Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | // SPDX-License-Identifier: GPL-2.0 /* * KVM page table test * * Copyright (C) 2021, Huawei, Inc. * * Make sure that THP has been enabled or enough HUGETLB pages with specific * page size have been pre-allocated on your system, if you are planning to * use hugepages to back the guest memory for testing. */ #define _GNU_SOURCE /* for program_invocation_name */ #include <stdio.h> #include <stdlib.h> #include <time.h> #include <pthread.h> #include <semaphore.h> #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "guest_modes.h" #define TEST_MEM_SLOT_INDEX 1 /* Default size(1GB) of the memory for testing */ #define DEFAULT_TEST_MEM_SIZE (1 << 30) /* Default guest test virtual memory offset */ #define DEFAULT_GUEST_TEST_MEM 0xc0000000 /* Different guest memory accessing stages */ enum test_stage { KVM_BEFORE_MAPPINGS, KVM_CREATE_MAPPINGS, KVM_UPDATE_MAPPINGS, KVM_ADJUST_MAPPINGS, NUM_TEST_STAGES, }; static const char * const test_stage_string[] = { "KVM_BEFORE_MAPPINGS", "KVM_CREATE_MAPPINGS", "KVM_UPDATE_MAPPINGS", "KVM_ADJUST_MAPPINGS", }; struct test_args { struct kvm_vm *vm; uint64_t guest_test_virt_mem; uint64_t host_page_size; uint64_t host_num_pages; uint64_t large_page_size; uint64_t large_num_pages; uint64_t host_pages_per_lpage; enum vm_mem_backing_src_type src_type; struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; }; /* * Guest variables. Use addr_gva2hva() if these variables need * to be changed in host. */ static enum test_stage guest_test_stage; /* Host variables */ static uint32_t nr_vcpus = 1; static struct test_args test_args; static enum test_stage *current_stage; static bool host_quit; /* Whether the test stage is updated, or completed */ static sem_t test_stage_updated; static sem_t test_stage_completed; /* * Guest physical memory offset of the testing memory slot. * This will be set to the topmost valid physical address minus * the test memory size. */ static uint64_t guest_test_phys_mem; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; static void guest_code(bool do_write) { struct test_args *p = &test_args; enum test_stage *current_stage = &guest_test_stage; uint64_t addr; int i, j; while (true) { addr = p->guest_test_virt_mem; switch (READ_ONCE(*current_stage)) { /* * All vCPU threads will be started in this stage, * where guest code of each vCPU will do nothing. */ case KVM_BEFORE_MAPPINGS: break; /* * Before dirty logging, vCPUs concurrently access the first * 8 bytes of each page (host page/large page) within the same * memory region with different accessing types (read/write). * Then KVM will create normal page mappings or huge block * mappings for them. */ case KVM_CREATE_MAPPINGS: for (i = 0; i < p->large_num_pages; i++) { if (do_write) *(uint64_t *)addr = 0x0123456789ABCDEF; else READ_ONCE(*(uint64_t *)addr); addr += p->large_page_size; } break; /* * During dirty logging, KVM will only update attributes of the * normal page mappings from RO to RW if memory backing src type * is anonymous. In other cases, KVM will split the huge block * mappings into normal page mappings if memory backing src type * is THP or HUGETLB. */ case KVM_UPDATE_MAPPINGS: if (p->src_type == VM_MEM_SRC_ANONYMOUS) { for (i = 0; i < p->host_num_pages; i++) { *(uint64_t *)addr = 0x0123456789ABCDEF; addr += p->host_page_size; } break; } for (i = 0; i < p->large_num_pages; i++) { /* * Write to the first host page in each large * page region, and triger break of large pages. */ *(uint64_t *)addr = 0x0123456789ABCDEF; /* * Access the middle host pages in each large * page region. Since dirty logging is enabled, * this will create new mappings at the smallest * granularity. */ addr += p->large_page_size / 2; for (j = 0; j < p->host_pages_per_lpage / 2; j++) { READ_ONCE(*(uint64_t *)addr); addr += p->host_page_size; } } break; /* * After dirty logging is stopped, vCPUs concurrently read * from every single host page. Then KVM will coalesce the * split page mappings back to block mappings. And a TLB * conflict abort could occur here if TLB entries of the * page mappings are not fully invalidated. */ case KVM_ADJUST_MAPPINGS: for (i = 0; i < p->host_num_pages; i++) { READ_ONCE(*(uint64_t *)addr); addr += p->host_page_size; } break; default: GUEST_ASSERT(0); } GUEST_SYNC(1); } } static void *vcpu_worker(void *data) { struct kvm_vcpu *vcpu = data; bool do_write = !(vcpu->id % 2); struct timespec start; struct timespec ts_diff; enum test_stage stage; int ret; vcpu_args_set(vcpu, 1, do_write); while (!READ_ONCE(host_quit)) { ret = sem_wait(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_wait"); if (READ_ONCE(host_quit)) return NULL; clock_gettime(CLOCK_MONOTONIC, &start); ret = _vcpu_run(vcpu); ts_diff = timespec_elapsed(start); TEST_ASSERT(ret == 0, "vcpu_run failed: %d", ret); TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, "Invalid guest sync status: exit_reason=%s", exit_reason_str(vcpu->run->exit_reason)); pr_debug("Got sync event from vCPU %d\n", vcpu->id); stage = READ_ONCE(*current_stage); /* * Here we can know the execution time of every * single vcpu running in different test stages. */ pr_debug("vCPU %d has completed stage %s\n" "execution time is: %ld.%.9lds\n\n", vcpu->id, test_stage_string[stage], ts_diff.tv_sec, ts_diff.tv_nsec); ret = sem_post(&test_stage_completed); TEST_ASSERT(ret == 0, "Error in sem_post"); } return NULL; } struct test_params { uint64_t phys_offset; uint64_t test_mem_size; enum vm_mem_backing_src_type src_type; }; static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg) { int ret; struct test_params *p = arg; enum vm_mem_backing_src_type src_type = p->src_type; uint64_t large_page_size = get_backing_src_pagesz(src_type); uint64_t guest_page_size = vm_guest_mode_params[mode].page_size; uint64_t host_page_size = getpagesize(); uint64_t test_mem_size = p->test_mem_size; uint64_t guest_num_pages; uint64_t alignment; void *host_test_mem; struct kvm_vm *vm; /* Align up the test memory size */ alignment = max(large_page_size, guest_page_size); test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1); /* Create a VM with enough guest pages */ guest_num_pages = test_mem_size / guest_page_size; vm = __vm_create_with_vcpus(VM_SHAPE(mode), nr_vcpus, guest_num_pages, guest_code, test_args.vcpus); /* Align down GPA of the testing memslot */ if (!p->phys_offset) guest_test_phys_mem = (vm->max_gfn - guest_num_pages) * guest_page_size; else guest_test_phys_mem = p->phys_offset; #ifdef __s390x__ alignment = max(0x100000UL, alignment); #endif guest_test_phys_mem = align_down(guest_test_phys_mem, alignment); /* Set up the shared data structure test_args */ test_args.vm = vm; test_args.guest_test_virt_mem = guest_test_virt_mem; test_args.host_page_size = host_page_size; test_args.host_num_pages = test_mem_size / host_page_size; test_args.large_page_size = large_page_size; test_args.large_num_pages = test_mem_size / large_page_size; test_args.host_pages_per_lpage = large_page_size / host_page_size; test_args.src_type = src_type; /* Add an extra memory slot with specified backing src type */ vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem, TEST_MEM_SLOT_INDEX, guest_num_pages, 0); /* Do mapping(GVA->GPA) for the testing memory slot */ virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); /* Cache the HVA pointer of the region */ host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); /* Export shared structure test_args to guest */ sync_global_to_guest(vm, test_args); ret = sem_init(&test_stage_updated, 0, 0); TEST_ASSERT(ret == 0, "Error in sem_init"); ret = sem_init(&test_stage_completed, 0, 0); TEST_ASSERT(ret == 0, "Error in sem_init"); current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage)); *current_stage = NUM_TEST_STAGES; pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); pr_info("Testing memory backing src type: %s\n", vm_mem_backing_src_alias(src_type)->name); pr_info("Testing memory backing src granularity: 0x%lx\n", large_page_size); pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size); pr_info("Guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); pr_info("Host virtual test memory offset: 0x%lx\n", (uint64_t)host_test_mem); pr_info("Number of testing vCPUs: %d\n", nr_vcpus); return vm; } static void vcpus_complete_new_stage(enum test_stage stage) { int ret; int vcpus; /* Wake up all the vcpus to run new test stage */ for (vcpus = 0; vcpus < nr_vcpus; vcpus++) { ret = sem_post(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_post"); } pr_debug("All vcpus have been notified to continue\n"); /* Wait for all the vcpus to complete new test stage */ for (vcpus = 0; vcpus < nr_vcpus; vcpus++) { ret = sem_wait(&test_stage_completed); TEST_ASSERT(ret == 0, "Error in sem_wait"); pr_debug("%d vcpus have completed stage %s\n", vcpus + 1, test_stage_string[stage]); } pr_debug("All vcpus have completed stage %s\n", test_stage_string[stage]); } static void run_test(enum vm_guest_mode mode, void *arg) { pthread_t *vcpu_threads; struct kvm_vm *vm; struct timespec start; struct timespec ts_diff; int ret, i; /* Create VM with vCPUs and make some pre-initialization */ vm = pre_init_before_test(mode, arg); vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads)); TEST_ASSERT(vcpu_threads, "Memory allocation failed"); host_quit = false; *current_stage = KVM_BEFORE_MAPPINGS; for (i = 0; i < nr_vcpus; i++) pthread_create(&vcpu_threads[i], NULL, vcpu_worker, test_args.vcpus[i]); vcpus_complete_new_stage(*current_stage); pr_info("Started all vCPUs successfully\n"); /* Test the stage of KVM creating mappings */ *current_stage = KVM_CREATE_MAPPINGS; clock_gettime(CLOCK_MONOTONIC, &start); vcpus_complete_new_stage(*current_stage); ts_diff = timespec_elapsed(start); pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Test the stage of KVM updating mappings */ vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, KVM_MEM_LOG_DIRTY_PAGES); *current_stage = KVM_UPDATE_MAPPINGS; clock_gettime(CLOCK_MONOTONIC, &start); vcpus_complete_new_stage(*current_stage); ts_diff = timespec_elapsed(start); pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Test the stage of KVM adjusting mappings */ vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0); *current_stage = KVM_ADJUST_MAPPINGS; clock_gettime(CLOCK_MONOTONIC, &start); vcpus_complete_new_stage(*current_stage); ts_diff = timespec_elapsed(start); pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Tell the vcpu thread to quit */ host_quit = true; for (i = 0; i < nr_vcpus; i++) { ret = sem_post(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_post"); } for (i = 0; i < nr_vcpus; i++) pthread_join(vcpu_threads[i], NULL); ret = sem_destroy(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_destroy"); ret = sem_destroy(&test_stage_completed); TEST_ASSERT(ret == 0, "Error in sem_destroy"); free(vcpu_threads); kvm_vm_free(vm); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-p offset] [-m mode] " "[-b mem-size] [-v vcpus] [-s mem-type]\n", name); puts(""); printf(" -p: specify guest physical test memory offset\n" " Warning: a low offset can conflict with the loaded test code.\n"); guest_modes_help(); printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n" " (default: 1G)\n"); printf(" -v: specify the number of vCPUs to run\n" " (default: 1)\n"); backing_src_help("-s"); puts(""); } int main(int argc, char *argv[]) { int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS); struct test_params p = { .test_mem_size = DEFAULT_TEST_MEM_SIZE, .src_type = DEFAULT_VM_MEM_SRC, }; int opt; guest_modes_append_default(); while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) { switch (opt) { case 'p': p.phys_offset = strtoull(optarg, NULL, 0); break; case 'm': guest_modes_cmdline(optarg); break; case 'b': p.test_mem_size = parse_size(optarg); break; case 'v': nr_vcpus = atoi_positive("Number of vCPUs", optarg); TEST_ASSERT(nr_vcpus <= max_vcpus, "Invalid number of vcpus, must be between 1 and %d", max_vcpus); break; case 's': p.src_type = parse_backing_src_type(optarg); break; case 'h': default: help(argv[0]); exit(0); } } for_each_guest_mode(run_test, &p); return 0; } |