Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | // SPDX-License-Identifier: GPL-2.0-only /* * A simple wrapper around refcount. An allocated sched_core_cookie's * address is used to compute the cookie of the task. */ struct sched_core_cookie { refcount_t refcnt; }; static unsigned long sched_core_alloc_cookie(void) { struct sched_core_cookie *ck = kmalloc(sizeof(*ck), GFP_KERNEL); if (!ck) return 0; refcount_set(&ck->refcnt, 1); sched_core_get(); return (unsigned long)ck; } static void sched_core_put_cookie(unsigned long cookie) { struct sched_core_cookie *ptr = (void *)cookie; if (ptr && refcount_dec_and_test(&ptr->refcnt)) { kfree(ptr); sched_core_put(); } } static unsigned long sched_core_get_cookie(unsigned long cookie) { struct sched_core_cookie *ptr = (void *)cookie; if (ptr) refcount_inc(&ptr->refcnt); return cookie; } /* * sched_core_update_cookie - replace the cookie on a task * @p: the task to update * @cookie: the new cookie * * Effectively exchange the task cookie; caller is responsible for lifetimes on * both ends. * * Returns: the old cookie */ static unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie) { unsigned long old_cookie; struct rq_flags rf; struct rq *rq; rq = task_rq_lock(p, &rf); /* * Since creating a cookie implies sched_core_get(), and we cannot set * a cookie until after we've created it, similarly, we cannot destroy * a cookie until after we've removed it, we must have core scheduling * enabled here. */ SCHED_WARN_ON((p->core_cookie || cookie) && !sched_core_enabled(rq)); if (sched_core_enqueued(p)) sched_core_dequeue(rq, p, DEQUEUE_SAVE); old_cookie = p->core_cookie; p->core_cookie = cookie; /* * Consider the cases: !prev_cookie and !cookie. */ if (cookie && task_on_rq_queued(p)) sched_core_enqueue(rq, p); /* * If task is currently running, it may not be compatible anymore after * the cookie change, so enter the scheduler on its CPU to schedule it * away. * * Note that it is possible that as a result of this cookie change, the * core has now entered/left forced idle state. Defer accounting to the * next scheduling edge, rather than always forcing a reschedule here. */ if (task_on_cpu(rq, p)) resched_curr(rq); task_rq_unlock(rq, p, &rf); return old_cookie; } static unsigned long sched_core_clone_cookie(struct task_struct *p) { unsigned long cookie, flags; raw_spin_lock_irqsave(&p->pi_lock, flags); cookie = sched_core_get_cookie(p->core_cookie); raw_spin_unlock_irqrestore(&p->pi_lock, flags); return cookie; } void sched_core_fork(struct task_struct *p) { RB_CLEAR_NODE(&p->core_node); p->core_cookie = sched_core_clone_cookie(current); } void sched_core_free(struct task_struct *p) { sched_core_put_cookie(p->core_cookie); } static void __sched_core_set(struct task_struct *p, unsigned long cookie) { cookie = sched_core_get_cookie(cookie); cookie = sched_core_update_cookie(p, cookie); sched_core_put_cookie(cookie); } /* Called from prctl interface: PR_SCHED_CORE */ int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, unsigned long uaddr) { unsigned long cookie = 0, id = 0; struct task_struct *task, *p; struct pid *grp; int err = 0; if (!static_branch_likely(&sched_smt_present)) return -ENODEV; BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD != PIDTYPE_PID); BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD_GROUP != PIDTYPE_TGID); BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_PROCESS_GROUP != PIDTYPE_PGID); if (type > PIDTYPE_PGID || cmd >= PR_SCHED_CORE_MAX || pid < 0 || (cmd != PR_SCHED_CORE_GET && uaddr)) return -EINVAL; rcu_read_lock(); if (pid == 0) { task = current; } else { task = find_task_by_vpid(pid); if (!task) { rcu_read_unlock(); return -ESRCH; } } get_task_struct(task); rcu_read_unlock(); /* * Check if this process has the right to modify the specified * process. Use the regular "ptrace_may_access()" checks. */ if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { err = -EPERM; goto out; } switch (cmd) { case PR_SCHED_CORE_GET: if (type != PIDTYPE_PID || uaddr & 7) { err = -EINVAL; goto out; } cookie = sched_core_clone_cookie(task); if (cookie) { /* XXX improve ? */ ptr_to_hashval((void *)cookie, &id); } err = put_user(id, (u64 __user *)uaddr); goto out; case PR_SCHED_CORE_CREATE: cookie = sched_core_alloc_cookie(); if (!cookie) { err = -ENOMEM; goto out; } break; case PR_SCHED_CORE_SHARE_TO: cookie = sched_core_clone_cookie(current); break; case PR_SCHED_CORE_SHARE_FROM: if (type != PIDTYPE_PID) { err = -EINVAL; goto out; } cookie = sched_core_clone_cookie(task); __sched_core_set(current, cookie); goto out; default: err = -EINVAL; goto out; } if (type == PIDTYPE_PID) { __sched_core_set(task, cookie); goto out; } read_lock(&tasklist_lock); grp = task_pid_type(task, type); do_each_pid_thread(grp, type, p) { if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) { err = -EPERM; goto out_tasklist; } } while_each_pid_thread(grp, type, p); do_each_pid_thread(grp, type, p) { __sched_core_set(p, cookie); } while_each_pid_thread(grp, type, p); out_tasklist: read_unlock(&tasklist_lock); out: sched_core_put_cookie(cookie); put_task_struct(task); return err; } #ifdef CONFIG_SCHEDSTATS /* REQUIRES: rq->core's clock recently updated. */ void __sched_core_account_forceidle(struct rq *rq) { const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); u64 delta, now = rq_clock(rq->core); struct rq *rq_i; struct task_struct *p; int i; lockdep_assert_rq_held(rq); WARN_ON_ONCE(!rq->core->core_forceidle_count); if (rq->core->core_forceidle_start == 0) return; delta = now - rq->core->core_forceidle_start; if (unlikely((s64)delta <= 0)) return; rq->core->core_forceidle_start = now; if (WARN_ON_ONCE(!rq->core->core_forceidle_occupation)) { /* can't be forced idle without a running task */ } else if (rq->core->core_forceidle_count > 1 || rq->core->core_forceidle_occupation > 1) { /* * For larger SMT configurations, we need to scale the charged * forced idle amount since there can be more than one forced * idle sibling and more than one running cookied task. */ delta *= rq->core->core_forceidle_count; delta = div_u64(delta, rq->core->core_forceidle_occupation); } for_each_cpu(i, smt_mask) { rq_i = cpu_rq(i); p = rq_i->core_pick ?: rq_i->curr; if (p == rq_i->idle) continue; /* * Note: this will account forceidle to the current cpu, even * if it comes from our SMT sibling. */ __account_forceidle_time(p, delta); } } void __sched_core_tick(struct rq *rq) { if (!rq->core->core_forceidle_count) return; if (rq != rq->core) update_rq_clock(rq->core); __sched_core_account_forceidle(rq); } #endif /* CONFIG_SCHEDSTATS */ |