Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */

#define _GNU_SOURCE
#include <limits.h>
#include <test_progs.h>
#include <linux/filter.h>
#include <linux/bpf.h>

/* =================================
 * SHORT AND CONSISTENT NUMBER TYPES
 * =================================
 */
#define U64_MAX ((u64)UINT64_MAX)
#define U32_MAX ((u32)UINT_MAX)
#define U16_MAX ((u32)UINT_MAX)
#define S64_MIN ((s64)INT64_MIN)
#define S64_MAX ((s64)INT64_MAX)
#define S32_MIN ((s32)INT_MIN)
#define S32_MAX ((s32)INT_MAX)
#define S16_MIN ((s16)0x80000000)
#define S16_MAX ((s16)0x7fffffff)

typedef unsigned long long ___u64;
typedef unsigned int ___u32;
typedef long long ___s64;
typedef int ___s32;

/* avoid conflicts with already defined types in kernel headers */
#define u64 ___u64
#define u32 ___u32
#define s64 ___s64
#define s32 ___s32

/* ==================================
 * STRING BUF ABSTRACTION AND HELPERS
 * ==================================
 */
struct strbuf {
	size_t buf_sz;
	int pos;
	char buf[0];
};

#define DEFINE_STRBUF(name, N)						\
	struct { struct strbuf buf; char data[(N)]; } ___##name;	\
	struct strbuf *name = (___##name.buf.buf_sz = (N), ___##name.buf.pos = 0, &___##name.buf)

__printf(2, 3)
static inline void snappendf(struct strbuf *s, const char *fmt, ...)
{
	va_list args;

	va_start(args, fmt);
	s->pos += vsnprintf(s->buf + s->pos,
			    s->pos < s->buf_sz ? s->buf_sz - s->pos : 0,
			    fmt, args);
	va_end(args);
}

/* ==================================
 * GENERIC NUMBER TYPE AND OPERATIONS
 * ==================================
 */
enum num_t { U64, first_t = U64, U32, S64, S32, last_t = S32 };

static __always_inline u64 min_t(enum num_t t, u64 x, u64 y)
{
	switch (t) {
	case U64: return (u64)x < (u64)y ? (u64)x : (u64)y;
	case U32: return (u32)x < (u32)y ? (u32)x : (u32)y;
	case S64: return (s64)x < (s64)y ? (s64)x : (s64)y;
	case S32: return (s32)x < (s32)y ? (s32)x : (s32)y;
	default: printf("min_t!\n"); exit(1);
	}
}

static __always_inline u64 max_t(enum num_t t, u64 x, u64 y)
{
	switch (t) {
	case U64: return (u64)x > (u64)y ? (u64)x : (u64)y;
	case U32: return (u32)x > (u32)y ? (u32)x : (u32)y;
	case S64: return (s64)x > (s64)y ? (s64)x : (s64)y;
	case S32: return (s32)x > (s32)y ? (u32)(s32)x : (u32)(s32)y;
	default: printf("max_t!\n"); exit(1);
	}
}

static __always_inline u64 cast_t(enum num_t t, u64 x)
{
	switch (t) {
	case U64: return (u64)x;
	case U32: return (u32)x;
	case S64: return (s64)x;
	case S32: return (u32)(s32)x;
	default: printf("cast_t!\n"); exit(1);
	}
}

static const char *t_str(enum num_t t)
{
	switch (t) {
	case U64: return "u64";
	case U32: return "u32";
	case S64: return "s64";
	case S32: return "s32";
	default: printf("t_str!\n"); exit(1);
	}
}

static enum num_t t_is_32(enum num_t t)
{
	switch (t) {
	case U64: return false;
	case U32: return true;
	case S64: return false;
	case S32: return true;
	default: printf("t_is_32!\n"); exit(1);
	}
}

static enum num_t t_signed(enum num_t t)
{
	switch (t) {
	case U64: return S64;
	case U32: return S32;
	case S64: return S64;
	case S32: return S32;
	default: printf("t_signed!\n"); exit(1);
	}
}

static enum num_t t_unsigned(enum num_t t)
{
	switch (t) {
	case U64: return U64;
	case U32: return U32;
	case S64: return U64;
	case S32: return U32;
	default: printf("t_unsigned!\n"); exit(1);
	}
}

#define UNUM_MAX_DECIMAL U16_MAX
#define SNUM_MAX_DECIMAL S16_MAX
#define SNUM_MIN_DECIMAL S16_MIN

static bool num_is_small(enum num_t t, u64 x)
{
	switch (t) {
	case U64: return (u64)x <= UNUM_MAX_DECIMAL;
	case U32: return (u32)x <= UNUM_MAX_DECIMAL;
	case S64: return (s64)x >= SNUM_MIN_DECIMAL && (s64)x <= SNUM_MAX_DECIMAL;
	case S32: return (s32)x >= SNUM_MIN_DECIMAL && (s32)x <= SNUM_MAX_DECIMAL;
	default: printf("num_is_small!\n"); exit(1);
	}
}

static void snprintf_num(enum num_t t, struct strbuf *sb, u64 x)
{
	bool is_small = num_is_small(t, x);

	if (is_small) {
		switch (t) {
		case U64: return snappendf(sb, "%llu", (u64)x);
		case U32: return snappendf(sb, "%u", (u32)x);
		case S64: return snappendf(sb, "%lld", (s64)x);
		case S32: return snappendf(sb, "%d", (s32)x);
		default: printf("snprintf_num!\n"); exit(1);
		}
	} else {
		switch (t) {
		case U64:
			if (x == U64_MAX)
				return snappendf(sb, "U64_MAX");
			else if (x >= U64_MAX - 256)
				return snappendf(sb, "U64_MAX-%llu", U64_MAX - x);
			else
				return snappendf(sb, "%#llx", (u64)x);
		case U32:
			if ((u32)x == U32_MAX)
				return snappendf(sb, "U32_MAX");
			else if ((u32)x >= U32_MAX - 256)
				return snappendf(sb, "U32_MAX-%u", U32_MAX - (u32)x);
			else
				return snappendf(sb, "%#x", (u32)x);
		case S64:
			if ((s64)x == S64_MAX)
				return snappendf(sb, "S64_MAX");
			else if ((s64)x >= S64_MAX - 256)
				return snappendf(sb, "S64_MAX-%lld", S64_MAX - (s64)x);
			else if ((s64)x == S64_MIN)
				return snappendf(sb, "S64_MIN");
			else if ((s64)x <= S64_MIN + 256)
				return snappendf(sb, "S64_MIN+%lld", (s64)x - S64_MIN);
			else
				return snappendf(sb, "%#llx", (s64)x);
		case S32:
			if ((s32)x == S32_MAX)
				return snappendf(sb, "S32_MAX");
			else if ((s32)x >= S32_MAX - 256)
				return snappendf(sb, "S32_MAX-%d", S32_MAX - (s32)x);
			else if ((s32)x == S32_MIN)
				return snappendf(sb, "S32_MIN");
			else if ((s32)x <= S32_MIN + 256)
				return snappendf(sb, "S32_MIN+%d", (s32)x - S32_MIN);
			else
				return snappendf(sb, "%#x", (s32)x);
		default: printf("snprintf_num!\n"); exit(1);
		}
	}
}

/* ===================================
 * GENERIC RANGE STRUCT AND OPERATIONS
 * ===================================
 */
struct range {
	u64 a, b;
};

static void snprintf_range(enum num_t t, struct strbuf *sb, struct range x)
{
	if (x.a == x.b)
		return snprintf_num(t, sb, x.a);

	snappendf(sb, "[");
	snprintf_num(t, sb, x.a);
	snappendf(sb, "; ");
	snprintf_num(t, sb, x.b);
	snappendf(sb, "]");
}

static void print_range(enum num_t t, struct range x, const char *sfx)
{
	DEFINE_STRBUF(sb, 128);

	snprintf_range(t, sb, x);
	printf("%s%s", sb->buf, sfx);
}

static const struct range unkn[] = {
	[U64] = { 0, U64_MAX },
	[U32] = { 0, U32_MAX },
	[S64] = { (u64)S64_MIN, (u64)S64_MAX },
	[S32] = { (u64)(u32)S32_MIN, (u64)(u32)S32_MAX },
};

static struct range unkn_subreg(enum num_t t)
{
	switch (t) {
	case U64: return unkn[U32];
	case U32: return unkn[U32];
	case S64: return unkn[U32];
	case S32: return unkn[S32];
	default: printf("unkn_subreg!\n"); exit(1);
	}
}

static struct range range(enum num_t t, u64 a, u64 b)
{
	switch (t) {
	case U64: return (struct range){ (u64)a, (u64)b };
	case U32: return (struct range){ (u32)a, (u32)b };
	case S64: return (struct range){ (s64)a, (s64)b };
	case S32: return (struct range){ (u32)(s32)a, (u32)(s32)b };
	default: printf("range!\n"); exit(1);
	}
}

static __always_inline u32 sign64(u64 x) { return (x >> 63) & 1; }
static __always_inline u32 sign32(u64 x) { return ((u32)x >> 31) & 1; }
static __always_inline u32 upper32(u64 x) { return (u32)(x >> 32); }
static __always_inline u64 swap_low32(u64 x, u32 y) { return (x & 0xffffffff00000000ULL) | y; }

static bool range_eq(struct range x, struct range y)
{
	return x.a == y.a && x.b == y.b;
}

static struct range range_cast_to_s32(struct range x)
{
	u64 a = x.a, b = x.b;

	/* if upper 32 bits are constant, lower 32 bits should form a proper
	 * s32 range to be correct
	 */
	if (upper32(a) == upper32(b) && (s32)a <= (s32)b)
		return range(S32, a, b);

	/* Special case where upper bits form a small sequence of two
	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
	 * 0x00000000 is also valid), while lower bits form a proper s32 range
	 * going from negative numbers to positive numbers.
	 *
	 * E.g.: [0xfffffff0ffffff00; 0xfffffff100000010]. Iterating
	 * over full 64-bit numbers range will form a proper [-16, 16]
	 * ([0xffffff00; 0x00000010]) range in its lower 32 bits.
	 */
	if (upper32(a) + 1 == upper32(b) && (s32)a < 0 && (s32)b >= 0)
		return range(S32, a, b);

	/* otherwise we can't derive much meaningful information */
	return unkn[S32];
}

static struct range range_cast_u64(enum num_t to_t, struct range x)
{
	u64 a = (u64)x.a, b = (u64)x.b;

	switch (to_t) {
	case U64:
		return x;
	case U32:
		if (upper32(a) != upper32(b))
			return unkn[U32];
		return range(U32, a, b);
	case S64:
		if (sign64(a) != sign64(b))
			return unkn[S64];
		return range(S64, a, b);
	case S32:
		return range_cast_to_s32(x);
	default: printf("range_cast_u64!\n"); exit(1);
	}
}

static struct range range_cast_s64(enum num_t to_t, struct range x)
{
	s64 a = (s64)x.a, b = (s64)x.b;

	switch (to_t) {
	case U64:
		/* equivalent to (s64)a <= (s64)b check */
		if (sign64(a) != sign64(b))
			return unkn[U64];
		return range(U64, a, b);
	case U32:
		if (upper32(a) != upper32(b) || sign32(a) != sign32(b))
			return unkn[U32];
		return range(U32, a, b);
	case S64:
		return x;
	case S32:
		return range_cast_to_s32(x);
	default: printf("range_cast_s64!\n"); exit(1);
	}
}

static struct range range_cast_u32(enum num_t to_t, struct range x)
{
	u32 a = (u32)x.a, b = (u32)x.b;

	switch (to_t) {
	case U64:
	case S64:
		/* u32 is always a valid zero-extended u64/s64 */
		return range(to_t, a, b);
	case U32:
		return x;
	case S32:
		return range_cast_to_s32(range(U32, a, b));
	default: printf("range_cast_u32!\n"); exit(1);
	}
}

static struct range range_cast_s32(enum num_t to_t, struct range x)
{
	s32 a = (s32)x.a, b = (s32)x.b;

	switch (to_t) {
	case U64:
	case U32:
	case S64:
		if (sign32(a) != sign32(b))
			return unkn[to_t];
		return range(to_t, a, b);
	case S32:
		return x;
	default: printf("range_cast_s32!\n"); exit(1);
	}
}

/* Reinterpret range in *from_t* domain as a range in *to_t* domain preserving
 * all possible information. Worst case, it will be unknown range within
 * *to_t* domain, if nothing more specific can be guaranteed during the
 * conversion
 */
static struct range range_cast(enum num_t from_t, enum num_t to_t, struct range from)
{
	switch (from_t) {
	case U64: return range_cast_u64(to_t, from);
	case U32: return range_cast_u32(to_t, from);
	case S64: return range_cast_s64(to_t, from);
	case S32: return range_cast_s32(to_t, from);
	default: printf("range_cast!\n"); exit(1);
	}
}

static bool is_valid_num(enum num_t t, u64 x)
{
	switch (t) {
	case U64: return true;
	case U32: return upper32(x) == 0;
	case S64: return true;
	case S32: return upper32(x) == 0;
	default: printf("is_valid_num!\n"); exit(1);
	}
}

static bool is_valid_range(enum num_t t, struct range x)
{
	if (!is_valid_num(t, x.a) || !is_valid_num(t, x.b))
		return false;

	switch (t) {
	case U64: return (u64)x.a <= (u64)x.b;
	case U32: return (u32)x.a <= (u32)x.b;
	case S64: return (s64)x.a <= (s64)x.b;
	case S32: return (s32)x.a <= (s32)x.b;
	default: printf("is_valid_range!\n"); exit(1);
	}
}

static struct range range_improve(enum num_t t, struct range old, struct range new)
{
	return range(t, max_t(t, old.a, new.a), min_t(t, old.b, new.b));
}

static struct range range_refine(enum num_t x_t, struct range x, enum num_t y_t, struct range y)
{
	struct range y_cast;

	y_cast = range_cast(y_t, x_t, y);

	/* the case when new range knowledge, *y*, is a 32-bit subregister
	 * range, while previous range knowledge, *x*, is a full register
	 * 64-bit range, needs special treatment to take into account upper 32
	 * bits of full register range
	 */
	if (t_is_32(y_t) && !t_is_32(x_t)) {
		struct range x_swap;

		/* some combinations of upper 32 bits and sign bit can lead to
		 * invalid ranges, in such cases it's easier to detect them
		 * after cast/swap than try to enumerate all the conditions
		 * under which transformation and knowledge transfer is valid
		 */
		x_swap = range(x_t, swap_low32(x.a, y_cast.a), swap_low32(x.b, y_cast.b));
		if (!is_valid_range(x_t, x_swap))
			return x;
		return range_improve(x_t, x, x_swap);
	}

	/* otherwise, plain range cast and intersection works */
	return range_improve(x_t, x, y_cast);
}

/* =======================
 * GENERIC CONDITIONAL OPS
 * =======================
 */
enum op { OP_LT, OP_LE, OP_GT, OP_GE, OP_EQ, OP_NE, first_op = OP_LT, last_op = OP_NE };

static enum op complement_op(enum op op)
{
	switch (op) {
	case OP_LT: return OP_GE;
	case OP_LE: return OP_GT;
	case OP_GT: return OP_LE;
	case OP_GE: return OP_LT;
	case OP_EQ: return OP_NE;
	case OP_NE: return OP_EQ;
	default: printf("complement_op!\n"); exit(1);
	}
}

static const char *op_str(enum op op)
{
	switch (op) {
	case OP_LT: return "<";
	case OP_LE: return "<=";
	case OP_GT: return ">";
	case OP_GE: return ">=";
	case OP_EQ: return "==";
	case OP_NE: return "!=";
	default: printf("op_str!\n"); exit(1);
	}
}

/* Can register with range [x.a, x.b] *EVER* satisfy
 * OP (<, <=, >, >=, ==, !=) relation to
 * a regsiter with range [y.a, y.b]
 * _in *num_t* domain_
 */
static bool range_canbe_op(enum num_t t, struct range x, struct range y, enum op op)
{
#define range_canbe(T) do {									\
	switch (op) {										\
	case OP_LT: return (T)x.a < (T)y.b;							\
	case OP_LE: return (T)x.a <= (T)y.b;							\
	case OP_GT: return (T)x.b > (T)y.a;							\
	case OP_GE: return (T)x.b >= (T)y.a;							\
	case OP_EQ: return (T)max_t(t, x.a, y.a) <= (T)min_t(t, x.b, y.b);			\
	case OP_NE: return !((T)x.a == (T)x.b && (T)y.a == (T)y.b && (T)x.a == (T)y.a);		\
	default: printf("range_canbe op %d\n", op); exit(1);					\
	}											\
} while (0)

	switch (t) {
	case U64: { range_canbe(u64); }
	case U32: { range_canbe(u32); }
	case S64: { range_canbe(s64); }
	case S32: { range_canbe(s32); }
	default: printf("range_canbe!\n"); exit(1);
	}
#undef range_canbe
}

/* Does register with range [x.a, x.b] *ALWAYS* satisfy
 * OP (<, <=, >, >=, ==, !=) relation to
 * a regsiter with range [y.a, y.b]
 * _in *num_t* domain_
 */
static bool range_always_op(enum num_t t, struct range x, struct range y, enum op op)
{
	/* always op <=> ! canbe complement(op) */
	return !range_canbe_op(t, x, y, complement_op(op));
}

/* Does register with range [x.a, x.b] *NEVER* satisfy
 * OP (<, <=, >, >=, ==, !=) relation to
 * a regsiter with range [y.a, y.b]
 * _in *num_t* domain_
 */
static bool range_never_op(enum num_t t, struct range x, struct range y, enum op op)
{
	return !range_canbe_op(t, x, y, op);
}

/* similar to verifier's is_branch_taken():
 *    1 - always taken;
 *    0 - never taken,
 *   -1 - unsure.
 */
static int range_branch_taken_op(enum num_t t, struct range x, struct range y, enum op op)
{
	if (range_always_op(t, x, y, op))
		return 1;
	if (range_never_op(t, x, y, op))
		return 0;
	return -1;
}

/* What would be the new estimates for register x and y ranges assuming truthful
 * OP comparison between them. I.e., (x OP y == true) => x <- newx, y <- newy.
 *
 * We assume "interesting" cases where ranges overlap. Cases where it's
 * obvious that (x OP y) is either always true or false should be filtered with
 * range_never and range_always checks.
 */
static void range_cond(enum num_t t, struct range x, struct range y,
		       enum op op, struct range *newx, struct range *newy)
{
	if (!range_canbe_op(t, x, y, op)) {
		/* nothing to adjust, can't happen, return original values */
		*newx = x;
		*newy = y;
		return;
	}
	switch (op) {
	case OP_LT:
		*newx = range(t, x.a, min_t(t, x.b, y.b - 1));
		*newy = range(t, max_t(t, x.a + 1, y.a), y.b);
		break;
	case OP_LE:
		*newx = range(t, x.a, min_t(t, x.b, y.b));
		*newy = range(t, max_t(t, x.a, y.a), y.b);
		break;
	case OP_GT:
		*newx = range(t, max_t(t, x.a, y.a + 1), x.b);
		*newy = range(t, y.a, min_t(t, x.b - 1, y.b));
		break;
	case OP_GE:
		*newx = range(t, max_t(t, x.a, y.a), x.b);
		*newy = range(t, y.a, min_t(t, x.b, y.b));
		break;
	case OP_EQ:
		*newx = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b));
		*newy = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b));
		break;
	case OP_NE:
		/* below logic is supported by the verifier now */
		if (x.a == x.b && x.a == y.a) {
			/* X is a constant matching left side of Y */
			*newx = range(t, x.a, x.b);
			*newy = range(t, y.a + 1, y.b);
		} else if (x.a == x.b && x.b == y.b) {
			/* X is a constant matching rigth side of Y */
			*newx = range(t, x.a, x.b);
			*newy = range(t, y.a, y.b - 1);
		} else if (y.a == y.b && x.a == y.a) {
			/* Y is a constant matching left side of X */
			*newx = range(t, x.a + 1, x.b);
			*newy = range(t, y.a, y.b);
		} else if (y.a == y.b && x.b == y.b) {
			/* Y is a constant matching rigth side of X */
			*newx = range(t, x.a, x.b - 1);
			*newy = range(t, y.a, y.b);
		} else {
			/* generic case, can't derive more information */
			*newx = range(t, x.a, x.b);
			*newy = range(t, y.a, y.b);
		}

		break;
	default:
		break;
	}
}

/* =======================
 * REGISTER STATE HANDLING
 * =======================
 */
struct reg_state {
	struct range r[4]; /* indexed by enum num_t: U64, U32, S64, S32 */
	bool valid;
};

static void print_reg_state(struct reg_state *r, const char *sfx)
{
	DEFINE_STRBUF(sb, 512);
	enum num_t t;
	int cnt = 0;

	if (!r->valid) {
		printf("<not found>%s", sfx);
		return;
	}

	snappendf(sb, "scalar(");
	for (t = first_t; t <= last_t; t++) {
		snappendf(sb, "%s%s=", cnt++ ? "," : "", t_str(t));
		snprintf_range(t, sb, r->r[t]);
	}
	snappendf(sb, ")");

	printf("%s%s", sb->buf, sfx);
}

static void print_refinement(enum num_t s_t, struct range src,
			     enum num_t d_t, struct range old, struct range new,
			     const char *ctx)
{
	printf("REFINING (%s) (%s)SRC=", ctx, t_str(s_t));
	print_range(s_t, src, "");
	printf(" (%s)DST_OLD=", t_str(d_t));
	print_range(d_t, old, "");
	printf(" (%s)DST_NEW=", t_str(d_t));
	print_range(d_t, new, "\n");
}

static void reg_state_refine(struct reg_state *r, enum num_t t, struct range x, const char *ctx)
{
	enum num_t d_t, s_t;
	struct range old;
	bool keep_going = false;

again:
	/* try to derive new knowledge from just learned range x of type t */
	for (d_t = first_t; d_t <= last_t; d_t++) {
		old = r->r[d_t];
		r->r[d_t] = range_refine(d_t, r->r[d_t], t, x);
		if (!range_eq(r->r[d_t], old)) {
			keep_going = true;
			if (env.verbosity >= VERBOSE_VERY)
				print_refinement(t, x, d_t, old, r->r[d_t], ctx);
		}
	}

	/* now see if we can derive anything new from updated reg_state's ranges */
	for (s_t = first_t; s_t <= last_t; s_t++) {
		for (d_t = first_t; d_t <= last_t; d_t++) {
			old = r->r[d_t];
			r->r[d_t] = range_refine(d_t, r->r[d_t], s_t, r->r[s_t]);
			if (!range_eq(r->r[d_t], old)) {
				keep_going = true;
				if (env.verbosity >= VERBOSE_VERY)
					print_refinement(s_t, r->r[s_t], d_t, old, r->r[d_t], ctx);
			}
		}
	}

	/* keep refining until we converge */
	if (keep_going) {
		keep_going = false;
		goto again;
	}
}

static void reg_state_set_const(struct reg_state *rs, enum num_t t, u64 val)
{
	enum num_t tt;

	rs->valid = true;
	for (tt = first_t; tt <= last_t; tt++)
		rs->r[tt] = tt == t ? range(t, val, val) : unkn[tt];

	reg_state_refine(rs, t, rs->r[t], "CONST");
}

static void reg_state_cond(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op,
			   struct reg_state *newx, struct reg_state *newy, const char *ctx)
{
	char buf[32];
	enum num_t ts[2];
	struct reg_state xx = *x, yy = *y;
	int i, t_cnt;
	struct range z1, z2;

	if (op == OP_EQ || op == OP_NE) {
		/* OP_EQ and OP_NE are sign-agnostic, so we need to process
		 * both signed and unsigned domains at the same time
		 */
		ts[0] = t_unsigned(t);
		ts[1] = t_signed(t);
		t_cnt = 2;
	} else {
		ts[0] = t;
		t_cnt = 1;
	}

	for (i = 0; i < t_cnt; i++) {
		t = ts[i];
		z1 = x->r[t];
		z2 = y->r[t];

		range_cond(t, z1, z2, op, &z1, &z2);

		if (newx) {
			snprintf(buf, sizeof(buf), "%s R1", ctx);
			reg_state_refine(&xx, t, z1, buf);
		}
		if (newy) {
			snprintf(buf, sizeof(buf), "%s R2", ctx);
			reg_state_refine(&yy, t, z2, buf);
		}
	}

	if (newx)
		*newx = xx;
	if (newy)
		*newy = yy;
}

static int reg_state_branch_taken_op(enum num_t t, struct reg_state *x, struct reg_state *y,
				     enum op op)
{
	if (op == OP_EQ || op == OP_NE) {
		/* OP_EQ and OP_NE are sign-agnostic */
		enum num_t tu = t_unsigned(t);
		enum num_t ts = t_signed(t);
		int br_u, br_s, br;

		br_u = range_branch_taken_op(tu, x->r[tu], y->r[tu], op);
		br_s = range_branch_taken_op(ts, x->r[ts], y->r[ts], op);

		if (br_u >= 0 && br_s >= 0 && br_u != br_s)
			ASSERT_FALSE(true, "branch taken inconsistency!\n");

		/* if 64-bit ranges are indecisive, use 32-bit subranges to
		 * eliminate always/never taken branches, if possible
		 */
		if (br_u == -1 && (t == U64 || t == S64)) {
			br = range_branch_taken_op(U32, x->r[U32], y->r[U32], op);
			/* we can only reject for OP_EQ, never take branch
			 * based on lower 32 bits
			 */
			if (op == OP_EQ && br == 0)
				return 0;
			/* for OP_NEQ we can be conclusive only if lower 32 bits
			 * differ and thus inequality branch is always taken
			 */
			if (op == OP_NE && br == 1)
				return 1;

			br = range_branch_taken_op(S32, x->r[S32], y->r[S32], op);
			if (op == OP_EQ && br == 0)
				return 0;
			if (op == OP_NE && br == 1)
				return 1;
		}

		return br_u >= 0 ? br_u : br_s;
	}
	return range_branch_taken_op(t, x->r[t], y->r[t], op);
}

/* =====================================
 * BPF PROGS GENERATION AND VERIFICATION
 * =====================================
 */
struct case_spec {
	/* whether to init full register (r1) or sub-register (w1) */
	bool init_subregs;
	/* whether to establish initial value range on full register (r1) or
	 * sub-register (w1)
	 */
	bool setup_subregs;
	/* whether to establish initial value range using signed or unsigned
	 * comparisons (i.e., initialize umin/umax or smin/smax directly)
	 */
	bool setup_signed;
	/* whether to perform comparison on full registers or sub-registers */
	bool compare_subregs;
	/* whether to perform comparison using signed or unsigned operations */
	bool compare_signed;
};

/* Generate test BPF program based on provided test ranges, operation, and
 * specifications about register bitness and signedness.
 */
static int load_range_cmp_prog(struct range x, struct range y, enum op op,
			       int branch_taken, struct case_spec spec,
			       char *log_buf, size_t log_sz,
			       int *false_pos, int *true_pos)
{
#define emit(insn) ({							\
	struct bpf_insn __insns[] = { insn };				\
	int __i;							\
	for (__i = 0; __i < ARRAY_SIZE(__insns); __i++)			\
		insns[cur_pos + __i] = __insns[__i];			\
	cur_pos += __i;							\
})
#define JMP_TO(target) (target - cur_pos - 1)
	int cur_pos = 0, exit_pos, fd, op_code;
	struct bpf_insn insns[64];
	LIBBPF_OPTS(bpf_prog_load_opts, opts,
		.log_level = 2,
		.log_buf = log_buf,
		.log_size = log_sz,
		.prog_flags = testing_prog_flags(),
	);

	/* ; skip exit block below
	 * goto +2;
	 */
	emit(BPF_JMP_A(2));
	exit_pos = cur_pos;
	/* ; exit block for all the preparatory conditionals
	 * out:
	 * r0 = 0;
	 * exit;
	 */
	emit(BPF_MOV64_IMM(BPF_REG_0, 0));
	emit(BPF_EXIT_INSN());
	/*
	 * ; assign r6/w6 and r7/w7 unpredictable u64/u32 value
	 * call bpf_get_current_pid_tgid;
	 * r6 = r0;               | w6 = w0;
	 * call bpf_get_current_pid_tgid;
	 * r7 = r0;               | w7 = w0;
	 */
	emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid));
	if (spec.init_subregs)
		emit(BPF_MOV32_REG(BPF_REG_6, BPF_REG_0));
	else
		emit(BPF_MOV64_REG(BPF_REG_6, BPF_REG_0));
	emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid));
	if (spec.init_subregs)
		emit(BPF_MOV32_REG(BPF_REG_7, BPF_REG_0));
	else
		emit(BPF_MOV64_REG(BPF_REG_7, BPF_REG_0));
	/* ; setup initial r6/w6 possible value range ([x.a, x.b])
	 * r1 = %[x.a] ll;        | w1 = %[x.a];
	 * r2 = %[x.b] ll;        | w2 = %[x.b];
	 * if r6 < r1 goto out;   | if w6 < w1 goto out;
	 * if r6 > r2 goto out;   | if w6 > w2 goto out;
	 */
	if (spec.setup_subregs) {
		emit(BPF_MOV32_IMM(BPF_REG_1, (s32)x.a));
		emit(BPF_MOV32_IMM(BPF_REG_2, (s32)x.b));
		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
				   BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos)));
		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
				   BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos)));
	} else {
		emit(BPF_LD_IMM64(BPF_REG_1, x.a));
		emit(BPF_LD_IMM64(BPF_REG_2, x.b));
		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
				 BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos)));
		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
				 BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos)));
	}
	/* ; setup initial r7/w7 possible value range ([y.a, y.b])
	 * r1 = %[y.a] ll;        | w1 = %[y.a];
	 * r2 = %[y.b] ll;        | w2 = %[y.b];
	 * if r7 < r1 goto out;   | if w7 < w1 goto out;
	 * if r7 > r2 goto out;   | if w7 > w2 goto out;
	 */
	if (spec.setup_subregs) {
		emit(BPF_MOV32_IMM(BPF_REG_1, (s32)y.a));
		emit(BPF_MOV32_IMM(BPF_REG_2, (s32)y.b));
		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
				   BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos)));
		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
				   BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos)));
	} else {
		emit(BPF_LD_IMM64(BPF_REG_1, y.a));
		emit(BPF_LD_IMM64(BPF_REG_2, y.b));
		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
				 BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos)));
		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
				 BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos)));
	}
	/* ; range test instruction
	 * if r6 <op> r7 goto +3; | if w6 <op> w7 goto +3;
	 */
	switch (op) {
	case OP_LT: op_code = spec.compare_signed ? BPF_JSLT : BPF_JLT; break;
	case OP_LE: op_code = spec.compare_signed ? BPF_JSLE : BPF_JLE; break;
	case OP_GT: op_code = spec.compare_signed ? BPF_JSGT : BPF_JGT; break;
	case OP_GE: op_code = spec.compare_signed ? BPF_JSGE : BPF_JGE; break;
	case OP_EQ: op_code = BPF_JEQ; break;
	case OP_NE: op_code = BPF_JNE; break;
	default:
		printf("unrecognized op %d\n", op);
		return -ENOTSUP;
	}
	/* ; BEFORE conditional, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
	 * ; this is used for debugging, as verifier doesn't always print
	 * ; registers states as of condition jump instruction (e.g., when
	 * ; precision marking happens)
	 * r0 = r6;               | w0 = w6;
	 * r0 = r7;               | w0 = w7;
	 */
	if (spec.compare_subregs) {
		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
	} else {
		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
	}
	if (spec.compare_subregs)
		emit(BPF_JMP32_REG(op_code, BPF_REG_6, BPF_REG_7, 3));
	else
		emit(BPF_JMP_REG(op_code, BPF_REG_6, BPF_REG_7, 3));
	/* ; FALSE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
	 * r0 = r6;               | w0 = w6;
	 * r0 = r7;               | w0 = w7;
	 * exit;
	 */
	*false_pos = cur_pos;
	if (spec.compare_subregs) {
		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
	} else {
		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
	}
	if (branch_taken == 1) /* false branch is never taken */
		emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */
	else
		emit(BPF_EXIT_INSN());
	/* ; TRUE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
	 * r0 = r6;               | w0 = w6;
	 * r0 = r7;               | w0 = w7;
	 * exit;
	 */
	*true_pos = cur_pos;
	if (spec.compare_subregs) {
		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
	} else {
		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
	}
	if (branch_taken == 0) /* true branch is never taken */
		emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */
	emit(BPF_EXIT_INSN()); /* last instruction has to be exit */

	fd = bpf_prog_load(BPF_PROG_TYPE_RAW_TRACEPOINT, "reg_bounds_test",
			   "GPL", insns, cur_pos, &opts);
	if (fd < 0)
		return fd;

	close(fd);
	return 0;
#undef emit
#undef JMP_TO
}

#define str_has_pfx(str, pfx) (strncmp(str, pfx, strlen(pfx)) == 0)

/* Parse register state from verifier log.
 * `s` should point to the start of "Rx = ..." substring in the verifier log.
 */
static int parse_reg_state(const char *s, struct reg_state *reg)
{
	/* There are two generic forms for SCALAR register:
	 * - known constant: R6_rwD=P%lld
	 * - range: R6_rwD=scalar(id=1,...), where "..." is a comma-separated
	 *   list of optional range specifiers:
	 *     - umin=%llu, if missing, assumed 0;
	 *     - umax=%llu, if missing, assumed U64_MAX;
	 *     - smin=%lld, if missing, assumed S64_MIN;
	 *     - smax=%lld, if missing, assummed S64_MAX;
	 *     - umin32=%d, if missing, assumed 0;
	 *     - umax32=%d, if missing, assumed U32_MAX;
	 *     - smin32=%d, if missing, assumed S32_MIN;
	 *     - smax32=%d, if missing, assummed S32_MAX;
	 *     - var_off=(%#llx; %#llx), tnum part, we don't care about it.
	 *
	 * If some of the values are equal, they will be grouped (but min/max
	 * are not mixed together, and similarly negative values are not
	 * grouped with non-negative ones). E.g.:
	 *
	 *   R6_w=Pscalar(smin=smin32=0, smax=umax=umax32=1000)
	 *
	 * _rwD part is optional (and any of the letters can be missing).
	 * P (precision mark) is optional as well.
	 *
	 * Anything inside scalar() is optional, including id, of course.
	 */
	struct {
		const char *pfx;
		u64 *dst, def;
		bool is_32, is_set;
	} *f, fields[8] = {
		{"smin=", &reg->r[S64].a, S64_MIN},
		{"smax=", &reg->r[S64].b, S64_MAX},
		{"umin=", &reg->r[U64].a, 0},
		{"umax=", &reg->r[U64].b, U64_MAX},
		{"smin32=", &reg->r[S32].a, (u32)S32_MIN, true},
		{"smax32=", &reg->r[S32].b, (u32)S32_MAX, true},
		{"umin32=", &reg->r[U32].a, 0,            true},
		{"umax32=", &reg->r[U32].b, U32_MAX,      true},
	};
	const char *p;
	int i;

	p = strchr(s, '=');
	if (!p)
		return -EINVAL;
	p++;
	if (*p == 'P')
		p++;

	if (!str_has_pfx(p, "scalar(")) {
		long long sval;
		enum num_t t;

		if (p[0] == '0' && p[1] == 'x') {
			if (sscanf(p, "%llx", &sval) != 1)
				return -EINVAL;
		} else {
			if (sscanf(p, "%lld", &sval) != 1)
				return -EINVAL;
		}

		reg->valid = true;
		for (t = first_t; t <= last_t; t++) {
			reg->r[t] = range(t, sval, sval);
		}
		return 0;
	}

	p += sizeof("scalar");
	while (p) {
		int midxs[ARRAY_SIZE(fields)], mcnt = 0;
		u64 val;

		for (i = 0; i < ARRAY_SIZE(fields); i++) {
			f = &fields[i];
			if (!str_has_pfx(p, f->pfx))
				continue;
			midxs[mcnt++] = i;
			p += strlen(f->pfx);
		}

		if (mcnt) {
			/* populate all matched fields */
			if (p[0] == '0' && p[1] == 'x') {
				if (sscanf(p, "%llx", &val) != 1)
					return -EINVAL;
			} else {
				if (sscanf(p, "%lld", &val) != 1)
					return -EINVAL;
			}

			for (i = 0; i < mcnt; i++) {
				f = &fields[midxs[i]];
				f->is_set = true;
				*f->dst = f->is_32 ? (u64)(u32)val : val;
			}
		} else if (str_has_pfx(p, "var_off")) {
			/* skip "var_off=(0x0; 0x3f)" part completely */
			p = strchr(p, ')');
			if (!p)
				return -EINVAL;
			p++;
		}

		p = strpbrk(p, ",)");
		if (*p == ')')
			break;
		if (p)
			p++;
	}

	reg->valid = true;

	for (i = 0; i < ARRAY_SIZE(fields); i++) {
		f = &fields[i];
		if (!f->is_set)
			*f->dst = f->def;
	}

	return 0;
}


/* Parse all register states (TRUE/FALSE branches and DST/SRC registers)
 * out of the verifier log for a corresponding test case BPF program.
 */
static int parse_range_cmp_log(const char *log_buf, struct case_spec spec,
			       int false_pos, int true_pos,
			       struct reg_state *false1_reg, struct reg_state *false2_reg,
			       struct reg_state *true1_reg, struct reg_state *true2_reg)
{
	struct {
		int insn_idx;
		int reg_idx;
		const char *reg_upper;
		struct reg_state *state;
	} specs[] = {
		{false_pos,     6, "R6=", false1_reg},
		{false_pos + 1, 7, "R7=", false2_reg},
		{true_pos,      6, "R6=", true1_reg},
		{true_pos + 1,  7, "R7=", true2_reg},
	};
	char buf[32];
	const char *p = log_buf, *q;
	int i, err;

	for (i = 0; i < 4; i++) {
		sprintf(buf, "%d: (%s) %s = %s%d", specs[i].insn_idx,
			spec.compare_subregs ? "bc" : "bf",
			spec.compare_subregs ? "w0" : "r0",
			spec.compare_subregs ? "w" : "r", specs[i].reg_idx);

		q = strstr(p, buf);
		if (!q) {
			*specs[i].state = (struct reg_state){.valid = false};
			continue;
		}
		p = strstr(q, specs[i].reg_upper);
		if (!p)
			return -EINVAL;
		err = parse_reg_state(p, specs[i].state);
		if (err)
			return -EINVAL;
	}
	return 0;
}

/* Validate ranges match, and print details if they don't */
static bool assert_range_eq(enum num_t t, struct range x, struct range y,
			    const char *ctx1, const char *ctx2)
{
	DEFINE_STRBUF(sb, 512);

	if (range_eq(x, y))
		return true;

	snappendf(sb, "MISMATCH %s.%s: ", ctx1, ctx2);
	snprintf_range(t, sb, x);
	snappendf(sb, " != ");
	snprintf_range(t, sb, y);

	printf("%s\n", sb->buf);

	return false;
}

/* Validate that register states match, and print details if they don't */
static bool assert_reg_state_eq(struct reg_state *r, struct reg_state *e, const char *ctx)
{
	bool ok = true;
	enum num_t t;

	if (r->valid != e->valid) {
		printf("MISMATCH %s: actual %s != expected %s\n", ctx,
		       r->valid ? "<valid>" : "<invalid>",
		       e->valid ? "<valid>" : "<invalid>");
		return false;
	}

	if (!r->valid)
		return true;

	for (t = first_t; t <= last_t; t++) {
		if (!assert_range_eq(t, r->r[t], e->r[t], ctx, t_str(t)))
			ok = false;
	}

	return ok;
}

/* Printf verifier log, filtering out irrelevant noise */
static void print_verifier_log(const char *buf)
{
	const char *p;

	while (buf[0]) {
		p = strchrnul(buf, '\n');

		/* filter out irrelevant precision backtracking logs */
		if (str_has_pfx(buf, "mark_precise: "))
			goto skip_line;

		printf("%.*s\n", (int)(p - buf), buf);

skip_line:
		buf = *p == '\0' ? p : p + 1;
	}
}

/* Simulate provided test case purely with our own range-based logic.
 * This is done to set up expectations for verifier's branch_taken logic and
 * verifier's register states in the verifier log.
 */
static void sim_case(enum num_t init_t, enum num_t cond_t,
		     struct range x, struct range y, enum op op,
		     struct reg_state *fr1, struct reg_state *fr2,
		     struct reg_state *tr1, struct reg_state *tr2,
		     int *branch_taken)
{
	const u64 A = x.a;
	const u64 B = x.b;
	const u64 C = y.a;
	const u64 D = y.b;
	struct reg_state rc;
	enum op rev_op = complement_op(op);
	enum num_t t;

	fr1->valid = fr2->valid = true;
	tr1->valid = tr2->valid = true;
	for (t = first_t; t <= last_t; t++) {
		/* if we are initializing using 32-bit subregisters,
		 * full registers get upper 32 bits zeroed automatically
		 */
		struct range z = t_is_32(init_t) ? unkn_subreg(t) : unkn[t];

		fr1->r[t] = fr2->r[t] = tr1->r[t] = tr2->r[t] = z;
	}

	/* step 1: r1 >= A, r2 >= C */
	reg_state_set_const(&rc, init_t, A);
	reg_state_cond(init_t, fr1, &rc, OP_GE, fr1, NULL, "r1>=A");
	reg_state_set_const(&rc, init_t, C);
	reg_state_cond(init_t, fr2, &rc, OP_GE, fr2, NULL, "r2>=C");
	*tr1 = *fr1;
	*tr2 = *fr2;
	if (env.verbosity >= VERBOSE_VERY) {
		printf("STEP1 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n");
		printf("STEP1 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n");
	}

	/* step 2: r1 <= B, r2 <= D */
	reg_state_set_const(&rc, init_t, B);
	reg_state_cond(init_t, fr1, &rc, OP_LE, fr1, NULL, "r1<=B");
	reg_state_set_const(&rc, init_t, D);
	reg_state_cond(init_t, fr2, &rc, OP_LE, fr2, NULL, "r2<=D");
	*tr1 = *fr1;
	*tr2 = *fr2;
	if (env.verbosity >= VERBOSE_VERY) {
		printf("STEP2 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n");
		printf("STEP2 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n");
	}

	/* step 3: r1 <op> r2 */
	*branch_taken = reg_state_branch_taken_op(cond_t, fr1, fr2, op);
	fr1->valid = fr2->valid = false;
	tr1->valid = tr2->valid = false;
	if (*branch_taken != 1) { /* FALSE is possible */
		fr1->valid = fr2->valid = true;
		reg_state_cond(cond_t, fr1, fr2, rev_op, fr1, fr2, "FALSE");
	}
	if (*branch_taken != 0) { /* TRUE is possible */
		tr1->valid = tr2->valid = true;
		reg_state_cond(cond_t, tr1, tr2, op, tr1, tr2, "TRUE");
	}
	if (env.verbosity >= VERBOSE_VERY) {
		printf("STEP3 (%s) FALSE R1:", t_str(cond_t)); print_reg_state(fr1, "\n");
		printf("STEP3 (%s) FALSE R2:", t_str(cond_t)); print_reg_state(fr2, "\n");
		printf("STEP3 (%s) TRUE  R1:", t_str(cond_t)); print_reg_state(tr1, "\n");
		printf("STEP3 (%s) TRUE  R2:", t_str(cond_t)); print_reg_state(tr2, "\n");
	}
}

/* ===============================
 * HIGH-LEVEL TEST CASE VALIDATION
 * ===============================
 */
static u32 upper_seeds[] = {
	0,
	1,
	U32_MAX,
	U32_MAX - 1,
	S32_MAX,
	(u32)S32_MIN,
};

static u32 lower_seeds[] = {
	0,
	1,
	2, (u32)-2,
	255, (u32)-255,
	UINT_MAX,
	UINT_MAX - 1,
	INT_MAX,
	(u32)INT_MIN,
};

struct ctx {
	int val_cnt, subval_cnt, range_cnt, subrange_cnt;
	u64 uvals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)];
	s64 svals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)];
	u32 usubvals[ARRAY_SIZE(lower_seeds)];
	s32 ssubvals[ARRAY_SIZE(lower_seeds)];
	struct range *uranges, *sranges;
	struct range *usubranges, *ssubranges;
	int max_failure_cnt, cur_failure_cnt;
	int total_case_cnt, case_cnt;
	int rand_case_cnt;
	unsigned rand_seed;
	__u64 start_ns;
	char progress_ctx[64];
};

static void cleanup_ctx(struct ctx *ctx)
{
	free(ctx->uranges);
	free(ctx->sranges);
	free(ctx->usubranges);
	free(ctx->ssubranges);
}

struct subtest_case {
	enum num_t init_t;
	enum num_t cond_t;
	struct range x;
	struct range y;
	enum op op;
};

static void subtest_case_str(struct strbuf *sb, struct subtest_case *t, bool use_op)
{
	snappendf(sb, "(%s)", t_str(t->init_t));
	snprintf_range(t->init_t, sb, t->x);
	snappendf(sb, " (%s)%s ", t_str(t->cond_t), use_op ? op_str(t->op) : "<op>");
	snprintf_range(t->init_t, sb, t->y);
}

/* Generate and validate test case based on specific combination of setup
 * register ranges (including their expected num_t domain), and conditional
 * operation to perform (including num_t domain in which it has to be
 * performed)
 */
static int verify_case_op(enum num_t init_t, enum num_t cond_t,
			  struct range x, struct range y, enum op op)
{
	char log_buf[256 * 1024];
	size_t log_sz = sizeof(log_buf);
	int err, false_pos = 0, true_pos = 0, branch_taken;
	struct reg_state fr1, fr2, tr1, tr2;
	struct reg_state fe1, fe2, te1, te2;
	bool failed = false;
	struct case_spec spec = {
		.init_subregs = (init_t == U32 || init_t == S32),
		.setup_subregs = (init_t == U32 || init_t == S32),
		.setup_signed = (init_t == S64 || init_t == S32),
		.compare_subregs = (cond_t == U32 || cond_t == S32),
		.compare_signed = (cond_t == S64 || cond_t == S32),
	};

	log_buf[0] = '\0';

	sim_case(init_t, cond_t, x, y, op, &fe1, &fe2, &te1, &te2, &branch_taken);

	err = load_range_cmp_prog(x, y, op, branch_taken, spec,
				  log_buf, log_sz, &false_pos, &true_pos);
	if (err) {
		ASSERT_OK(err, "load_range_cmp_prog");
		failed = true;
	}

	err = parse_range_cmp_log(log_buf, spec, false_pos, true_pos,
				  &fr1, &fr2, &tr1, &tr2);
	if (err) {
		ASSERT_OK(err, "parse_range_cmp_log");
		failed = true;
	}

	if (!assert_reg_state_eq(&fr1, &fe1, "false_reg1") ||
	    !assert_reg_state_eq(&fr2, &fe2, "false_reg2") ||
	    !assert_reg_state_eq(&tr1, &te1, "true_reg1") ||
	    !assert_reg_state_eq(&tr2, &te2, "true_reg2")) {
		failed = true;
	}

	if (failed || env.verbosity >= VERBOSE_NORMAL) {
		if (failed || env.verbosity >= VERBOSE_VERY) {
			printf("VERIFIER LOG:\n========================\n");
			print_verifier_log(log_buf);
			printf("=====================\n");
		}
		printf("ACTUAL   FALSE1: "); print_reg_state(&fr1, "\n");
		printf("EXPECTED FALSE1: "); print_reg_state(&fe1, "\n");
		printf("ACTUAL   FALSE2: "); print_reg_state(&fr2, "\n");
		printf("EXPECTED FALSE2: "); print_reg_state(&fe2, "\n");
		printf("ACTUAL   TRUE1:  "); print_reg_state(&tr1, "\n");
		printf("EXPECTED TRUE1:  "); print_reg_state(&te1, "\n");
		printf("ACTUAL   TRUE2:  "); print_reg_state(&tr2, "\n");
		printf("EXPECTED TRUE2:  "); print_reg_state(&te2, "\n");

		return failed ? -EINVAL : 0;
	}

	return 0;
}

/* Given setup ranges and number types, go over all supported operations,
 * generating individual subtest for each allowed combination
 */
static int verify_case_opt(struct ctx *ctx, enum num_t init_t, enum num_t cond_t,
			   struct range x, struct range y, bool is_subtest)
{
	DEFINE_STRBUF(sb, 256);
	int err;
	struct subtest_case sub = {
		.init_t = init_t,
		.cond_t = cond_t,
		.x = x,
		.y = y,
	};

	sb->pos = 0; /* reset position in strbuf */
	subtest_case_str(sb, &sub, false /* ignore op */);
	if (is_subtest && !test__start_subtest(sb->buf))
		return 0;

	for (sub.op = first_op; sub.op <= last_op; sub.op++) {
		sb->pos = 0; /* reset position in strbuf */
		subtest_case_str(sb, &sub, true /* print op */);

		if (env.verbosity >= VERBOSE_NORMAL) /* this speeds up debugging */
			printf("TEST CASE: %s\n", sb->buf);

		err = verify_case_op(init_t, cond_t, x, y, sub.op);
		if (err || env.verbosity >= VERBOSE_NORMAL)
			ASSERT_OK(err, sb->buf);
		if (err) {
			ctx->cur_failure_cnt++;
			if (ctx->cur_failure_cnt > ctx->max_failure_cnt)
				return err;
			return 0; /* keep testing other cases */
		}
		ctx->case_cnt++;
		if ((ctx->case_cnt % 10000) == 0) {
			double progress = (ctx->case_cnt + 0.0) / ctx->total_case_cnt;
			u64 elapsed_ns = get_time_ns() - ctx->start_ns;
			double remain_ns = elapsed_ns / progress * (1 - progress);

			fprintf(env.stderr, "PROGRESS (%s): %d/%d (%.2lf%%), "
					    "elapsed %llu mins (%.2lf hrs), "
					    "ETA %.0lf mins (%.2lf hrs)\n",
				ctx->progress_ctx,
				ctx->case_cnt, ctx->total_case_cnt, 100.0 * progress,
				elapsed_ns / 1000000000 / 60,
				elapsed_ns / 1000000000.0 / 3600,
				remain_ns / 1000000000.0 / 60,
				remain_ns / 1000000000.0 / 3600);
		}
	}

	return 0;
}

static int verify_case(struct ctx *ctx, enum num_t init_t, enum num_t cond_t,
		       struct range x, struct range y)
{
	return verify_case_opt(ctx, init_t, cond_t, x, y, true /* is_subtest */);
}

/* ================================
 * GENERATED CASES FROM SEED VALUES
 * ================================
 */
static int u64_cmp(const void *p1, const void *p2)
{
	u64 x1 = *(const u64 *)p1, x2 = *(const u64 *)p2;

	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
}

static int u32_cmp(const void *p1, const void *p2)
{
	u32 x1 = *(const u32 *)p1, x2 = *(const u32 *)p2;

	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
}

static int s64_cmp(const void *p1, const void *p2)
{
	s64 x1 = *(const s64 *)p1, x2 = *(const s64 *)p2;

	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
}

static int s32_cmp(const void *p1, const void *p2)
{
	s32 x1 = *(const s32 *)p1, x2 = *(const s32 *)p2;

	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
}

/* Generate valid unique constants from seeds, both signed and unsigned */
static void gen_vals(struct ctx *ctx)
{
	int i, j, cnt = 0;

	for (i = 0; i < ARRAY_SIZE(upper_seeds); i++) {
		for (j = 0; j < ARRAY_SIZE(lower_seeds); j++) {
			ctx->uvals[cnt++] = (((u64)upper_seeds[i]) << 32) | lower_seeds[j];
		}
	}

	/* sort and compact uvals (i.e., it's `sort | uniq`) */
	qsort(ctx->uvals, cnt, sizeof(*ctx->uvals), u64_cmp);
	for (i = 1, j = 0; i < cnt; i++) {
		if (ctx->uvals[j] == ctx->uvals[i])
			continue;
		j++;
		ctx->uvals[j] = ctx->uvals[i];
	}
	ctx->val_cnt = j + 1;

	/* we have exactly the same number of s64 values, they are just in
	 * a different order than u64s, so just sort them differently
	 */
	for (i = 0; i < ctx->val_cnt; i++)
		ctx->svals[i] = ctx->uvals[i];
	qsort(ctx->svals, ctx->val_cnt, sizeof(*ctx->svals), s64_cmp);

	if (env.verbosity >= VERBOSE_SUPER) {
		DEFINE_STRBUF(sb1, 256);
		DEFINE_STRBUF(sb2, 256);

		for (i = 0; i < ctx->val_cnt; i++) {
			sb1->pos = sb2->pos = 0;
			snprintf_num(U64, sb1, ctx->uvals[i]);
			snprintf_num(S64, sb2, ctx->svals[i]);
			printf("SEED #%d: u64=%-20s s64=%-20s\n", i, sb1->buf, sb2->buf);
		}
	}

	/* 32-bit values are generated separately */
	cnt = 0;
	for (i = 0; i < ARRAY_SIZE(lower_seeds); i++) {
		ctx->usubvals[cnt++] = lower_seeds[i];
	}

	/* sort and compact usubvals (i.e., it's `sort | uniq`) */
	qsort(ctx->usubvals, cnt, sizeof(*ctx->usubvals), u32_cmp);
	for (i = 1, j = 0; i < cnt; i++) {
		if (ctx->usubvals[j] == ctx->usubvals[i])
			continue;
		j++;
		ctx->usubvals[j] = ctx->usubvals[i];
	}
	ctx->subval_cnt = j + 1;

	for (i = 0; i < ctx->subval_cnt; i++)
		ctx->ssubvals[i] = ctx->usubvals[i];
	qsort(ctx->ssubvals, ctx->subval_cnt, sizeof(*ctx->ssubvals), s32_cmp);

	if (env.verbosity >= VERBOSE_SUPER) {
		DEFINE_STRBUF(sb1, 256);
		DEFINE_STRBUF(sb2, 256);

		for (i = 0; i < ctx->subval_cnt; i++) {
			sb1->pos = sb2->pos = 0;
			snprintf_num(U32, sb1, ctx->usubvals[i]);
			snprintf_num(S32, sb2, ctx->ssubvals[i]);
			printf("SUBSEED #%d: u32=%-10s s32=%-10s\n", i, sb1->buf, sb2->buf);
		}
	}
}

/* Generate valid ranges from upper/lower seeds */
static int gen_ranges(struct ctx *ctx)
{
	int i, j, cnt = 0;

	for (i = 0; i < ctx->val_cnt; i++) {
		for (j = i; j < ctx->val_cnt; j++) {
			if (env.verbosity >= VERBOSE_SUPER) {
				DEFINE_STRBUF(sb1, 256);
				DEFINE_STRBUF(sb2, 256);

				sb1->pos = sb2->pos = 0;
				snprintf_range(U64, sb1, range(U64, ctx->uvals[i], ctx->uvals[j]));
				snprintf_range(S64, sb2, range(S64, ctx->svals[i], ctx->svals[j]));
				printf("RANGE #%d: u64=%-40s s64=%-40s\n", cnt, sb1->buf, sb2->buf);
			}
			cnt++;
		}
	}
	ctx->range_cnt = cnt;

	ctx->uranges = calloc(ctx->range_cnt, sizeof(*ctx->uranges));
	if (!ASSERT_OK_PTR(ctx->uranges, "uranges_calloc"))
		return -EINVAL;
	ctx->sranges = calloc(ctx->range_cnt, sizeof(*ctx->sranges));
	if (!ASSERT_OK_PTR(ctx->sranges, "sranges_calloc"))
		return -EINVAL;

	cnt = 0;
	for (i = 0; i < ctx->val_cnt; i++) {
		for (j = i; j < ctx->val_cnt; j++) {
			ctx->uranges[cnt] = range(U64, ctx->uvals[i], ctx->uvals[j]);
			ctx->sranges[cnt] = range(S64, ctx->svals[i], ctx->svals[j]);
			cnt++;
		}
	}

	cnt = 0;
	for (i = 0; i < ctx->subval_cnt; i++) {
		for (j = i; j < ctx->subval_cnt; j++) {
			if (env.verbosity >= VERBOSE_SUPER) {
				DEFINE_STRBUF(sb1, 256);
				DEFINE_STRBUF(sb2, 256);

				sb1->pos = sb2->pos = 0;
				snprintf_range(U32, sb1, range(U32, ctx->usubvals[i], ctx->usubvals[j]));
				snprintf_range(S32, sb2, range(S32, ctx->ssubvals[i], ctx->ssubvals[j]));
				printf("SUBRANGE #%d: u32=%-20s s32=%-20s\n", cnt, sb1->buf, sb2->buf);
			}
			cnt++;
		}
	}
	ctx->subrange_cnt = cnt;

	ctx->usubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->usubranges));
	if (!ASSERT_OK_PTR(ctx->usubranges, "usubranges_calloc"))
		return -EINVAL;
	ctx->ssubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->ssubranges));
	if (!ASSERT_OK_PTR(ctx->ssubranges, "ssubranges_calloc"))
		return -EINVAL;

	cnt = 0;
	for (i = 0; i < ctx->subval_cnt; i++) {
		for (j = i; j < ctx->subval_cnt; j++) {
			ctx->usubranges[cnt] = range(U32, ctx->usubvals[i], ctx->usubvals[j]);
			ctx->ssubranges[cnt] = range(S32, ctx->ssubvals[i], ctx->ssubvals[j]);
			cnt++;
		}
	}

	return 0;
}

static int parse_env_vars(struct ctx *ctx)
{
	const char *s;

	if ((s = getenv("REG_BOUNDS_MAX_FAILURE_CNT"))) {
		errno = 0;
		ctx->max_failure_cnt = strtol(s, NULL, 10);
		if (errno || ctx->max_failure_cnt < 0) {
			ASSERT_OK(-errno, "REG_BOUNDS_MAX_FAILURE_CNT");
			return -EINVAL;
		}
	}

	if ((s = getenv("REG_BOUNDS_RAND_CASE_CNT"))) {
		errno = 0;
		ctx->rand_case_cnt = strtol(s, NULL, 10);
		if (errno || ctx->rand_case_cnt < 0) {
			ASSERT_OK(-errno, "REG_BOUNDS_RAND_CASE_CNT");
			return -EINVAL;
		}
	}

	if ((s = getenv("REG_BOUNDS_RAND_SEED"))) {
		errno = 0;
		ctx->rand_seed = strtoul(s, NULL, 10);
		if (errno) {
			ASSERT_OK(-errno, "REG_BOUNDS_RAND_SEED");
			return -EINVAL;
		}
	}

	return 0;
}

static int prepare_gen_tests(struct ctx *ctx)
{
	const char *s;
	int err;

	if (!(s = getenv("SLOW_TESTS")) || strcmp(s, "1") != 0) {
		test__skip();
		return -ENOTSUP;
	}

	err = parse_env_vars(ctx);
	if (err)
		return err;

	gen_vals(ctx);
	err = gen_ranges(ctx);
	if (err) {
		ASSERT_OK(err, "gen_ranges");
		return err;
	}

	return 0;
}

/* Go over generated constants and ranges and validate various supported
 * combinations of them
 */
static void validate_gen_range_vs_const_64(enum num_t init_t, enum num_t cond_t)
{
	struct ctx ctx;
	struct range rconst;
	const struct range *ranges;
	const u64 *vals;
	int i, j;

	memset(&ctx, 0, sizeof(ctx));

	if (prepare_gen_tests(&ctx))
		goto cleanup;

	ranges = init_t == U64 ? ctx.uranges : ctx.sranges;
	vals = init_t == U64 ? ctx.uvals : (const u64 *)ctx.svals;

	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.range_cnt * ctx.val_cnt);
	ctx.start_ns = get_time_ns();
	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
		 "RANGE x CONST, %s -> %s",
		 t_str(init_t), t_str(cond_t));

	for (i = 0; i < ctx.val_cnt; i++) {
		for (j = 0; j < ctx.range_cnt; j++) {
			rconst = range(init_t, vals[i], vals[i]);

			/* (u64|s64)(<range> x <const>) */
			if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst))
				goto cleanup;
			/* (u64|s64)(<const> x <range>) */
			if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j]))
				goto cleanup;
		}
	}

cleanup:
	cleanup_ctx(&ctx);
}

static void validate_gen_range_vs_const_32(enum num_t init_t, enum num_t cond_t)
{
	struct ctx ctx;
	struct range rconst;
	const struct range *ranges;
	const u32 *vals;
	int i, j;

	memset(&ctx, 0, sizeof(ctx));

	if (prepare_gen_tests(&ctx))
		goto cleanup;

	ranges = init_t == U32 ? ctx.usubranges : ctx.ssubranges;
	vals = init_t == U32 ? ctx.usubvals : (const u32 *)ctx.ssubvals;

	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.subrange_cnt * ctx.subval_cnt);
	ctx.start_ns = get_time_ns();
	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
		 "RANGE x CONST, %s -> %s",
		 t_str(init_t), t_str(cond_t));

	for (i = 0; i < ctx.subval_cnt; i++) {
		for (j = 0; j < ctx.subrange_cnt; j++) {
			rconst = range(init_t, vals[i], vals[i]);

			/* (u32|s32)(<range> x <const>) */
			if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst))
				goto cleanup;
			/* (u32|s32)(<const> x <range>) */
			if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j]))
				goto cleanup;
		}
	}

cleanup:
	cleanup_ctx(&ctx);
}

static void validate_gen_range_vs_range(enum num_t init_t, enum num_t cond_t)
{
	struct ctx ctx;
	const struct range *ranges;
	int i, j, rcnt;

	memset(&ctx, 0, sizeof(ctx));

	if (prepare_gen_tests(&ctx))
		goto cleanup;

	switch (init_t)
	{
	case U64:
		ranges = ctx.uranges;
		rcnt = ctx.range_cnt;
		break;
	case U32:
		ranges = ctx.usubranges;
		rcnt = ctx.subrange_cnt;
		break;
	case S64:
		ranges = ctx.sranges;
		rcnt = ctx.range_cnt;
		break;
	case S32:
		ranges = ctx.ssubranges;
		rcnt = ctx.subrange_cnt;
		break;
	default:
		printf("validate_gen_range_vs_range!\n");
		exit(1);
	}

	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * rcnt * (rcnt + 1) / 2);
	ctx.start_ns = get_time_ns();
	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
		 "RANGE x RANGE, %s -> %s",
		 t_str(init_t), t_str(cond_t));

	for (i = 0; i < rcnt; i++) {
		for (j = i; j < rcnt; j++) {
			/* (<range> x <range>) */
			if (verify_case(&ctx, init_t, cond_t, ranges[i], ranges[j]))
				goto cleanup;
			if (verify_case(&ctx, init_t, cond_t, ranges[j], ranges[i]))
				goto cleanup;
		}
	}

cleanup:
	cleanup_ctx(&ctx);
}

/* Go over thousands of test cases generated from initial seed values.
 * Given this take a long time, guard this begind SLOW_TESTS=1 envvar. If
 * envvar is not set, this test is skipped during test_progs testing.
 *
 * We split this up into smaller subsets based on initialization and
 * conditiona numeric domains to get an easy parallelization with test_progs'
 * -j argument.
 */

/* RANGE x CONST, U64 initial range */
void test_reg_bounds_gen_consts_u64_u64(void) { validate_gen_range_vs_const_64(U64, U64); }
void test_reg_bounds_gen_consts_u64_s64(void) { validate_gen_range_vs_const_64(U64, S64); }
void test_reg_bounds_gen_consts_u64_u32(void) { validate_gen_range_vs_const_64(U64, U32); }
void test_reg_bounds_gen_consts_u64_s32(void) { validate_gen_range_vs_const_64(U64, S32); }
/* RANGE x CONST, S64 initial range */
void test_reg_bounds_gen_consts_s64_u64(void) { validate_gen_range_vs_const_64(S64, U64); }
void test_reg_bounds_gen_consts_s64_s64(void) { validate_gen_range_vs_const_64(S64, S64); }
void test_reg_bounds_gen_consts_s64_u32(void) { validate_gen_range_vs_const_64(S64, U32); }
void test_reg_bounds_gen_consts_s64_s32(void) { validate_gen_range_vs_const_64(S64, S32); }
/* RANGE x CONST, U32 initial range */
void test_reg_bounds_gen_consts_u32_u64(void) { validate_gen_range_vs_const_32(U32, U64); }
void test_reg_bounds_gen_consts_u32_s64(void) { validate_gen_range_vs_const_32(U32, S64); }
void test_reg_bounds_gen_consts_u32_u32(void) { validate_gen_range_vs_const_32(U32, U32); }
void test_reg_bounds_gen_consts_u32_s32(void) { validate_gen_range_vs_const_32(U32, S32); }
/* RANGE x CONST, S32 initial range */
void test_reg_bounds_gen_consts_s32_u64(void) { validate_gen_range_vs_const_32(S32, U64); }
void test_reg_bounds_gen_consts_s32_s64(void) { validate_gen_range_vs_const_32(S32, S64); }
void test_reg_bounds_gen_consts_s32_u32(void) { validate_gen_range_vs_const_32(S32, U32); }
void test_reg_bounds_gen_consts_s32_s32(void) { validate_gen_range_vs_const_32(S32, S32); }

/* RANGE x RANGE, U64 initial range */
void test_reg_bounds_gen_ranges_u64_u64(void) { validate_gen_range_vs_range(U64, U64); }
void test_reg_bounds_gen_ranges_u64_s64(void) { validate_gen_range_vs_range(U64, S64); }
void test_reg_bounds_gen_ranges_u64_u32(void) { validate_gen_range_vs_range(U64, U32); }
void test_reg_bounds_gen_ranges_u64_s32(void) { validate_gen_range_vs_range(U64, S32); }
/* RANGE x RANGE, S64 initial range */
void test_reg_bounds_gen_ranges_s64_u64(void) { validate_gen_range_vs_range(S64, U64); }
void test_reg_bounds_gen_ranges_s64_s64(void) { validate_gen_range_vs_range(S64, S64); }
void test_reg_bounds_gen_ranges_s64_u32(void) { validate_gen_range_vs_range(S64, U32); }
void test_reg_bounds_gen_ranges_s64_s32(void) { validate_gen_range_vs_range(S64, S32); }
/* RANGE x RANGE, U32 initial range */
void test_reg_bounds_gen_ranges_u32_u64(void) { validate_gen_range_vs_range(U32, U64); }
void test_reg_bounds_gen_ranges_u32_s64(void) { validate_gen_range_vs_range(U32, S64); }
void test_reg_bounds_gen_ranges_u32_u32(void) { validate_gen_range_vs_range(U32, U32); }
void test_reg_bounds_gen_ranges_u32_s32(void) { validate_gen_range_vs_range(U32, S32); }
/* RANGE x RANGE, S32 initial range */
void test_reg_bounds_gen_ranges_s32_u64(void) { validate_gen_range_vs_range(S32, U64); }
void test_reg_bounds_gen_ranges_s32_s64(void) { validate_gen_range_vs_range(S32, S64); }
void test_reg_bounds_gen_ranges_s32_u32(void) { validate_gen_range_vs_range(S32, U32); }
void test_reg_bounds_gen_ranges_s32_s32(void) { validate_gen_range_vs_range(S32, S32); }

#define DEFAULT_RAND_CASE_CNT 100

#define RAND_21BIT_MASK ((1 << 22) - 1)

static u64 rand_u64()
{
	/* RAND_MAX is guaranteed to be at least 1<<15, but in practice it
	 * seems to be 1<<31, so we need to call it thrice to get full u64;
	 * we'll use rougly equal split: 22 + 21 + 21 bits
	 */
	return ((u64)random() << 42) |
	       (((u64)random() & RAND_21BIT_MASK) << 21) |
	       (random() & RAND_21BIT_MASK);
}

static u64 rand_const(enum num_t t)
{
	return cast_t(t, rand_u64());
}

static struct range rand_range(enum num_t t)
{
	u64 x = rand_const(t), y = rand_const(t);

	return range(t, min_t(t, x, y), max_t(t, x, y));
}

static void validate_rand_ranges(enum num_t init_t, enum num_t cond_t, bool const_range)
{
	struct ctx ctx;
	struct range range1, range2;
	int err, i;
	u64 t;

	memset(&ctx, 0, sizeof(ctx));

	err = parse_env_vars(&ctx);
	if (err) {
		ASSERT_OK(err, "parse_env_vars");
		return;
	}

	if (ctx.rand_case_cnt == 0)
		ctx.rand_case_cnt = DEFAULT_RAND_CASE_CNT;
	if (ctx.rand_seed == 0)
		ctx.rand_seed = (unsigned)get_time_ns();

	srandom(ctx.rand_seed);

	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.rand_case_cnt);
	ctx.start_ns = get_time_ns();
	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
		 "[RANDOM SEED %u] RANGE x %s, %s -> %s",
		 ctx.rand_seed, const_range ? "CONST" : "RANGE",
		 t_str(init_t), t_str(cond_t));

	for (i = 0; i < ctx.rand_case_cnt; i++) {
		range1 = rand_range(init_t);
		if (const_range) {
			t = rand_const(init_t);
			range2 = range(init_t, t, t);
		} else {
			range2 = rand_range(init_t);
		}

		/* <range1> x <range2> */
		if (verify_case_opt(&ctx, init_t, cond_t, range1, range2, false /* !is_subtest */))
			goto cleanup;
		/* <range2> x <range1> */
		if (verify_case_opt(&ctx, init_t, cond_t, range2, range1, false /* !is_subtest */))
			goto cleanup;
	}

cleanup:
	/* make sure we report random seed for reproducing */
	ASSERT_TRUE(true, ctx.progress_ctx);
	cleanup_ctx(&ctx);
}

/* [RANDOM] RANGE x CONST, U64 initial range */
void test_reg_bounds_rand_consts_u64_u64(void) { validate_rand_ranges(U64, U64, true /* const */); }
void test_reg_bounds_rand_consts_u64_s64(void) { validate_rand_ranges(U64, S64, true /* const */); }
void test_reg_bounds_rand_consts_u64_u32(void) { validate_rand_ranges(U64, U32, true /* const */); }
void test_reg_bounds_rand_consts_u64_s32(void) { validate_rand_ranges(U64, S32, true /* const */); }
/* [RANDOM] RANGE x CONST, S64 initial range */
void test_reg_bounds_rand_consts_s64_u64(void) { validate_rand_ranges(S64, U64, true /* const */); }
void test_reg_bounds_rand_consts_s64_s64(void) { validate_rand_ranges(S64, S64, true /* const */); }
void test_reg_bounds_rand_consts_s64_u32(void) { validate_rand_ranges(S64, U32, true /* const */); }
void test_reg_bounds_rand_consts_s64_s32(void) { validate_rand_ranges(S64, S32, true /* const */); }
/* [RANDOM] RANGE x CONST, U32 initial range */
void test_reg_bounds_rand_consts_u32_u64(void) { validate_rand_ranges(U32, U64, true /* const */); }
void test_reg_bounds_rand_consts_u32_s64(void) { validate_rand_ranges(U32, S64, true /* const */); }
void test_reg_bounds_rand_consts_u32_u32(void) { validate_rand_ranges(U32, U32, true /* const */); }
void test_reg_bounds_rand_consts_u32_s32(void) { validate_rand_ranges(U32, S32, true /* const */); }
/* [RANDOM] RANGE x CONST, S32 initial range */
void test_reg_bounds_rand_consts_s32_u64(void) { validate_rand_ranges(S32, U64, true /* const */); }
void test_reg_bounds_rand_consts_s32_s64(void) { validate_rand_ranges(S32, S64, true /* const */); }
void test_reg_bounds_rand_consts_s32_u32(void) { validate_rand_ranges(S32, U32, true /* const */); }
void test_reg_bounds_rand_consts_s32_s32(void) { validate_rand_ranges(S32, S32, true /* const */); }

/* [RANDOM] RANGE x RANGE, U64 initial range */
void test_reg_bounds_rand_ranges_u64_u64(void) { validate_rand_ranges(U64, U64, false /* range */); }
void test_reg_bounds_rand_ranges_u64_s64(void) { validate_rand_ranges(U64, S64, false /* range */); }
void test_reg_bounds_rand_ranges_u64_u32(void) { validate_rand_ranges(U64, U32, false /* range */); }
void test_reg_bounds_rand_ranges_u64_s32(void) { validate_rand_ranges(U64, S32, false /* range */); }
/* [RANDOM] RANGE x RANGE, S64 initial range */
void test_reg_bounds_rand_ranges_s64_u64(void) { validate_rand_ranges(S64, U64, false /* range */); }
void test_reg_bounds_rand_ranges_s64_s64(void) { validate_rand_ranges(S64, S64, false /* range */); }
void test_reg_bounds_rand_ranges_s64_u32(void) { validate_rand_ranges(S64, U32, false /* range */); }
void test_reg_bounds_rand_ranges_s64_s32(void) { validate_rand_ranges(S64, S32, false /* range */); }
/* [RANDOM] RANGE x RANGE, U32 initial range */
void test_reg_bounds_rand_ranges_u32_u64(void) { validate_rand_ranges(U32, U64, false /* range */); }
void test_reg_bounds_rand_ranges_u32_s64(void) { validate_rand_ranges(U32, S64, false /* range */); }
void test_reg_bounds_rand_ranges_u32_u32(void) { validate_rand_ranges(U32, U32, false /* range */); }
void test_reg_bounds_rand_ranges_u32_s32(void) { validate_rand_ranges(U32, S32, false /* range */); }
/* [RANDOM] RANGE x RANGE, S32 initial range */
void test_reg_bounds_rand_ranges_s32_u64(void) { validate_rand_ranges(S32, U64, false /* range */); }
void test_reg_bounds_rand_ranges_s32_s64(void) { validate_rand_ranges(S32, S64, false /* range */); }
void test_reg_bounds_rand_ranges_s32_u32(void) { validate_rand_ranges(S32, U32, false /* range */); }
void test_reg_bounds_rand_ranges_s32_s32(void) { validate_rand_ranges(S32, S32, false /* range */); }

/* A set of hard-coded "interesting" cases to validate as part of normal
 * test_progs test runs
 */
static struct subtest_case crafted_cases[] = {
	{U64, U64, {0, 0xffffffff}, {0, 0}},
	{U64, U64, {0, 0x80000000}, {0, 0}},
	{U64, U64, {0x100000000ULL, 0x100000100ULL}, {0, 0}},
	{U64, U64, {0x100000000ULL, 0x180000000ULL}, {0, 0}},
	{U64, U64, {0x100000000ULL, 0x1ffffff00ULL}, {0, 0}},
	{U64, U64, {0x100000000ULL, 0x1ffffff01ULL}, {0, 0}},
	{U64, U64, {0x100000000ULL, 0x1fffffffeULL}, {0, 0}},
	{U64, U64, {0x100000001ULL, 0x1000000ffULL}, {0, 0}},

	/* single point overlap, interesting BPF_EQ and BPF_NE interactions */
	{U64, U64, {0, 1}, {1, 0x80000000}},
	{U64, S64, {0, 1}, {1, 0x80000000}},
	{U64, U32, {0, 1}, {1, 0x80000000}},
	{U64, S32, {0, 1}, {1, 0x80000000}},

	{U64, S64, {0, 0xffffffff00000000ULL}, {0, 0}},
	{U64, S64, {0x7fffffffffffffffULL, 0xffffffff00000000ULL}, {0, 0}},
	{U64, S64, {0x7fffffff00000001ULL, 0xffffffff00000000ULL}, {0, 0}},
	{U64, S64, {0, 0xffffffffULL}, {1, 1}},
	{U64, S64, {0, 0xffffffffULL}, {0x7fffffff, 0x7fffffff}},

	{U64, U32, {0, 0x100000000}, {0, 0}},
	{U64, U32, {0xfffffffe, 0x100000000}, {0x80000000, 0x80000000}},

	{U64, S32, {0, 0xffffffff00000000ULL}, {0, 0}},
	/* these are tricky cases where lower 32 bits allow to tighten 64
	 * bit boundaries based on tightened lower 32 bit boundaries
	 */
	{U64, S32, {0, 0x0ffffffffULL}, {0, 0}},
	{U64, S32, {0, 0x100000000ULL}, {0, 0}},
	{U64, S32, {0, 0x100000001ULL}, {0, 0}},
	{U64, S32, {0, 0x180000000ULL}, {0, 0}},
	{U64, S32, {0, 0x17fffffffULL}, {0, 0}},
	{U64, S32, {0, 0x180000001ULL}, {0, 0}},

	/* verifier knows about [-1, 0] range for s32 for this case already */
	{S64, S64, {0xffffffffffffffffULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}},
	/* but didn't know about these cases initially */
	{U64, U64, {0xffffffff, 0x100000000ULL}, {0, 0}}, /* s32: [-1, 0] */
	{U64, U64, {0xffffffff, 0x100000001ULL}, {0, 0}}, /* s32: [-1, 1] */

	/* longer convergence case: learning from u64 -> s64 -> u64 -> u32,
	 * arriving at u32: [1, U32_MAX] (instead of more pessimistic [0, U32_MAX])
	 */
	{S64, U64, {0xffffffff00000001ULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}},

	{U32, U32, {1, U32_MAX}, {0, 0}},

	{U32, S32, {0, U32_MAX}, {U32_MAX, U32_MAX}},

	{S32, U64, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)(s32)-255, 0}},
	{S32, S64, {(u32)S32_MIN, (u32)(s32)-255}, {(u32)(s32)-2, 0}},
	{S32, S64, {0, 1}, {(u32)S32_MIN, (u32)S32_MIN}},
	{S32, U32, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)S32_MIN, (u32)S32_MIN}},

	/* edge overlap testings for BPF_NE */
	{U64, U64, {0, U64_MAX}, {U64_MAX, U64_MAX}},
	{U64, U64, {0, U64_MAX}, {0, 0}},
	{S64, U64, {S64_MIN, 0}, {S64_MIN, S64_MIN}},
	{S64, U64, {S64_MIN, 0}, {0, 0}},
	{S64, U64, {S64_MIN, S64_MAX}, {S64_MAX, S64_MAX}},
	{U32, U32, {0, U32_MAX}, {0, 0}},
	{U32, U32, {0, U32_MAX}, {U32_MAX, U32_MAX}},
	{S32, U32, {(u32)S32_MIN, 0}, {0, 0}},
	{S32, U32, {(u32)S32_MIN, 0}, {(u32)S32_MIN, (u32)S32_MIN}},
	{S32, U32, {(u32)S32_MIN, S32_MAX}, {S32_MAX, S32_MAX}},
};

/* Go over crafted hard-coded cases. This is fast, so we do it as part of
 * normal test_progs run.
 */
void test_reg_bounds_crafted(void)
{
	struct ctx ctx;
	int i;

	memset(&ctx, 0, sizeof(ctx));

	for (i = 0; i < ARRAY_SIZE(crafted_cases); i++) {
		struct subtest_case *c = &crafted_cases[i];

		verify_case(&ctx, c->init_t, c->cond_t, c->x, c->y);
		verify_case(&ctx, c->init_t, c->cond_t, c->y, c->x);
	}

	cleanup_ctx(&ctx);
}