Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! Work queues.
  4//!
  5//! This file has two components: The raw work item API, and the safe work item API.
  6//!
  7//! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
  8//! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
  9//! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
 10//! long as you use different values for different fields of the same struct.) Since these IDs are
 11//! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
 12//!
 13//! # The raw API
 14//!
 15//! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
 16//! arbitrary function that knows how to enqueue the work item. It should usually not be used
 17//! directly, but if you want to, you can use it without using the pieces from the safe API.
 18//!
 19//! # The safe API
 20//!
 21//! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
 22//! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
 23//!
 24//!  * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
 25//!  * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
 26//!  * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
 27//!    that implements [`WorkItem`].
 28//!
 29//! ## Example
 30//!
 31//! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
 32//! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
 33//! we do not need to specify ids for the fields.
 34//!
 35//! ```
 36//! use kernel::prelude::*;
 37//! use kernel::sync::Arc;
 38//! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
 39//!
 40//! #[pin_data]
 41//! struct MyStruct {
 42//!     value: i32,
 43//!     #[pin]
 44//!     work: Work<MyStruct>,
 45//! }
 46//!
 47//! impl_has_work! {
 48//!     impl HasWork<Self> for MyStruct { self.work }
 49//! }
 50//!
 51//! impl MyStruct {
 52//!     fn new(value: i32) -> Result<Arc<Self>> {
 53//!         Arc::pin_init(pin_init!(MyStruct {
 54//!             value,
 55//!             work <- new_work!("MyStruct::work"),
 56//!         }))
 57//!     }
 58//! }
 59//!
 60//! impl WorkItem for MyStruct {
 61//!     type Pointer = Arc<MyStruct>;
 62//!
 63//!     fn run(this: Arc<MyStruct>) {
 64//!         pr_info!("The value is: {}", this.value);
 65//!     }
 66//! }
 67//!
 68//! /// This method will enqueue the struct for execution on the system workqueue, where its value
 69//! /// will be printed.
 70//! fn print_later(val: Arc<MyStruct>) {
 71//!     let _ = workqueue::system().enqueue(val);
 72//! }
 73//! ```
 74//!
 75//! The following example shows how multiple `work_struct` fields can be used:
 76//!
 77//! ```
 78//! use kernel::prelude::*;
 79//! use kernel::sync::Arc;
 80//! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
 81//!
 82//! #[pin_data]
 83//! struct MyStruct {
 84//!     value_1: i32,
 85//!     value_2: i32,
 86//!     #[pin]
 87//!     work_1: Work<MyStruct, 1>,
 88//!     #[pin]
 89//!     work_2: Work<MyStruct, 2>,
 90//! }
 91//!
 92//! impl_has_work! {
 93//!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
 94//!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
 95//! }
 96//!
 97//! impl MyStruct {
 98//!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
 99//!         Arc::pin_init(pin_init!(MyStruct {
100//!             value_1,
101//!             value_2,
102//!             work_1 <- new_work!("MyStruct::work_1"),
103//!             work_2 <- new_work!("MyStruct::work_2"),
104//!         }))
105//!     }
106//! }
107//!
108//! impl WorkItem<1> for MyStruct {
109//!     type Pointer = Arc<MyStruct>;
110//!
111//!     fn run(this: Arc<MyStruct>) {
112//!         pr_info!("The value is: {}", this.value_1);
113//!     }
114//! }
115//!
116//! impl WorkItem<2> for MyStruct {
117//!     type Pointer = Arc<MyStruct>;
118//!
119//!     fn run(this: Arc<MyStruct>) {
120//!         pr_info!("The second value is: {}", this.value_2);
121//!     }
122//! }
123//!
124//! fn print_1_later(val: Arc<MyStruct>) {
125//!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
126//! }
127//!
128//! fn print_2_later(val: Arc<MyStruct>) {
129//!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
130//! }
131//! ```
132//!
133//! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
134
135use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
136use alloc::alloc::AllocError;
137use alloc::boxed::Box;
138use core::marker::PhantomData;
139use core::pin::Pin;
140
141/// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
142#[macro_export]
143macro_rules! new_work {
144    ($($name:literal)?) => {
145        $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
146    };
147}
148pub use new_work;
149
150/// A kernel work queue.
151///
152/// Wraps the kernel's C `struct workqueue_struct`.
153///
154/// It allows work items to be queued to run on thread pools managed by the kernel. Several are
155/// always available, for example, `system`, `system_highpri`, `system_long`, etc.
156#[repr(transparent)]
157pub struct Queue(Opaque<bindings::workqueue_struct>);
158
159// SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
160unsafe impl Send for Queue {}
161// SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
162unsafe impl Sync for Queue {}
163
164impl Queue {
165    /// Use the provided `struct workqueue_struct` with Rust.
166    ///
167    /// # Safety
168    ///
169    /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
170    /// valid workqueue, and that it remains valid until the end of `'a`.
171    pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
172        // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
173        // caller promises that the pointer is not dangling.
174        unsafe { &*(ptr as *const Queue) }
175    }
176
177    /// Enqueues a work item.
178    ///
179    /// This may fail if the work item is already enqueued in a workqueue.
180    ///
181    /// The work item will be submitted using `WORK_CPU_UNBOUND`.
182    pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
183    where
184        W: RawWorkItem<ID> + Send + 'static,
185    {
186        let queue_ptr = self.0.get();
187
188        // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
189        // `__enqueue` requirements are not relevant since `W` is `Send` and static.
190        //
191        // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
192        // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
193        // closure.
194        //
195        // Furthermore, if the C workqueue code accesses the pointer after this call to
196        // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
197        // will have returned true. In this case, `__enqueue` promises that the raw pointer will
198        // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
199        unsafe {
200            w.__enqueue(move |work_ptr| {
201                bindings::queue_work_on(
202                    bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
203                    queue_ptr,
204                    work_ptr,
205                )
206            })
207        }
208    }
209
210    /// Tries to spawn the given function or closure as a work item.
211    ///
212    /// This method can fail because it allocates memory to store the work item.
213    pub fn try_spawn<T: 'static + Send + FnOnce()>(&self, func: T) -> Result<(), AllocError> {
214        let init = pin_init!(ClosureWork {
215            work <- new_work!("Queue::try_spawn"),
216            func: Some(func),
217        });
218
219        self.enqueue(Box::pin_init(init).map_err(|_| AllocError)?);
220        Ok(())
221    }
222}
223
224/// A helper type used in [`try_spawn`].
225///
226/// [`try_spawn`]: Queue::try_spawn
227#[pin_data]
228struct ClosureWork<T> {
229    #[pin]
230    work: Work<ClosureWork<T>>,
231    func: Option<T>,
232}
233
234impl<T> ClosureWork<T> {
235    fn project(self: Pin<&mut Self>) -> &mut Option<T> {
236        // SAFETY: The `func` field is not structurally pinned.
237        unsafe { &mut self.get_unchecked_mut().func }
238    }
239}
240
241impl<T: FnOnce()> WorkItem for ClosureWork<T> {
242    type Pointer = Pin<Box<Self>>;
243
244    fn run(mut this: Pin<Box<Self>>) {
245        if let Some(func) = this.as_mut().project().take() {
246            (func)()
247        }
248    }
249}
250
251/// A raw work item.
252///
253/// This is the low-level trait that is designed for being as general as possible.
254///
255/// The `ID` parameter to this trait exists so that a single type can provide multiple
256/// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
257/// you will implement this trait once for each field, using a different id for each field. The
258/// actual value of the id is not important as long as you use different ids for different fields
259/// of the same struct. (Fields of different structs need not use different ids.)
260///
261/// Note that the id is used only to select the right method to call during compilation. It won't be
262/// part of the final executable.
263///
264/// # Safety
265///
266/// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
267/// remain valid for the duration specified in the guarantees section of the documentation for
268/// [`__enqueue`].
269///
270/// [`__enqueue`]: RawWorkItem::__enqueue
271pub unsafe trait RawWorkItem<const ID: u64> {
272    /// The return type of [`Queue::enqueue`].
273    type EnqueueOutput;
274
275    /// Enqueues this work item on a queue using the provided `queue_work_on` method.
276    ///
277    /// # Guarantees
278    ///
279    /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
280    /// valid `work_struct` for the duration of the call to the closure. If the closure returns
281    /// true, then it is further guaranteed that the pointer remains valid until someone calls the
282    /// function pointer stored in the `work_struct`.
283    ///
284    /// # Safety
285    ///
286    /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
287    ///
288    /// If the work item type is annotated with any lifetimes, then you must not call the function
289    /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
290    ///
291    /// If the work item type is not [`Send`], then the function pointer must be called on the same
292    /// thread as the call to `__enqueue`.
293    unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
294    where
295        F: FnOnce(*mut bindings::work_struct) -> bool;
296}
297
298/// Defines the method that should be called directly when a work item is executed.
299///
300/// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be
301/// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
302/// instead. The [`run`] method on this trait will usually just perform the appropriate
303/// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
304/// [`WorkItem`] trait.
305///
306/// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
307///
308/// # Safety
309///
310/// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
311/// method of this trait as the function pointer.
312///
313/// [`__enqueue`]: RawWorkItem::__enqueue
314/// [`run`]: WorkItemPointer::run
315pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
316    /// Run this work item.
317    ///
318    /// # Safety
319    ///
320    /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
321    /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
322    ///
323    /// [`__enqueue`]: RawWorkItem::__enqueue
324    unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
325}
326
327/// Defines the method that should be called when this work item is executed.
328///
329/// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
330pub trait WorkItem<const ID: u64 = 0> {
331    /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
332    /// `Pin<Box<Self>>`.
333    type Pointer: WorkItemPointer<ID>;
334
335    /// The method that should be called when this work item is executed.
336    fn run(this: Self::Pointer);
337}
338
339/// Links for a work item.
340///
341/// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
342/// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
343///
344/// Wraps the kernel's C `struct work_struct`.
345///
346/// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
347///
348/// [`run`]: WorkItemPointer::run
349#[repr(transparent)]
350pub struct Work<T: ?Sized, const ID: u64 = 0> {
351    work: Opaque<bindings::work_struct>,
352    _inner: PhantomData<T>,
353}
354
355// SAFETY: Kernel work items are usable from any thread.
356//
357// We do not need to constrain `T` since the work item does not actually contain a `T`.
358unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
359// SAFETY: Kernel work items are usable from any thread.
360//
361// We do not need to constrain `T` since the work item does not actually contain a `T`.
362unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
363
364impl<T: ?Sized, const ID: u64> Work<T, ID> {
365    /// Creates a new instance of [`Work`].
366    #[inline]
367    #[allow(clippy::new_ret_no_self)]
368    pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
369    where
370        T: WorkItem<ID>,
371    {
372        // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work
373        // item function.
374        unsafe {
375            kernel::init::pin_init_from_closure(move |slot| {
376                let slot = Self::raw_get(slot);
377                bindings::init_work_with_key(
378                    slot,
379                    Some(T::Pointer::run),
380                    false,
381                    name.as_char_ptr(),
382                    key.as_ptr(),
383                );
384                Ok(())
385            })
386        }
387    }
388
389    /// Get a pointer to the inner `work_struct`.
390    ///
391    /// # Safety
392    ///
393    /// The provided pointer must not be dangling and must be properly aligned. (But the memory
394    /// need not be initialized.)
395    #[inline]
396    pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
397        // SAFETY: The caller promises that the pointer is aligned and not dangling.
398        //
399        // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
400        // the compiler does not complain that the `work` field is unused.
401        unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
402    }
403}
404
405/// Declares that a type has a [`Work<T, ID>`] field.
406///
407/// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
408/// like this:
409///
410/// ```no_run
411/// use kernel::prelude::*;
412/// use kernel::workqueue::{impl_has_work, Work};
413///
414/// struct MyWorkItem {
415///     work_field: Work<MyWorkItem, 1>,
416/// }
417///
418/// impl_has_work! {
419///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
420/// }
421/// ```
422///
423/// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
424/// fields by using a different id for each one.
425///
426/// # Safety
427///
428/// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The
429/// methods on this trait must have exactly the behavior that the definitions given below have.
430///
431/// [`impl_has_work!`]: crate::impl_has_work
432/// [`OFFSET`]: HasWork::OFFSET
433pub unsafe trait HasWork<T, const ID: u64 = 0> {
434    /// The offset of the [`Work<T, ID>`] field.
435    const OFFSET: usize;
436
437    /// Returns the offset of the [`Work<T, ID>`] field.
438    ///
439    /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not
440    /// [`Sized`].
441    ///
442    /// [`OFFSET`]: HasWork::OFFSET
443    #[inline]
444    fn get_work_offset(&self) -> usize {
445        Self::OFFSET
446    }
447
448    /// Returns a pointer to the [`Work<T, ID>`] field.
449    ///
450    /// # Safety
451    ///
452    /// The provided pointer must point at a valid struct of type `Self`.
453    #[inline]
454    unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
455        // SAFETY: The caller promises that the pointer is valid.
456        unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
457    }
458
459    /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
460    ///
461    /// # Safety
462    ///
463    /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
464    #[inline]
465    unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
466    where
467        Self: Sized,
468    {
469        // SAFETY: The caller promises that the pointer points at a field of the right type in the
470        // right kind of struct.
471        unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
472    }
473}
474
475/// Used to safely implement the [`HasWork<T, ID>`] trait.
476///
477/// # Examples
478///
479/// ```
480/// use kernel::sync::Arc;
481/// use kernel::workqueue::{self, impl_has_work, Work};
482///
483/// struct MyStruct {
484///     work_field: Work<MyStruct, 17>,
485/// }
486///
487/// impl_has_work! {
488///     impl HasWork<MyStruct, 17> for MyStruct { self.work_field }
489/// }
490/// ```
491#[macro_export]
492macro_rules! impl_has_work {
493    ($(impl$(<$($implarg:ident),*>)?
494       HasWork<$work_type:ty $(, $id:tt)?>
495       for $self:ident $(<$($selfarg:ident),*>)?
496       { self.$field:ident }
497    )*) => {$(
498        // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
499        // type.
500        unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? {
501            const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
502
503            #[inline]
504            unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
505                // SAFETY: The caller promises that the pointer is not dangling.
506                unsafe {
507                    ::core::ptr::addr_of_mut!((*ptr).$field)
508                }
509            }
510        }
511    )*};
512}
513pub use impl_has_work;
514
515impl_has_work! {
516    impl<T> HasWork<Self> for ClosureWork<T> { self.work }
517}
518
519unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
520where
521    T: WorkItem<ID, Pointer = Self>,
522    T: HasWork<T, ID>,
523{
524    unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
525        // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
526        let ptr = ptr as *mut Work<T, ID>;
527        // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
528        let ptr = unsafe { T::work_container_of(ptr) };
529        // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
530        let arc = unsafe { Arc::from_raw(ptr) };
531
532        T::run(arc)
533    }
534}
535
536unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
537where
538    T: WorkItem<ID, Pointer = Self>,
539    T: HasWork<T, ID>,
540{
541    type EnqueueOutput = Result<(), Self>;
542
543    unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
544    where
545        F: FnOnce(*mut bindings::work_struct) -> bool,
546    {
547        // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
548        let ptr = Arc::into_raw(self).cast_mut();
549
550        // SAFETY: Pointers into an `Arc` point at a valid value.
551        let work_ptr = unsafe { T::raw_get_work(ptr) };
552        // SAFETY: `raw_get_work` returns a pointer to a valid value.
553        let work_ptr = unsafe { Work::raw_get(work_ptr) };
554
555        if queue_work_on(work_ptr) {
556            Ok(())
557        } else {
558            // SAFETY: The work queue has not taken ownership of the pointer.
559            Err(unsafe { Arc::from_raw(ptr) })
560        }
561    }
562}
563
564unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>>
565where
566    T: WorkItem<ID, Pointer = Self>,
567    T: HasWork<T, ID>,
568{
569    unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
570        // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
571        let ptr = ptr as *mut Work<T, ID>;
572        // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
573        let ptr = unsafe { T::work_container_of(ptr) };
574        // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
575        let boxed = unsafe { Box::from_raw(ptr) };
576        // SAFETY: The box was already pinned when it was enqueued.
577        let pinned = unsafe { Pin::new_unchecked(boxed) };
578
579        T::run(pinned)
580    }
581}
582
583unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>>
584where
585    T: WorkItem<ID, Pointer = Self>,
586    T: HasWork<T, ID>,
587{
588    type EnqueueOutput = ();
589
590    unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
591    where
592        F: FnOnce(*mut bindings::work_struct) -> bool,
593    {
594        // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
595        // remove the `Pin` wrapper.
596        let boxed = unsafe { Pin::into_inner_unchecked(self) };
597        let ptr = Box::into_raw(boxed);
598
599        // SAFETY: Pointers into a `Box` point at a valid value.
600        let work_ptr = unsafe { T::raw_get_work(ptr) };
601        // SAFETY: `raw_get_work` returns a pointer to a valid value.
602        let work_ptr = unsafe { Work::raw_get(work_ptr) };
603
604        if !queue_work_on(work_ptr) {
605            // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
606            // workqueue.
607            unsafe { ::core::hint::unreachable_unchecked() }
608        }
609    }
610}
611
612/// Returns the system work queue (`system_wq`).
613///
614/// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
615/// users which expect relatively short queue flush time.
616///
617/// Callers shouldn't queue work items which can run for too long.
618pub fn system() -> &'static Queue {
619    // SAFETY: `system_wq` is a C global, always available.
620    unsafe { Queue::from_raw(bindings::system_wq) }
621}
622
623/// Returns the system high-priority work queue (`system_highpri_wq`).
624///
625/// It is similar to the one returned by [`system`] but for work items which require higher
626/// scheduling priority.
627pub fn system_highpri() -> &'static Queue {
628    // SAFETY: `system_highpri_wq` is a C global, always available.
629    unsafe { Queue::from_raw(bindings::system_highpri_wq) }
630}
631
632/// Returns the system work queue for potentially long-running work items (`system_long_wq`).
633///
634/// It is similar to the one returned by [`system`] but may host long running work items. Queue
635/// flushing might take relatively long.
636pub fn system_long() -> &'static Queue {
637    // SAFETY: `system_long_wq` is a C global, always available.
638    unsafe { Queue::from_raw(bindings::system_long_wq) }
639}
640
641/// Returns the system unbound work queue (`system_unbound_wq`).
642///
643/// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
644/// are executed immediately as long as `max_active` limit is not reached and resources are
645/// available.
646pub fn system_unbound() -> &'static Queue {
647    // SAFETY: `system_unbound_wq` is a C global, always available.
648    unsafe { Queue::from_raw(bindings::system_unbound_wq) }
649}
650
651/// Returns the system freezable work queue (`system_freezable_wq`).
652///
653/// It is equivalent to the one returned by [`system`] except that it's freezable.
654///
655/// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
656/// items on the workqueue are drained and no new work item starts execution until thawed.
657pub fn system_freezable() -> &'static Queue {
658    // SAFETY: `system_freezable_wq` is a C global, always available.
659    unsafe { Queue::from_raw(bindings::system_freezable_wq) }
660}
661
662/// Returns the system power-efficient work queue (`system_power_efficient_wq`).
663///
664/// It is inclined towards saving power and is converted to "unbound" variants if the
665/// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
666/// returned by [`system`].
667pub fn system_power_efficient() -> &'static Queue {
668    // SAFETY: `system_power_efficient_wq` is a C global, always available.
669    unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
670}
671
672/// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
673///
674/// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
675///
676/// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
677/// items on the workqueue are drained and no new work item starts execution until thawed.
678pub fn system_freezable_power_efficient() -> &'static Queue {
679    // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
680    unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
681}