Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Convert sample address to data type using DWARF debug info. * * Written by Namhyung Kim <namhyung@kernel.org> */ #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include "annotate.h" #include "annotate-data.h" #include "debuginfo.h" #include "debug.h" #include "dso.h" #include "dwarf-regs.h" #include "evsel.h" #include "evlist.h" #include "map.h" #include "map_symbol.h" #include "strbuf.h" #include "symbol.h" #include "symbol_conf.h" /* * Compare type name and size to maintain them in a tree. * I'm not sure if DWARF would have information of a single type in many * different places (compilation units). If not, it could compare the * offset of the type entry in the .debug_info section. */ static int data_type_cmp(const void *_key, const struct rb_node *node) { const struct annotated_data_type *key = _key; struct annotated_data_type *type; type = rb_entry(node, struct annotated_data_type, node); if (key->self.size != type->self.size) return key->self.size - type->self.size; return strcmp(key->self.type_name, type->self.type_name); } static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b) { struct annotated_data_type *a, *b; a = rb_entry(node_a, struct annotated_data_type, node); b = rb_entry(node_b, struct annotated_data_type, node); if (a->self.size != b->self.size) return a->self.size < b->self.size; return strcmp(a->self.type_name, b->self.type_name) < 0; } /* Recursively add new members for struct/union */ static int __add_member_cb(Dwarf_Die *die, void *arg) { struct annotated_member *parent = arg; struct annotated_member *member; Dwarf_Die member_type, die_mem; Dwarf_Word size, loc; Dwarf_Attribute attr; struct strbuf sb; int tag; if (dwarf_tag(die) != DW_TAG_member) return DIE_FIND_CB_SIBLING; member = zalloc(sizeof(*member)); if (member == NULL) return DIE_FIND_CB_END; strbuf_init(&sb, 32); die_get_typename(die, &sb); die_get_real_type(die, &member_type); if (dwarf_aggregate_size(&member_type, &size) < 0) size = 0; if (!dwarf_attr_integrate(die, DW_AT_data_member_location, &attr)) loc = 0; else dwarf_formudata(&attr, &loc); member->type_name = strbuf_detach(&sb, NULL); /* member->var_name can be NULL */ if (dwarf_diename(die)) member->var_name = strdup(dwarf_diename(die)); member->size = size; member->offset = loc + parent->offset; INIT_LIST_HEAD(&member->children); list_add_tail(&member->node, &parent->children); tag = dwarf_tag(&member_type); switch (tag) { case DW_TAG_structure_type: case DW_TAG_union_type: die_find_child(&member_type, __add_member_cb, member, &die_mem); break; default: break; } return DIE_FIND_CB_SIBLING; } static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type) { Dwarf_Die die_mem; die_find_child(type, __add_member_cb, &parent->self, &die_mem); } static void delete_members(struct annotated_member *member) { struct annotated_member *child, *tmp; list_for_each_entry_safe(child, tmp, &member->children, node) { list_del(&child->node); delete_members(child); free(child->type_name); free(child->var_name); free(child); } } static struct annotated_data_type *dso__findnew_data_type(struct dso *dso, Dwarf_Die *type_die) { struct annotated_data_type *result = NULL; struct annotated_data_type key; struct rb_node *node; struct strbuf sb; char *type_name; Dwarf_Word size; strbuf_init(&sb, 32); if (die_get_typename_from_type(type_die, &sb) < 0) strbuf_add(&sb, "(unknown type)", 14); type_name = strbuf_detach(&sb, NULL); dwarf_aggregate_size(type_die, &size); /* Check existing nodes in dso->data_types tree */ key.self.type_name = type_name; key.self.size = size; node = rb_find(&key, &dso->data_types, data_type_cmp); if (node) { result = rb_entry(node, struct annotated_data_type, node); free(type_name); return result; } /* If not, add a new one */ result = zalloc(sizeof(*result)); if (result == NULL) { free(type_name); return NULL; } result->self.type_name = type_name; result->self.size = size; INIT_LIST_HEAD(&result->self.children); if (symbol_conf.annotate_data_member) add_member_types(result, type_die); rb_add(&result->node, &dso->data_types, data_type_less); return result; } static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die) { Dwarf_Off off, next_off; size_t header_size; if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL) return cu_die; /* * There are some kernels don't have full aranges and contain only a few * aranges entries. Fallback to iterate all CU entries in .debug_info * in case it's missing. */ off = 0; while (dwarf_nextcu(di->dbg, off, &next_off, &header_size, NULL, NULL, NULL) == 0) { if (dwarf_offdie(di->dbg, off + header_size, cu_die) && dwarf_haspc(cu_die, pc)) return true; off = next_off; } return false; } /* The type info will be saved in @type_die */ static int check_variable(Dwarf_Die *var_die, Dwarf_Die *type_die, int offset, bool is_pointer) { Dwarf_Word size; /* Get the type of the variable */ if (die_get_real_type(var_die, type_die) == NULL) { pr_debug("variable has no type\n"); ann_data_stat.no_typeinfo++; return -1; } /* * Usually it expects a pointer type for a memory access. * Convert to a real type it points to. But global variables * and local variables are accessed directly without a pointer. */ if (is_pointer) { if ((dwarf_tag(type_die) != DW_TAG_pointer_type && dwarf_tag(type_die) != DW_TAG_array_type) || die_get_real_type(type_die, type_die) == NULL) { pr_debug("no pointer or no type\n"); ann_data_stat.no_typeinfo++; return -1; } } /* Get the size of the actual type */ if (dwarf_aggregate_size(type_die, &size) < 0) { pr_debug("type size is unknown\n"); ann_data_stat.invalid_size++; return -1; } /* Minimal sanity check */ if ((unsigned)offset >= size) { pr_debug("offset: %d is bigger than size: %" PRIu64 "\n", offset, size); ann_data_stat.bad_offset++; return -1; } return 0; } /* The result will be saved in @type_die */ static int find_data_type_die(struct debuginfo *di, u64 pc, u64 addr, const char *var_name, struct annotated_op_loc *loc, Dwarf_Die *type_die) { Dwarf_Die cu_die, var_die; Dwarf_Die *scopes = NULL; int reg, offset; int ret = -1; int i, nr_scopes; int fbreg = -1; bool is_fbreg = false; int fb_offset = 0; /* Get a compile_unit for this address */ if (!find_cu_die(di, pc, &cu_die)) { pr_debug("cannot find CU for address %" PRIx64 "\n", pc); ann_data_stat.no_cuinfo++; return -1; } reg = loc->reg1; offset = loc->offset; if (reg == DWARF_REG_PC) { if (die_find_variable_by_addr(&cu_die, pc, addr, &var_die, &offset)) { ret = check_variable(&var_die, type_die, offset, /*is_pointer=*/false); loc->offset = offset; goto out; } if (var_name && die_find_variable_at(&cu_die, var_name, pc, &var_die)) { ret = check_variable(&var_die, type_die, 0, /*is_pointer=*/false); /* loc->offset will be updated by the caller */ goto out; } } /* Get a list of nested scopes - i.e. (inlined) functions and blocks. */ nr_scopes = die_get_scopes(&cu_die, pc, &scopes); if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) { Dwarf_Attribute attr; Dwarf_Block block; /* Check if the 'reg' is assigned as frame base register */ if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL && dwarf_formblock(&attr, &block) == 0 && block.length == 1) { switch (*block.data) { case DW_OP_reg0 ... DW_OP_reg31: fbreg = *block.data - DW_OP_reg0; break; case DW_OP_call_frame_cfa: if (die_get_cfa(di->dbg, pc, &fbreg, &fb_offset) < 0) fbreg = -1; break; default: break; } } } retry: is_fbreg = (reg == fbreg); if (is_fbreg) offset = loc->offset - fb_offset; /* Search from the inner-most scope to the outer */ for (i = nr_scopes - 1; i >= 0; i--) { if (reg == DWARF_REG_PC) { if (!die_find_variable_by_addr(&scopes[i], pc, addr, &var_die, &offset)) continue; } else { /* Look up variables/parameters in this scope */ if (!die_find_variable_by_reg(&scopes[i], pc, reg, &offset, is_fbreg, &var_die)) continue; } /* Found a variable, see if it's correct */ ret = check_variable(&var_die, type_die, offset, reg != DWARF_REG_PC && !is_fbreg); loc->offset = offset; goto out; } if (loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) { reg = loc->reg2; goto retry; } if (ret < 0) ann_data_stat.no_var++; out: free(scopes); return ret; } /** * find_data_type - Return a data type at the location * @ms: map and symbol at the location * @ip: instruction address of the memory access * @loc: instruction operand location * @addr: data address of the memory access * @var_name: global variable name * * This functions searches the debug information of the binary to get the data * type it accesses. The exact location is expressed by (@ip, reg, offset) * for pointer variables or (@ip, @addr) for global variables. Note that global * variables might update the @loc->offset after finding the start of the variable. * If it cannot find a global variable by address, it tried to fine a declaration * of the variable using @var_name. In that case, @loc->offset won't be updated. * * It return %NULL if not found. */ struct annotated_data_type *find_data_type(struct map_symbol *ms, u64 ip, struct annotated_op_loc *loc, u64 addr, const char *var_name) { struct annotated_data_type *result = NULL; struct dso *dso = map__dso(ms->map); struct debuginfo *di; Dwarf_Die type_die; u64 pc; di = debuginfo__new(dso->long_name); if (di == NULL) { pr_debug("cannot get the debug info\n"); return NULL; } /* * IP is a relative instruction address from the start of the map, as * it can be randomized/relocated, it needs to translate to PC which is * a file address for DWARF processing. */ pc = map__rip_2objdump(ms->map, ip); if (find_data_type_die(di, pc, addr, var_name, loc, &type_die) < 0) goto out; result = dso__findnew_data_type(dso, &type_die); out: debuginfo__delete(di); return result; } static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries) { int i; size_t sz = sizeof(struct type_hist); sz += sizeof(struct type_hist_entry) * adt->self.size; /* Allocate a table of pointers for each event */ adt->nr_histograms = nr_entries; adt->histograms = calloc(nr_entries, sizeof(*adt->histograms)); if (adt->histograms == NULL) return -ENOMEM; /* * Each histogram is allocated for the whole size of the type. * TODO: Probably we can move the histogram to members. */ for (i = 0; i < nr_entries; i++) { adt->histograms[i] = zalloc(sz); if (adt->histograms[i] == NULL) goto err; } return 0; err: while (--i >= 0) free(adt->histograms[i]); free(adt->histograms); return -ENOMEM; } static void delete_data_type_histograms(struct annotated_data_type *adt) { for (int i = 0; i < adt->nr_histograms; i++) free(adt->histograms[i]); free(adt->histograms); } void annotated_data_type__tree_delete(struct rb_root *root) { struct annotated_data_type *pos; while (!RB_EMPTY_ROOT(root)) { struct rb_node *node = rb_first(root); rb_erase(node, root); pos = rb_entry(node, struct annotated_data_type, node); delete_members(&pos->self); delete_data_type_histograms(pos); free(pos->self.type_name); free(pos); } } /** * annotated_data_type__update_samples - Update histogram * @adt: Data type to update * @evsel: Event to update * @offset: Offset in the type * @nr_samples: Number of samples at this offset * @period: Event count at this offset * * This function updates type histogram at @ofs for @evsel. Samples are * aggregated before calling this function so it can be called with more * than one samples at a certain offset. */ int annotated_data_type__update_samples(struct annotated_data_type *adt, struct evsel *evsel, int offset, int nr_samples, u64 period) { struct type_hist *h; if (adt == NULL) return 0; if (adt->histograms == NULL) { int nr = evsel->evlist->core.nr_entries; if (alloc_data_type_histograms(adt, nr) < 0) return -1; } if (offset < 0 || offset >= adt->self.size) return -1; h = adt->histograms[evsel->core.idx]; h->nr_samples += nr_samples; h->addr[offset].nr_samples += nr_samples; h->period += period; h->addr[offset].period += period; return 0; } |