left = NULL; tmp->left->parent = tmp; } /* Left only child */ if (nodep->left) { if (!nodep->parent) { s->root = nodep->left; nodep->left->parent = NULL; } else { nodep->left->parent = nodep->parent; if (nodep == nodep->parent->left) nodep->parent->left = nodep->left; else { assert(nodep == nodep->parent->right); nodep->parent->right = nodep->left; } } nodep->parent = nodep->left = nodep->right = NULL; free(nodep); return; } /* Right only child */ if (nodep->right) { if (!nodep->parent) { s->root = nodep->right; nodep->right->parent = NULL; } else { nodep->right->parent = nodep->parent; if (nodep == nodep->parent->left) nodep->parent->left = nodep->right; else { assert(nodep == nodep->parent->right); nodep->parent->right = nodep->right; } } nodep->parent = nodep->left = nodep->right = NULL; free(nodep); return; } /* Leaf Node */ if (!nodep->parent) { s->root = NULL; } else { if (nodep->parent->left == nodep) nodep->parent->left = NULL; else { assert(nodep == nodep->parent->right); nodep->parent->right = NULL; } } nodep->parent = nodep->left = nodep->right = NULL; free(nodep); return; } /* Splits the node containing the bit at idx so that there is a node * that starts at the specified index. If no such node exists, a new * node at the specified index is created. Returns the new node. * * idx must start of a mask boundary. */ static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx) { struct node *nodep1, *nodep2; sparsebit_idx_t offset; sparsebit_num_t orig_num_after; assert(!(idx % MASK_BITS)); /* * Is there a node that describes the setting of idx? * If not, add it. */ nodep1 = node_find(s, idx); if (!nodep1) return node_add(s, idx); /* * All done if the starting index of the node is where the * split should occur. */ if (nodep1->idx == idx) return nodep1; /* * Split point not at start of mask, so it must be part of * bits described by num_after. */ /* * Calculate offset within num_after for where the split is * to occur. */ offset = idx - (nodep1->idx + MASK_BITS); orig_num_after = nodep1->num_after; /* * Add a new node to describe the bits starting at * the split point. */ nodep1->num_after = offset; nodep2 = node_add(s, idx); /* Move bits after the split point into the new node */ nodep2->num_after = orig_num_after - offset; if (nodep2->num_after >= MASK_BITS) { nodep2->mask = ~(mask_t) 0; nodep2->num_after -= MASK_BITS; } else { nodep2->mask = (1 << nodep2->num_after) - 1; nodep2->num_after = 0; } return nodep2; } /* Iteratively reduces the node pointed to by nodep and its adjacent * nodes into a more compact form. For example, a node with a mask with * all bits set adjacent to a previous node, will get combined into a * single node with an increased num_after setting. * * After each reduction, a further check is made to see if additional * reductions are possible with the new previous and next nodes. Note, * a search for a reduction is only done across the nodes nearest nodep * and those that became part of a reduction. Reductions beyond nodep * and the adjacent nodes that are reduced are not discovered. It is the * responsibility of the caller to pass a nodep that is within one node * of each possible reduction. * * This function does not fix the temporary violation of all invariants. * For example it does not fix the case where the bit settings described * by two or more nodes overlap. Such a violation introduces the potential * complication of a bit setting for a specific index having different settings * in different nodes. This would then introduce the further complication * of which node has the correct setting of the bit and thus such conditions * are not allowed. * * This function is designed to fix invariant violations that are introduced * by node_split() and by changes to the nodes mask or num_after members. * For example, when setting a bit within a nodes mask, the function that * sets the bit doesn't have to worry about whether the setting of that * bit caused the mask to have leading only or trailing only bits set. * Instead, the function can call node_reduce(), with nodep equal to the * node address that it set a mask bit in, and node_reduce() will notice * the cases of leading or trailing only bits and that there is an * adjacent node that the bit settings could be merged into. * * This implementation specifically detects and corrects violation of the * following invariants: * * + Node are only used to represent bits that are set. * Nodes with a mask of 0 and num_after of 0 are not allowed. * * + The setting of at least one bit is always described in a nodes * mask (mask >= 1). * * + A node with all mask bits set only occurs when the last bit * described by the previous node is not equal to this nodes * starting index - 1. All such occurences of this condition are * avoided by moving the setting of the nodes mask bits into * the previous nodes num_after setting. */ static void node_reduce(struct sparsebit *s, struct node *nodep) { bool reduction_performed; do { reduction_performed = false; struct node *prev, *next, *tmp; /* 1) Potential reductions within the current node. */ /* Nodes with all bits cleared may be removed. */ if (nodep->mask == 0 && nodep->num_after == 0) { /* * About to remove the node pointed to by * nodep, which normally would cause a problem * for the next pass through the reduction loop, * because the node at the starting point no longer * exists. This potential problem is handled * by first remembering the location of the next * or previous nodes. Doesn't matter which, because * once the node at nodep is removed, there will be * no other nodes between prev and next. * * Note, the checks performed on nodep against both * both prev and next both check for an adjacent * node that can be reduced into a single node. As * such, after removing the node at nodep, doesn't * matter whether the nodep for the next pass * through the loop is equal to the previous pass * prev or next node. Either way, on the next pass * the one not selected will become either the * prev or next node. */ tmp = node_next(s, nodep); if (!tmp) tmp = node_prev(s, nodep); node_rm(s, nodep); nodep = tmp; reduction_performed = true; continue; } /* * When the mask is 0, can reduce the amount of num_after * bits by moving the initial num_after bits into the mask. */ if (nodep->mask == 0) { assert(nodep->num_after != 0); assert(nodep->idx + MASK_BITS > nodep->idx); nodep->idx += MASK_BITS; if (nodep->num_after >= MASK_BITS) { nodep->mask = ~0; nodep->num_after -= MASK_BITS; } else { nodep->mask = (1u << nodep->num_after) - 1; nodep->num_after = 0; } reduction_performed = true; continue; } /* * 2) Potential reductions between the current and * previous nodes. */ prev = node_prev(s, nodep); if (prev) { sparsebit_idx_t prev_highest_bit; /* Nodes with no bits set can be removed. */ if (prev->mask == 0 && prev->num_after == 0) { node_rm(s, prev); reduction_performed = true; continue; } /* * All mask bits set and previous node has * adjacent index. */ if (nodep->mask + 1 == 0 && prev->idx + MASK_BITS == nodep->idx) { prev->num_after += MASK_BITS + nodep->num_after; nodep->mask = 0; nodep->num_after = 0; reduction_performed = true; continue; } /* * Is node adjacent to previous node and the node * contains a single contiguous range of bits * starting from the beginning of the mask? */ prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after; if (prev_highest_bit + 1 == nodep->idx && (nodep->mask | (nodep->mask >> 1)) == nodep->mask) { /* * How many contiguous bits are there? * Is equal to the total number of set * bits, due to an earlier check that * there is a single contiguous range of * set bits. */ unsigned int num_contiguous = __builtin_popcount(nodep->mask); assert((num_contiguous > 0) && ((1ULL << num_contiguous) - 1) == nodep->mask); prev->num_after += num_contiguous; nodep->mask = 0; /* * For predictable performance, handle special * case where all mask bits are set and there * is a non-zero num_after setting. This code * is functionally correct without the following * conditionalized statements, but without them * the value of num_after is only reduced by * the number of mask bits per pass. There are * cases where num_after can be close to 2^64. * Without this code it could take nearly * (2^64) / 32 passes to perform the full * reduction. */ if (num_contiguous == MASK_BITS) { prev->num_after += nodep->num_after; nodep->num_after = 0; } reduction_performed = true; continue; } } /* * 3) Potential reductions between the current and * next nodes. */ next = node_next(s, nodep); if (next) { /* Nodes with no bits set can be removed. */ if (next->mask == 0 && next->num_after == 0) { node_rm(s, next); reduction_performed = true; continue; } /* * Is next node index adjacent to current node * and has a mask with all bits set? */ if (next->idx == nodep->idx + MASK_BITS + nodep->num_after && next->mask == ~(mask_t) 0) { nodep->num_after += MASK_BITS; next->mask = 0; nodep->num_after += next->num_after; next->num_after = 0; node_rm(s, next); next = NULL; reduction_performed = true; continue; } } } while (nodep && reduction_performed); } /* Returns whether the bit at the index given by idx, within the * sparsebit array is set or not. */ bool sparsebit_is_set(const struct sparsebit *s, sparsebit_idx_t idx) { struct node *nodep; /* Find the node that describes the setting of the bit at idx */ for (nodep = s->root; nodep; nodep = nodep->idx > idx ? nodep->left : nodep->right) if (idx >= nodep->idx && idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) goto have_node; return false; have_node: /* Bit is set if it is any of the bits described by num_after */ if (nodep->num_after && idx >= nodep->idx + MASK_BITS) return true; /* Is the corresponding mask bit set */ assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS); return !!(nodep->mask & (1 << (idx - nodep->idx))); } /* Within the sparsebit array pointed to by s, sets the bit * at the index given by idx. */ static void bit_set(struct sparsebit *s, sparsebit_idx_t idx) { struct node *nodep; /* Skip bits that are already set */ if (sparsebit_is_set(s, idx)) return; /* * Get a node where the bit at idx is described by the mask. * The node_split will also create a node, if there isn't * already a node that describes the setting of bit. */ nodep = node_split(s, idx & -MASK_BITS); /* Set the bit within the nodes mask */ assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); assert(!(nodep->mask & (1 << (idx - nodep->idx)))); nodep->mask |= 1 << (idx - nodep->idx); s->num_set++; node_reduce(s, nodep); } /* Within the sparsebit array pointed to by s, clears the bit * at the index given by idx. */ static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx) { struct node *nodep; /* Skip bits that are already cleared */ if (!sparsebit_is_set(s, idx)) return; /* Is there a node that describes the setting of this bit? */ nodep = node_find(s, idx); if (!nodep) return; /* * If a num_after bit, split the node, so that the bit is * part of a node mask. */ if (idx >= nodep->idx + MASK_BITS) nodep = node_split(s, idx & -MASK_BITS); /* * After node_split above, bit at idx should be within the mask. * Clear that bit. */ assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); assert(nodep->mask & (1 << (idx - nodep->idx))); nodep->mask &= ~(1 << (idx - nodep->idx)); assert(s->num_set > 0 || sparsebit_all_set(s)); s->num_set--; node_reduce(s, nodep); } /* Recursively dumps to the FILE stream given by stream the contents * of the sub-tree of nodes pointed to by nodep. Each line of output * is prefixed by the number of spaces given by indent. On each * recursion, the indent amount is increased by 2. This causes nodes * at each level deeper into the binary search tree to be displayed * with a greater indent. */ static void dump_nodes(FILE *stream, struct node *nodep, unsigned int indent) { char *node_type; /* Dump contents of node */ if (!nodep->parent) node_type = "root"; else if (nodep == nodep->parent->left) node_type = "left"; else { assert(nodep == nodep->parent->right); node_type = "right"; } fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep); fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "", nodep->parent, nodep->left, nodep->right); fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n", indent, "", nodep->idx, nodep->mask, nodep->num_after); /* If present, dump contents of left child nodes */ if (nodep->left) dump_nodes(stream, nodep->left, indent + 2); /* If present, dump contents of right child nodes */ if (nodep->right) dump_nodes(stream, nodep->right, indent + 2); } static inline sparsebit_idx_t node_first_set(struct node *nodep, int start) { mask_t leading = (mask_t)1 << start; int n1 = __builtin_ctz(nodep->mask & -leading); return nodep->idx + n1; } static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start) { mask_t leading = (mask_t)1 << start; int n1 = __builtin_ctz(~nodep->mask & -leading); return nodep->idx + n1; } /* Dumps to the FILE stream specified by stream, the implementation dependent * internal state of s. Each line of output is prefixed with the number * of spaces given by indent. The output is completely implementation * dependent and subject to change. Output from this function should only * be used for diagnostic purposes. For example, this function can be * used by test cases after they detect an unexpected condition, as a means * to capture diagnostic information. */ static void sparsebit_dump_internal(FILE *stream, const struct sparsebit *s, unsigned int indent) { /* Dump the contents of s */ fprintf(stream, "%*sroot: %p\n", indent, "", s->root); fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set); if (s->root) dump_nodes(stream, s->root, indent); } /* Allocates and returns a new sparsebit array. The initial state * of the newly allocated sparsebit array has all bits cleared. */ struct sparsebit *sparsebit_alloc(void) { struct sparsebit *s; /* Allocate top level structure. */ s = calloc(1, sizeof(*s)); if (!s) { perror("calloc"); abort(); } return s; } /* Frees the implementation dependent data for the sparsebit array * pointed to by s and poisons the pointer to that data. */ void sparsebit_free(struct sparsebit **sbitp) { struct sparsebit *s = *sbitp; if (!s) return; sparsebit_clear_all(s); free(s); *sbitp = NULL; } /* Makes a copy of the sparsebit array given by s, to the sparsebit * array given by d. Note, d must have already been allocated via * sparsebit_alloc(). It can though already have bits set, which * if different from src will be cleared. */ void sparsebit_copy(struct sparsebit *d, const struct sparsebit *s) { /* First clear any bits already set in the destination */ sparsebit_clear_all(d); if (s->root) { d->root = node_copy_subtree(s->root); d->num_set = s->num_set; } } /* Returns whether num consecutive bits starting at idx are all set. */ bool sparsebit_is_set_num(const struct sparsebit *s, sparsebit_idx_t idx, sparsebit_num_t num) { sparsebit_idx_t next_cleared; assert(num > 0); assert(idx + num - 1 >= idx); /* With num > 0, the first bit must be set. */ if (!sparsebit_is_set(s, idx)) return false; /* Find the next cleared bit */ next_cleared = sparsebit_next_clear(s, idx); /* * If no cleared bits beyond idx, then there are at least num * set bits. idx + num doesn't wrap. Otherwise check if * there are enough set bits between idx and the next cleared bit. */ return next_cleared == 0 || next_cleared - idx >= num; } /* Returns whether the bit at the index given by idx. */ bool sparsebit_is_clear(const struct sparsebit *s, sparsebit_idx_t idx) { return !sparsebit_is_set(s, idx); } /* Returns whether num consecutive bits starting at idx are all cleared. */ bool sparsebit_is_clear_num(const struct sparsebit *s, sparsebit_idx_t idx, sparsebit_num_t num) { sparsebit_idx_t next_set; assert(num > 0); assert(idx + num - 1 >= idx); /* With num > 0, the first bit must be cleared. */ if (!sparsebit_is_clear(s, idx)) return false; /* Find the next set bit */ next_set = sparsebit_next_set(s, idx); /* * If no set bits beyond idx, then there are at least num * cleared bits. idx + num doesn't wrap. Otherwise check if * there are enough cleared bits between idx and the next set bit. */ return next_set == 0 || next_set - idx >= num; } /* Returns the total number of bits set. Note: 0 is also returned for * the case of all bits set. This is because with all bits set, there * is 1 additional bit set beyond what can be represented in the return * value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0, * to determine if the sparsebit array has any bits set. */ sparsebit_num_t sparsebit_num_set(const struct sparsebit *s) { return s->num_set; } /* Returns whether any bit is set in the sparsebit array. */ bool sparsebit_any_set(const struct sparsebit *s) { /* * Nodes only describe set bits. If any nodes then there * is at least 1 bit set. */ if (!s->root) return false; /* * Every node should have a non-zero mask. For now will * just assure that the root node has a non-zero mask, * which is a quick check that at least 1 bit is set. */ assert(s->root->mask != 0); assert(s->num_set > 0 || (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS && s->root->mask == ~(mask_t) 0)); return true; } /* Returns whether all the bits in the sparsebit array are cleared. */ bool sparsebit_all_clear(const struct sparsebit *s) { return !sparsebit_any_set(s); } /* Returns whether all the bits in the sparsebit array are set. */ bool sparsebit_any_clear(const struct sparsebit *s) { return !sparsebit_all_set(s); } /* Returns the index of the first set bit. Abort if no bits are set. */ sparsebit_idx_t sparsebit_first_set(const struct sparsebit *s) { struct node *nodep; /* Validate at least 1 bit is set */ assert(sparsebit_any_set(s)); nodep = node_first(s); return node_first_set(nodep, 0); } /* Returns the index of the first cleared bit. Abort if * no bits are cleared. */ sparsebit_idx_t sparsebit_first_clear(const struct sparsebit *s) { struct node *nodep1, *nodep2; /* Validate at least 1 bit is cleared. */ assert(sparsebit_any_clear(s)); /* If no nodes or first node index > 0 then lowest cleared is 0 */ nodep1 = node_first(s); if (!nodep1 || nodep1->idx > 0) return 0; /* Does the mask in the first node contain any cleared bits. */ if (nodep1->mask != ~(mask_t) 0) return node_first_clear(nodep1, 0); /* * All mask bits set in first node. If there isn't a second node * then the first cleared bit is the first bit after the bits * described by the first node. */ nodep2 = node_next(s, nodep1); if (!nodep2) { /* * No second node. First cleared bit is first bit beyond * bits described by first node. */ assert(nodep1->mask == ~(mask_t) 0); assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0); return nodep1->idx + MASK_BITS + nodep1->num_after; } /* * There is a second node. * If it is not adjacent to the first node, then there is a gap * of cleared bits between the nodes, and the first cleared bit * is the first bit within the gap. */ if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) return nodep1->idx + MASK_BITS + nodep1->num_after; /* * Second node is adjacent to the first node. * Because it is adjacent, its mask should be non-zero. If all * its mask bits are set, then with it being adjacent, it should * have had the mask bits moved into the num_after setting of the * previous node. */ return node_first_clear(nodep2, 0); } /* Returns index of next bit set within s after the index given by prev. * Returns 0 if there are no bits after prev that are set. */ sparsebit_idx_t sparsebit_next_set(const struct sparsebit *s, sparsebit_idx_t prev) { sparsebit_idx_t lowest_possible = prev + 1; sparsebit_idx_t start; struct node *nodep; /* A bit after the highest index can't be set. */ if (lowest_possible == 0) return 0; /* * Find the leftmost 'candidate' overlapping or to the right * of lowest_possible. */ struct node *candidate = NULL; /* True iff lowest_possible is within candidate */ bool contains = false; /* * Find node that describes setting of bit at lowest_possible. * If such a node doesn't exist, find the node with the lowest * starting index that is > lowest_possible. */ for (nodep = s->root; nodep;) { if ((nodep->idx + MASK_BITS + nodep->num_after - 1) >= lowest_possible) { candidate = nodep; if (candidate->idx <= lowest_possible) { contains = true; break; } nodep = nodep->left; } else { nodep = nodep->right; } } if (!candidate) return 0; assert(candidate->mask != 0); /* Does the candidate node describe the setting of lowest_possible? */ if (!contains) { /* * Candidate doesn't describe setting of bit at lowest_possible. * Candidate points to the first node with a starting index * > lowest_possible. */ assert(candidate->idx > lowest_possible); return node_first_set(candidate, 0); } /* * Candidate describes setting of bit at lowest_possible. * Note: although the node describes the setting of the bit * at lowest_possible, its possible that its setting and the * setting of all latter bits described by this node are 0. * For now, just handle the cases where this node describes * a bit at or after an index of lowest_possible that is set. */ start = lowest_possible - candidate->idx; if (start < MASK_BITS && candidate->mask >= (1 << start)) return node_first_set(candidate, start); if (candidate->num_after) { sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS; return lowest_possible < first_num_after_idx ? first_num_after_idx : lowest_possible; } /* * Although candidate node describes setting of bit at * the index of lowest_possible, all bits at that index and * latter that are described by candidate are cleared. With * this, the next bit is the first bit in the next node, if * such a node exists. If a next node doesn't exist, then * there is no next set bit. */ candidate = node_next(s, candidate); if (!candidate) return 0; return node_first_set(candidate, 0); } /* Returns index of next bit cleared within s after the index given by prev. * Returns 0 if there are no bits after prev that are cleared. */ sparsebit_idx_t sparsebit_next_clear(const struct sparsebit *s, sparsebit_idx_t prev) { sparsebit_idx_t lowest_possible = prev + 1; sparsebit_idx_t idx; struct node *nodep1, *nodep2; /* A bit after the highest index can't be set. */ if (lowest_possible == 0) return 0; /* * Does a node describing the setting of lowest_possible exist? * If not, the bit at lowest_possible is cleared. */ nodep1 = node_find(s, lowest_possible); if (!nodep1) return lowest_possible; /* Does a mask bit in node 1 describe the next cleared bit. */ for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++) if (!(nodep1->mask & (1 << idx))) return nodep1->idx + idx; /* * Next cleared bit is not described by node 1. If there * isn't a next node, then next cleared bit is described * by bit after the bits described by the first node. */ nodep2 = node_next(s, nodep1); if (!nodep2) return nodep1->idx + MASK_BITS + nodep1->num_after; /* * There is a second node. * If it is not adjacent to the first node, then there is a gap * of cleared bits between the nodes, and the next cleared bit * is the first bit within the gap. */ if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) return nodep1->idx + MASK_BITS + nodep1->num_after; /* * Second node is adjacent to the first node. * Because it is adjacent, its mask should be non-zero. If all * its mask bits are set, then with it being adjacent, it should * have had the mask bits moved into the num_after setting of the * previous node. */ return node_first_clear(nodep2, 0); } /* Starting with the index 1 greater than the index given by start, finds * and returns the index of the first sequence of num consecutively set * bits. Returns a value of 0 of no such sequence exists. */ sparsebit_idx_t sparsebit_next_set_num(const struct sparsebit *s, sparsebit_idx_t start, sparsebit_num_t num) { sparsebit_idx_t idx; assert(num >= 1); for (idx = sparsebit_next_set(s, start); idx != 0 && idx + num - 1 >= idx; idx = sparsebit_next_set(s, idx)) { assert(sparsebit_is_set(s, idx)); /* * Does the sequence of bits starting at idx consist of * num set bits? */ if (sparsebit_is_set_num(s, idx, num)) return idx; /* * Sequence of set bits at idx isn't large enough. * Skip this entire sequence of set bits. */ idx = sparsebit_next_clear(s, idx); if (idx == 0) return 0; } return 0; } /* Starting with the index 1 greater than the index given by start, finds * and returns the index of the first sequence of num consecutively cleared * bits. Returns a value of 0 of no such sequence exists. */ sparsebit_idx_t sparsebit_next_clear_num(const struct sparsebit *s, sparsebit_idx_t start, sparsebit_num_t num) { sparsebit_idx_t idx; assert(num >= 1); for (idx = sparsebit_next_clear(s, start); idx != 0 && idx + num - 1 >= idx; idx = sparsebit_next_clear(s, idx)) { assert(sparsebit_is_clear(s, idx)); /* * Does the sequence of bits starting at idx consist of * num cleared bits? */ if (sparsebit_is_clear_num(s, idx, num)) return idx; /* * Sequence of cleared bits at idx isn't large enough. * Skip this entire sequence of cleared bits. */ idx = sparsebit_next_set(s, idx); if (idx == 0) return 0; } return 0; } /* Sets the bits * in the inclusive range idx through idx + num - 1. */ void sparsebit_set_num(struct sparsebit *s, sparsebit_idx_t start, sparsebit_num_t num) { struct node *nodep, *next; unsigned int n1; sparsebit_idx_t idx; sparsebit_num_t n; sparsebit_idx_t middle_start, middle_end; assert(num > 0); assert(start + num - 1 >= start); /* * Leading - bits before first mask boundary. * * TODO(lhuemill): With some effort it may be possible to * replace the following loop with a sequential sequence * of statements. High level sequence would be: * * 1. Use node_split() to force node that describes setting * of idx to be within the mask portion of a node. * 2. Form mask of bits to be set. * 3. Determine number of mask bits already set in the node * and store in a local variable named num_already_set. * 4. Set the appropriate mask bits within the node. * 5. Increment struct sparsebit_pvt num_set member * by the number of bits that were actually set. * Exclude from the counts bits that were already set. * 6. Before returning to the caller, use node_reduce() to * handle the multiple corner cases that this method * introduces. */ for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) bit_set(s, idx); /* Middle - bits spanning one or more entire mask */ middle_start = idx; middle_end = middle_start + (n & -MASK_BITS) - 1; if (n >= MASK_BITS) { nodep = node_split(s, middle_start); /* * As needed, split just after end of middle bits. * No split needed if end of middle bits is at highest * supported bit index. */ if (middle_end + 1 > middle_end) (void) node_split(s, middle_end + 1); /* Delete nodes that only describe bits within the middle. */ for (next = node_next(s, nodep); next && (next->idx < middle_end); next = node_next(s, nodep)) { assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); node_rm(s, next); next = NULL; } /* As needed set each of the mask bits */ for (n1 = 0; n1 < MASK_BITS; n1++) { if (!(nodep->mask & (1 << n1))) { nodep->mask |= 1 << n1; s->num_set++; } } s->num_set -= nodep->num_after; nodep->num_after = middle_end - middle_start + 1 - MASK_BITS; s->num_set += nodep->num_after; node_reduce(s, nodep); } idx = middle_end + 1; n -= middle_end - middle_start + 1; /* Trailing - bits at and beyond last mask boundary */ assert(n < MASK_BITS); for (; n > 0; idx++, n--) bit_set(s, idx); } /* Clears the bits * in the inclusive range idx through idx + num - 1. */ void sparsebit_clear_num(struct sparsebit *s, sparsebit_idx_t start, sparsebit_num_t num) { struct node *nodep, *next; unsigned int n1; sparsebit_idx_t idx; sparsebit_num_t n; sparsebit_idx_t middle_start, middle_end; assert(num > 0); assert(start + num - 1 >= start); /* Leading - bits before first mask boundary */ for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) bit_clear(s, idx); /* Middle - bits spanning one or more entire mask */ middle_start = idx; middle_end = middle_start + (n & -MASK_BITS) - 1; if (n >= MASK_BITS) { nodep = node_split(s, middle_start); /* * As needed, split just after end of middle bits. * No split needed if end of middle bits is at highest * supported bit index. */ if (middle_end + 1 > middle_end) (void) node_split(s, middle_end + 1); /* Delete nodes that only describe bits within the middle. */ for (next = node_next(s, nodep); next && (next->idx < middle_end); next = node_next(s, nodep)) { assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); node_rm(s, next); next = NULL; } /* As needed clear each of the mask bits */ for (n1 = 0; n1 < MASK_BITS; n1++) { if (nodep->mask & (1 << n1)) { nodep->mask &= ~(1 << n1); s->num_set--; } } /* Clear any bits described by num_after */ s->num_set -= nodep->num_after; nodep->num_after = 0; /* * Delete the node that describes the beginning of * the middle bits and perform any allowed reductions * with the nodes prev or next of nodep. */ node_reduce(s, nodep); nodep = NULL; } idx = middle_end + 1; n -= middle_end - middle_start + 1; /* Trailing - bits at and beyond last mask boundary */ assert(n < MASK_BITS); for (; n > 0; idx++, n--) bit_clear(s, idx); } /* Sets the bit at the index given by idx. */ void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx) { sparsebit_set_num(s, idx, 1); } /* Clears the bit at the index given by idx. */ void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx) { sparsebit_clear_num(s, idx, 1); } /* Sets the bits in the entire addressable range of the sparsebit array. */ void sparsebit_set_all(struct sparsebit *s) { sparsebit_set(s, 0); sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0); assert(sparsebit_all_set(s)); } /* Clears the bits in the entire addressable range of the sparsebit array. */ void sparsebit_clear_all(struct sparsebit *s) { sparsebit_clear(s, 0); sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0); assert(!sparsebit_any_set(s)); } static size_t display_range(FILE *stream, sparsebit_idx_t low, sparsebit_idx_t high, bool prepend_comma_space) { char *fmt_str; size_t sz; /* Determine the printf format string */ if (low == high) fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx"; else fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx"; /* * When stream is NULL, just determine the size of what would * have been printed, else print the range. */ if (!stream) sz = snprintf(NULL, 0, fmt_str, low, high); else sz = fprintf(stream, fmt_str, low, high); return sz; } /* Dumps to the FILE stream given by stream, the bit settings * of s. Each line of output is prefixed with the number of * spaces given by indent. The length of each line is implementation * dependent and does not depend on the indent amount. The following * is an example output of a sparsebit array that has bits: * * 0x5, 0x8, 0xa:0xe, 0x12 * * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18 * are set. Note that a ':', instead of a '-' is used to specify a range of * contiguous bits. This is done because '-' is used to specify command-line * options, and sometimes ranges are specified as command-line arguments. */ void sparsebit_dump(FILE *stream, const struct sparsebit *s, unsigned int indent) { size_t current_line_len = 0; size_t sz; struct node *nodep; if (!sparsebit_any_set(s)) return; /* Display initial indent */ fprintf(stream, "%*s", indent, ""); /* For each node */ for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) { unsigned int n1; sparsebit_idx_t low, high; /* For each group of bits in the mask */ for (n1 = 0; n1 < MASK_BITS; n1++) { if (nodep->mask & (1 << n1)) { low = high = nodep->idx + n1; for (; n1 < MASK_BITS; n1++) { if (nodep->mask & (1 << n1)) high = nodep->idx + n1; else break; } if ((n1 == MASK_BITS) && nodep->num_after) high += nodep->num_after; /* * How much room will it take to display * this range. */ sz = display_range(NULL, low, high, current_line_len != 0); /* * If there is not enough room, display * a newline plus the indent of the next * line. */ if (current_line_len + sz > DUMP_LINE_MAX) { fputs("\n", stream); fprintf(stream, "%*s", indent, ""); current_line_len = 0; } /* Display the range */ sz = display_range(stream, low, high, current_line_len != 0); current_line_len += sz; } } /* * If num_after and most significant-bit of mask is not * set, then still need to display a range for the bits * described by num_after. */ if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) { low = nodep->idx + MASK_BITS; high = nodep->idx + MASK_BITS + nodep->num_after - 1; /* * How much room will it take to display * this range. */ sz = display_range(NULL, low, high, current_line_len != 0); /* * If there is not enough room, display * a newline plus the indent of the next * line. */ if (current_line_len + sz > DUMP_LINE_MAX) { fputs("\n", stream); fprintf(stream, "%*s", indent, ""); current_line_len = 0; } /* Display the range */ sz = display_range(stream, low, high, current_line_len != 0); current_line_len += sz; } } fputs("\n", stream); } /* Validates the internal state of the sparsebit array given by * s. On error, diagnostic information is printed to stderr and * abort is called. */ void sparsebit_validate_internal(const struct sparsebit *s) { bool error_detected = false; struct node *nodep, *prev = NULL; sparsebit_num_t total_bits_set = 0; unsigned int n1; /* For each node */ for (nodep = node_first(s); nodep; prev = nodep, nodep = node_next(s, nodep)) { /* * Increase total bits set by the number of bits set * in this node. */ for (n1 = 0; n1 < MASK_BITS; n1++) if (nodep->mask & (1 << n1)) total_bits_set++; total_bits_set += nodep->num_after; /* * Arbitrary choice as to whether a mask of 0 is allowed * or not. For diagnostic purposes it is beneficial to * have only one valid means to represent a set of bits. * To support this an arbitrary choice has been made * to not allow a mask of zero. */ if (nodep->mask == 0) { fprintf(stderr, "Node mask of zero, " "nodep: %p nodep->mask: 0x%x", nodep, nodep->mask); error_detected = true; break; } /* * Validate num_after is not greater than the max index * - the number of mask bits. The num_after member * uses 0-based indexing and thus has no value that * represents all bits set. This limitation is handled * by requiring a non-zero mask. With a non-zero mask, * MASK_BITS worth of bits are described by the mask, * which makes the largest needed num_after equal to: * * (~(sparsebit_num_t) 0) - MASK_BITS + 1 */ if (nodep->num_after > (~(sparsebit_num_t) 0) - MASK_BITS + 1) { fprintf(stderr, "num_after too large, " "nodep: %p nodep->num_after: 0x%lx", nodep, nodep->num_after); error_detected = true; break; } /* Validate node index is divisible by the mask size */ if (nodep->idx % MASK_BITS) { fprintf(stderr, "Node index not divisible by " "mask size,\n" " nodep: %p nodep->idx: 0x%lx " "MASK_BITS: %lu\n", nodep, nodep->idx, MASK_BITS); error_detected = true; break; } /* * Validate bits described by node don't wrap beyond the * highest supported index. */ if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) { fprintf(stderr, "Bits described by node wrap " "beyond highest supported index,\n" " nodep: %p nodep->idx: 0x%lx\n" " MASK_BITS: %lu nodep->num_after: 0x%lx", nodep, nodep->idx, MASK_BITS, nodep->num_after); error_detected = true; break; } /* Check parent pointers. */ if (nodep->left) { if (nodep->left->parent != nodep) { fprintf(stderr, "Left child parent pointer " "doesn't point to this node,\n" " nodep: %p nodep->left: %p " "nodep->left->parent: %p", nodep, nodep->left, nodep->left->parent); error_detected = true; break; } } if (nodep->right) { if (nodep->right->parent != nodep) { fprintf(stderr, "Right child parent pointer " "doesn't point to this node,\n" " nodep: %p nodep->right: %p " "nodep->right->parent: %p", nodep, nodep->right, nodep->right->parent); error_detected = true; break; } } if (!nodep->parent) { if (s->root != nodep) { fprintf(stderr, "Unexpected root node, " "s->root: %p nodep: %p", s->root, nodep); error_detected = true; break; } } if (prev) { /* * Is index of previous node before index of * current node? */ if (prev->idx >= nodep->idx) { fprintf(stderr, "Previous node index " ">= current node index,\n" " prev: %p prev->idx: 0x%lx\n" " nodep: %p nodep->idx: 0x%lx", prev, prev->idx, nodep, nodep->idx); error_detected = true; break; } /* * Nodes occur in asscending order, based on each * nodes starting index. */ if ((prev->idx + MASK_BITS + prev->num_after - 1) >= nodep->idx) { fprintf(stderr, "Previous node bit range " "overlap with current node bit range,\n" " prev: %p prev->idx: 0x%lx " "prev->num_after: 0x%lx\n" " nodep: %p nodep->idx: 0x%lx " "nodep->num_after: 0x%lx\n" " MASK_BITS: %lu", prev, prev->idx, prev->num_after, nodep, nodep->idx, nodep->num_after, MASK_BITS); error_detected = true; break; } /* * When the node has all mask bits set, it shouldn't * be adjacent to the last bit described by the * previous node. */ if (nodep->mask == ~(mask_t) 0 && prev->idx + MASK_BITS + prev->num_after == nodep->idx) { fprintf(stderr, "Current node has mask with " "all bits set and is adjacent to the " "previous node,\n" " prev: %p prev->idx: 0x%lx " "prev->num_after: 0x%lx\n" " nodep: %p nodep->idx: 0x%lx " "nodep->num_after: 0x%lx\n" " MASK_BITS: %lu", prev, prev->idx, prev->num_after, nodep, nodep->idx, nodep->num_after, MASK_BITS); error_detected = true; break; } } } if (!error_detected) { /* * Is sum of bits set in each node equal to the count * of total bits set. */ if (s->num_set != total_bits_set) { fprintf(stderr, "Number of bits set mismatch,\n" " s->num_set: 0x%lx total_bits_set: 0x%lx", s->num_set, total_bits_set); error_detected = true; } } if (error_detected) { fputs(" dump_internal:\n", stderr); sparsebit_dump_internal(stderr, s, 4); abort(); } } #ifdef FUZZ /* A simple but effective fuzzing driver. Look for bugs with the help * of some invariants and of a trivial representation of sparsebit. * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let * afl-fuzz do the magic. :) */ #include <stdlib.h> struct range { sparsebit_idx_t first, last; bool set; }; struct sparsebit *s; struct range ranges[1000]; int num_ranges; static bool get_value(sparsebit_idx_t idx) { int i; for (i = num_ranges; --i >= 0; ) if (ranges[i].first <= idx && idx <= ranges[i].last) return ranges[i].set; return false; } static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last) { sparsebit_num_t num; sparsebit_idx_t next; if (first < last) { num = last - first + 1; } else { num = first - last + 1; first = last; last = first + num - 1; } switch (code) { case 0: sparsebit_set(s, first); assert(sparsebit_is_set(s, first)); assert(!sparsebit_is_clear(s, first)); assert(sparsebit_any_set(s)); assert(!sparsebit_all_clear(s)); if (get_value(first)) return; if (num_ranges == 1000) exit(0); ranges[num_ranges++] = (struct range) { .first = first, .last = first, .set = true }; break; case 1: sparsebit_clear(s, first); assert(!sparsebit_is_set(s, first)); assert(sparsebit_is_clear(s, first)); assert(sparsebit_any_clear(s)); assert(!sparsebit_all_set(s)); if (!get_value(first)) return; if (num_ranges == 1000) exit(0); ranges[num_ranges++] = (struct range) { .first = first, .last = first, .set = false }; break; case 2: assert(sparsebit_is_set(s, first) == get_value(first)); assert(sparsebit_is_clear(s, first) == !get_value(first)); break; case 3: if (sparsebit_any_set(s)) assert(get_value(sparsebit_first_set(s))); if (sparsebit_any_clear(s)) assert(!get_value(sparsebit_first_clear(s))); sparsebit_set_all(s); assert(!sparsebit_any_clear(s)); assert(sparsebit_all_set(s)); num_ranges = 0; ranges[num_ranges++] = (struct range) { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true }; break; case 4: if (sparsebit_any_set(s)) assert(get_value(sparsebit_first_set(s))); if (sparsebit_any_clear(s)) assert(!get_value(sparsebit_first_clear(s))); sparsebit_clear_all(s); assert(!sparsebit_any_set(s)); assert(sparsebit_all_clear(s)); num_ranges = 0; break; case 5: next = sparsebit_next_set(s, first); assert(next == 0 || next > first); assert(next == 0 || get_value(next)); break; case 6: next = sparsebit_next_clear(s, first); assert(next == 0 || next > first); assert(next == 0 || !get_value(next)); break; case 7: next = sparsebit_next_clear(s, first); if (sparsebit_is_set_num(s, first, num)) { assert(next == 0 || next > last); if (first) next = sparsebit_next_set(s, first - 1); else if (sparsebit_any_set(s)) next = sparsebit_first_set(s); else return; assert(next == first); } else { assert(sparsebit_is_clear(s, first) || next <= last); } break; case 8: next = sparsebit_next_set(s, first); if (sparsebit_is_clear_num(s, first, num)) { assert(next == 0 || next > last); if (first) next = sparsebit_next_clear(s, first - 1); else if (sparsebit_any_clear(s)) next = sparsebit_first_clear(s); else return; assert(next == first); } else { assert(sparsebit_is_set(s, first) || next <= last); } break; case 9: sparsebit_set_num(s, first, num); assert(sparsebit_is_set_num(s, first, num)); assert(!sparsebit_is_clear_num(s, first, num)); assert(sparsebit_any_set(s)); assert(!sparsebit_all_clear(s)); if (num_ranges == 1000) exit(0); ranges[num_ranges++] = (struct range) { .first = first, .last = last, .set = true }; break; case 10: sparsebit_clear_num(s, first, num); assert(!sparsebit_is_set_num(s, first, num)); assert(sparsebit_is_clear_num(s, first, num)); assert(sparsebit_any_clear(s)); assert(!sparsebit_all_set(s)); if (num_ranges == 1000) exit(0); ranges[num_ranges++] = (struct range) { .first = first, .last = last, .set = false }; break; case 11: sparsebit_validate_internal(s); break; default: break; } } unsigned char get8(void) { int ch; ch = getchar(); if (ch == EOF) exit(0); return ch; } uint64_t get64(void) { uint64_t x; x = get8(); x = (x << 8) | get8(); x = (x << 8) | get8(); x = (x << 8) | get8(); x = (x << 8) | get8(); x = (x << 8) | get8(); x = (x << 8) | get8(); return (x << 8) | get8(); } int main(void) { s = sparsebit_alloc(); for (;;) { uint8_t op = get8() & 0xf; uint64_t first = get64(); uint64_t last = get64(); operate(op, first, last); } } #endif |