Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2023. Huawei Technologies Co., Ltd */ #include <argp.h> #include <stdbool.h> #include <pthread.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/param.h> #include <fcntl.h> #include "bench.h" #include "bpf_util.h" #include "cgroup_helpers.h" #include "htab_mem_bench.skel.h" struct htab_mem_use_case { const char *name; const char **progs; /* Do synchronization between addition thread and deletion thread */ bool need_sync; }; static struct htab_mem_ctx { const struct htab_mem_use_case *uc; struct htab_mem_bench *skel; pthread_barrier_t *notify; int fd; } ctx; const char *ow_progs[] = {"overwrite", NULL}; const char *batch_progs[] = {"batch_add_batch_del", NULL}; const char *add_del_progs[] = {"add_only", "del_only", NULL}; const static struct htab_mem_use_case use_cases[] = { { .name = "overwrite", .progs = ow_progs }, { .name = "batch_add_batch_del", .progs = batch_progs }, { .name = "add_del_on_diff_cpu", .progs = add_del_progs, .need_sync = true }, }; static struct htab_mem_args { u32 value_size; const char *use_case; bool preallocated; } args = { .value_size = 8, .use_case = "overwrite", .preallocated = false, }; enum { ARG_VALUE_SIZE = 10000, ARG_USE_CASE = 10001, ARG_PREALLOCATED = 10002, }; static const struct argp_option opts[] = { { "value-size", ARG_VALUE_SIZE, "VALUE_SIZE", 0, "Set the value size of hash map (default 8)" }, { "use-case", ARG_USE_CASE, "USE_CASE", 0, "Set the use case of hash map: overwrite|batch_add_batch_del|add_del_on_diff_cpu" }, { "preallocated", ARG_PREALLOCATED, NULL, 0, "use preallocated hash map" }, {}, }; static error_t htab_mem_parse_arg(int key, char *arg, struct argp_state *state) { switch (key) { case ARG_VALUE_SIZE: args.value_size = strtoul(arg, NULL, 10); if (args.value_size > 4096) { fprintf(stderr, "too big value size %u\n", args.value_size); argp_usage(state); } break; case ARG_USE_CASE: args.use_case = strdup(arg); if (!args.use_case) { fprintf(stderr, "no mem for use-case\n"); argp_usage(state); } break; case ARG_PREALLOCATED: args.preallocated = true; break; default: return ARGP_ERR_UNKNOWN; } return 0; } const struct argp bench_htab_mem_argp = { .options = opts, .parser = htab_mem_parse_arg, }; static void htab_mem_validate(void) { if (!strcmp(use_cases[2].name, args.use_case) && env.producer_cnt % 2) { fprintf(stderr, "%s needs an even number of producers\n", args.use_case); exit(1); } } static int htab_mem_bench_init_barriers(void) { pthread_barrier_t *barriers; unsigned int i, nr; if (!ctx.uc->need_sync) return 0; nr = (env.producer_cnt + 1) / 2; barriers = calloc(nr, sizeof(*barriers)); if (!barriers) return -1; /* Used for synchronization between two threads */ for (i = 0; i < nr; i++) pthread_barrier_init(&barriers[i], NULL, 2); ctx.notify = barriers; return 0; } static void htab_mem_bench_exit_barriers(void) { unsigned int i, nr; if (!ctx.notify) return; nr = (env.producer_cnt + 1) / 2; for (i = 0; i < nr; i++) pthread_barrier_destroy(&ctx.notify[i]); free(ctx.notify); } static const struct htab_mem_use_case *htab_mem_find_use_case_or_exit(const char *name) { unsigned int i; for (i = 0; i < ARRAY_SIZE(use_cases); i++) { if (!strcmp(name, use_cases[i].name)) return &use_cases[i]; } fprintf(stderr, "no such use-case: %s\n", name); fprintf(stderr, "available use case:"); for (i = 0; i < ARRAY_SIZE(use_cases); i++) fprintf(stderr, " %s", use_cases[i].name); fprintf(stderr, "\n"); exit(1); } static void htab_mem_setup(void) { struct bpf_map *map; const char **names; int err; setup_libbpf(); ctx.uc = htab_mem_find_use_case_or_exit(args.use_case); err = htab_mem_bench_init_barriers(); if (err) { fprintf(stderr, "failed to init barrier\n"); exit(1); } ctx.fd = cgroup_setup_and_join("/htab_mem"); if (ctx.fd < 0) goto cleanup; ctx.skel = htab_mem_bench__open(); if (!ctx.skel) { fprintf(stderr, "failed to open skeleton\n"); goto cleanup; } map = ctx.skel->maps.htab; bpf_map__set_value_size(map, args.value_size); /* Ensure that different CPUs can operate on different subset */ bpf_map__set_max_entries(map, MAX(8192, 64 * env.nr_cpus)); if (args.preallocated) bpf_map__set_map_flags(map, bpf_map__map_flags(map) & ~BPF_F_NO_PREALLOC); names = ctx.uc->progs; while (*names) { struct bpf_program *prog; prog = bpf_object__find_program_by_name(ctx.skel->obj, *names); if (!prog) { fprintf(stderr, "no such program %s\n", *names); goto cleanup; } bpf_program__set_autoload(prog, true); names++; } ctx.skel->bss->nr_thread = env.producer_cnt; err = htab_mem_bench__load(ctx.skel); if (err) { fprintf(stderr, "failed to load skeleton\n"); goto cleanup; } err = htab_mem_bench__attach(ctx.skel); if (err) { fprintf(stderr, "failed to attach skeleton\n"); goto cleanup; } return; cleanup: htab_mem_bench__destroy(ctx.skel); htab_mem_bench_exit_barriers(); if (ctx.fd >= 0) { close(ctx.fd); cleanup_cgroup_environment(); } exit(1); } static void htab_mem_add_fn(pthread_barrier_t *notify) { while (true) { /* Do addition */ (void)syscall(__NR_getpgid, 0); /* Notify deletion thread to do deletion */ pthread_barrier_wait(notify); /* Wait for deletion to complete */ pthread_barrier_wait(notify); } } static void htab_mem_delete_fn(pthread_barrier_t *notify) { while (true) { /* Wait for addition to complete */ pthread_barrier_wait(notify); /* Do deletion */ (void)syscall(__NR_getppid); /* Notify addition thread to do addition */ pthread_barrier_wait(notify); } } static void *htab_mem_producer(void *arg) { pthread_barrier_t *notify; int seq; if (!ctx.uc->need_sync) { while (true) (void)syscall(__NR_getpgid, 0); return NULL; } seq = (long)arg; notify = &ctx.notify[seq / 2]; if (seq & 1) htab_mem_delete_fn(notify); else htab_mem_add_fn(notify); return NULL; } static void htab_mem_read_mem_cgrp_file(const char *name, unsigned long *value) { char buf[32]; ssize_t got; int fd; fd = openat(ctx.fd, name, O_RDONLY); if (fd < 0) { /* cgroup v1 ? */ fprintf(stderr, "no %s\n", name); *value = 0; return; } got = read(fd, buf, sizeof(buf) - 1); if (got <= 0) { *value = 0; return; } buf[got] = 0; *value = strtoull(buf, NULL, 0); close(fd); } static void htab_mem_measure(struct bench_res *res) { res->hits = atomic_swap(&ctx.skel->bss->op_cnt, 0) / env.producer_cnt; htab_mem_read_mem_cgrp_file("memory.current", &res->gp_ct); } static void htab_mem_report_progress(int iter, struct bench_res *res, long delta_ns) { double loop, mem; loop = res->hits / 1000.0 / (delta_ns / 1000000000.0); mem = res->gp_ct / 1048576.0; printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0); printf("per-prod-op %7.2lfk/s, memory usage %7.2lfMiB\n", loop, mem); } static void htab_mem_report_final(struct bench_res res[], int res_cnt) { double mem_mean = 0.0, mem_stddev = 0.0; double loop_mean = 0.0, loop_stddev = 0.0; unsigned long peak_mem; int i; for (i = 0; i < res_cnt; i++) { loop_mean += res[i].hits / 1000.0 / (0.0 + res_cnt); mem_mean += res[i].gp_ct / 1048576.0 / (0.0 + res_cnt); } if (res_cnt > 1) { for (i = 0; i < res_cnt; i++) { loop_stddev += (loop_mean - res[i].hits / 1000.0) * (loop_mean - res[i].hits / 1000.0) / (res_cnt - 1.0); mem_stddev += (mem_mean - res[i].gp_ct / 1048576.0) * (mem_mean - res[i].gp_ct / 1048576.0) / (res_cnt - 1.0); } loop_stddev = sqrt(loop_stddev); mem_stddev = sqrt(mem_stddev); } htab_mem_read_mem_cgrp_file("memory.peak", &peak_mem); printf("Summary: per-prod-op %7.2lf \u00B1 %7.2lfk/s, memory usage %7.2lf \u00B1 %7.2lfMiB," " peak memory usage %7.2lfMiB\n", loop_mean, loop_stddev, mem_mean, mem_stddev, peak_mem / 1048576.0); close(ctx.fd); cleanup_cgroup_environment(); } const struct bench bench_htab_mem = { .name = "htab-mem", .argp = &bench_htab_mem_argp, .validate = htab_mem_validate, .setup = htab_mem_setup, .producer_thread = htab_mem_producer, .measure = htab_mem_measure, .report_progress = htab_mem_report_progress, .report_final = htab_mem_report_final, }; |