Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | // SPDX-License-Identifier: GPL-2.0 #include <linux/delay.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/trace_clock.h> #define CREATE_TRACE_POINTS #include "trace_benchmark.h" static struct task_struct *bm_event_thread; static char bm_str[BENCHMARK_EVENT_STRLEN] = "START"; static u64 bm_total; static u64 bm_totalsq; static u64 bm_last; static u64 bm_max; static u64 bm_min; static u64 bm_first; static u64 bm_cnt; static u64 bm_stddev; static unsigned int bm_avg; static unsigned int bm_std; static bool ok_to_run; /* * This gets called in a loop recording the time it took to write * the tracepoint. What it writes is the time statistics of the last * tracepoint write. As there is nothing to write the first time * it simply writes "START". As the first write is cold cache and * the rest is hot, we save off that time in bm_first and it is * reported as "first", which is shown in the second write to the * tracepoint. The "first" field is written within the statics from * then on but never changes. */ static void trace_do_benchmark(void) { u64 start; u64 stop; u64 delta; u64 stddev; u64 seed; u64 last_seed; unsigned int avg; unsigned int std = 0; /* Only run if the tracepoint is actually active */ if (!trace_benchmark_event_enabled() || !tracing_is_on()) return; local_irq_disable(); start = trace_clock_local(); trace_benchmark_event(bm_str, bm_last); stop = trace_clock_local(); local_irq_enable(); bm_cnt++; delta = stop - start; /* * The first read is cold cached, keep it separate from the * other calculations. */ if (bm_cnt == 1) { bm_first = delta; scnprintf(bm_str, BENCHMARK_EVENT_STRLEN, "first=%llu [COLD CACHED]", bm_first); return; } bm_last = delta; if (delta > bm_max) bm_max = delta; if (!bm_min || delta < bm_min) bm_min = delta; /* * When bm_cnt is greater than UINT_MAX, it breaks the statistics * accounting. Freeze the statistics when that happens. * We should have enough data for the avg and stddev anyway. */ if (bm_cnt > UINT_MAX) { scnprintf(bm_str, BENCHMARK_EVENT_STRLEN, "last=%llu first=%llu max=%llu min=%llu ** avg=%u std=%d std^2=%lld", bm_last, bm_first, bm_max, bm_min, bm_avg, bm_std, bm_stddev); return; } bm_total += delta; bm_totalsq += delta * delta; if (bm_cnt > 1) { /* * Apply Welford's method to calculate standard deviation: * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) */ stddev = (u64)bm_cnt * bm_totalsq - bm_total * bm_total; do_div(stddev, (u32)bm_cnt); do_div(stddev, (u32)bm_cnt - 1); } else stddev = 0; delta = bm_total; delta = div64_u64(delta, bm_cnt); avg = delta; if (stddev > 0) { int i = 0; /* * stddev is the square of standard deviation but * we want the actually number. Use the average * as our seed to find the std. * * The next try is: * x = (x + N/x) / 2 * * Where N is the squared number to find the square * root of. */ seed = avg; do { last_seed = seed; seed = stddev; if (!last_seed) break; seed = div64_u64(seed, last_seed); seed += last_seed; do_div(seed, 2); } while (i++ < 10 && last_seed != seed); std = seed; } scnprintf(bm_str, BENCHMARK_EVENT_STRLEN, "last=%llu first=%llu max=%llu min=%llu avg=%u std=%d std^2=%lld", bm_last, bm_first, bm_max, bm_min, avg, std, stddev); bm_std = std; bm_avg = avg; bm_stddev = stddev; } static int benchmark_event_kthread(void *arg) { /* sleep a bit to make sure the tracepoint gets activated */ msleep(100); while (!kthread_should_stop()) { trace_do_benchmark(); /* * We don't go to sleep, but let others run as well. * This is basically a "yield()" to let any task that * wants to run, schedule in, but if the CPU is idle, * we'll keep burning cycles. * * Note the tasks_rcu_qs() version of cond_resched() will * notify synchronize_rcu_tasks() that this thread has * passed a quiescent state for rcu_tasks. Otherwise * this thread will never voluntarily schedule which would * block synchronize_rcu_tasks() indefinitely. */ cond_resched_tasks_rcu_qs(); } return 0; } /* * When the benchmark tracepoint is enabled, it calls this * function and the thread that calls the tracepoint is created. */ int trace_benchmark_reg(void) { if (!ok_to_run) { pr_warn("trace benchmark cannot be started via kernel command line\n"); return -EBUSY; } bm_event_thread = kthread_run(benchmark_event_kthread, NULL, "event_benchmark"); if (IS_ERR(bm_event_thread)) { pr_warn("trace benchmark failed to create kernel thread\n"); return PTR_ERR(bm_event_thread); } return 0; } /* * When the benchmark tracepoint is disabled, it calls this * function and the thread that calls the tracepoint is deleted * and all the numbers are reset. */ void trace_benchmark_unreg(void) { if (!bm_event_thread) return; kthread_stop(bm_event_thread); bm_event_thread = NULL; strcpy(bm_str, "START"); bm_total = 0; bm_totalsq = 0; bm_last = 0; bm_max = 0; bm_min = 0; bm_cnt = 0; /* These don't need to be reset but reset them anyway */ bm_first = 0; bm_std = 0; bm_avg = 0; bm_stddev = 0; } static __init int ok_to_run_trace_benchmark(void) { ok_to_run = true; return 0; } early_initcall(ok_to_run_trace_benchmark); |