Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | // SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <linux/limits.h> #include <sys/sysinfo.h> #include <sys/wait.h> #include <errno.h> #include <pthread.h> #include <stdio.h> #include <time.h> #include "../kselftest.h" #include "cgroup_util.h" enum hog_clock_type { // Count elapsed time using the CLOCK_PROCESS_CPUTIME_ID clock. CPU_HOG_CLOCK_PROCESS, // Count elapsed time using system wallclock time. CPU_HOG_CLOCK_WALL, }; struct cpu_hogger { char *cgroup; pid_t pid; long usage; }; struct cpu_hog_func_param { int nprocs; struct timespec ts; enum hog_clock_type clock_type; }; /* * This test creates two nested cgroups with and without enabling * the cpu controller. */ static int test_cpucg_subtree_control(const char *root) { char *parent = NULL, *child = NULL, *parent2 = NULL, *child2 = NULL; int ret = KSFT_FAIL; // Create two nested cgroups with the cpu controller enabled. parent = cg_name(root, "cpucg_test_0"); if (!parent) goto cleanup; if (cg_create(parent)) goto cleanup; if (cg_write(parent, "cgroup.subtree_control", "+cpu")) goto cleanup; child = cg_name(parent, "cpucg_test_child"); if (!child) goto cleanup; if (cg_create(child)) goto cleanup; if (cg_read_strstr(child, "cgroup.controllers", "cpu")) goto cleanup; // Create two nested cgroups without enabling the cpu controller. parent2 = cg_name(root, "cpucg_test_1"); if (!parent2) goto cleanup; if (cg_create(parent2)) goto cleanup; child2 = cg_name(parent2, "cpucg_test_child"); if (!child2) goto cleanup; if (cg_create(child2)) goto cleanup; if (!cg_read_strstr(child2, "cgroup.controllers", "cpu")) goto cleanup; ret = KSFT_PASS; cleanup: cg_destroy(child); free(child); cg_destroy(child2); free(child2); cg_destroy(parent); free(parent); cg_destroy(parent2); free(parent2); return ret; } static void *hog_cpu_thread_func(void *arg) { while (1) ; return NULL; } static struct timespec timespec_sub(const struct timespec *lhs, const struct timespec *rhs) { struct timespec zero = { .tv_sec = 0, .tv_nsec = 0, }; struct timespec ret; if (lhs->tv_sec < rhs->tv_sec) return zero; ret.tv_sec = lhs->tv_sec - rhs->tv_sec; if (lhs->tv_nsec < rhs->tv_nsec) { if (ret.tv_sec == 0) return zero; ret.tv_sec--; ret.tv_nsec = NSEC_PER_SEC - rhs->tv_nsec + lhs->tv_nsec; } else ret.tv_nsec = lhs->tv_nsec - rhs->tv_nsec; return ret; } static int hog_cpus_timed(const char *cgroup, void *arg) { const struct cpu_hog_func_param *param = (struct cpu_hog_func_param *)arg; struct timespec ts_run = param->ts; struct timespec ts_remaining = ts_run; struct timespec ts_start; int i, ret; ret = clock_gettime(CLOCK_MONOTONIC, &ts_start); if (ret != 0) return ret; for (i = 0; i < param->nprocs; i++) { pthread_t tid; ret = pthread_create(&tid, NULL, &hog_cpu_thread_func, NULL); if (ret != 0) return ret; } while (ts_remaining.tv_sec > 0 || ts_remaining.tv_nsec > 0) { struct timespec ts_total; ret = nanosleep(&ts_remaining, NULL); if (ret && errno != EINTR) return ret; if (param->clock_type == CPU_HOG_CLOCK_PROCESS) { ret = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts_total); if (ret != 0) return ret; } else { struct timespec ts_current; ret = clock_gettime(CLOCK_MONOTONIC, &ts_current); if (ret != 0) return ret; ts_total = timespec_sub(&ts_current, &ts_start); } ts_remaining = timespec_sub(&ts_run, &ts_total); } return 0; } /* * Creates a cpu cgroup, burns a CPU for a few quanta, and verifies that * cpu.stat shows the expected output. */ static int test_cpucg_stats(const char *root) { int ret = KSFT_FAIL; long usage_usec, user_usec, system_usec; long usage_seconds = 2; long expected_usage_usec = usage_seconds * USEC_PER_SEC; char *cpucg; cpucg = cg_name(root, "cpucg_test"); if (!cpucg) goto cleanup; if (cg_create(cpucg)) goto cleanup; usage_usec = cg_read_key_long(cpucg, "cpu.stat", "usage_usec"); user_usec = cg_read_key_long(cpucg, "cpu.stat", "user_usec"); system_usec = cg_read_key_long(cpucg, "cpu.stat", "system_usec"); if (usage_usec != 0 || user_usec != 0 || system_usec != 0) goto cleanup; struct cpu_hog_func_param param = { .nprocs = 1, .ts = { .tv_sec = usage_seconds, .tv_nsec = 0, }, .clock_type = CPU_HOG_CLOCK_PROCESS, }; if (cg_run(cpucg, hog_cpus_timed, (void *)¶m)) goto cleanup; usage_usec = cg_read_key_long(cpucg, "cpu.stat", "usage_usec"); user_usec = cg_read_key_long(cpucg, "cpu.stat", "user_usec"); if (user_usec <= 0) goto cleanup; if (!values_close(usage_usec, expected_usage_usec, 1)) goto cleanup; ret = KSFT_PASS; cleanup: cg_destroy(cpucg); free(cpucg); return ret; } static int run_cpucg_weight_test( const char *root, pid_t (*spawn_child)(const struct cpu_hogger *child), int (*validate)(const struct cpu_hogger *children, int num_children)) { int ret = KSFT_FAIL, i; char *parent = NULL; struct cpu_hogger children[3] = {NULL}; parent = cg_name(root, "cpucg_test_0"); if (!parent) goto cleanup; if (cg_create(parent)) goto cleanup; if (cg_write(parent, "cgroup.subtree_control", "+cpu")) goto cleanup; for (i = 0; i < ARRAY_SIZE(children); i++) { children[i].cgroup = cg_name_indexed(parent, "cpucg_child", i); if (!children[i].cgroup) goto cleanup; if (cg_create(children[i].cgroup)) goto cleanup; if (cg_write_numeric(children[i].cgroup, "cpu.weight", 50 * (i + 1))) goto cleanup; } for (i = 0; i < ARRAY_SIZE(children); i++) { pid_t pid = spawn_child(&children[i]); if (pid <= 0) goto cleanup; children[i].pid = pid; } for (i = 0; i < ARRAY_SIZE(children); i++) { int retcode; waitpid(children[i].pid, &retcode, 0); if (!WIFEXITED(retcode)) goto cleanup; if (WEXITSTATUS(retcode)) goto cleanup; } for (i = 0; i < ARRAY_SIZE(children); i++) children[i].usage = cg_read_key_long(children[i].cgroup, "cpu.stat", "usage_usec"); if (validate(children, ARRAY_SIZE(children))) goto cleanup; ret = KSFT_PASS; cleanup: for (i = 0; i < ARRAY_SIZE(children); i++) { cg_destroy(children[i].cgroup); free(children[i].cgroup); } cg_destroy(parent); free(parent); return ret; } static pid_t weight_hog_ncpus(const struct cpu_hogger *child, int ncpus) { long usage_seconds = 10; struct cpu_hog_func_param param = { .nprocs = ncpus, .ts = { .tv_sec = usage_seconds, .tv_nsec = 0, }, .clock_type = CPU_HOG_CLOCK_WALL, }; return cg_run_nowait(child->cgroup, hog_cpus_timed, (void *)¶m); } static pid_t weight_hog_all_cpus(const struct cpu_hogger *child) { return weight_hog_ncpus(child, get_nprocs()); } static int overprovision_validate(const struct cpu_hogger *children, int num_children) { int ret = KSFT_FAIL, i; for (i = 0; i < num_children - 1; i++) { long delta; if (children[i + 1].usage <= children[i].usage) goto cleanup; delta = children[i + 1].usage - children[i].usage; if (!values_close(delta, children[0].usage, 35)) goto cleanup; } ret = KSFT_PASS; cleanup: return ret; } /* * First, this test creates the following hierarchy: * A * A/B cpu.weight = 50 * A/C cpu.weight = 100 * A/D cpu.weight = 150 * * A separate process is then created for each child cgroup which spawns as * many threads as there are cores, and hogs each CPU as much as possible * for some time interval. * * Once all of the children have exited, we verify that each child cgroup * was given proportional runtime as informed by their cpu.weight. */ static int test_cpucg_weight_overprovisioned(const char *root) { return run_cpucg_weight_test(root, weight_hog_all_cpus, overprovision_validate); } static pid_t weight_hog_one_cpu(const struct cpu_hogger *child) { return weight_hog_ncpus(child, 1); } static int underprovision_validate(const struct cpu_hogger *children, int num_children) { int ret = KSFT_FAIL, i; for (i = 0; i < num_children - 1; i++) { if (!values_close(children[i + 1].usage, children[0].usage, 15)) goto cleanup; } ret = KSFT_PASS; cleanup: return ret; } /* * First, this test creates the following hierarchy: * A * A/B cpu.weight = 50 * A/C cpu.weight = 100 * A/D cpu.weight = 150 * * A separate process is then created for each child cgroup which spawns a * single thread that hogs a CPU. The testcase is only run on systems that * have at least one core per-thread in the child processes. * * Once all of the children have exited, we verify that each child cgroup * had roughly the same runtime despite having different cpu.weight. */ static int test_cpucg_weight_underprovisioned(const char *root) { // Only run the test if there are enough cores to avoid overprovisioning // the system. if (get_nprocs() < 4) return KSFT_SKIP; return run_cpucg_weight_test(root, weight_hog_one_cpu, underprovision_validate); } static int run_cpucg_nested_weight_test(const char *root, bool overprovisioned) { int ret = KSFT_FAIL, i; char *parent = NULL, *child = NULL; struct cpu_hogger leaf[3] = {NULL}; long nested_leaf_usage, child_usage; int nprocs = get_nprocs(); if (!overprovisioned) { if (nprocs < 4) /* * Only run the test if there are enough cores to avoid overprovisioning * the system. */ return KSFT_SKIP; nprocs /= 4; } parent = cg_name(root, "cpucg_test"); child = cg_name(parent, "cpucg_child"); if (!parent || !child) goto cleanup; if (cg_create(parent)) goto cleanup; if (cg_write(parent, "cgroup.subtree_control", "+cpu")) goto cleanup; if (cg_create(child)) goto cleanup; if (cg_write(child, "cgroup.subtree_control", "+cpu")) goto cleanup; if (cg_write(child, "cpu.weight", "1000")) goto cleanup; for (i = 0; i < ARRAY_SIZE(leaf); i++) { const char *ancestor; long weight; if (i == 0) { ancestor = parent; weight = 1000; } else { ancestor = child; weight = 5000; } leaf[i].cgroup = cg_name_indexed(ancestor, "cpucg_leaf", i); if (!leaf[i].cgroup) goto cleanup; if (cg_create(leaf[i].cgroup)) goto cleanup; if (cg_write_numeric(leaf[i].cgroup, "cpu.weight", weight)) goto cleanup; } for (i = 0; i < ARRAY_SIZE(leaf); i++) { pid_t pid; struct cpu_hog_func_param param = { .nprocs = nprocs, .ts = { .tv_sec = 10, .tv_nsec = 0, }, .clock_type = CPU_HOG_CLOCK_WALL, }; pid = cg_run_nowait(leaf[i].cgroup, hog_cpus_timed, (void *)¶m); if (pid <= 0) goto cleanup; leaf[i].pid = pid; } for (i = 0; i < ARRAY_SIZE(leaf); i++) { int retcode; waitpid(leaf[i].pid, &retcode, 0); if (!WIFEXITED(retcode)) goto cleanup; if (WEXITSTATUS(retcode)) goto cleanup; } for (i = 0; i < ARRAY_SIZE(leaf); i++) { leaf[i].usage = cg_read_key_long(leaf[i].cgroup, "cpu.stat", "usage_usec"); if (leaf[i].usage <= 0) goto cleanup; } nested_leaf_usage = leaf[1].usage + leaf[2].usage; if (overprovisioned) { if (!values_close(leaf[0].usage, nested_leaf_usage, 15)) goto cleanup; } else if (!values_close(leaf[0].usage * 2, nested_leaf_usage, 15)) goto cleanup; child_usage = cg_read_key_long(child, "cpu.stat", "usage_usec"); if (child_usage <= 0) goto cleanup; if (!values_close(child_usage, nested_leaf_usage, 1)) goto cleanup; ret = KSFT_PASS; cleanup: for (i = 0; i < ARRAY_SIZE(leaf); i++) { cg_destroy(leaf[i].cgroup); free(leaf[i].cgroup); } cg_destroy(child); free(child); cg_destroy(parent); free(parent); return ret; } /* * First, this test creates the following hierarchy: * A * A/B cpu.weight = 1000 * A/C cpu.weight = 1000 * A/C/D cpu.weight = 5000 * A/C/E cpu.weight = 5000 * * A separate process is then created for each leaf, which spawn nproc threads * that burn a CPU for a few seconds. * * Once all of those processes have exited, we verify that each of the leaf * cgroups have roughly the same usage from cpu.stat. */ static int test_cpucg_nested_weight_overprovisioned(const char *root) { return run_cpucg_nested_weight_test(root, true); } /* * First, this test creates the following hierarchy: * A * A/B cpu.weight = 1000 * A/C cpu.weight = 1000 * A/C/D cpu.weight = 5000 * A/C/E cpu.weight = 5000 * * A separate process is then created for each leaf, which nproc / 4 threads * that burns a CPU for a few seconds. * * Once all of those processes have exited, we verify that each of the leaf * cgroups have roughly the same usage from cpu.stat. */ static int test_cpucg_nested_weight_underprovisioned(const char *root) { return run_cpucg_nested_weight_test(root, false); } /* * This test creates a cgroup with some maximum value within a period, and * verifies that a process in the cgroup is not overscheduled. */ static int test_cpucg_max(const char *root) { int ret = KSFT_FAIL; long usage_usec, user_usec; long usage_seconds = 1; long expected_usage_usec = usage_seconds * USEC_PER_SEC; char *cpucg; cpucg = cg_name(root, "cpucg_test"); if (!cpucg) goto cleanup; if (cg_create(cpucg)) goto cleanup; if (cg_write(cpucg, "cpu.max", "1000")) goto cleanup; struct cpu_hog_func_param param = { .nprocs = 1, .ts = { .tv_sec = usage_seconds, .tv_nsec = 0, }, .clock_type = CPU_HOG_CLOCK_WALL, }; if (cg_run(cpucg, hog_cpus_timed, (void *)¶m)) goto cleanup; usage_usec = cg_read_key_long(cpucg, "cpu.stat", "usage_usec"); user_usec = cg_read_key_long(cpucg, "cpu.stat", "user_usec"); if (user_usec <= 0) goto cleanup; if (user_usec >= expected_usage_usec) goto cleanup; if (values_close(usage_usec, expected_usage_usec, 95)) goto cleanup; ret = KSFT_PASS; cleanup: cg_destroy(cpucg); free(cpucg); return ret; } /* * This test verifies that a process inside of a nested cgroup whose parent * group has a cpu.max value set, is properly throttled. */ static int test_cpucg_max_nested(const char *root) { int ret = KSFT_FAIL; long usage_usec, user_usec; long usage_seconds = 1; long expected_usage_usec = usage_seconds * USEC_PER_SEC; char *parent, *child; parent = cg_name(root, "cpucg_parent"); child = cg_name(parent, "cpucg_child"); if (!parent || !child) goto cleanup; if (cg_create(parent)) goto cleanup; if (cg_write(parent, "cgroup.subtree_control", "+cpu")) goto cleanup; if (cg_create(child)) goto cleanup; if (cg_write(parent, "cpu.max", "1000")) goto cleanup; struct cpu_hog_func_param param = { .nprocs = 1, .ts = { .tv_sec = usage_seconds, .tv_nsec = 0, }, .clock_type = CPU_HOG_CLOCK_WALL, }; if (cg_run(child, hog_cpus_timed, (void *)¶m)) goto cleanup; usage_usec = cg_read_key_long(child, "cpu.stat", "usage_usec"); user_usec = cg_read_key_long(child, "cpu.stat", "user_usec"); if (user_usec <= 0) goto cleanup; if (user_usec >= expected_usage_usec) goto cleanup; if (values_close(usage_usec, expected_usage_usec, 95)) goto cleanup; ret = KSFT_PASS; cleanup: cg_destroy(child); free(child); cg_destroy(parent); free(parent); return ret; } #define T(x) { x, #x } struct cpucg_test { int (*fn)(const char *root); const char *name; } tests[] = { T(test_cpucg_subtree_control), T(test_cpucg_stats), T(test_cpucg_weight_overprovisioned), T(test_cpucg_weight_underprovisioned), T(test_cpucg_nested_weight_overprovisioned), T(test_cpucg_nested_weight_underprovisioned), T(test_cpucg_max), T(test_cpucg_max_nested), }; #undef T int main(int argc, char *argv[]) { char root[PATH_MAX]; int i, ret = EXIT_SUCCESS; if (cg_find_unified_root(root, sizeof(root), NULL)) ksft_exit_skip("cgroup v2 isn't mounted\n"); if (cg_read_strstr(root, "cgroup.subtree_control", "cpu")) if (cg_write(root, "cgroup.subtree_control", "+cpu")) ksft_exit_skip("Failed to set cpu controller\n"); for (i = 0; i < ARRAY_SIZE(tests); i++) { switch (tests[i].fn(root)) { case KSFT_PASS: ksft_test_result_pass("%s\n", tests[i].name); break; case KSFT_SKIP: ksft_test_result_skip("%s\n", tests[i].name); break; default: ret = EXIT_FAILURE; ksft_test_result_fail("%s\n", tests[i].name); break; } } return ret; } |