Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
// SPDX-License-Identifier: GPL-2.0
/*
 * page_fault_test.c - Test stage 2 faults.
 *
 * This test tries different combinations of guest accesses (e.g., write,
 * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
 * hugetlbfs with a hole). It checks that the expected handling method is
 * called (e.g., uffd faults with the right address and write/read flag).
 */
#define _GNU_SOURCE
#include <linux/bitmap.h>
#include <fcntl.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <asm/sysreg.h>
#include <linux/bitfield.h>
#include "guest_modes.h"
#include "userfaultfd_util.h"

/* Guest virtual addresses that point to the test page and its PTE. */
#define TEST_GVA				0xc0000000
#define TEST_EXEC_GVA				(TEST_GVA + 0x8)
#define TEST_PTE_GVA				0xb0000000
#define TEST_DATA				0x0123456789ABCDEF

static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;

#define CMD_NONE				(0)
#define CMD_SKIP_TEST				(1ULL << 1)
#define CMD_HOLE_PT				(1ULL << 2)
#define CMD_HOLE_DATA				(1ULL << 3)
#define CMD_CHECK_WRITE_IN_DIRTY_LOG		(1ULL << 4)
#define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG		(1ULL << 5)
#define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG		(1ULL << 6)
#define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG	(1ULL << 7)
#define CMD_SET_PTE_AF				(1ULL << 8)

#define PREPARE_FN_NR				10
#define CHECK_FN_NR				10

static struct event_cnt {
	int mmio_exits;
	int fail_vcpu_runs;
	int uffd_faults;
	/* uffd_faults is incremented from multiple threads. */
	pthread_mutex_t uffd_faults_mutex;
} events;

struct test_desc {
	const char *name;
	uint64_t mem_mark_cmd;
	/* Skip the test if any prepare function returns false */
	bool (*guest_prepare[PREPARE_FN_NR])(void);
	void (*guest_test)(void);
	void (*guest_test_check[CHECK_FN_NR])(void);
	uffd_handler_t uffd_pt_handler;
	uffd_handler_t uffd_data_handler;
	void (*dabt_handler)(struct ex_regs *regs);
	void (*iabt_handler)(struct ex_regs *regs);
	void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
	void (*fail_vcpu_run_handler)(int ret);
	uint32_t pt_memslot_flags;
	uint32_t data_memslot_flags;
	bool skip;
	struct event_cnt expected_events;
};

struct test_params {
	enum vm_mem_backing_src_type src_type;
	struct test_desc *test_desc;
};

static inline void flush_tlb_page(uint64_t vaddr)
{
	uint64_t page = vaddr >> 12;

	dsb(ishst);
	asm volatile("tlbi vaae1is, %0" :: "r" (page));
	dsb(ish);
	isb();
}

static void guest_write64(void)
{
	uint64_t val;

	WRITE_ONCE(*guest_test_memory, TEST_DATA);
	val = READ_ONCE(*guest_test_memory);
	GUEST_ASSERT_EQ(val, TEST_DATA);
}

/* Check the system for atomic instructions. */
static bool guest_check_lse(void)
{
	uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
	uint64_t atomic;

	atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
	return atomic >= 2;
}

static bool guest_check_dc_zva(void)
{
	uint64_t dczid = read_sysreg(dczid_el0);
	uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);

	return dzp == 0;
}

/* Compare and swap instruction. */
static void guest_cas(void)
{
	uint64_t val;

	GUEST_ASSERT(guest_check_lse());
	asm volatile(".arch_extension lse\n"
		     "casal %0, %1, [%2]\n"
		     :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
	val = READ_ONCE(*guest_test_memory);
	GUEST_ASSERT_EQ(val, TEST_DATA);
}

static void guest_read64(void)
{
	uint64_t val;

	val = READ_ONCE(*guest_test_memory);
	GUEST_ASSERT_EQ(val, 0);
}

/* Address translation instruction */
static void guest_at(void)
{
	uint64_t par;

	asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
	isb();
	par = read_sysreg(par_el1);

	/* Bit 1 indicates whether the AT was successful */
	GUEST_ASSERT_EQ(par & 1, 0);
}

/*
 * The size of the block written by "dc zva" is guaranteed to be between (2 <<
 * 0) and (2 << 9), which is safe in our case as we need the write to happen
 * for at least a word, and not more than a page.
 */
static void guest_dc_zva(void)
{
	uint16_t val;

	asm volatile("dc zva, %0" :: "r" (guest_test_memory));
	dsb(ish);
	val = READ_ONCE(*guest_test_memory);
	GUEST_ASSERT_EQ(val, 0);
}

/*
 * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
 * And that's special because KVM must take special care with those: they
 * should still count as accesses for dirty logging or user-faulting, but
 * should be handled differently on mmio.
 */
static void guest_ld_preidx(void)
{
	uint64_t val;
	uint64_t addr = TEST_GVA - 8;

	/*
	 * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
	 * in a gap between memslots not backing by anything.
	 */
	asm volatile("ldr %0, [%1, #8]!"
		     : "=r" (val), "+r" (addr));
	GUEST_ASSERT_EQ(val, 0);
	GUEST_ASSERT_EQ(addr, TEST_GVA);
}

static void guest_st_preidx(void)
{
	uint64_t val = TEST_DATA;
	uint64_t addr = TEST_GVA - 8;

	asm volatile("str %0, [%1, #8]!"
		     : "+r" (val), "+r" (addr));

	GUEST_ASSERT_EQ(addr, TEST_GVA);
	val = READ_ONCE(*guest_test_memory);
}

static bool guest_set_ha(void)
{
	uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
	uint64_t hadbs, tcr;

	/* Skip if HA is not supported. */
	hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
	if (hadbs == 0)
		return false;

	tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
	write_sysreg(tcr, tcr_el1);
	isb();

	return true;
}

static bool guest_clear_pte_af(void)
{
	*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
	flush_tlb_page(TEST_GVA);

	return true;
}

static void guest_check_pte_af(void)
{
	dsb(ish);
	GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
}

static void guest_check_write_in_dirty_log(void)
{
	GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
}

static void guest_check_no_write_in_dirty_log(void)
{
	GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
}

static void guest_check_s1ptw_wr_in_dirty_log(void)
{
	GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
}

static void guest_check_no_s1ptw_wr_in_dirty_log(void)
{
	GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
}

static void guest_exec(void)
{
	int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
	int ret;

	ret = code();
	GUEST_ASSERT_EQ(ret, 0x77);
}

static bool guest_prepare(struct test_desc *test)
{
	bool (*prepare_fn)(void);
	int i;

	for (i = 0; i < PREPARE_FN_NR; i++) {
		prepare_fn = test->guest_prepare[i];
		if (prepare_fn && !prepare_fn())
			return false;
	}

	return true;
}

static void guest_test_check(struct test_desc *test)
{
	void (*check_fn)(void);
	int i;

	for (i = 0; i < CHECK_FN_NR; i++) {
		check_fn = test->guest_test_check[i];
		if (check_fn)
			check_fn();
	}
}

static void guest_code(struct test_desc *test)
{
	if (!guest_prepare(test))
		GUEST_SYNC(CMD_SKIP_TEST);

	GUEST_SYNC(test->mem_mark_cmd);

	if (test->guest_test)
		test->guest_test();

	guest_test_check(test);
	GUEST_DONE();
}

static void no_dabt_handler(struct ex_regs *regs)
{
	GUEST_FAIL("Unexpected dabt, far_el1 = 0x%lx", read_sysreg(far_el1));
}

static void no_iabt_handler(struct ex_regs *regs)
{
	GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
}

static struct uffd_args {
	char *copy;
	void *hva;
	uint64_t paging_size;
} pt_args, data_args;

/* Returns true to continue the test, and false if it should be skipped. */
static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
				struct uffd_args *args)
{
	uint64_t addr = msg->arg.pagefault.address;
	uint64_t flags = msg->arg.pagefault.flags;
	struct uffdio_copy copy;
	int ret;

	TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
		    "The only expected UFFD mode is MISSING");
	TEST_ASSERT_EQ(addr, (uint64_t)args->hva);

	pr_debug("uffd fault: addr=%p write=%d\n",
		 (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));

	copy.src = (uint64_t)args->copy;
	copy.dst = addr;
	copy.len = args->paging_size;
	copy.mode = 0;

	ret = ioctl(uffd, UFFDIO_COPY, &copy);
	if (ret == -1) {
		pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
			addr, errno);
		return ret;
	}

	pthread_mutex_lock(&events.uffd_faults_mutex);
	events.uffd_faults += 1;
	pthread_mutex_unlock(&events.uffd_faults_mutex);
	return 0;
}

static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
{
	return uffd_generic_handler(mode, uffd, msg, &pt_args);
}

static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
{
	return uffd_generic_handler(mode, uffd, msg, &data_args);
}

static void setup_uffd_args(struct userspace_mem_region *region,
			    struct uffd_args *args)
{
	args->hva = (void *)region->region.userspace_addr;
	args->paging_size = region->region.memory_size;

	args->copy = malloc(args->paging_size);
	TEST_ASSERT(args->copy, "Failed to allocate data copy.");
	memcpy(args->copy, args->hva, args->paging_size);
}

static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
		       struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
{
	struct test_desc *test = p->test_desc;
	int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;

	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);

	*pt_uffd = NULL;
	if (test->uffd_pt_handler)
		*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
						    pt_args.hva,
						    pt_args.paging_size,
						    test->uffd_pt_handler);

	*data_uffd = NULL;
	if (test->uffd_data_handler)
		*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
						      data_args.hva,
						      data_args.paging_size,
						      test->uffd_data_handler);
}

static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
		      struct uffd_desc *data_uffd)
{
	if (test->uffd_pt_handler)
		uffd_stop_demand_paging(pt_uffd);
	if (test->uffd_data_handler)
		uffd_stop_demand_paging(data_uffd);

	free(pt_args.copy);
	free(data_args.copy);
}

static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
{
	TEST_FAIL("There was no UFFD fault expected.");
	return -1;
}

/* Returns false if the test should be skipped. */
static bool punch_hole_in_backing_store(struct kvm_vm *vm,
					struct userspace_mem_region *region)
{
	void *hva = (void *)region->region.userspace_addr;
	uint64_t paging_size = region->region.memory_size;
	int ret, fd = region->fd;

	if (fd != -1) {
		ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
				0, paging_size);
		TEST_ASSERT(ret == 0, "fallocate failed");
	} else {
		ret = madvise(hva, paging_size, MADV_DONTNEED);
		TEST_ASSERT(ret == 0, "madvise failed");
	}

	return true;
}

static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
{
	struct userspace_mem_region *region;
	void *hva;

	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
	hva = (void *)region->region.userspace_addr;

	TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);

	memcpy(hva, run->mmio.data, run->mmio.len);
	events.mmio_exits += 1;
}

static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
{
	uint64_t data;

	memcpy(&data, run->mmio.data, sizeof(data));
	pr_debug("addr=%lld len=%d w=%d data=%lx\n",
		 run->mmio.phys_addr, run->mmio.len,
		 run->mmio.is_write, data);
	TEST_FAIL("There was no MMIO exit expected.");
}

static bool check_write_in_dirty_log(struct kvm_vm *vm,
				     struct userspace_mem_region *region,
				     uint64_t host_pg_nr)
{
	unsigned long *bmap;
	bool first_page_dirty;
	uint64_t size = region->region.memory_size;

	/* getpage_size() is not always equal to vm->page_size */
	bmap = bitmap_zalloc(size / getpagesize());
	kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
	first_page_dirty = test_bit(host_pg_nr, bmap);
	free(bmap);
	return first_page_dirty;
}

/* Returns true to continue the test, and false if it should be skipped. */
static bool handle_cmd(struct kvm_vm *vm, int cmd)
{
	struct userspace_mem_region *data_region, *pt_region;
	bool continue_test = true;
	uint64_t pte_gpa, pte_pg;

	data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
	pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
	pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();

	if (cmd == CMD_SKIP_TEST)
		continue_test = false;

	if (cmd & CMD_HOLE_PT)
		continue_test = punch_hole_in_backing_store(vm, pt_region);
	if (cmd & CMD_HOLE_DATA)
		continue_test = punch_hole_in_backing_store(vm, data_region);
	if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
		TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
			    "Missing write in dirty log");
	if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
		TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
			    "Missing s1ptw write in dirty log");
	if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
		TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
			    "Unexpected write in dirty log");
	if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
		TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
			    "Unexpected s1ptw write in dirty log");

	return continue_test;
}

void fail_vcpu_run_no_handler(int ret)
{
	TEST_FAIL("Unexpected vcpu run failure");
}

void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
{
	TEST_ASSERT(errno == ENOSYS,
		    "The mmio handler should have returned not implemented.");
	events.fail_vcpu_runs += 1;
}

typedef uint32_t aarch64_insn_t;
extern aarch64_insn_t __exec_test[2];

noinline void __return_0x77(void)
{
	asm volatile("__exec_test: mov x0, #0x77\n"
		     "ret\n");
}

/*
 * Note that this function runs on the host before the test VM starts: there's
 * no need to sync the D$ and I$ caches.
 */
static void load_exec_code_for_test(struct kvm_vm *vm)
{
	uint64_t *code;
	struct userspace_mem_region *region;
	void *hva;

	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
	hva = (void *)region->region.userspace_addr;

	assert(TEST_EXEC_GVA > TEST_GVA);
	code = hva + TEST_EXEC_GVA - TEST_GVA;
	memcpy(code, __exec_test, sizeof(__exec_test));
}

static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
				 struct test_desc *test)
{
	vm_init_descriptor_tables(vm);
	vcpu_init_descriptor_tables(vcpu);

	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
				ESR_EC_DABT, no_dabt_handler);
	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
				ESR_EC_IABT, no_iabt_handler);
}

static void setup_gva_maps(struct kvm_vm *vm)
{
	struct userspace_mem_region *region;
	uint64_t pte_gpa;

	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
	/* Map TEST_GVA first. This will install a new PTE. */
	virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
	/* Then map TEST_PTE_GVA to the above PTE. */
	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
	virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
}

enum pf_test_memslots {
	CODE_AND_DATA_MEMSLOT,
	PAGE_TABLE_MEMSLOT,
	TEST_DATA_MEMSLOT,
};

/*
 * Create a memslot for code and data at pfn=0, and test-data and PT ones
 * at max_gfn.
 */
static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
{
	uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
	uint64_t guest_page_size = vm->page_size;
	uint64_t max_gfn = vm_compute_max_gfn(vm);
	/* Enough for 2M of code when using 4K guest pages. */
	uint64_t code_npages = 512;
	uint64_t pt_size, data_size, data_gpa;

	/*
	 * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
	 * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
	 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
	 * twice that just in case.
	 */
	pt_size = 26 * guest_page_size;

	/* memslot sizes and gpa's must be aligned to the backing page size */
	pt_size = align_up(pt_size, backing_src_pagesz);
	data_size = align_up(guest_page_size, backing_src_pagesz);
	data_gpa = (max_gfn * guest_page_size) - data_size;
	data_gpa = align_down(data_gpa, backing_src_pagesz);

	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
				    CODE_AND_DATA_MEMSLOT, code_npages, 0);
	vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
	vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;

	vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
				    PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
				    p->test_desc->pt_memslot_flags);
	vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;

	vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
				    data_size / guest_page_size,
				    p->test_desc->data_memslot_flags);
	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
}

static void setup_ucall(struct kvm_vm *vm)
{
	struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);

	ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
}

static void setup_default_handlers(struct test_desc *test)
{
	if (!test->mmio_handler)
		test->mmio_handler = mmio_no_handler;

	if (!test->fail_vcpu_run_handler)
		test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
}

static void check_event_counts(struct test_desc *test)
{
	TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
	TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
	TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
}

static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
{
	struct test_desc *test = p->test_desc;

	pr_debug("Test: %s\n", test->name);
	pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
	pr_debug("Testing memory backing src type: %s\n",
		 vm_mem_backing_src_alias(p->src_type)->name);
}

static void reset_event_counts(void)
{
	memset(&events, 0, sizeof(events));
}

/*
 * This function either succeeds, skips the test (after setting test->skip), or
 * fails with a TEST_FAIL that aborts all tests.
 */
static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
			  struct test_desc *test)
{
	struct kvm_run *run;
	struct ucall uc;
	int ret;

	run = vcpu->run;

	for (;;) {
		ret = _vcpu_run(vcpu);
		if (ret) {
			test->fail_vcpu_run_handler(ret);
			goto done;
		}

		switch (get_ucall(vcpu, &uc)) {
		case UCALL_SYNC:
			if (!handle_cmd(vm, uc.args[1])) {
				test->skip = true;
				goto done;
			}
			break;
		case UCALL_ABORT:
			REPORT_GUEST_ASSERT(uc);
			break;
		case UCALL_DONE:
			goto done;
		case UCALL_NONE:
			if (run->exit_reason == KVM_EXIT_MMIO)
				test->mmio_handler(vm, run);
			break;
		default:
			TEST_FAIL("Unknown ucall %lu", uc.cmd);
		}
	}

done:
	pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
}

static void run_test(enum vm_guest_mode mode, void *arg)
{
	struct test_params *p = (struct test_params *)arg;
	struct test_desc *test = p->test_desc;
	struct kvm_vm *vm;
	struct kvm_vcpu *vcpu;
	struct uffd_desc *pt_uffd, *data_uffd;

	print_test_banner(mode, p);

	vm = ____vm_create(VM_SHAPE(mode));
	setup_memslots(vm, p);
	kvm_vm_elf_load(vm, program_invocation_name);
	setup_ucall(vm);
	vcpu = vm_vcpu_add(vm, 0, guest_code);

	setup_gva_maps(vm);

	reset_event_counts();

	/*
	 * Set some code in the data memslot for the guest to execute (only
	 * applicable to the EXEC tests). This has to be done before
	 * setup_uffd() as that function copies the memslot data for the uffd
	 * handler.
	 */
	load_exec_code_for_test(vm);
	setup_uffd(vm, p, &pt_uffd, &data_uffd);
	setup_abort_handlers(vm, vcpu, test);
	setup_default_handlers(test);
	vcpu_args_set(vcpu, 1, test);

	vcpu_run_loop(vm, vcpu, test);

	kvm_vm_free(vm);
	free_uffd(test, pt_uffd, data_uffd);

	/*
	 * Make sure we check the events after the uffd threads have exited,
	 * which means they updated their respective event counters.
	 */
	if (!test->skip)
		check_event_counts(test);
}

static void help(char *name)
{
	puts("");
	printf("usage: %s [-h] [-s mem-type]\n", name);
	puts("");
	guest_modes_help();
	backing_src_help("-s");
	puts("");
}

#define SNAME(s)			#s
#define SCAT2(a, b)			SNAME(a ## _ ## b)
#define SCAT3(a, b, c)			SCAT2(a, SCAT2(b, c))
#define SCAT4(a, b, c, d)		SCAT2(a, SCAT3(b, c, d))

#define _CHECK(_test)			_CHECK_##_test
#define _PREPARE(_test)			_PREPARE_##_test
#define _PREPARE_guest_read64		NULL
#define _PREPARE_guest_ld_preidx	NULL
#define _PREPARE_guest_write64		NULL
#define _PREPARE_guest_st_preidx	NULL
#define _PREPARE_guest_exec		NULL
#define _PREPARE_guest_at		NULL
#define _PREPARE_guest_dc_zva		guest_check_dc_zva
#define _PREPARE_guest_cas		guest_check_lse

/* With or without access flag checks */
#define _PREPARE_with_af		guest_set_ha, guest_clear_pte_af
#define _PREPARE_no_af			NULL
#define _CHECK_with_af			guest_check_pte_af
#define _CHECK_no_af			NULL

/* Performs an access and checks that no faults were triggered. */
#define TEST_ACCESS(_access, _with_af, _mark_cmd)				\
{										\
	.name			= SCAT3(_access, _with_af, #_mark_cmd),		\
	.guest_prepare		= { _PREPARE(_with_af),				\
				    _PREPARE(_access) },			\
	.mem_mark_cmd		= _mark_cmd,					\
	.guest_test		= _access,					\
	.guest_test_check	= { _CHECK(_with_af) },				\
	.expected_events	= { 0 },					\
}

#define TEST_UFFD(_access, _with_af, _mark_cmd,					\
		  _uffd_data_handler, _uffd_pt_handler, _uffd_faults)		\
{										\
	.name			= SCAT4(uffd, _access, _with_af, #_mark_cmd),	\
	.guest_prepare		= { _PREPARE(_with_af),				\
				    _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.mem_mark_cmd		= _mark_cmd,					\
	.guest_test_check	= { _CHECK(_with_af) },				\
	.uffd_data_handler	= _uffd_data_handler,				\
	.uffd_pt_handler	= _uffd_pt_handler,				\
	.expected_events	= { .uffd_faults = _uffd_faults, },		\
}

#define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)		\
{										\
	.name			= SCAT3(dirty_log, _access, _with_af),		\
	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
	.guest_prepare		= { _PREPARE(_with_af),				\
				    _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
	.expected_events	= { 0 },					\
}

#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,		\
				_uffd_faults, _test_check, _pt_check)		\
{										\
	.name			= SCAT3(uffd_and_dirty_log, _access, _with_af),	\
	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
	.guest_prepare		= { _PREPARE(_with_af),				\
				    _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
	.uffd_data_handler	= _uffd_data_handler,				\
	.uffd_pt_handler	= uffd_pt_handler,				\
	.expected_events	= { .uffd_faults = _uffd_faults, },		\
}

#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)			\
{										\
	.name			= SCAT2(ro_memslot, _access),			\
	.data_memslot_flags	= KVM_MEM_READONLY,				\
	.pt_memslot_flags	= KVM_MEM_READONLY,				\
	.guest_prepare		= { _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.mmio_handler		= _mmio_handler,				\
	.expected_events	= { .mmio_exits = _mmio_exits },		\
}

#define TEST_RO_MEMSLOT_NO_SYNDROME(_access)					\
{										\
	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
	.data_memslot_flags	= KVM_MEM_READONLY,				\
	.pt_memslot_flags	= KVM_MEM_READONLY,				\
	.guest_prepare		= { _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
	.expected_events	= { .fail_vcpu_runs = 1 },			\
}

#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,	\
				      _test_check)				\
{										\
	.name			= SCAT2(ro_memslot, _access),			\
	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
	.guest_prepare		= { _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.guest_test_check	= { _test_check },				\
	.mmio_handler		= _mmio_handler,				\
	.expected_events	= { .mmio_exits = _mmio_exits},			\
}

#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)		\
{										\
	.name			= SCAT2(ro_memslot_no_syn_and_dlog, _access),	\
	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
	.guest_prepare		= { _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.guest_test_check	= { _test_check },				\
	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
	.expected_events	= { .fail_vcpu_runs = 1 },			\
}

#define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,		\
				 _uffd_data_handler, _uffd_faults)		\
{										\
	.name			= SCAT2(ro_memslot_uffd, _access),		\
	.data_memslot_flags	= KVM_MEM_READONLY,				\
	.pt_memslot_flags	= KVM_MEM_READONLY,				\
	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
	.guest_prepare		= { _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.uffd_data_handler	= _uffd_data_handler,				\
	.uffd_pt_handler	= uffd_pt_handler,				\
	.mmio_handler		= _mmio_handler,				\
	.expected_events	= { .mmio_exits = _mmio_exits,			\
				    .uffd_faults = _uffd_faults },		\
}

#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,	\
					     _uffd_faults)			\
{										\
	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
	.data_memslot_flags	= KVM_MEM_READONLY,				\
	.pt_memslot_flags	= KVM_MEM_READONLY,				\
	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
	.guest_prepare		= { _PREPARE(_access) },			\
	.guest_test		= _access,					\
	.uffd_data_handler	= _uffd_data_handler,				\
	.uffd_pt_handler	= uffd_pt_handler,			\
	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
	.expected_events	= { .fail_vcpu_runs = 1,			\
				    .uffd_faults = _uffd_faults },		\
}

static struct test_desc tests[] = {

	/* Check that HW is setting the Access Flag (AF) (sanity checks). */
	TEST_ACCESS(guest_read64, with_af, CMD_NONE),
	TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
	TEST_ACCESS(guest_cas, with_af, CMD_NONE),
	TEST_ACCESS(guest_write64, with_af, CMD_NONE),
	TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
	TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
	TEST_ACCESS(guest_exec, with_af, CMD_NONE),

	/*
	 * Punch a hole in the data backing store, and then try multiple
	 * accesses: reads should rturn zeroes, and writes should
	 * re-populate the page. Moreover, the test also check that no
	 * exception was generated in the guest.  Note that this
	 * reading/writing behavior is the same as reading/writing a
	 * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
	 * userspace.
	 */
	TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
	TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
	TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
	TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
	TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
	TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
	TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),

	/*
	 * Punch holes in the data and PT backing stores and mark them for
	 * userfaultfd handling. This should result in 2 faults: the access
	 * on the data backing store, and its respective S1 page table walk
	 * (S1PTW).
	 */
	TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	/*
	 * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
	 * The S1PTW fault should still be marked as a write.
	 */
	TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_no_handler, uffd_pt_handler, 1),
	TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),
	TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
		  uffd_data_handler, uffd_pt_handler, 2),

	/*
	 * Try accesses when the data and PT memory regions are both
	 * tracked for dirty logging.
	 */
	TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
		       guest_check_no_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_ld_preidx, with_af,
		       guest_check_no_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
		       guest_check_no_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),
	TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
		       guest_check_s1ptw_wr_in_dirty_log),

	/*
	 * Access when the data and PT memory regions are both marked for
	 * dirty logging and UFFD at the same time. The expected result is
	 * that writes should mark the dirty log and trigger a userfaultfd
	 * write fault.  Reads/execs should result in a read userfaultfd
	 * fault, and nothing in the dirty log.  Any S1PTW should result in
	 * a write in the dirty log and a userfaultfd write.
	 */
	TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
				uffd_data_handler, 2,
				guest_check_no_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
				uffd_data_handler, 2,
				guest_check_no_write_in_dirty_log,
				guest_check_no_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
				uffd_data_handler,
				2, guest_check_no_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
				guest_check_no_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
				uffd_data_handler, 2,
				guest_check_no_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
				uffd_data_handler,
				2, guest_check_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
				uffd_data_handler, 2,
				guest_check_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
				uffd_data_handler,
				2, guest_check_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
				uffd_data_handler, 2,
				guest_check_write_in_dirty_log,
				guest_check_s1ptw_wr_in_dirty_log),
	/*
	 * Access when both the PT and data regions are marked read-only
	 * (with KVM_MEM_READONLY). Writes with a syndrome result in an
	 * MMIO exit, writes with no syndrome (e.g., CAS) result in a
	 * failed vcpu run, and reads/execs with and without syndroms do
	 * not fault.
	 */
	TEST_RO_MEMSLOT(guest_read64, 0, 0),
	TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
	TEST_RO_MEMSLOT(guest_at, 0, 0),
	TEST_RO_MEMSLOT(guest_exec, 0, 0),
	TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
	TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
	TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
	TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),

	/*
	 * The PT and data regions are both read-only and marked
	 * for dirty logging at the same time. The expected result is that
	 * for writes there should be no write in the dirty log. The
	 * readonly handling is the same as if the memslot was not marked
	 * for dirty logging: writes with a syndrome result in an MMIO
	 * exit, and writes with no syndrome result in a failed vcpu run.
	 */
	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
				      guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
				      guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
				      guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
				      guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
				      1, guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
						  guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
						  guest_check_no_write_in_dirty_log),
	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
						  guest_check_no_write_in_dirty_log),

	/*
	 * The PT and data regions are both read-only and punched with
	 * holes tracked with userfaultfd.  The expected result is the
	 * union of both userfaultfd and read-only behaviors. For example,
	 * write accesses result in a userfaultfd write fault and an MMIO
	 * exit.  Writes with no syndrome result in a failed vcpu run and
	 * no userfaultfd write fault. Reads result in userfaultfd getting
	 * triggered.
	 */
	TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
	TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
	TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
	TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
	TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
				 uffd_data_handler, 2),
	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),

	{ 0 }
};

static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
{
	struct test_desc *t;

	for (t = &tests[0]; t->name; t++) {
		if (t->skip)
			continue;

		struct test_params p = {
			.src_type = src_type,
			.test_desc = t,
		};

		for_each_guest_mode(run_test, &p);
	}
}

int main(int argc, char *argv[])
{
	enum vm_mem_backing_src_type src_type;
	int opt;

	src_type = DEFAULT_VM_MEM_SRC;

	while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
		switch (opt) {
		case 'm':
			guest_modes_cmdline(optarg);
			break;
		case 's':
			src_type = parse_backing_src_type(optarg);
			break;
		case 'h':
		default:
			help(argv[0]);
			exit(0);
		}
	}

	for_each_test_and_guest_mode(src_type);
	return 0;
}