Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | // SPDX-License-Identifier: GPL-2.0 /* * Energy Model of devices * * Copyright (c) 2018-2021, Arm ltd. * Written by: Quentin Perret, Arm ltd. * Improvements provided by: Lukasz Luba, Arm ltd. */ #define pr_fmt(fmt) "energy_model: " fmt #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/cpumask.h> #include <linux/debugfs.h> #include <linux/energy_model.h> #include <linux/sched/topology.h> #include <linux/slab.h> /* * Mutex serializing the registrations of performance domains and letting * callbacks defined by drivers sleep. */ static DEFINE_MUTEX(em_pd_mutex); static void em_cpufreq_update_efficiencies(struct device *dev, struct em_perf_state *table); static void em_check_capacity_update(void); static void em_update_workfn(struct work_struct *work); static DECLARE_DELAYED_WORK(em_update_work, em_update_workfn); static bool _is_cpu_device(struct device *dev) { return (dev->bus == &cpu_subsys); } #ifdef CONFIG_DEBUG_FS static struct dentry *rootdir; struct em_dbg_info { struct em_perf_domain *pd; int ps_id; }; #define DEFINE_EM_DBG_SHOW(name, fname) \ static int em_debug_##fname##_show(struct seq_file *s, void *unused) \ { \ struct em_dbg_info *em_dbg = s->private; \ struct em_perf_state *table; \ unsigned long val; \ \ rcu_read_lock(); \ table = em_perf_state_from_pd(em_dbg->pd); \ val = table[em_dbg->ps_id].name; \ rcu_read_unlock(); \ \ seq_printf(s, "%lu\n", val); \ return 0; \ } \ DEFINE_SHOW_ATTRIBUTE(em_debug_##fname) DEFINE_EM_DBG_SHOW(frequency, frequency); DEFINE_EM_DBG_SHOW(power, power); DEFINE_EM_DBG_SHOW(cost, cost); DEFINE_EM_DBG_SHOW(performance, performance); DEFINE_EM_DBG_SHOW(flags, inefficiency); static void em_debug_create_ps(struct em_perf_domain *em_pd, struct em_dbg_info *em_dbg, int i, struct dentry *pd) { struct em_perf_state *table; unsigned long freq; struct dentry *d; char name[24]; em_dbg[i].pd = em_pd; em_dbg[i].ps_id = i; rcu_read_lock(); table = em_perf_state_from_pd(em_pd); freq = table[i].frequency; rcu_read_unlock(); snprintf(name, sizeof(name), "ps:%lu", freq); /* Create per-ps directory */ d = debugfs_create_dir(name, pd); debugfs_create_file("frequency", 0444, d, &em_dbg[i], &em_debug_frequency_fops); debugfs_create_file("power", 0444, d, &em_dbg[i], &em_debug_power_fops); debugfs_create_file("cost", 0444, d, &em_dbg[i], &em_debug_cost_fops); debugfs_create_file("performance", 0444, d, &em_dbg[i], &em_debug_performance_fops); debugfs_create_file("inefficient", 0444, d, &em_dbg[i], &em_debug_inefficiency_fops); } static int em_debug_cpus_show(struct seq_file *s, void *unused) { seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private))); return 0; } DEFINE_SHOW_ATTRIBUTE(em_debug_cpus); static int em_debug_flags_show(struct seq_file *s, void *unused) { struct em_perf_domain *pd = s->private; seq_printf(s, "%#lx\n", pd->flags); return 0; } DEFINE_SHOW_ATTRIBUTE(em_debug_flags); static void em_debug_create_pd(struct device *dev) { struct em_dbg_info *em_dbg; struct dentry *d; int i; /* Create the directory of the performance domain */ d = debugfs_create_dir(dev_name(dev), rootdir); if (_is_cpu_device(dev)) debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus, &em_debug_cpus_fops); debugfs_create_file("flags", 0444, d, dev->em_pd, &em_debug_flags_fops); em_dbg = devm_kcalloc(dev, dev->em_pd->nr_perf_states, sizeof(*em_dbg), GFP_KERNEL); if (!em_dbg) return; /* Create a sub-directory for each performance state */ for (i = 0; i < dev->em_pd->nr_perf_states; i++) em_debug_create_ps(dev->em_pd, em_dbg, i, d); } static void em_debug_remove_pd(struct device *dev) { debugfs_lookup_and_remove(dev_name(dev), rootdir); } static int __init em_debug_init(void) { /* Create /sys/kernel/debug/energy_model directory */ rootdir = debugfs_create_dir("energy_model", NULL); return 0; } fs_initcall(em_debug_init); #else /* CONFIG_DEBUG_FS */ static void em_debug_create_pd(struct device *dev) {} static void em_debug_remove_pd(struct device *dev) {} #endif static void em_destroy_table_rcu(struct rcu_head *rp) { struct em_perf_table __rcu *table; table = container_of(rp, struct em_perf_table, rcu); kfree(table); } static void em_release_table_kref(struct kref *kref) { struct em_perf_table __rcu *table; /* It was the last owner of this table so we can free */ table = container_of(kref, struct em_perf_table, kref); call_rcu(&table->rcu, em_destroy_table_rcu); } /** * em_table_free() - Handles safe free of the EM table when needed * @table : EM table which is going to be freed * * No return values. */ void em_table_free(struct em_perf_table __rcu *table) { kref_put(&table->kref, em_release_table_kref); } /** * em_table_alloc() - Allocate a new EM table * @pd : EM performance domain for which this must be done * * Allocate a new EM table and initialize its kref to indicate that it * has a user. * Returns allocated table or NULL. */ struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd) { struct em_perf_table __rcu *table; int table_size; table_size = sizeof(struct em_perf_state) * pd->nr_perf_states; table = kzalloc(sizeof(*table) + table_size, GFP_KERNEL); if (!table) return NULL; kref_init(&table->kref); return table; } static void em_init_performance(struct device *dev, struct em_perf_domain *pd, struct em_perf_state *table, int nr_states) { u64 fmax, max_cap; int i, cpu; /* This is needed only for CPUs and EAS skip other devices */ if (!_is_cpu_device(dev)) return; cpu = cpumask_first(em_span_cpus(pd)); /* * Calculate the performance value for each frequency with * linear relationship. The final CPU capacity might not be ready at * boot time, but the EM will be updated a bit later with correct one. */ fmax = (u64) table[nr_states - 1].frequency; max_cap = (u64) arch_scale_cpu_capacity(cpu); for (i = 0; i < nr_states; i++) table[i].performance = div64_u64(max_cap * table[i].frequency, fmax); } static int em_compute_costs(struct device *dev, struct em_perf_state *table, struct em_data_callback *cb, int nr_states, unsigned long flags) { unsigned long prev_cost = ULONG_MAX; int i, ret; /* Compute the cost of each performance state. */ for (i = nr_states - 1; i >= 0; i--) { unsigned long power_res, cost; if ((flags & EM_PERF_DOMAIN_ARTIFICIAL) && cb->get_cost) { ret = cb->get_cost(dev, table[i].frequency, &cost); if (ret || !cost || cost > EM_MAX_POWER) { dev_err(dev, "EM: invalid cost %lu %d\n", cost, ret); return -EINVAL; } } else { /* increase resolution of 'cost' precision */ power_res = table[i].power * 10; cost = power_res / table[i].performance; } table[i].cost = cost; if (table[i].cost >= prev_cost) { table[i].flags = EM_PERF_STATE_INEFFICIENT; dev_dbg(dev, "EM: OPP:%lu is inefficient\n", table[i].frequency); } else { prev_cost = table[i].cost; } } return 0; } /** * em_dev_compute_costs() - Calculate cost values for new runtime EM table * @dev : Device for which the EM table is to be updated * @table : The new EM table that is going to get the costs calculated * @nr_states : Number of performance states * * Calculate the em_perf_state::cost values for new runtime EM table. The * values are used for EAS during task placement. It also calculates and sets * the efficiency flag for each performance state. When the function finish * successfully the EM table is ready to be updated and used by EAS. * * Return 0 on success or a proper error in case of failure. */ int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, int nr_states) { return em_compute_costs(dev, table, NULL, nr_states, 0); } /** * em_dev_update_perf_domain() - Update runtime EM table for a device * @dev : Device for which the EM is to be updated * @new_table : The new EM table that is going to be used from now * * Update EM runtime modifiable table for the @dev using the provided @table. * * This function uses a mutex to serialize writers, so it must not be called * from a non-sleeping context. * * Return 0 on success or an error code on failure. */ int em_dev_update_perf_domain(struct device *dev, struct em_perf_table __rcu *new_table) { struct em_perf_table __rcu *old_table; struct em_perf_domain *pd; if (!dev) return -EINVAL; /* Serialize update/unregister or concurrent updates */ mutex_lock(&em_pd_mutex); if (!dev->em_pd) { mutex_unlock(&em_pd_mutex); return -EINVAL; } pd = dev->em_pd; kref_get(&new_table->kref); old_table = pd->em_table; rcu_assign_pointer(pd->em_table, new_table); em_cpufreq_update_efficiencies(dev, new_table->state); em_table_free(old_table); mutex_unlock(&em_pd_mutex); return 0; } EXPORT_SYMBOL_GPL(em_dev_update_perf_domain); static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd, struct em_perf_state *table, struct em_data_callback *cb, unsigned long flags) { unsigned long power, freq, prev_freq = 0; int nr_states = pd->nr_perf_states; int i, ret; /* Build the list of performance states for this performance domain */ for (i = 0, freq = 0; i < nr_states; i++, freq++) { /* * active_power() is a driver callback which ceils 'freq' to * lowest performance state of 'dev' above 'freq' and updates * 'power' and 'freq' accordingly. */ ret = cb->active_power(dev, &power, &freq); if (ret) { dev_err(dev, "EM: invalid perf. state: %d\n", ret); return -EINVAL; } /* * We expect the driver callback to increase the frequency for * higher performance states. */ if (freq <= prev_freq) { dev_err(dev, "EM: non-increasing freq: %lu\n", freq); return -EINVAL; } /* * The power returned by active_state() is expected to be * positive and be in range. */ if (!power || power > EM_MAX_POWER) { dev_err(dev, "EM: invalid power: %lu\n", power); return -EINVAL; } table[i].power = power; table[i].frequency = prev_freq = freq; } em_init_performance(dev, pd, table, nr_states); ret = em_compute_costs(dev, table, cb, nr_states, flags); if (ret) return -EINVAL; return 0; } static int em_create_pd(struct device *dev, int nr_states, struct em_data_callback *cb, cpumask_t *cpus, unsigned long flags) { struct em_perf_table __rcu *em_table; struct em_perf_domain *pd; struct device *cpu_dev; int cpu, ret, num_cpus; if (_is_cpu_device(dev)) { num_cpus = cpumask_weight(cpus); /* Prevent max possible energy calculation to not overflow */ if (num_cpus > EM_MAX_NUM_CPUS) { dev_err(dev, "EM: too many CPUs, overflow possible\n"); return -EINVAL; } pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL); if (!pd) return -ENOMEM; cpumask_copy(em_span_cpus(pd), cpus); } else { pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; } pd->nr_perf_states = nr_states; em_table = em_table_alloc(pd); if (!em_table) goto free_pd; ret = em_create_perf_table(dev, pd, em_table->state, cb, flags); if (ret) goto free_pd_table; rcu_assign_pointer(pd->em_table, em_table); if (_is_cpu_device(dev)) for_each_cpu(cpu, cpus) { cpu_dev = get_cpu_device(cpu); cpu_dev->em_pd = pd; } dev->em_pd = pd; return 0; free_pd_table: kfree(em_table); free_pd: kfree(pd); return -EINVAL; } static void em_cpufreq_update_efficiencies(struct device *dev, struct em_perf_state *table) { struct em_perf_domain *pd = dev->em_pd; struct cpufreq_policy *policy; int found = 0; int i, cpu; if (!_is_cpu_device(dev)) return; /* Try to get a CPU which is active and in this PD */ cpu = cpumask_first_and(em_span_cpus(pd), cpu_active_mask); if (cpu >= nr_cpu_ids) { dev_warn(dev, "EM: No online CPU for CPUFreq policy\n"); return; } policy = cpufreq_cpu_get(cpu); if (!policy) { dev_warn(dev, "EM: Access to CPUFreq policy failed\n"); return; } for (i = 0; i < pd->nr_perf_states; i++) { if (!(table[i].flags & EM_PERF_STATE_INEFFICIENT)) continue; if (!cpufreq_table_set_inefficient(policy, table[i].frequency)) found++; } cpufreq_cpu_put(policy); if (!found) return; /* * Efficiencies have been installed in CPUFreq, inefficient frequencies * will be skipped. The EM can do the same. */ pd->flags |= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES; } /** * em_pd_get() - Return the performance domain for a device * @dev : Device to find the performance domain for * * Returns the performance domain to which @dev belongs, or NULL if it doesn't * exist. */ struct em_perf_domain *em_pd_get(struct device *dev) { if (IS_ERR_OR_NULL(dev)) return NULL; return dev->em_pd; } EXPORT_SYMBOL_GPL(em_pd_get); /** * em_cpu_get() - Return the performance domain for a CPU * @cpu : CPU to find the performance domain for * * Returns the performance domain to which @cpu belongs, or NULL if it doesn't * exist. */ struct em_perf_domain *em_cpu_get(int cpu) { struct device *cpu_dev; cpu_dev = get_cpu_device(cpu); if (!cpu_dev) return NULL; return em_pd_get(cpu_dev); } EXPORT_SYMBOL_GPL(em_cpu_get); /** * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device * @dev : Device for which the EM is to register * @nr_states : Number of performance states to register * @cb : Callback functions providing the data of the Energy Model * @cpus : Pointer to cpumask_t, which in case of a CPU device is * obligatory. It can be taken from i.e. 'policy->cpus'. For other * type of devices this should be set to NULL. * @microwatts : Flag indicating that the power values are in micro-Watts or * in some other scale. It must be set properly. * * Create Energy Model tables for a performance domain using the callbacks * defined in cb. * * The @microwatts is important to set with correct value. Some kernel * sub-systems might rely on this flag and check if all devices in the EM are * using the same scale. * * If multiple clients register the same performance domain, all but the first * registration will be ignored. * * Return 0 on success */ int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, struct em_data_callback *cb, cpumask_t *cpus, bool microwatts) { unsigned long cap, prev_cap = 0; unsigned long flags = 0; int cpu, ret; if (!dev || !nr_states || !cb) return -EINVAL; /* * Use a mutex to serialize the registration of performance domains and * let the driver-defined callback functions sleep. */ mutex_lock(&em_pd_mutex); if (dev->em_pd) { ret = -EEXIST; goto unlock; } if (_is_cpu_device(dev)) { if (!cpus) { dev_err(dev, "EM: invalid CPU mask\n"); ret = -EINVAL; goto unlock; } for_each_cpu(cpu, cpus) { if (em_cpu_get(cpu)) { dev_err(dev, "EM: exists for CPU%d\n", cpu); ret = -EEXIST; goto unlock; } /* * All CPUs of a domain must have the same * micro-architecture since they all share the same * table. */ cap = arch_scale_cpu_capacity(cpu); if (prev_cap && prev_cap != cap) { dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n", cpumask_pr_args(cpus)); ret = -EINVAL; goto unlock; } prev_cap = cap; } } if (microwatts) flags |= EM_PERF_DOMAIN_MICROWATTS; else if (cb->get_cost) flags |= EM_PERF_DOMAIN_ARTIFICIAL; /* * EM only supports uW (exception is artificial EM). * Therefore, check and force the drivers to provide * power in uW. */ if (!microwatts && !(flags & EM_PERF_DOMAIN_ARTIFICIAL)) { dev_err(dev, "EM: only supports uW power values\n"); ret = -EINVAL; goto unlock; } ret = em_create_pd(dev, nr_states, cb, cpus, flags); if (ret) goto unlock; dev->em_pd->flags |= flags; em_cpufreq_update_efficiencies(dev, dev->em_pd->em_table->state); em_debug_create_pd(dev); dev_info(dev, "EM: created perf domain\n"); unlock: mutex_unlock(&em_pd_mutex); if (_is_cpu_device(dev)) em_check_capacity_update(); return ret; } EXPORT_SYMBOL_GPL(em_dev_register_perf_domain); /** * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device * @dev : Device for which the EM is registered * * Unregister the EM for the specified @dev (but not a CPU device). */ void em_dev_unregister_perf_domain(struct device *dev) { if (IS_ERR_OR_NULL(dev) || !dev->em_pd) return; if (_is_cpu_device(dev)) return; /* * The mutex separates all register/unregister requests and protects * from potential clean-up/setup issues in the debugfs directories. * The debugfs directory name is the same as device's name. */ mutex_lock(&em_pd_mutex); em_debug_remove_pd(dev); em_table_free(dev->em_pd->em_table); kfree(dev->em_pd); dev->em_pd = NULL; mutex_unlock(&em_pd_mutex); } EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain); /* * Adjustment of CPU performance values after boot, when all CPUs capacites * are correctly calculated. */ static void em_adjust_new_capacity(struct device *dev, struct em_perf_domain *pd, u64 max_cap) { struct em_perf_table __rcu *em_table; struct em_perf_state *ps, *new_ps; int ret, ps_size; em_table = em_table_alloc(pd); if (!em_table) { dev_warn(dev, "EM: allocation failed\n"); return; } new_ps = em_table->state; rcu_read_lock(); ps = em_perf_state_from_pd(pd); /* Initialize data based on old table */ ps_size = sizeof(struct em_perf_state) * pd->nr_perf_states; memcpy(new_ps, ps, ps_size); rcu_read_unlock(); em_init_performance(dev, pd, new_ps, pd->nr_perf_states); ret = em_compute_costs(dev, new_ps, NULL, pd->nr_perf_states, pd->flags); if (ret) { dev_warn(dev, "EM: compute costs failed\n"); return; } ret = em_dev_update_perf_domain(dev, em_table); if (ret) dev_warn(dev, "EM: update failed %d\n", ret); /* * This is one-time-update, so give up the ownership in this updater. * The EM framework has incremented the usage counter and from now * will keep the reference (then free the memory when needed). */ em_table_free(em_table); } static void em_check_capacity_update(void) { cpumask_var_t cpu_done_mask; struct em_perf_state *table; struct em_perf_domain *pd; unsigned long cpu_capacity; int cpu; if (!zalloc_cpumask_var(&cpu_done_mask, GFP_KERNEL)) { pr_warn("no free memory\n"); return; } /* Check if CPUs capacity has changed than update EM */ for_each_possible_cpu(cpu) { struct cpufreq_policy *policy; unsigned long em_max_perf; struct device *dev; if (cpumask_test_cpu(cpu, cpu_done_mask)) continue; policy = cpufreq_cpu_get(cpu); if (!policy) { pr_debug("Accessing cpu%d policy failed\n", cpu); schedule_delayed_work(&em_update_work, msecs_to_jiffies(1000)); break; } cpufreq_cpu_put(policy); pd = em_cpu_get(cpu); if (!pd || em_is_artificial(pd)) continue; cpumask_or(cpu_done_mask, cpu_done_mask, em_span_cpus(pd)); cpu_capacity = arch_scale_cpu_capacity(cpu); rcu_read_lock(); table = em_perf_state_from_pd(pd); em_max_perf = table[pd->nr_perf_states - 1].performance; rcu_read_unlock(); /* * Check if the CPU capacity has been adjusted during boot * and trigger the update for new performance values. */ if (em_max_perf == cpu_capacity) continue; pr_debug("updating cpu%d cpu_cap=%lu old capacity=%lu\n", cpu, cpu_capacity, em_max_perf); dev = get_cpu_device(cpu); em_adjust_new_capacity(dev, pd, cpu_capacity); } free_cpumask_var(cpu_done_mask); } static void em_update_workfn(struct work_struct *work) { em_check_capacity_update(); } |