Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */ #define _GNU_SOURCE #include <limits.h> #include <test_progs.h> #include <linux/filter.h> #include <linux/bpf.h> /* ================================= * SHORT AND CONSISTENT NUMBER TYPES * ================================= */ #define U64_MAX ((u64)UINT64_MAX) #define U32_MAX ((u32)UINT_MAX) #define U16_MAX ((u32)UINT_MAX) #define S64_MIN ((s64)INT64_MIN) #define S64_MAX ((s64)INT64_MAX) #define S32_MIN ((s32)INT_MIN) #define S32_MAX ((s32)INT_MAX) #define S16_MIN ((s16)0x80000000) #define S16_MAX ((s16)0x7fffffff) typedef unsigned long long ___u64; typedef unsigned int ___u32; typedef long long ___s64; typedef int ___s32; /* avoid conflicts with already defined types in kernel headers */ #define u64 ___u64 #define u32 ___u32 #define s64 ___s64 #define s32 ___s32 /* ================================== * STRING BUF ABSTRACTION AND HELPERS * ================================== */ struct strbuf { size_t buf_sz; int pos; char buf[0]; }; #define DEFINE_STRBUF(name, N) \ struct { struct strbuf buf; char data[(N)]; } ___##name; \ struct strbuf *name = (___##name.buf.buf_sz = (N), ___##name.buf.pos = 0, &___##name.buf) __printf(2, 3) static inline void snappendf(struct strbuf *s, const char *fmt, ...) { va_list args; va_start(args, fmt); s->pos += vsnprintf(s->buf + s->pos, s->pos < s->buf_sz ? s->buf_sz - s->pos : 0, fmt, args); va_end(args); } /* ================================== * GENERIC NUMBER TYPE AND OPERATIONS * ================================== */ enum num_t { U64, first_t = U64, U32, S64, S32, last_t = S32 }; static __always_inline u64 min_t(enum num_t t, u64 x, u64 y) { switch (t) { case U64: return (u64)x < (u64)y ? (u64)x : (u64)y; case U32: return (u32)x < (u32)y ? (u32)x : (u32)y; case S64: return (s64)x < (s64)y ? (s64)x : (s64)y; case S32: return (s32)x < (s32)y ? (s32)x : (s32)y; default: printf("min_t!\n"); exit(1); } } static __always_inline u64 max_t(enum num_t t, u64 x, u64 y) { switch (t) { case U64: return (u64)x > (u64)y ? (u64)x : (u64)y; case U32: return (u32)x > (u32)y ? (u32)x : (u32)y; case S64: return (s64)x > (s64)y ? (s64)x : (s64)y; case S32: return (s32)x > (s32)y ? (u32)(s32)x : (u32)(s32)y; default: printf("max_t!\n"); exit(1); } } static __always_inline u64 cast_t(enum num_t t, u64 x) { switch (t) { case U64: return (u64)x; case U32: return (u32)x; case S64: return (s64)x; case S32: return (u32)(s32)x; default: printf("cast_t!\n"); exit(1); } } static const char *t_str(enum num_t t) { switch (t) { case U64: return "u64"; case U32: return "u32"; case S64: return "s64"; case S32: return "s32"; default: printf("t_str!\n"); exit(1); } } static enum num_t t_is_32(enum num_t t) { switch (t) { case U64: return false; case U32: return true; case S64: return false; case S32: return true; default: printf("t_is_32!\n"); exit(1); } } static enum num_t t_signed(enum num_t t) { switch (t) { case U64: return S64; case U32: return S32; case S64: return S64; case S32: return S32; default: printf("t_signed!\n"); exit(1); } } static enum num_t t_unsigned(enum num_t t) { switch (t) { case U64: return U64; case U32: return U32; case S64: return U64; case S32: return U32; default: printf("t_unsigned!\n"); exit(1); } } #define UNUM_MAX_DECIMAL U16_MAX #define SNUM_MAX_DECIMAL S16_MAX #define SNUM_MIN_DECIMAL S16_MIN static bool num_is_small(enum num_t t, u64 x) { switch (t) { case U64: return (u64)x <= UNUM_MAX_DECIMAL; case U32: return (u32)x <= UNUM_MAX_DECIMAL; case S64: return (s64)x >= SNUM_MIN_DECIMAL && (s64)x <= SNUM_MAX_DECIMAL; case S32: return (s32)x >= SNUM_MIN_DECIMAL && (s32)x <= SNUM_MAX_DECIMAL; default: printf("num_is_small!\n"); exit(1); } } static void snprintf_num(enum num_t t, struct strbuf *sb, u64 x) { bool is_small = num_is_small(t, x); if (is_small) { switch (t) { case U64: return snappendf(sb, "%llu", (u64)x); case U32: return snappendf(sb, "%u", (u32)x); case S64: return snappendf(sb, "%lld", (s64)x); case S32: return snappendf(sb, "%d", (s32)x); default: printf("snprintf_num!\n"); exit(1); } } else { switch (t) { case U64: if (x == U64_MAX) return snappendf(sb, "U64_MAX"); else if (x >= U64_MAX - 256) return snappendf(sb, "U64_MAX-%llu", U64_MAX - x); else return snappendf(sb, "%#llx", (u64)x); case U32: if ((u32)x == U32_MAX) return snappendf(sb, "U32_MAX"); else if ((u32)x >= U32_MAX - 256) return snappendf(sb, "U32_MAX-%u", U32_MAX - (u32)x); else return snappendf(sb, "%#x", (u32)x); case S64: if ((s64)x == S64_MAX) return snappendf(sb, "S64_MAX"); else if ((s64)x >= S64_MAX - 256) return snappendf(sb, "S64_MAX-%lld", S64_MAX - (s64)x); else if ((s64)x == S64_MIN) return snappendf(sb, "S64_MIN"); else if ((s64)x <= S64_MIN + 256) return snappendf(sb, "S64_MIN+%lld", (s64)x - S64_MIN); else return snappendf(sb, "%#llx", (s64)x); case S32: if ((s32)x == S32_MAX) return snappendf(sb, "S32_MAX"); else if ((s32)x >= S32_MAX - 256) return snappendf(sb, "S32_MAX-%d", S32_MAX - (s32)x); else if ((s32)x == S32_MIN) return snappendf(sb, "S32_MIN"); else if ((s32)x <= S32_MIN + 256) return snappendf(sb, "S32_MIN+%d", (s32)x - S32_MIN); else return snappendf(sb, "%#x", (s32)x); default: printf("snprintf_num!\n"); exit(1); } } } /* =================================== * GENERIC RANGE STRUCT AND OPERATIONS * =================================== */ struct range { u64 a, b; }; static void snprintf_range(enum num_t t, struct strbuf *sb, struct range x) { if (x.a == x.b) return snprintf_num(t, sb, x.a); snappendf(sb, "["); snprintf_num(t, sb, x.a); snappendf(sb, "; "); snprintf_num(t, sb, x.b); snappendf(sb, "]"); } static void print_range(enum num_t t, struct range x, const char *sfx) { DEFINE_STRBUF(sb, 128); snprintf_range(t, sb, x); printf("%s%s", sb->buf, sfx); } static const struct range unkn[] = { [U64] = { 0, U64_MAX }, [U32] = { 0, U32_MAX }, [S64] = { (u64)S64_MIN, (u64)S64_MAX }, [S32] = { (u64)(u32)S32_MIN, (u64)(u32)S32_MAX }, }; static struct range unkn_subreg(enum num_t t) { switch (t) { case U64: return unkn[U32]; case U32: return unkn[U32]; case S64: return unkn[U32]; case S32: return unkn[S32]; default: printf("unkn_subreg!\n"); exit(1); } } static struct range range(enum num_t t, u64 a, u64 b) { switch (t) { case U64: return (struct range){ (u64)a, (u64)b }; case U32: return (struct range){ (u32)a, (u32)b }; case S64: return (struct range){ (s64)a, (s64)b }; case S32: return (struct range){ (u32)(s32)a, (u32)(s32)b }; default: printf("range!\n"); exit(1); } } static __always_inline u32 sign64(u64 x) { return (x >> 63) & 1; } static __always_inline u32 sign32(u64 x) { return ((u32)x >> 31) & 1; } static __always_inline u32 upper32(u64 x) { return (u32)(x >> 32); } static __always_inline u64 swap_low32(u64 x, u32 y) { return (x & 0xffffffff00000000ULL) | y; } static bool range_eq(struct range x, struct range y) { return x.a == y.a && x.b == y.b; } static struct range range_cast_to_s32(struct range x) { u64 a = x.a, b = x.b; /* if upper 32 bits are constant, lower 32 bits should form a proper * s32 range to be correct */ if (upper32(a) == upper32(b) && (s32)a <= (s32)b) return range(S32, a, b); /* Special case where upper bits form a small sequence of two * sequential numbers (in 32-bit unsigned space, so 0xffffffff to * 0x00000000 is also valid), while lower bits form a proper s32 range * going from negative numbers to positive numbers. * * E.g.: [0xfffffff0ffffff00; 0xfffffff100000010]. Iterating * over full 64-bit numbers range will form a proper [-16, 16] * ([0xffffff00; 0x00000010]) range in its lower 32 bits. */ if (upper32(a) + 1 == upper32(b) && (s32)a < 0 && (s32)b >= 0) return range(S32, a, b); /* otherwise we can't derive much meaningful information */ return unkn[S32]; } static struct range range_cast_u64(enum num_t to_t, struct range x) { u64 a = (u64)x.a, b = (u64)x.b; switch (to_t) { case U64: return x; case U32: if (upper32(a) != upper32(b)) return unkn[U32]; return range(U32, a, b); case S64: if (sign64(a) != sign64(b)) return unkn[S64]; return range(S64, a, b); case S32: return range_cast_to_s32(x); default: printf("range_cast_u64!\n"); exit(1); } } static struct range range_cast_s64(enum num_t to_t, struct range x) { s64 a = (s64)x.a, b = (s64)x.b; switch (to_t) { case U64: /* equivalent to (s64)a <= (s64)b check */ if (sign64(a) != sign64(b)) return unkn[U64]; return range(U64, a, b); case U32: if (upper32(a) != upper32(b) || sign32(a) != sign32(b)) return unkn[U32]; return range(U32, a, b); case S64: return x; case S32: return range_cast_to_s32(x); default: printf("range_cast_s64!\n"); exit(1); } } static struct range range_cast_u32(enum num_t to_t, struct range x) { u32 a = (u32)x.a, b = (u32)x.b; switch (to_t) { case U64: case S64: /* u32 is always a valid zero-extended u64/s64 */ return range(to_t, a, b); case U32: return x; case S32: return range_cast_to_s32(range(U32, a, b)); default: printf("range_cast_u32!\n"); exit(1); } } static struct range range_cast_s32(enum num_t to_t, struct range x) { s32 a = (s32)x.a, b = (s32)x.b; switch (to_t) { case U64: case U32: case S64: if (sign32(a) != sign32(b)) return unkn[to_t]; return range(to_t, a, b); case S32: return x; default: printf("range_cast_s32!\n"); exit(1); } } /* Reinterpret range in *from_t* domain as a range in *to_t* domain preserving * all possible information. Worst case, it will be unknown range within * *to_t* domain, if nothing more specific can be guaranteed during the * conversion */ static struct range range_cast(enum num_t from_t, enum num_t to_t, struct range from) { switch (from_t) { case U64: return range_cast_u64(to_t, from); case U32: return range_cast_u32(to_t, from); case S64: return range_cast_s64(to_t, from); case S32: return range_cast_s32(to_t, from); default: printf("range_cast!\n"); exit(1); } } static bool is_valid_num(enum num_t t, u64 x) { switch (t) { case U64: return true; case U32: return upper32(x) == 0; case S64: return true; case S32: return upper32(x) == 0; default: printf("is_valid_num!\n"); exit(1); } } static bool is_valid_range(enum num_t t, struct range x) { if (!is_valid_num(t, x.a) || !is_valid_num(t, x.b)) return false; switch (t) { case U64: return (u64)x.a <= (u64)x.b; case U32: return (u32)x.a <= (u32)x.b; case S64: return (s64)x.a <= (s64)x.b; case S32: return (s32)x.a <= (s32)x.b; default: printf("is_valid_range!\n"); exit(1); } } static struct range range_improve(enum num_t t, struct range old, struct range new) { return range(t, max_t(t, old.a, new.a), min_t(t, old.b, new.b)); } static struct range range_refine(enum num_t x_t, struct range x, enum num_t y_t, struct range y) { struct range y_cast; y_cast = range_cast(y_t, x_t, y); /* the case when new range knowledge, *y*, is a 32-bit subregister * range, while previous range knowledge, *x*, is a full register * 64-bit range, needs special treatment to take into account upper 32 * bits of full register range */ if (t_is_32(y_t) && !t_is_32(x_t)) { struct range x_swap; /* some combinations of upper 32 bits and sign bit can lead to * invalid ranges, in such cases it's easier to detect them * after cast/swap than try to enumerate all the conditions * under which transformation and knowledge transfer is valid */ x_swap = range(x_t, swap_low32(x.a, y_cast.a), swap_low32(x.b, y_cast.b)); if (!is_valid_range(x_t, x_swap)) return x; return range_improve(x_t, x, x_swap); } /* otherwise, plain range cast and intersection works */ return range_improve(x_t, x, y_cast); } /* ======================= * GENERIC CONDITIONAL OPS * ======================= */ enum op { OP_LT, OP_LE, OP_GT, OP_GE, OP_EQ, OP_NE, first_op = OP_LT, last_op = OP_NE }; static enum op complement_op(enum op op) { switch (op) { case OP_LT: return OP_GE; case OP_LE: return OP_GT; case OP_GT: return OP_LE; case OP_GE: return OP_LT; case OP_EQ: return OP_NE; case OP_NE: return OP_EQ; default: printf("complement_op!\n"); exit(1); } } static const char *op_str(enum op op) { switch (op) { case OP_LT: return "<"; case OP_LE: return "<="; case OP_GT: return ">"; case OP_GE: return ">="; case OP_EQ: return "=="; case OP_NE: return "!="; default: printf("op_str!\n"); exit(1); } } /* Can register with range [x.a, x.b] *EVER* satisfy * OP (<, <=, >, >=, ==, !=) relation to * a regsiter with range [y.a, y.b] * _in *num_t* domain_ */ static bool range_canbe_op(enum num_t t, struct range x, struct range y, enum op op) { #define range_canbe(T) do { \ switch (op) { \ case OP_LT: return (T)x.a < (T)y.b; \ case OP_LE: return (T)x.a <= (T)y.b; \ case OP_GT: return (T)x.b > (T)y.a; \ case OP_GE: return (T)x.b >= (T)y.a; \ case OP_EQ: return (T)max_t(t, x.a, y.a) <= (T)min_t(t, x.b, y.b); \ case OP_NE: return !((T)x.a == (T)x.b && (T)y.a == (T)y.b && (T)x.a == (T)y.a); \ default: printf("range_canbe op %d\n", op); exit(1); \ } \ } while (0) switch (t) { case U64: { range_canbe(u64); } case U32: { range_canbe(u32); } case S64: { range_canbe(s64); } case S32: { range_canbe(s32); } default: printf("range_canbe!\n"); exit(1); } #undef range_canbe } /* Does register with range [x.a, x.b] *ALWAYS* satisfy * OP (<, <=, >, >=, ==, !=) relation to * a regsiter with range [y.a, y.b] * _in *num_t* domain_ */ static bool range_always_op(enum num_t t, struct range x, struct range y, enum op op) { /* always op <=> ! canbe complement(op) */ return !range_canbe_op(t, x, y, complement_op(op)); } /* Does register with range [x.a, x.b] *NEVER* satisfy * OP (<, <=, >, >=, ==, !=) relation to * a regsiter with range [y.a, y.b] * _in *num_t* domain_ */ static bool range_never_op(enum num_t t, struct range x, struct range y, enum op op) { return !range_canbe_op(t, x, y, op); } /* similar to verifier's is_branch_taken(): * 1 - always taken; * 0 - never taken, * -1 - unsure. */ static int range_branch_taken_op(enum num_t t, struct range x, struct range y, enum op op) { if (range_always_op(t, x, y, op)) return 1; if (range_never_op(t, x, y, op)) return 0; return -1; } /* What would be the new estimates for register x and y ranges assuming truthful * OP comparison between them. I.e., (x OP y == true) => x <- newx, y <- newy. * * We assume "interesting" cases where ranges overlap. Cases where it's * obvious that (x OP y) is either always true or false should be filtered with * range_never and range_always checks. */ static void range_cond(enum num_t t, struct range x, struct range y, enum op op, struct range *newx, struct range *newy) { if (!range_canbe_op(t, x, y, op)) { /* nothing to adjust, can't happen, return original values */ *newx = x; *newy = y; return; } switch (op) { case OP_LT: *newx = range(t, x.a, min_t(t, x.b, y.b - 1)); *newy = range(t, max_t(t, x.a + 1, y.a), y.b); break; case OP_LE: *newx = range(t, x.a, min_t(t, x.b, y.b)); *newy = range(t, max_t(t, x.a, y.a), y.b); break; case OP_GT: *newx = range(t, max_t(t, x.a, y.a + 1), x.b); *newy = range(t, y.a, min_t(t, x.b - 1, y.b)); break; case OP_GE: *newx = range(t, max_t(t, x.a, y.a), x.b); *newy = range(t, y.a, min_t(t, x.b, y.b)); break; case OP_EQ: *newx = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b)); *newy = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b)); break; case OP_NE: /* below logic is supported by the verifier now */ if (x.a == x.b && x.a == y.a) { /* X is a constant matching left side of Y */ *newx = range(t, x.a, x.b); *newy = range(t, y.a + 1, y.b); } else if (x.a == x.b && x.b == y.b) { /* X is a constant matching rigth side of Y */ *newx = range(t, x.a, x.b); *newy = range(t, y.a, y.b - 1); } else if (y.a == y.b && x.a == y.a) { /* Y is a constant matching left side of X */ *newx = range(t, x.a + 1, x.b); *newy = range(t, y.a, y.b); } else if (y.a == y.b && x.b == y.b) { /* Y is a constant matching rigth side of X */ *newx = range(t, x.a, x.b - 1); *newy = range(t, y.a, y.b); } else { /* generic case, can't derive more information */ *newx = range(t, x.a, x.b); *newy = range(t, y.a, y.b); } break; default: break; } } /* ======================= * REGISTER STATE HANDLING * ======================= */ struct reg_state { struct range r[4]; /* indexed by enum num_t: U64, U32, S64, S32 */ bool valid; }; static void print_reg_state(struct reg_state *r, const char *sfx) { DEFINE_STRBUF(sb, 512); enum num_t t; int cnt = 0; if (!r->valid) { printf("<not found>%s", sfx); return; } snappendf(sb, "scalar("); for (t = first_t; t <= last_t; t++) { snappendf(sb, "%s%s=", cnt++ ? "," : "", t_str(t)); snprintf_range(t, sb, r->r[t]); } snappendf(sb, ")"); printf("%s%s", sb->buf, sfx); } static void print_refinement(enum num_t s_t, struct range src, enum num_t d_t, struct range old, struct range new, const char *ctx) { printf("REFINING (%s) (%s)SRC=", ctx, t_str(s_t)); print_range(s_t, src, ""); printf(" (%s)DST_OLD=", t_str(d_t)); print_range(d_t, old, ""); printf(" (%s)DST_NEW=", t_str(d_t)); print_range(d_t, new, "\n"); } static void reg_state_refine(struct reg_state *r, enum num_t t, struct range x, const char *ctx) { enum num_t d_t, s_t; struct range old; bool keep_going = false; again: /* try to derive new knowledge from just learned range x of type t */ for (d_t = first_t; d_t <= last_t; d_t++) { old = r->r[d_t]; r->r[d_t] = range_refine(d_t, r->r[d_t], t, x); if (!range_eq(r->r[d_t], old)) { keep_going = true; if (env.verbosity >= VERBOSE_VERY) print_refinement(t, x, d_t, old, r->r[d_t], ctx); } } /* now see if we can derive anything new from updated reg_state's ranges */ for (s_t = first_t; s_t <= last_t; s_t++) { for (d_t = first_t; d_t <= last_t; d_t++) { old = r->r[d_t]; r->r[d_t] = range_refine(d_t, r->r[d_t], s_t, r->r[s_t]); if (!range_eq(r->r[d_t], old)) { keep_going = true; if (env.verbosity >= VERBOSE_VERY) print_refinement(s_t, r->r[s_t], d_t, old, r->r[d_t], ctx); } } } /* keep refining until we converge */ if (keep_going) { keep_going = false; goto again; } } static void reg_state_set_const(struct reg_state *rs, enum num_t t, u64 val) { enum num_t tt; rs->valid = true; for (tt = first_t; tt <= last_t; tt++) rs->r[tt] = tt == t ? range(t, val, val) : unkn[tt]; reg_state_refine(rs, t, rs->r[t], "CONST"); } static void reg_state_cond(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op, struct reg_state *newx, struct reg_state *newy, const char *ctx) { char buf[32]; enum num_t ts[2]; struct reg_state xx = *x, yy = *y; int i, t_cnt; struct range z1, z2; if (op == OP_EQ || op == OP_NE) { /* OP_EQ and OP_NE are sign-agnostic, so we need to process * both signed and unsigned domains at the same time */ ts[0] = t_unsigned(t); ts[1] = t_signed(t); t_cnt = 2; } else { ts[0] = t; t_cnt = 1; } for (i = 0; i < t_cnt; i++) { t = ts[i]; z1 = x->r[t]; z2 = y->r[t]; range_cond(t, z1, z2, op, &z1, &z2); if (newx) { snprintf(buf, sizeof(buf), "%s R1", ctx); reg_state_refine(&xx, t, z1, buf); } if (newy) { snprintf(buf, sizeof(buf), "%s R2", ctx); reg_state_refine(&yy, t, z2, buf); } } if (newx) *newx = xx; if (newy) *newy = yy; } static int reg_state_branch_taken_op(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op) { if (op == OP_EQ || op == OP_NE) { /* OP_EQ and OP_NE are sign-agnostic */ enum num_t tu = t_unsigned(t); enum num_t ts = t_signed(t); int br_u, br_s, br; br_u = range_branch_taken_op(tu, x->r[tu], y->r[tu], op); br_s = range_branch_taken_op(ts, x->r[ts], y->r[ts], op); if (br_u >= 0 && br_s >= 0 && br_u != br_s) ASSERT_FALSE(true, "branch taken inconsistency!\n"); /* if 64-bit ranges are indecisive, use 32-bit subranges to * eliminate always/never taken branches, if possible */ if (br_u == -1 && (t == U64 || t == S64)) { br = range_branch_taken_op(U32, x->r[U32], y->r[U32], op); /* we can only reject for OP_EQ, never take branch * based on lower 32 bits */ if (op == OP_EQ && br == 0) return 0; /* for OP_NEQ we can be conclusive only if lower 32 bits * differ and thus inequality branch is always taken */ if (op == OP_NE && br == 1) return 1; br = range_branch_taken_op(S32, x->r[S32], y->r[S32], op); if (op == OP_EQ && br == 0) return 0; if (op == OP_NE && br == 1) return 1; } return br_u >= 0 ? br_u : br_s; } return range_branch_taken_op(t, x->r[t], y->r[t], op); } /* ===================================== * BPF PROGS GENERATION AND VERIFICATION * ===================================== */ struct case_spec { /* whether to init full register (r1) or sub-register (w1) */ bool init_subregs; /* whether to establish initial value range on full register (r1) or * sub-register (w1) */ bool setup_subregs; /* whether to establish initial value range using signed or unsigned * comparisons (i.e., initialize umin/umax or smin/smax directly) */ bool setup_signed; /* whether to perform comparison on full registers or sub-registers */ bool compare_subregs; /* whether to perform comparison using signed or unsigned operations */ bool compare_signed; }; /* Generate test BPF program based on provided test ranges, operation, and * specifications about register bitness and signedness. */ static int load_range_cmp_prog(struct range x, struct range y, enum op op, int branch_taken, struct case_spec spec, char *log_buf, size_t log_sz, int *false_pos, int *true_pos) { #define emit(insn) ({ \ struct bpf_insn __insns[] = { insn }; \ int __i; \ for (__i = 0; __i < ARRAY_SIZE(__insns); __i++) \ insns[cur_pos + __i] = __insns[__i]; \ cur_pos += __i; \ }) #define JMP_TO(target) (target - cur_pos - 1) int cur_pos = 0, exit_pos, fd, op_code; struct bpf_insn insns[64]; LIBBPF_OPTS(bpf_prog_load_opts, opts, .log_level = 2, .log_buf = log_buf, .log_size = log_sz, .prog_flags = testing_prog_flags(), ); /* ; skip exit block below * goto +2; */ emit(BPF_JMP_A(2)); exit_pos = cur_pos; /* ; exit block for all the preparatory conditionals * out: * r0 = 0; * exit; */ emit(BPF_MOV64_IMM(BPF_REG_0, 0)); emit(BPF_EXIT_INSN()); /* * ; assign r6/w6 and r7/w7 unpredictable u64/u32 value * call bpf_get_current_pid_tgid; * r6 = r0; | w6 = w0; * call bpf_get_current_pid_tgid; * r7 = r0; | w7 = w0; */ emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid)); if (spec.init_subregs) emit(BPF_MOV32_REG(BPF_REG_6, BPF_REG_0)); else emit(BPF_MOV64_REG(BPF_REG_6, BPF_REG_0)); emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid)); if (spec.init_subregs) emit(BPF_MOV32_REG(BPF_REG_7, BPF_REG_0)); else emit(BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); /* ; setup initial r6/w6 possible value range ([x.a, x.b]) * r1 = %[x.a] ll; | w1 = %[x.a]; * r2 = %[x.b] ll; | w2 = %[x.b]; * if r6 < r1 goto out; | if w6 < w1 goto out; * if r6 > r2 goto out; | if w6 > w2 goto out; */ if (spec.setup_subregs) { emit(BPF_MOV32_IMM(BPF_REG_1, (s32)x.a)); emit(BPF_MOV32_IMM(BPF_REG_2, (s32)x.b)); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos))); } else { emit(BPF_LD_IMM64(BPF_REG_1, x.a)); emit(BPF_LD_IMM64(BPF_REG_2, x.b)); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos))); } /* ; setup initial r7/w7 possible value range ([y.a, y.b]) * r1 = %[y.a] ll; | w1 = %[y.a]; * r2 = %[y.b] ll; | w2 = %[y.b]; * if r7 < r1 goto out; | if w7 < w1 goto out; * if r7 > r2 goto out; | if w7 > w2 goto out; */ if (spec.setup_subregs) { emit(BPF_MOV32_IMM(BPF_REG_1, (s32)y.a)); emit(BPF_MOV32_IMM(BPF_REG_2, (s32)y.b)); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos))); } else { emit(BPF_LD_IMM64(BPF_REG_1, y.a)); emit(BPF_LD_IMM64(BPF_REG_2, y.b)); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos))); } /* ; range test instruction * if r6 <op> r7 goto +3; | if w6 <op> w7 goto +3; */ switch (op) { case OP_LT: op_code = spec.compare_signed ? BPF_JSLT : BPF_JLT; break; case OP_LE: op_code = spec.compare_signed ? BPF_JSLE : BPF_JLE; break; case OP_GT: op_code = spec.compare_signed ? BPF_JSGT : BPF_JGT; break; case OP_GE: op_code = spec.compare_signed ? BPF_JSGE : BPF_JGE; break; case OP_EQ: op_code = BPF_JEQ; break; case OP_NE: op_code = BPF_JNE; break; default: printf("unrecognized op %d\n", op); return -ENOTSUP; } /* ; BEFORE conditional, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably * ; this is used for debugging, as verifier doesn't always print * ; registers states as of condition jump instruction (e.g., when * ; precision marking happens) * r0 = r6; | w0 = w6; * r0 = r7; | w0 = w7; */ if (spec.compare_subregs) { emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); } else { emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); } if (spec.compare_subregs) emit(BPF_JMP32_REG(op_code, BPF_REG_6, BPF_REG_7, 3)); else emit(BPF_JMP_REG(op_code, BPF_REG_6, BPF_REG_7, 3)); /* ; FALSE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably * r0 = r6; | w0 = w6; * r0 = r7; | w0 = w7; * exit; */ *false_pos = cur_pos; if (spec.compare_subregs) { emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); } else { emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); } if (branch_taken == 1) /* false branch is never taken */ emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */ else emit(BPF_EXIT_INSN()); /* ; TRUE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably * r0 = r6; | w0 = w6; * r0 = r7; | w0 = w7; * exit; */ *true_pos = cur_pos; if (spec.compare_subregs) { emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); } else { emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); } if (branch_taken == 0) /* true branch is never taken */ emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */ emit(BPF_EXIT_INSN()); /* last instruction has to be exit */ fd = bpf_prog_load(BPF_PROG_TYPE_RAW_TRACEPOINT, "reg_bounds_test", "GPL", insns, cur_pos, &opts); if (fd < 0) return fd; close(fd); return 0; #undef emit #undef JMP_TO } #define str_has_pfx(str, pfx) (strncmp(str, pfx, strlen(pfx)) == 0) /* Parse register state from verifier log. * `s` should point to the start of "Rx = ..." substring in the verifier log. */ static int parse_reg_state(const char *s, struct reg_state *reg) { /* There are two generic forms for SCALAR register: * - known constant: R6_rwD=P%lld * - range: R6_rwD=scalar(id=1,...), where "..." is a comma-separated * list of optional range specifiers: * - umin=%llu, if missing, assumed 0; * - umax=%llu, if missing, assumed U64_MAX; * - smin=%lld, if missing, assumed S64_MIN; * - smax=%lld, if missing, assummed S64_MAX; * - umin32=%d, if missing, assumed 0; * - umax32=%d, if missing, assumed U32_MAX; * - smin32=%d, if missing, assumed S32_MIN; * - smax32=%d, if missing, assummed S32_MAX; * - var_off=(%#llx; %#llx), tnum part, we don't care about it. * * If some of the values are equal, they will be grouped (but min/max * are not mixed together, and similarly negative values are not * grouped with non-negative ones). E.g.: * * R6_w=Pscalar(smin=smin32=0, smax=umax=umax32=1000) * * _rwD part is optional (and any of the letters can be missing). * P (precision mark) is optional as well. * * Anything inside scalar() is optional, including id, of course. */ struct { const char *pfx; u64 *dst, def; bool is_32, is_set; } *f, fields[8] = { {"smin=", ®->r[S64].a, S64_MIN}, {"smax=", ®->r[S64].b, S64_MAX}, {"umin=", ®->r[U64].a, 0}, {"umax=", ®->r[U64].b, U64_MAX}, {"smin32=", ®->r[S32].a, (u32)S32_MIN, true}, {"smax32=", ®->r[S32].b, (u32)S32_MAX, true}, {"umin32=", ®->r[U32].a, 0, true}, {"umax32=", ®->r[U32].b, U32_MAX, true}, }; const char *p; int i; p = strchr(s, '='); if (!p) return -EINVAL; p++; if (*p == 'P') p++; if (!str_has_pfx(p, "scalar(")) { long long sval; enum num_t t; if (p[0] == '0' && p[1] == 'x') { if (sscanf(p, "%llx", &sval) != 1) return -EINVAL; } else { if (sscanf(p, "%lld", &sval) != 1) return -EINVAL; } reg->valid = true; for (t = first_t; t <= last_t; t++) { reg->r[t] = range(t, sval, sval); } return 0; } p += sizeof("scalar"); while (p) { int midxs[ARRAY_SIZE(fields)], mcnt = 0; u64 val; for (i = 0; i < ARRAY_SIZE(fields); i++) { f = &fields[i]; if (!str_has_pfx(p, f->pfx)) continue; midxs[mcnt++] = i; p += strlen(f->pfx); } if (mcnt) { /* populate all matched fields */ if (p[0] == '0' && p[1] == 'x') { if (sscanf(p, "%llx", &val) != 1) return -EINVAL; } else { if (sscanf(p, "%lld", &val) != 1) return -EINVAL; } for (i = 0; i < mcnt; i++) { f = &fields[midxs[i]]; f->is_set = true; *f->dst = f->is_32 ? (u64)(u32)val : val; } } else if (str_has_pfx(p, "var_off")) { /* skip "var_off=(0x0; 0x3f)" part completely */ p = strchr(p, ')'); if (!p) return -EINVAL; p++; } p = strpbrk(p, ",)"); if (*p == ')') break; if (p) p++; } reg->valid = true; for (i = 0; i < ARRAY_SIZE(fields); i++) { f = &fields[i]; if (!f->is_set) *f->dst = f->def; } return 0; } /* Parse all register states (TRUE/FALSE branches and DST/SRC registers) * out of the verifier log for a corresponding test case BPF program. */ static int parse_range_cmp_log(const char *log_buf, struct case_spec spec, int false_pos, int true_pos, struct reg_state *false1_reg, struct reg_state *false2_reg, struct reg_state *true1_reg, struct reg_state *true2_reg) { struct { int insn_idx; int reg_idx; const char *reg_upper; struct reg_state *state; } specs[] = { {false_pos, 6, "R6=", false1_reg}, {false_pos + 1, 7, "R7=", false2_reg}, {true_pos, 6, "R6=", true1_reg}, {true_pos + 1, 7, "R7=", true2_reg}, }; char buf[32]; const char *p = log_buf, *q; int i, err; for (i = 0; i < 4; i++) { sprintf(buf, "%d: (%s) %s = %s%d", specs[i].insn_idx, spec.compare_subregs ? "bc" : "bf", spec.compare_subregs ? "w0" : "r0", spec.compare_subregs ? "w" : "r", specs[i].reg_idx); q = strstr(p, buf); if (!q) { *specs[i].state = (struct reg_state){.valid = false}; continue; } p = strstr(q, specs[i].reg_upper); if (!p) return -EINVAL; err = parse_reg_state(p, specs[i].state); if (err) return -EINVAL; } return 0; } /* Validate ranges match, and print details if they don't */ static bool assert_range_eq(enum num_t t, struct range x, struct range y, const char *ctx1, const char *ctx2) { DEFINE_STRBUF(sb, 512); if (range_eq(x, y)) return true; snappendf(sb, "MISMATCH %s.%s: ", ctx1, ctx2); snprintf_range(t, sb, x); snappendf(sb, " != "); snprintf_range(t, sb, y); printf("%s\n", sb->buf); return false; } /* Validate that register states match, and print details if they don't */ static bool assert_reg_state_eq(struct reg_state *r, struct reg_state *e, const char *ctx) { bool ok = true; enum num_t t; if (r->valid != e->valid) { printf("MISMATCH %s: actual %s != expected %s\n", ctx, r->valid ? "<valid>" : "<invalid>", e->valid ? "<valid>" : "<invalid>"); return false; } if (!r->valid) return true; for (t = first_t; t <= last_t; t++) { if (!assert_range_eq(t, r->r[t], e->r[t], ctx, t_str(t))) ok = false; } return ok; } /* Printf verifier log, filtering out irrelevant noise */ static void print_verifier_log(const char *buf) { const char *p; while (buf[0]) { p = strchrnul(buf, '\n'); /* filter out irrelevant precision backtracking logs */ if (str_has_pfx(buf, "mark_precise: ")) goto skip_line; printf("%.*s\n", (int)(p - buf), buf); skip_line: buf = *p == '\0' ? p : p + 1; } } /* Simulate provided test case purely with our own range-based logic. * This is done to set up expectations for verifier's branch_taken logic and * verifier's register states in the verifier log. */ static void sim_case(enum num_t init_t, enum num_t cond_t, struct range x, struct range y, enum op op, struct reg_state *fr1, struct reg_state *fr2, struct reg_state *tr1, struct reg_state *tr2, int *branch_taken) { const u64 A = x.a; const u64 B = x.b; const u64 C = y.a; const u64 D = y.b; struct reg_state rc; enum op rev_op = complement_op(op); enum num_t t; fr1->valid = fr2->valid = true; tr1->valid = tr2->valid = true; for (t = first_t; t <= last_t; t++) { /* if we are initializing using 32-bit subregisters, * full registers get upper 32 bits zeroed automatically */ struct range z = t_is_32(init_t) ? unkn_subreg(t) : unkn[t]; fr1->r[t] = fr2->r[t] = tr1->r[t] = tr2->r[t] = z; } /* step 1: r1 >= A, r2 >= C */ reg_state_set_const(&rc, init_t, A); reg_state_cond(init_t, fr1, &rc, OP_GE, fr1, NULL, "r1>=A"); reg_state_set_const(&rc, init_t, C); reg_state_cond(init_t, fr2, &rc, OP_GE, fr2, NULL, "r2>=C"); *tr1 = *fr1; *tr2 = *fr2; if (env.verbosity >= VERBOSE_VERY) { printf("STEP1 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n"); printf("STEP1 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n"); } /* step 2: r1 <= B, r2 <= D */ reg_state_set_const(&rc, init_t, B); reg_state_cond(init_t, fr1, &rc, OP_LE, fr1, NULL, "r1<=B"); reg_state_set_const(&rc, init_t, D); reg_state_cond(init_t, fr2, &rc, OP_LE, fr2, NULL, "r2<=D"); *tr1 = *fr1; *tr2 = *fr2; if (env.verbosity >= VERBOSE_VERY) { printf("STEP2 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n"); printf("STEP2 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n"); } /* step 3: r1 <op> r2 */ *branch_taken = reg_state_branch_taken_op(cond_t, fr1, fr2, op); fr1->valid = fr2->valid = false; tr1->valid = tr2->valid = false; if (*branch_taken != 1) { /* FALSE is possible */ fr1->valid = fr2->valid = true; reg_state_cond(cond_t, fr1, fr2, rev_op, fr1, fr2, "FALSE"); } if (*branch_taken != 0) { /* TRUE is possible */ tr1->valid = tr2->valid = true; reg_state_cond(cond_t, tr1, tr2, op, tr1, tr2, "TRUE"); } if (env.verbosity >= VERBOSE_VERY) { printf("STEP3 (%s) FALSE R1:", t_str(cond_t)); print_reg_state(fr1, "\n"); printf("STEP3 (%s) FALSE R2:", t_str(cond_t)); print_reg_state(fr2, "\n"); printf("STEP3 (%s) TRUE R1:", t_str(cond_t)); print_reg_state(tr1, "\n"); printf("STEP3 (%s) TRUE R2:", t_str(cond_t)); print_reg_state(tr2, "\n"); } } /* =============================== * HIGH-LEVEL TEST CASE VALIDATION * =============================== */ static u32 upper_seeds[] = { 0, 1, U32_MAX, U32_MAX - 1, S32_MAX, (u32)S32_MIN, }; static u32 lower_seeds[] = { 0, 1, 2, (u32)-2, 255, (u32)-255, UINT_MAX, UINT_MAX - 1, INT_MAX, (u32)INT_MIN, }; struct ctx { int val_cnt, subval_cnt, range_cnt, subrange_cnt; u64 uvals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)]; s64 svals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)]; u32 usubvals[ARRAY_SIZE(lower_seeds)]; s32 ssubvals[ARRAY_SIZE(lower_seeds)]; struct range *uranges, *sranges; struct range *usubranges, *ssubranges; int max_failure_cnt, cur_failure_cnt; int total_case_cnt, case_cnt; int rand_case_cnt; unsigned rand_seed; __u64 start_ns; char progress_ctx[64]; }; static void cleanup_ctx(struct ctx *ctx) { free(ctx->uranges); free(ctx->sranges); free(ctx->usubranges); free(ctx->ssubranges); } struct subtest_case { enum num_t init_t; enum num_t cond_t; struct range x; struct range y; enum op op; }; static void subtest_case_str(struct strbuf *sb, struct subtest_case *t, bool use_op) { snappendf(sb, "(%s)", t_str(t->init_t)); snprintf_range(t->init_t, sb, t->x); snappendf(sb, " (%s)%s ", t_str(t->cond_t), use_op ? op_str(t->op) : "<op>"); snprintf_range(t->init_t, sb, t->y); } /* Generate and validate test case based on specific combination of setup * register ranges (including their expected num_t domain), and conditional * operation to perform (including num_t domain in which it has to be * performed) */ static int verify_case_op(enum num_t init_t, enum num_t cond_t, struct range x, struct range y, enum op op) { char log_buf[256 * 1024]; size_t log_sz = sizeof(log_buf); int err, false_pos = 0, true_pos = 0, branch_taken; struct reg_state fr1, fr2, tr1, tr2; struct reg_state fe1, fe2, te1, te2; bool failed = false; struct case_spec spec = { .init_subregs = (init_t == U32 || init_t == S32), .setup_subregs = (init_t == U32 || init_t == S32), .setup_signed = (init_t == S64 || init_t == S32), .compare_subregs = (cond_t == U32 || cond_t == S32), .compare_signed = (cond_t == S64 || cond_t == S32), }; log_buf[0] = '\0'; sim_case(init_t, cond_t, x, y, op, &fe1, &fe2, &te1, &te2, &branch_taken); err = load_range_cmp_prog(x, y, op, branch_taken, spec, log_buf, log_sz, &false_pos, &true_pos); if (err) { ASSERT_OK(err, "load_range_cmp_prog"); failed = true; } err = parse_range_cmp_log(log_buf, spec, false_pos, true_pos, &fr1, &fr2, &tr1, &tr2); if (err) { ASSERT_OK(err, "parse_range_cmp_log"); failed = true; } if (!assert_reg_state_eq(&fr1, &fe1, "false_reg1") || !assert_reg_state_eq(&fr2, &fe2, "false_reg2") || !assert_reg_state_eq(&tr1, &te1, "true_reg1") || !assert_reg_state_eq(&tr2, &te2, "true_reg2")) { failed = true; } if (failed || env.verbosity >= VERBOSE_NORMAL) { if (failed || env.verbosity >= VERBOSE_VERY) { printf("VERIFIER LOG:\n========================\n"); print_verifier_log(log_buf); printf("=====================\n"); } printf("ACTUAL FALSE1: "); print_reg_state(&fr1, "\n"); printf("EXPECTED FALSE1: "); print_reg_state(&fe1, "\n"); printf("ACTUAL FALSE2: "); print_reg_state(&fr2, "\n"); printf("EXPECTED FALSE2: "); print_reg_state(&fe2, "\n"); printf("ACTUAL TRUE1: "); print_reg_state(&tr1, "\n"); printf("EXPECTED TRUE1: "); print_reg_state(&te1, "\n"); printf("ACTUAL TRUE2: "); print_reg_state(&tr2, "\n"); printf("EXPECTED TRUE2: "); print_reg_state(&te2, "\n"); return failed ? -EINVAL : 0; } return 0; } /* Given setup ranges and number types, go over all supported operations, * generating individual subtest for each allowed combination */ static int verify_case_opt(struct ctx *ctx, enum num_t init_t, enum num_t cond_t, struct range x, struct range y, bool is_subtest) { DEFINE_STRBUF(sb, 256); int err; struct subtest_case sub = { .init_t = init_t, .cond_t = cond_t, .x = x, .y = y, }; sb->pos = 0; /* reset position in strbuf */ subtest_case_str(sb, &sub, false /* ignore op */); if (is_subtest && !test__start_subtest(sb->buf)) return 0; for (sub.op = first_op; sub.op <= last_op; sub.op++) { sb->pos = 0; /* reset position in strbuf */ subtest_case_str(sb, &sub, true /* print op */); if (env.verbosity >= VERBOSE_NORMAL) /* this speeds up debugging */ printf("TEST CASE: %s\n", sb->buf); err = verify_case_op(init_t, cond_t, x, y, sub.op); if (err || env.verbosity >= VERBOSE_NORMAL) ASSERT_OK(err, sb->buf); if (err) { ctx->cur_failure_cnt++; if (ctx->cur_failure_cnt > ctx->max_failure_cnt) return err; return 0; /* keep testing other cases */ } ctx->case_cnt++; if ((ctx->case_cnt % 10000) == 0) { double progress = (ctx->case_cnt + 0.0) / ctx->total_case_cnt; u64 elapsed_ns = get_time_ns() - ctx->start_ns; double remain_ns = elapsed_ns / progress * (1 - progress); fprintf(env.stderr, "PROGRESS (%s): %d/%d (%.2lf%%), " "elapsed %llu mins (%.2lf hrs), " "ETA %.0lf mins (%.2lf hrs)\n", ctx->progress_ctx, ctx->case_cnt, ctx->total_case_cnt, 100.0 * progress, elapsed_ns / 1000000000 / 60, elapsed_ns / 1000000000.0 / 3600, remain_ns / 1000000000.0 / 60, remain_ns / 1000000000.0 / 3600); } } return 0; } static int verify_case(struct ctx *ctx, enum num_t init_t, enum num_t cond_t, struct range x, struct range y) { return verify_case_opt(ctx, init_t, cond_t, x, y, true /* is_subtest */); } /* ================================ * GENERATED CASES FROM SEED VALUES * ================================ */ static int u64_cmp(const void *p1, const void *p2) { u64 x1 = *(const u64 *)p1, x2 = *(const u64 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } static int u32_cmp(const void *p1, const void *p2) { u32 x1 = *(const u32 *)p1, x2 = *(const u32 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } static int s64_cmp(const void *p1, const void *p2) { s64 x1 = *(const s64 *)p1, x2 = *(const s64 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } static int s32_cmp(const void *p1, const void *p2) { s32 x1 = *(const s32 *)p1, x2 = *(const s32 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } /* Generate valid unique constants from seeds, both signed and unsigned */ static void gen_vals(struct ctx *ctx) { int i, j, cnt = 0; for (i = 0; i < ARRAY_SIZE(upper_seeds); i++) { for (j = 0; j < ARRAY_SIZE(lower_seeds); j++) { ctx->uvals[cnt++] = (((u64)upper_seeds[i]) << 32) | lower_seeds[j]; } } /* sort and compact uvals (i.e., it's `sort | uniq`) */ qsort(ctx->uvals, cnt, sizeof(*ctx->uvals), u64_cmp); for (i = 1, j = 0; i < cnt; i++) { if (ctx->uvals[j] == ctx->uvals[i]) continue; j++; ctx->uvals[j] = ctx->uvals[i]; } ctx->val_cnt = j + 1; /* we have exactly the same number of s64 values, they are just in * a different order than u64s, so just sort them differently */ for (i = 0; i < ctx->val_cnt; i++) ctx->svals[i] = ctx->uvals[i]; qsort(ctx->svals, ctx->val_cnt, sizeof(*ctx->svals), s64_cmp); if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); for (i = 0; i < ctx->val_cnt; i++) { sb1->pos = sb2->pos = 0; snprintf_num(U64, sb1, ctx->uvals[i]); snprintf_num(S64, sb2, ctx->svals[i]); printf("SEED #%d: u64=%-20s s64=%-20s\n", i, sb1->buf, sb2->buf); } } /* 32-bit values are generated separately */ cnt = 0; for (i = 0; i < ARRAY_SIZE(lower_seeds); i++) { ctx->usubvals[cnt++] = lower_seeds[i]; } /* sort and compact usubvals (i.e., it's `sort | uniq`) */ qsort(ctx->usubvals, cnt, sizeof(*ctx->usubvals), u32_cmp); for (i = 1, j = 0; i < cnt; i++) { if (ctx->usubvals[j] == ctx->usubvals[i]) continue; j++; ctx->usubvals[j] = ctx->usubvals[i]; } ctx->subval_cnt = j + 1; for (i = 0; i < ctx->subval_cnt; i++) ctx->ssubvals[i] = ctx->usubvals[i]; qsort(ctx->ssubvals, ctx->subval_cnt, sizeof(*ctx->ssubvals), s32_cmp); if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); for (i = 0; i < ctx->subval_cnt; i++) { sb1->pos = sb2->pos = 0; snprintf_num(U32, sb1, ctx->usubvals[i]); snprintf_num(S32, sb2, ctx->ssubvals[i]); printf("SUBSEED #%d: u32=%-10s s32=%-10s\n", i, sb1->buf, sb2->buf); } } } /* Generate valid ranges from upper/lower seeds */ static int gen_ranges(struct ctx *ctx) { int i, j, cnt = 0; for (i = 0; i < ctx->val_cnt; i++) { for (j = i; j < ctx->val_cnt; j++) { if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); sb1->pos = sb2->pos = 0; snprintf_range(U64, sb1, range(U64, ctx->uvals[i], ctx->uvals[j])); snprintf_range(S64, sb2, range(S64, ctx->svals[i], ctx->svals[j])); printf("RANGE #%d: u64=%-40s s64=%-40s\n", cnt, sb1->buf, sb2->buf); } cnt++; } } ctx->range_cnt = cnt; ctx->uranges = calloc(ctx->range_cnt, sizeof(*ctx->uranges)); if (!ASSERT_OK_PTR(ctx->uranges, "uranges_calloc")) return -EINVAL; ctx->sranges = calloc(ctx->range_cnt, sizeof(*ctx->sranges)); if (!ASSERT_OK_PTR(ctx->sranges, "sranges_calloc")) return -EINVAL; cnt = 0; for (i = 0; i < ctx->val_cnt; i++) { for (j = i; j < ctx->val_cnt; j++) { ctx->uranges[cnt] = range(U64, ctx->uvals[i], ctx->uvals[j]); ctx->sranges[cnt] = range(S64, ctx->svals[i], ctx->svals[j]); cnt++; } } cnt = 0; for (i = 0; i < ctx->subval_cnt; i++) { for (j = i; j < ctx->subval_cnt; j++) { if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); sb1->pos = sb2->pos = 0; snprintf_range(U32, sb1, range(U32, ctx->usubvals[i], ctx->usubvals[j])); snprintf_range(S32, sb2, range(S32, ctx->ssubvals[i], ctx->ssubvals[j])); printf("SUBRANGE #%d: u32=%-20s s32=%-20s\n", cnt, sb1->buf, sb2->buf); } cnt++; } } ctx->subrange_cnt = cnt; ctx->usubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->usubranges)); if (!ASSERT_OK_PTR(ctx->usubranges, "usubranges_calloc")) return -EINVAL; ctx->ssubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->ssubranges)); if (!ASSERT_OK_PTR(ctx->ssubranges, "ssubranges_calloc")) return -EINVAL; cnt = 0; for (i = 0; i < ctx->subval_cnt; i++) { for (j = i; j < ctx->subval_cnt; j++) { ctx->usubranges[cnt] = range(U32, ctx->usubvals[i], ctx->usubvals[j]); ctx->ssubranges[cnt] = range(S32, ctx->ssubvals[i], ctx->ssubvals[j]); cnt++; } } return 0; } static int parse_env_vars(struct ctx *ctx) { const char *s; if ((s = getenv("REG_BOUNDS_MAX_FAILURE_CNT"))) { errno = 0; ctx->max_failure_cnt = strtol(s, NULL, 10); if (errno || ctx->max_failure_cnt < 0) { ASSERT_OK(-errno, "REG_BOUNDS_MAX_FAILURE_CNT"); return -EINVAL; } } if ((s = getenv("REG_BOUNDS_RAND_CASE_CNT"))) { errno = 0; ctx->rand_case_cnt = strtol(s, NULL, 10); if (errno || ctx->rand_case_cnt < 0) { ASSERT_OK(-errno, "REG_BOUNDS_RAND_CASE_CNT"); return -EINVAL; } } if ((s = getenv("REG_BOUNDS_RAND_SEED"))) { errno = 0; ctx->rand_seed = strtoul(s, NULL, 10); if (errno) { ASSERT_OK(-errno, "REG_BOUNDS_RAND_SEED"); return -EINVAL; } } return 0; } static int prepare_gen_tests(struct ctx *ctx) { const char *s; int err; if (!(s = getenv("SLOW_TESTS")) || strcmp(s, "1") != 0) { test__skip(); return -ENOTSUP; } err = parse_env_vars(ctx); if (err) return err; gen_vals(ctx); err = gen_ranges(ctx); if (err) { ASSERT_OK(err, "gen_ranges"); return err; } return 0; } /* Go over generated constants and ranges and validate various supported * combinations of them */ static void validate_gen_range_vs_const_64(enum num_t init_t, enum num_t cond_t) { struct ctx ctx; struct range rconst; const struct range *ranges; const u64 *vals; int i, j; memset(&ctx, 0, sizeof(ctx)); if (prepare_gen_tests(&ctx)) goto cleanup; ranges = init_t == U64 ? ctx.uranges : ctx.sranges; vals = init_t == U64 ? ctx.uvals : (const u64 *)ctx.svals; ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.range_cnt * ctx.val_cnt); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "RANGE x CONST, %s -> %s", t_str(init_t), t_str(cond_t)); for (i = 0; i < ctx.val_cnt; i++) { for (j = 0; j < ctx.range_cnt; j++) { rconst = range(init_t, vals[i], vals[i]); /* (u64|s64)(<range> x <const>) */ if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst)) goto cleanup; /* (u64|s64)(<const> x <range>) */ if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j])) goto cleanup; } } cleanup: cleanup_ctx(&ctx); } static void validate_gen_range_vs_const_32(enum num_t init_t, enum num_t cond_t) { struct ctx ctx; struct range rconst; const struct range *ranges; const u32 *vals; int i, j; memset(&ctx, 0, sizeof(ctx)); if (prepare_gen_tests(&ctx)) goto cleanup; ranges = init_t == U32 ? ctx.usubranges : ctx.ssubranges; vals = init_t == U32 ? ctx.usubvals : (const u32 *)ctx.ssubvals; ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.subrange_cnt * ctx.subval_cnt); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "RANGE x CONST, %s -> %s", t_str(init_t), t_str(cond_t)); for (i = 0; i < ctx.subval_cnt; i++) { for (j = 0; j < ctx.subrange_cnt; j++) { rconst = range(init_t, vals[i], vals[i]); /* (u32|s32)(<range> x <const>) */ if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst)) goto cleanup; /* (u32|s32)(<const> x <range>) */ if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j])) goto cleanup; } } cleanup: cleanup_ctx(&ctx); } static void validate_gen_range_vs_range(enum num_t init_t, enum num_t cond_t) { struct ctx ctx; const struct range *ranges; int i, j, rcnt; memset(&ctx, 0, sizeof(ctx)); if (prepare_gen_tests(&ctx)) goto cleanup; switch (init_t) { case U64: ranges = ctx.uranges; rcnt = ctx.range_cnt; break; case U32: ranges = ctx.usubranges; rcnt = ctx.subrange_cnt; break; case S64: ranges = ctx.sranges; rcnt = ctx.range_cnt; break; case S32: ranges = ctx.ssubranges; rcnt = ctx.subrange_cnt; break; default: printf("validate_gen_range_vs_range!\n"); exit(1); } ctx.total_case_cnt = (last_op - first_op + 1) * (2 * rcnt * (rcnt + 1) / 2); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "RANGE x RANGE, %s -> %s", t_str(init_t), t_str(cond_t)); for (i = 0; i < rcnt; i++) { for (j = i; j < rcnt; j++) { /* (<range> x <range>) */ if (verify_case(&ctx, init_t, cond_t, ranges[i], ranges[j])) goto cleanup; if (verify_case(&ctx, init_t, cond_t, ranges[j], ranges[i])) goto cleanup; } } cleanup: cleanup_ctx(&ctx); } /* Go over thousands of test cases generated from initial seed values. * Given this take a long time, guard this begind SLOW_TESTS=1 envvar. If * envvar is not set, this test is skipped during test_progs testing. * * We split this up into smaller subsets based on initialization and * conditiona numeric domains to get an easy parallelization with test_progs' * -j argument. */ /* RANGE x CONST, U64 initial range */ void test_reg_bounds_gen_consts_u64_u64(void) { validate_gen_range_vs_const_64(U64, U64); } void test_reg_bounds_gen_consts_u64_s64(void) { validate_gen_range_vs_const_64(U64, S64); } void test_reg_bounds_gen_consts_u64_u32(void) { validate_gen_range_vs_const_64(U64, U32); } void test_reg_bounds_gen_consts_u64_s32(void) { validate_gen_range_vs_const_64(U64, S32); } /* RANGE x CONST, S64 initial range */ void test_reg_bounds_gen_consts_s64_u64(void) { validate_gen_range_vs_const_64(S64, U64); } void test_reg_bounds_gen_consts_s64_s64(void) { validate_gen_range_vs_const_64(S64, S64); } void test_reg_bounds_gen_consts_s64_u32(void) { validate_gen_range_vs_const_64(S64, U32); } void test_reg_bounds_gen_consts_s64_s32(void) { validate_gen_range_vs_const_64(S64, S32); } /* RANGE x CONST, U32 initial range */ void test_reg_bounds_gen_consts_u32_u64(void) { validate_gen_range_vs_const_32(U32, U64); } void test_reg_bounds_gen_consts_u32_s64(void) { validate_gen_range_vs_const_32(U32, S64); } void test_reg_bounds_gen_consts_u32_u32(void) { validate_gen_range_vs_const_32(U32, U32); } void test_reg_bounds_gen_consts_u32_s32(void) { validate_gen_range_vs_const_32(U32, S32); } /* RANGE x CONST, S32 initial range */ void test_reg_bounds_gen_consts_s32_u64(void) { validate_gen_range_vs_const_32(S32, U64); } void test_reg_bounds_gen_consts_s32_s64(void) { validate_gen_range_vs_const_32(S32, S64); } void test_reg_bounds_gen_consts_s32_u32(void) { validate_gen_range_vs_const_32(S32, U32); } void test_reg_bounds_gen_consts_s32_s32(void) { validate_gen_range_vs_const_32(S32, S32); } /* RANGE x RANGE, U64 initial range */ void test_reg_bounds_gen_ranges_u64_u64(void) { validate_gen_range_vs_range(U64, U64); } void test_reg_bounds_gen_ranges_u64_s64(void) { validate_gen_range_vs_range(U64, S64); } void test_reg_bounds_gen_ranges_u64_u32(void) { validate_gen_range_vs_range(U64, U32); } void test_reg_bounds_gen_ranges_u64_s32(void) { validate_gen_range_vs_range(U64, S32); } /* RANGE x RANGE, S64 initial range */ void test_reg_bounds_gen_ranges_s64_u64(void) { validate_gen_range_vs_range(S64, U64); } void test_reg_bounds_gen_ranges_s64_s64(void) { validate_gen_range_vs_range(S64, S64); } void test_reg_bounds_gen_ranges_s64_u32(void) { validate_gen_range_vs_range(S64, U32); } void test_reg_bounds_gen_ranges_s64_s32(void) { validate_gen_range_vs_range(S64, S32); } /* RANGE x RANGE, U32 initial range */ void test_reg_bounds_gen_ranges_u32_u64(void) { validate_gen_range_vs_range(U32, U64); } void test_reg_bounds_gen_ranges_u32_s64(void) { validate_gen_range_vs_range(U32, S64); } void test_reg_bounds_gen_ranges_u32_u32(void) { validate_gen_range_vs_range(U32, U32); } void test_reg_bounds_gen_ranges_u32_s32(void) { validate_gen_range_vs_range(U32, S32); } /* RANGE x RANGE, S32 initial range */ void test_reg_bounds_gen_ranges_s32_u64(void) { validate_gen_range_vs_range(S32, U64); } void test_reg_bounds_gen_ranges_s32_s64(void) { validate_gen_range_vs_range(S32, S64); } void test_reg_bounds_gen_ranges_s32_u32(void) { validate_gen_range_vs_range(S32, U32); } void test_reg_bounds_gen_ranges_s32_s32(void) { validate_gen_range_vs_range(S32, S32); } #define DEFAULT_RAND_CASE_CNT 100 #define RAND_21BIT_MASK ((1 << 22) - 1) static u64 rand_u64() { /* RAND_MAX is guaranteed to be at least 1<<15, but in practice it * seems to be 1<<31, so we need to call it thrice to get full u64; * we'll use rougly equal split: 22 + 21 + 21 bits */ return ((u64)random() << 42) | (((u64)random() & RAND_21BIT_MASK) << 21) | (random() & RAND_21BIT_MASK); } static u64 rand_const(enum num_t t) { return cast_t(t, rand_u64()); } static struct range rand_range(enum num_t t) { u64 x = rand_const(t), y = rand_const(t); return range(t, min_t(t, x, y), max_t(t, x, y)); } static void validate_rand_ranges(enum num_t init_t, enum num_t cond_t, bool const_range) { struct ctx ctx; struct range range1, range2; int err, i; u64 t; memset(&ctx, 0, sizeof(ctx)); err = parse_env_vars(&ctx); if (err) { ASSERT_OK(err, "parse_env_vars"); return; } if (ctx.rand_case_cnt == 0) ctx.rand_case_cnt = DEFAULT_RAND_CASE_CNT; if (ctx.rand_seed == 0) ctx.rand_seed = (unsigned)get_time_ns(); srandom(ctx.rand_seed); ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.rand_case_cnt); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "[RANDOM SEED %u] RANGE x %s, %s -> %s", ctx.rand_seed, const_range ? "CONST" : "RANGE", t_str(init_t), t_str(cond_t)); for (i = 0; i < ctx.rand_case_cnt; i++) { range1 = rand_range(init_t); if (const_range) { t = rand_const(init_t); range2 = range(init_t, t, t); } else { range2 = rand_range(init_t); } /* <range1> x <range2> */ if (verify_case_opt(&ctx, init_t, cond_t, range1, range2, false /* !is_subtest */)) goto cleanup; /* <range2> x <range1> */ if (verify_case_opt(&ctx, init_t, cond_t, range2, range1, false /* !is_subtest */)) goto cleanup; } cleanup: /* make sure we report random seed for reproducing */ ASSERT_TRUE(true, ctx.progress_ctx); cleanup_ctx(&ctx); } /* [RANDOM] RANGE x CONST, U64 initial range */ void test_reg_bounds_rand_consts_u64_u64(void) { validate_rand_ranges(U64, U64, true /* const */); } void test_reg_bounds_rand_consts_u64_s64(void) { validate_rand_ranges(U64, S64, true /* const */); } void test_reg_bounds_rand_consts_u64_u32(void) { validate_rand_ranges(U64, U32, true /* const */); } void test_reg_bounds_rand_consts_u64_s32(void) { validate_rand_ranges(U64, S32, true /* const */); } /* [RANDOM] RANGE x CONST, S64 initial range */ void test_reg_bounds_rand_consts_s64_u64(void) { validate_rand_ranges(S64, U64, true /* const */); } void test_reg_bounds_rand_consts_s64_s64(void) { validate_rand_ranges(S64, S64, true /* const */); } void test_reg_bounds_rand_consts_s64_u32(void) { validate_rand_ranges(S64, U32, true /* const */); } void test_reg_bounds_rand_consts_s64_s32(void) { validate_rand_ranges(S64, S32, true /* const */); } /* [RANDOM] RANGE x CONST, U32 initial range */ void test_reg_bounds_rand_consts_u32_u64(void) { validate_rand_ranges(U32, U64, true /* const */); } void test_reg_bounds_rand_consts_u32_s64(void) { validate_rand_ranges(U32, S64, true /* const */); } void test_reg_bounds_rand_consts_u32_u32(void) { validate_rand_ranges(U32, U32, true /* const */); } void test_reg_bounds_rand_consts_u32_s32(void) { validate_rand_ranges(U32, S32, true /* const */); } /* [RANDOM] RANGE x CONST, S32 initial range */ void test_reg_bounds_rand_consts_s32_u64(void) { validate_rand_ranges(S32, U64, true /* const */); } void test_reg_bounds_rand_consts_s32_s64(void) { validate_rand_ranges(S32, S64, true /* const */); } void test_reg_bounds_rand_consts_s32_u32(void) { validate_rand_ranges(S32, U32, true /* const */); } void test_reg_bounds_rand_consts_s32_s32(void) { validate_rand_ranges(S32, S32, true /* const */); } /* [RANDOM] RANGE x RANGE, U64 initial range */ void test_reg_bounds_rand_ranges_u64_u64(void) { validate_rand_ranges(U64, U64, false /* range */); } void test_reg_bounds_rand_ranges_u64_s64(void) { validate_rand_ranges(U64, S64, false /* range */); } void test_reg_bounds_rand_ranges_u64_u32(void) { validate_rand_ranges(U64, U32, false /* range */); } void test_reg_bounds_rand_ranges_u64_s32(void) { validate_rand_ranges(U64, S32, false /* range */); } /* [RANDOM] RANGE x RANGE, S64 initial range */ void test_reg_bounds_rand_ranges_s64_u64(void) { validate_rand_ranges(S64, U64, false /* range */); } void test_reg_bounds_rand_ranges_s64_s64(void) { validate_rand_ranges(S64, S64, false /* range */); } void test_reg_bounds_rand_ranges_s64_u32(void) { validate_rand_ranges(S64, U32, false /* range */); } void test_reg_bounds_rand_ranges_s64_s32(void) { validate_rand_ranges(S64, S32, false /* range */); } /* [RANDOM] RANGE x RANGE, U32 initial range */ void test_reg_bounds_rand_ranges_u32_u64(void) { validate_rand_ranges(U32, U64, false /* range */); } void test_reg_bounds_rand_ranges_u32_s64(void) { validate_rand_ranges(U32, S64, false /* range */); } void test_reg_bounds_rand_ranges_u32_u32(void) { validate_rand_ranges(U32, U32, false /* range */); } void test_reg_bounds_rand_ranges_u32_s32(void) { validate_rand_ranges(U32, S32, false /* range */); } /* [RANDOM] RANGE x RANGE, S32 initial range */ void test_reg_bounds_rand_ranges_s32_u64(void) { validate_rand_ranges(S32, U64, false /* range */); } void test_reg_bounds_rand_ranges_s32_s64(void) { validate_rand_ranges(S32, S64, false /* range */); } void test_reg_bounds_rand_ranges_s32_u32(void) { validate_rand_ranges(S32, U32, false /* range */); } void test_reg_bounds_rand_ranges_s32_s32(void) { validate_rand_ranges(S32, S32, false /* range */); } /* A set of hard-coded "interesting" cases to validate as part of normal * test_progs test runs */ static struct subtest_case crafted_cases[] = { {U64, U64, {0, 0xffffffff}, {0, 0}}, {U64, U64, {0, 0x80000000}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x100000100ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x180000000ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x1ffffff00ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x1ffffff01ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x1fffffffeULL}, {0, 0}}, {U64, U64, {0x100000001ULL, 0x1000000ffULL}, {0, 0}}, /* single point overlap, interesting BPF_EQ and BPF_NE interactions */ {U64, U64, {0, 1}, {1, 0x80000000}}, {U64, S64, {0, 1}, {1, 0x80000000}}, {U64, U32, {0, 1}, {1, 0x80000000}}, {U64, S32, {0, 1}, {1, 0x80000000}}, {U64, S64, {0, 0xffffffff00000000ULL}, {0, 0}}, {U64, S64, {0x7fffffffffffffffULL, 0xffffffff00000000ULL}, {0, 0}}, {U64, S64, {0x7fffffff00000001ULL, 0xffffffff00000000ULL}, {0, 0}}, {U64, S64, {0, 0xffffffffULL}, {1, 1}}, {U64, S64, {0, 0xffffffffULL}, {0x7fffffff, 0x7fffffff}}, {U64, U32, {0, 0x100000000}, {0, 0}}, {U64, U32, {0xfffffffe, 0x100000000}, {0x80000000, 0x80000000}}, {U64, S32, {0, 0xffffffff00000000ULL}, {0, 0}}, /* these are tricky cases where lower 32 bits allow to tighten 64 * bit boundaries based on tightened lower 32 bit boundaries */ {U64, S32, {0, 0x0ffffffffULL}, {0, 0}}, {U64, S32, {0, 0x100000000ULL}, {0, 0}}, {U64, S32, {0, 0x100000001ULL}, {0, 0}}, {U64, S32, {0, 0x180000000ULL}, {0, 0}}, {U64, S32, {0, 0x17fffffffULL}, {0, 0}}, {U64, S32, {0, 0x180000001ULL}, {0, 0}}, /* verifier knows about [-1, 0] range for s32 for this case already */ {S64, S64, {0xffffffffffffffffULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}}, /* but didn't know about these cases initially */ {U64, U64, {0xffffffff, 0x100000000ULL}, {0, 0}}, /* s32: [-1, 0] */ {U64, U64, {0xffffffff, 0x100000001ULL}, {0, 0}}, /* s32: [-1, 1] */ /* longer convergence case: learning from u64 -> s64 -> u64 -> u32, * arriving at u32: [1, U32_MAX] (instead of more pessimistic [0, U32_MAX]) */ {S64, U64, {0xffffffff00000001ULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}}, {U32, U32, {1, U32_MAX}, {0, 0}}, {U32, S32, {0, U32_MAX}, {U32_MAX, U32_MAX}}, {S32, U64, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)(s32)-255, 0}}, {S32, S64, {(u32)S32_MIN, (u32)(s32)-255}, {(u32)(s32)-2, 0}}, {S32, S64, {0, 1}, {(u32)S32_MIN, (u32)S32_MIN}}, {S32, U32, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)S32_MIN, (u32)S32_MIN}}, /* edge overlap testings for BPF_NE */ {U64, U64, {0, U64_MAX}, {U64_MAX, U64_MAX}}, {U64, U64, {0, U64_MAX}, {0, 0}}, {S64, U64, {S64_MIN, 0}, {S64_MIN, S64_MIN}}, {S64, U64, {S64_MIN, 0}, {0, 0}}, {S64, U64, {S64_MIN, S64_MAX}, {S64_MAX, S64_MAX}}, {U32, U32, {0, U32_MAX}, {0, 0}}, {U32, U32, {0, U32_MAX}, {U32_MAX, U32_MAX}}, {S32, U32, {(u32)S32_MIN, 0}, {0, 0}}, {S32, U32, {(u32)S32_MIN, 0}, {(u32)S32_MIN, (u32)S32_MIN}}, {S32, U32, {(u32)S32_MIN, S32_MAX}, {S32_MAX, S32_MAX}}, }; /* Go over crafted hard-coded cases. This is fast, so we do it as part of * normal test_progs run. */ void test_reg_bounds_crafted(void) { struct ctx ctx; int i; memset(&ctx, 0, sizeof(ctx)); for (i = 0; i < ARRAY_SIZE(crafted_cases); i++) { struct subtest_case *c = &crafted_cases[i]; verify_case(&ctx, c->init_t, c->cond_t, c->x, c->y); verify_case(&ctx, c->init_t, c->cond_t, c->y, c->x); } cleanup_ctx(&ctx); } |