Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | // SPDX-License-Identifier: GPL-2.0-only /* * arch_timer.c - Tests the arch timer IRQ functionality * * The guest's main thread configures the timer interrupt and waits * for it to fire, with a timeout equal to the timer period. * It asserts that the timeout doesn't exceed the timer period plus * a user configurable error margin(default to 100us) * * On the other hand, upon receipt of an interrupt, the guest's interrupt * handler validates the interrupt by checking if the architectural state * is in compliance with the specifications. * * The test provides command-line options to configure the timer's * period (-p), number of vCPUs (-n), iterations per stage (-i) and timer * interrupt arrival error margin (-e). To stress-test the timer stack * even more, an option to migrate the vCPUs across pCPUs (-m), at a * particular rate, is also provided. * * Copyright (c) 2021, Google LLC. */ #define _GNU_SOURCE #include <stdlib.h> #include <pthread.h> #include <linux/sizes.h> #include <linux/bitmap.h> #include <sys/sysinfo.h> #include "timer_test.h" struct test_args test_args = { .nr_vcpus = NR_VCPUS_DEF, .nr_iter = NR_TEST_ITERS_DEF, .timer_period_ms = TIMER_TEST_PERIOD_MS_DEF, .migration_freq_ms = TIMER_TEST_MIGRATION_FREQ_MS, .timer_err_margin_us = TIMER_TEST_ERR_MARGIN_US, .reserved = 1, }; struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; struct test_vcpu_shared_data vcpu_shared_data[KVM_MAX_VCPUS]; static pthread_t pt_vcpu_run[KVM_MAX_VCPUS]; static unsigned long *vcpu_done_map; static pthread_mutex_t vcpu_done_map_lock; static void *test_vcpu_run(void *arg) { unsigned int vcpu_idx = (unsigned long)arg; struct ucall uc; struct kvm_vcpu *vcpu = vcpus[vcpu_idx]; struct kvm_vm *vm = vcpu->vm; struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[vcpu_idx]; vcpu_run(vcpu); /* Currently, any exit from guest is an indication of completion */ pthread_mutex_lock(&vcpu_done_map_lock); __set_bit(vcpu_idx, vcpu_done_map); pthread_mutex_unlock(&vcpu_done_map_lock); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: case UCALL_DONE: break; case UCALL_ABORT: sync_global_from_guest(vm, *shared_data); fprintf(stderr, "Guest assert failed, vcpu %u; stage; %u; iter: %u\n", vcpu_idx, shared_data->guest_stage, shared_data->nr_iter); REPORT_GUEST_ASSERT(uc); break; default: TEST_FAIL("Unexpected guest exit"); } pr_info("PASS(vCPU-%d).\n", vcpu_idx); return NULL; } static uint32_t test_get_pcpu(void) { uint32_t pcpu; unsigned int nproc_conf; cpu_set_t online_cpuset; nproc_conf = get_nprocs_conf(); sched_getaffinity(0, sizeof(cpu_set_t), &online_cpuset); /* Randomly find an available pCPU to place a vCPU on */ do { pcpu = rand() % nproc_conf; } while (!CPU_ISSET(pcpu, &online_cpuset)); return pcpu; } static int test_migrate_vcpu(unsigned int vcpu_idx) { int ret; cpu_set_t cpuset; uint32_t new_pcpu = test_get_pcpu(); CPU_ZERO(&cpuset); CPU_SET(new_pcpu, &cpuset); pr_debug("Migrating vCPU: %u to pCPU: %u\n", vcpu_idx, new_pcpu); ret = pthread_setaffinity_np(pt_vcpu_run[vcpu_idx], sizeof(cpuset), &cpuset); /* Allow the error where the vCPU thread is already finished */ TEST_ASSERT(ret == 0 || ret == ESRCH, "Failed to migrate the vCPU:%u to pCPU: %u; ret: %d", vcpu_idx, new_pcpu, ret); return ret; } static void *test_vcpu_migration(void *arg) { unsigned int i, n_done; bool vcpu_done; do { usleep(msecs_to_usecs(test_args.migration_freq_ms)); for (n_done = 0, i = 0; i < test_args.nr_vcpus; i++) { pthread_mutex_lock(&vcpu_done_map_lock); vcpu_done = test_bit(i, vcpu_done_map); pthread_mutex_unlock(&vcpu_done_map_lock); if (vcpu_done) { n_done++; continue; } test_migrate_vcpu(i); } } while (test_args.nr_vcpus != n_done); return NULL; } static void test_run(struct kvm_vm *vm) { pthread_t pt_vcpu_migration; unsigned int i; int ret; pthread_mutex_init(&vcpu_done_map_lock, NULL); vcpu_done_map = bitmap_zalloc(test_args.nr_vcpus); TEST_ASSERT(vcpu_done_map, "Failed to allocate vcpu done bitmap"); for (i = 0; i < (unsigned long)test_args.nr_vcpus; i++) { ret = pthread_create(&pt_vcpu_run[i], NULL, test_vcpu_run, (void *)(unsigned long)i); TEST_ASSERT(!ret, "Failed to create vCPU-%d pthread", i); } /* Spawn a thread to control the vCPU migrations */ if (test_args.migration_freq_ms) { srand(time(NULL)); ret = pthread_create(&pt_vcpu_migration, NULL, test_vcpu_migration, NULL); TEST_ASSERT(!ret, "Failed to create the migration pthread"); } for (i = 0; i < test_args.nr_vcpus; i++) pthread_join(pt_vcpu_run[i], NULL); if (test_args.migration_freq_ms) pthread_join(pt_vcpu_migration, NULL); bitmap_free(vcpu_done_map); } static void test_print_help(char *name) { pr_info("Usage: %s [-h] [-n nr_vcpus] [-i iterations] [-p timer_period_ms]\n" "\t\t [-m migration_freq_ms] [-o counter_offset]\n" "\t\t [-e timer_err_margin_us]\n", name); pr_info("\t-n: Number of vCPUs to configure (default: %u; max: %u)\n", NR_VCPUS_DEF, KVM_MAX_VCPUS); pr_info("\t-i: Number of iterations per stage (default: %u)\n", NR_TEST_ITERS_DEF); pr_info("\t-p: Periodicity (in ms) of the guest timer (default: %u)\n", TIMER_TEST_PERIOD_MS_DEF); pr_info("\t-m: Frequency (in ms) of vCPUs to migrate to different pCPU. 0 to turn off (default: %u)\n", TIMER_TEST_MIGRATION_FREQ_MS); pr_info("\t-o: Counter offset (in counter cycles, default: 0) [aarch64-only]\n"); pr_info("\t-e: Interrupt arrival error margin (in us) of the guest timer (default: %u)\n", TIMER_TEST_ERR_MARGIN_US); pr_info("\t-h: print this help screen\n"); } static bool parse_args(int argc, char *argv[]) { int opt; while ((opt = getopt(argc, argv, "hn:i:p:m:o:e:")) != -1) { switch (opt) { case 'n': test_args.nr_vcpus = atoi_positive("Number of vCPUs", optarg); if (test_args.nr_vcpus > KVM_MAX_VCPUS) { pr_info("Max allowed vCPUs: %u\n", KVM_MAX_VCPUS); goto err; } break; case 'i': test_args.nr_iter = atoi_positive("Number of iterations", optarg); break; case 'p': test_args.timer_period_ms = atoi_positive("Periodicity", optarg); break; case 'm': test_args.migration_freq_ms = atoi_non_negative("Frequency", optarg); break; case 'e': test_args.timer_err_margin_us = atoi_non_negative("Error Margin", optarg); break; case 'o': test_args.counter_offset = strtol(optarg, NULL, 0); test_args.reserved = 0; break; case 'h': default: goto err; } } return true; err: test_print_help(argv[0]); return false; } int main(int argc, char *argv[]) { struct kvm_vm *vm; if (!parse_args(argc, argv)) exit(KSFT_SKIP); __TEST_REQUIRE(!test_args.migration_freq_ms || get_nprocs() >= 2, "At least two physical CPUs needed for vCPU migration"); vm = test_vm_create(); test_run(vm); test_vm_cleanup(vm); return 0; } |