Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | // SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <stdio.h> #include <stdbool.h> #include <linux/kernel.h> #include <linux/magic.h> #include <linux/mman.h> #include <sys/mman.h> #include <sys/shm.h> #include <sys/syscall.h> #include <sys/vfs.h> #include <unistd.h> #include <string.h> #include <fcntl.h> #include <errno.h> #include "../kselftest.h" #define NR_TESTS 9 static const char * const dev_files[] = { "/dev/zero", "/dev/null", "/dev/urandom", "/proc/version", "/proc" }; void print_cachestat(struct cachestat *cs) { ksft_print_msg( "Using cachestat: Cached: %llu, Dirty: %llu, Writeback: %llu, Evicted: %llu, Recently Evicted: %llu\n", cs->nr_cache, cs->nr_dirty, cs->nr_writeback, cs->nr_evicted, cs->nr_recently_evicted); } bool write_exactly(int fd, size_t filesize) { int random_fd = open("/dev/urandom", O_RDONLY); char *cursor, *data; int remained; bool ret; if (random_fd < 0) { ksft_print_msg("Unable to access urandom.\n"); ret = false; goto out; } data = malloc(filesize); if (!data) { ksft_print_msg("Unable to allocate data.\n"); ret = false; goto close_random_fd; } remained = filesize; cursor = data; while (remained) { ssize_t read_len = read(random_fd, cursor, remained); if (read_len <= 0) { ksft_print_msg("Unable to read from urandom.\n"); ret = false; goto out_free_data; } remained -= read_len; cursor += read_len; } /* write random data to fd */ remained = filesize; cursor = data; while (remained) { ssize_t write_len = write(fd, cursor, remained); if (write_len <= 0) { ksft_print_msg("Unable write random data to file.\n"); ret = false; goto out_free_data; } remained -= write_len; cursor += write_len; } ret = true; out_free_data: free(data); close_random_fd: close(random_fd); out: return ret; } /* * fsync() is implemented via noop_fsync() on tmpfs. This makes the fsync() * test fail below, so we need to check for test file living on a tmpfs. */ static bool is_on_tmpfs(int fd) { struct statfs statfs_buf; if (fstatfs(fd, &statfs_buf)) return false; return statfs_buf.f_type == TMPFS_MAGIC; } /* * Open/create the file at filename, (optionally) write random data to it * (exactly num_pages), then test the cachestat syscall on this file. * * If test_fsync == true, fsync the file, then check the number of dirty * pages. */ static int test_cachestat(const char *filename, bool write_random, bool create, bool test_fsync, unsigned long num_pages, int open_flags, mode_t open_mode) { size_t PS = sysconf(_SC_PAGESIZE); int filesize = num_pages * PS; int ret = KSFT_PASS; long syscall_ret; struct cachestat cs; struct cachestat_range cs_range = { 0, filesize }; int fd = open(filename, open_flags, open_mode); if (fd == -1) { ksft_print_msg("Unable to create/open file.\n"); ret = KSFT_FAIL; goto out; } else { ksft_print_msg("Create/open %s\n", filename); } if (write_random) { if (!write_exactly(fd, filesize)) { ksft_print_msg("Unable to access urandom.\n"); ret = KSFT_FAIL; goto out1; } } syscall_ret = syscall(__NR_cachestat, fd, &cs_range, &cs, 0); ksft_print_msg("Cachestat call returned %ld\n", syscall_ret); if (syscall_ret) { ksft_print_msg("Cachestat returned non-zero.\n"); ret = KSFT_FAIL; goto out1; } else { print_cachestat(&cs); if (write_random) { if (cs.nr_cache + cs.nr_evicted != num_pages) { ksft_print_msg( "Total number of cached and evicted pages is off.\n"); ret = KSFT_FAIL; } } } if (test_fsync) { if (is_on_tmpfs(fd)) { ret = KSFT_SKIP; } else if (fsync(fd)) { ksft_print_msg("fsync fails.\n"); ret = KSFT_FAIL; } else { syscall_ret = syscall(__NR_cachestat, fd, &cs_range, &cs, 0); ksft_print_msg("Cachestat call (after fsync) returned %ld\n", syscall_ret); if (!syscall_ret) { print_cachestat(&cs); if (cs.nr_dirty) { ret = KSFT_FAIL; ksft_print_msg( "Number of dirty should be zero after fsync.\n"); } } else { ksft_print_msg("Cachestat (after fsync) returned non-zero.\n"); ret = KSFT_FAIL; goto out1; } } } out1: close(fd); if (create) remove(filename); out: return ret; } bool test_cachestat_shmem(void) { size_t PS = sysconf(_SC_PAGESIZE); size_t filesize = PS * 512 * 2; /* 2 2MB huge pages */ int syscall_ret; size_t compute_len = PS * 512; struct cachestat_range cs_range = { PS, compute_len }; char *filename = "tmpshmcstat"; struct cachestat cs; bool ret = true; unsigned long num_pages = compute_len / PS; int fd = shm_open(filename, O_CREAT | O_RDWR, 0600); if (fd < 0) { ksft_print_msg("Unable to create shmem file.\n"); ret = false; goto out; } if (ftruncate(fd, filesize)) { ksft_print_msg("Unable to truncate shmem file.\n"); ret = false; goto close_fd; } if (!write_exactly(fd, filesize)) { ksft_print_msg("Unable to write to shmem file.\n"); ret = false; goto close_fd; } syscall_ret = syscall(__NR_cachestat, fd, &cs_range, &cs, 0); if (syscall_ret) { ksft_print_msg("Cachestat returned non-zero.\n"); ret = false; goto close_fd; } else { print_cachestat(&cs); if (cs.nr_cache + cs.nr_evicted != num_pages) { ksft_print_msg( "Total number of cached and evicted pages is off.\n"); ret = false; } } close_fd: shm_unlink(filename); out: return ret; } int main(void) { int ret; ksft_print_header(); ret = syscall(__NR_cachestat, -1, NULL, NULL, 0); if (ret == -1 && errno == ENOSYS) ksft_exit_skip("cachestat syscall not available\n"); ksft_set_plan(NR_TESTS); if (ret == -1 && errno == EBADF) { ksft_test_result_pass("bad file descriptor recognized\n"); ret = 0; } else { ksft_test_result_fail("bad file descriptor ignored\n"); ret = 1; } for (int i = 0; i < 5; i++) { const char *dev_filename = dev_files[i]; if (test_cachestat(dev_filename, false, false, false, 4, O_RDONLY, 0400) == KSFT_PASS) ksft_test_result_pass("cachestat works with %s\n", dev_filename); else { ksft_test_result_fail("cachestat fails with %s\n", dev_filename); ret = 1; } } if (test_cachestat("tmpfilecachestat", true, true, false, 4, O_CREAT | O_RDWR, 0600) == KSFT_PASS) ksft_test_result_pass("cachestat works with a normal file\n"); else { ksft_test_result_fail("cachestat fails with normal file\n"); ret = 1; } switch (test_cachestat("tmpfilecachestat", true, true, true, 4, O_CREAT | O_RDWR, 0600)) { case KSFT_FAIL: ksft_test_result_fail("cachestat fsync fails with normal file\n"); ret = KSFT_FAIL; break; case KSFT_PASS: ksft_test_result_pass("cachestat fsync works with a normal file\n"); break; case KSFT_SKIP: ksft_test_result_skip("tmpfilecachestat is on tmpfs\n"); break; } if (test_cachestat_shmem()) ksft_test_result_pass("cachestat works with a shmem file\n"); else { ksft_test_result_fail("cachestat fails with a shmem file\n"); ret = 1; } return ret; } |