Linux Audio

Check our new training course

Loading...
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
   2 *
   3 * Copyright 2016-2023 HabanaLabs, Ltd.
   4 * All Rights Reserved.
   5 *
   6 */
   7
   8#ifndef HABANALABS_H_
   9#define HABANALABS_H_
  10
  11#include <drm/drm.h>
  12
  13/*
  14 * Defines that are asic-specific but constitutes as ABI between kernel driver
  15 * and userspace
  16 */
  17#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
  18#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
  19
  20/*
  21 * 128 SOBs reserved for collective wait
  22 * 16 SOBs reserved for sync stream
  23 */
  24#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
  25
  26/*
  27 * 64 monitors reserved for collective wait
  28 * 8 monitors reserved for sync stream
  29 */
  30#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
  31
  32/* Max number of elements in timestamps registration buffers */
  33#define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
  34
  35/*
  36 * Goya queue Numbering
  37 *
  38 * The external queues (PCI DMA channels) MUST be before the internal queues
  39 * and each group (PCI DMA channels and internal) must be contiguous inside
  40 * itself but there can be a gap between the two groups (although not
  41 * recommended)
  42 */
  43
  44enum goya_queue_id {
  45	GOYA_QUEUE_ID_DMA_0 = 0,
  46	GOYA_QUEUE_ID_DMA_1 = 1,
  47	GOYA_QUEUE_ID_DMA_2 = 2,
  48	GOYA_QUEUE_ID_DMA_3 = 3,
  49	GOYA_QUEUE_ID_DMA_4 = 4,
  50	GOYA_QUEUE_ID_CPU_PQ = 5,
  51	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
  52	GOYA_QUEUE_ID_TPC0 = 7,
  53	GOYA_QUEUE_ID_TPC1 = 8,
  54	GOYA_QUEUE_ID_TPC2 = 9,
  55	GOYA_QUEUE_ID_TPC3 = 10,
  56	GOYA_QUEUE_ID_TPC4 = 11,
  57	GOYA_QUEUE_ID_TPC5 = 12,
  58	GOYA_QUEUE_ID_TPC6 = 13,
  59	GOYA_QUEUE_ID_TPC7 = 14,
  60	GOYA_QUEUE_ID_SIZE
  61};
  62
  63/*
  64 * Gaudi queue Numbering
  65 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
  66 * Except one CPU queue, all the rest are internal queues.
  67 */
  68
  69enum gaudi_queue_id {
  70	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
  71	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
  72	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
  73	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
  74	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
  75	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
  76	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
  77	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
  78	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
  79	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
  80	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
  81	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
  82	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
  83	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
  84	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
  85	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
  86	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
  87	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
  88	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
  89	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
  90	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
  91	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
  92	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
  93	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
  94	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
  95	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
  96	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
  97	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
  98	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
  99	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
 100	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
 101	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
 102	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
 103	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
 104	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
 105	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
 106	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
 107	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
 108	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
 109	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
 110	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
 111	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
 112	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
 113	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
 114	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
 115	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
 116	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
 117	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
 118	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
 119	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
 120	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
 121	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
 122	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
 123	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
 124	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
 125	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
 126	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
 127	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
 128	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
 129	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
 130	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
 131	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
 132	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
 133	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
 134	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
 135	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
 136	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
 137	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
 138	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
 139	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
 140	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
 141	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
 142	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
 143	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
 144	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
 145	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
 146	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
 147	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
 148	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
 149	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
 150	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
 151	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
 152	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
 153	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
 154	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
 155	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
 156	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
 157	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
 158	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
 159	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
 160	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
 161	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
 162	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
 163	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
 164	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
 165	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
 166	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
 167	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
 168	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
 169	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
 170	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
 171	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
 172	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
 173	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
 174	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
 175	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
 176	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
 177	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
 178	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
 179	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
 180	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
 181	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
 182	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
 183	GAUDI_QUEUE_ID_SIZE
 184};
 185
 186/*
 187 * In GAUDI2 we have two modes of operation in regard to queues:
 188 * 1. Legacy mode, where each QMAN exposes 4 streams to the user
 189 * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
 190 *
 191 * When in legacy mode, the user sends the queue id per JOB according to
 192 * enum gaudi2_queue_id below.
 193 *
 194 * When in F/W mode, the user sends a stream id per Command Submission. The
 195 * stream id is a running number from 0 up to (N-1), where N is the number
 196 * of streams the F/W exposes and is passed to the user in
 197 * struct hl_info_hw_ip_info
 198 */
 199
 200enum gaudi2_queue_id {
 201	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
 202	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
 203	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
 204	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
 205	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
 206	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
 207	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
 208	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
 209	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
 210	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
 211	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
 212	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
 213	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
 214	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
 215	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
 216	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
 217	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
 218	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
 219	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
 220	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
 221	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
 222	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
 223	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
 224	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
 225	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
 226	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
 227	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
 228	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
 229	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
 230	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
 231	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
 232	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
 233	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
 234	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
 235	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
 236	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
 237	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
 238	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
 239	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
 240	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
 241	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
 242	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
 243	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
 244	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
 245	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
 246	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
 247	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
 248	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
 249	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
 250	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
 251	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
 252	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
 253	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
 254	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
 255	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
 256	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
 257	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
 258	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
 259	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
 260	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
 261	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
 262	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
 263	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
 264	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
 265	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
 266	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
 267	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
 268	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
 269	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
 270	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
 271	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
 272	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
 273	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
 274	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
 275	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
 276	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
 277	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
 278	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
 279	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
 280	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
 281	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
 282	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
 283	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
 284	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
 285	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
 286	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
 287	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
 288	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
 289	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
 290	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
 291	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
 292	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
 293	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
 294	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
 295	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
 296	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
 297	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
 298	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
 299	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
 300	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
 301	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
 302	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
 303	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
 304	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
 305	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
 306	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
 307	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
 308	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
 309	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
 310	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
 311	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
 312	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
 313	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
 314	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
 315	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
 316	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
 317	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
 318	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
 319	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
 320	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
 321	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
 322	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
 323	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
 324	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
 325	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
 326	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
 327	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
 328	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
 329	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
 330	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
 331	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
 332	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
 333	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
 334	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
 335	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
 336	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
 337	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
 338	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
 339	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
 340	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
 341	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
 342	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
 343	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
 344	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
 345	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
 346	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
 347	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
 348	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
 349	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
 350	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
 351	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
 352	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
 353	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
 354	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
 355	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
 356	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
 357	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
 358	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
 359	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
 360	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
 361	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
 362	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
 363	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
 364	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
 365	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
 366	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
 367	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
 368	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
 369	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
 370	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
 371	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
 372	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
 373	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
 374	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
 375	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
 376	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
 377	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
 378	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
 379	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
 380	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
 381	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
 382	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
 383	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
 384	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
 385	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
 386	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
 387	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
 388	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
 389	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
 390	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
 391	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
 392	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
 393	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
 394	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
 395	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
 396	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
 397	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
 398	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
 399	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
 400	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
 401	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
 402	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
 403	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
 404	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
 405	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
 406	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
 407	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
 408	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
 409	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
 410	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
 411	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
 412	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
 413	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
 414	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
 415	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
 416	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
 417	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
 418	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
 419	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
 420	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
 421	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
 422	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
 423	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
 424	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
 425	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
 426	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
 427	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
 428	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
 429	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
 430	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
 431	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
 432	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
 433	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
 434	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
 435	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
 436	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
 437	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
 438	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
 439	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
 440	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
 441	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
 442	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
 443	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
 444	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
 445	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
 446	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
 447	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
 448	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
 449	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
 450	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
 451	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
 452	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
 453	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
 454	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
 455	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
 456	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
 457	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
 458	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
 459	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
 460	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
 461	GAUDI2_QUEUE_ID_CPU_PQ = 260,
 462	GAUDI2_QUEUE_ID_SIZE
 463};
 464
 465/*
 466 * Engine Numbering
 467 *
 468 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
 469 */
 470
 471enum goya_engine_id {
 472	GOYA_ENGINE_ID_DMA_0 = 0,
 473	GOYA_ENGINE_ID_DMA_1,
 474	GOYA_ENGINE_ID_DMA_2,
 475	GOYA_ENGINE_ID_DMA_3,
 476	GOYA_ENGINE_ID_DMA_4,
 477	GOYA_ENGINE_ID_MME_0,
 478	GOYA_ENGINE_ID_TPC_0,
 479	GOYA_ENGINE_ID_TPC_1,
 480	GOYA_ENGINE_ID_TPC_2,
 481	GOYA_ENGINE_ID_TPC_3,
 482	GOYA_ENGINE_ID_TPC_4,
 483	GOYA_ENGINE_ID_TPC_5,
 484	GOYA_ENGINE_ID_TPC_6,
 485	GOYA_ENGINE_ID_TPC_7,
 486	GOYA_ENGINE_ID_SIZE
 487};
 488
 489enum gaudi_engine_id {
 490	GAUDI_ENGINE_ID_DMA_0 = 0,
 491	GAUDI_ENGINE_ID_DMA_1,
 492	GAUDI_ENGINE_ID_DMA_2,
 493	GAUDI_ENGINE_ID_DMA_3,
 494	GAUDI_ENGINE_ID_DMA_4,
 495	GAUDI_ENGINE_ID_DMA_5,
 496	GAUDI_ENGINE_ID_DMA_6,
 497	GAUDI_ENGINE_ID_DMA_7,
 498	GAUDI_ENGINE_ID_MME_0,
 499	GAUDI_ENGINE_ID_MME_1,
 500	GAUDI_ENGINE_ID_MME_2,
 501	GAUDI_ENGINE_ID_MME_3,
 502	GAUDI_ENGINE_ID_TPC_0,
 503	GAUDI_ENGINE_ID_TPC_1,
 504	GAUDI_ENGINE_ID_TPC_2,
 505	GAUDI_ENGINE_ID_TPC_3,
 506	GAUDI_ENGINE_ID_TPC_4,
 507	GAUDI_ENGINE_ID_TPC_5,
 508	GAUDI_ENGINE_ID_TPC_6,
 509	GAUDI_ENGINE_ID_TPC_7,
 510	GAUDI_ENGINE_ID_NIC_0,
 511	GAUDI_ENGINE_ID_NIC_1,
 512	GAUDI_ENGINE_ID_NIC_2,
 513	GAUDI_ENGINE_ID_NIC_3,
 514	GAUDI_ENGINE_ID_NIC_4,
 515	GAUDI_ENGINE_ID_NIC_5,
 516	GAUDI_ENGINE_ID_NIC_6,
 517	GAUDI_ENGINE_ID_NIC_7,
 518	GAUDI_ENGINE_ID_NIC_8,
 519	GAUDI_ENGINE_ID_NIC_9,
 520	GAUDI_ENGINE_ID_SIZE
 521};
 522
 523enum gaudi2_engine_id {
 524	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
 525	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
 526	GAUDI2_DCORE0_ENGINE_ID_MME,
 527	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
 528	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
 529	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
 530	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
 531	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
 532	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
 533	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
 534	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
 535	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
 536	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
 537	GAUDI2_DCORE1_ENGINE_ID_MME,
 538	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
 539	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
 540	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
 541	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
 542	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
 543	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
 544	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
 545	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
 546	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
 547	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
 548	GAUDI2_DCORE2_ENGINE_ID_MME,
 549	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
 550	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
 551	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
 552	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
 553	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
 554	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
 555	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
 556	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
 557	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
 558	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
 559	GAUDI2_DCORE3_ENGINE_ID_MME,
 560	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
 561	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
 562	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
 563	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
 564	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
 565	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
 566	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
 567	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
 568	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
 569	GAUDI2_ENGINE_ID_PDMA_0,
 570	GAUDI2_ENGINE_ID_PDMA_1,
 571	GAUDI2_ENGINE_ID_ROT_0,
 572	GAUDI2_ENGINE_ID_ROT_1,
 573	GAUDI2_PCIE_ENGINE_ID_DEC_0,
 574	GAUDI2_PCIE_ENGINE_ID_DEC_1,
 575	GAUDI2_ENGINE_ID_NIC0_0,
 576	GAUDI2_ENGINE_ID_NIC0_1,
 577	GAUDI2_ENGINE_ID_NIC1_0,
 578	GAUDI2_ENGINE_ID_NIC1_1,
 579	GAUDI2_ENGINE_ID_NIC2_0,
 580	GAUDI2_ENGINE_ID_NIC2_1,
 581	GAUDI2_ENGINE_ID_NIC3_0,
 582	GAUDI2_ENGINE_ID_NIC3_1,
 583	GAUDI2_ENGINE_ID_NIC4_0,
 584	GAUDI2_ENGINE_ID_NIC4_1,
 585	GAUDI2_ENGINE_ID_NIC5_0,
 586	GAUDI2_ENGINE_ID_NIC5_1,
 587	GAUDI2_ENGINE_ID_NIC6_0,
 588	GAUDI2_ENGINE_ID_NIC6_1,
 589	GAUDI2_ENGINE_ID_NIC7_0,
 590	GAUDI2_ENGINE_ID_NIC7_1,
 591	GAUDI2_ENGINE_ID_NIC8_0,
 592	GAUDI2_ENGINE_ID_NIC8_1,
 593	GAUDI2_ENGINE_ID_NIC9_0,
 594	GAUDI2_ENGINE_ID_NIC9_1,
 595	GAUDI2_ENGINE_ID_NIC10_0,
 596	GAUDI2_ENGINE_ID_NIC10_1,
 597	GAUDI2_ENGINE_ID_NIC11_0,
 598	GAUDI2_ENGINE_ID_NIC11_1,
 599	GAUDI2_ENGINE_ID_PCIE,
 600	GAUDI2_ENGINE_ID_PSOC,
 601	GAUDI2_ENGINE_ID_ARC_FARM,
 602	GAUDI2_ENGINE_ID_KDMA,
 603	GAUDI2_ENGINE_ID_SIZE
 604};
 605
 606/*
 607 * ASIC specific PLL index
 608 *
 609 * Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under
 610 * DRM_IOCTL_HL_INFO IOCTL.
 611 * The enums need to be used as an index in struct hl_pll_frequency_info.
 612 */
 613
 614enum hl_goya_pll_index {
 615	HL_GOYA_CPU_PLL = 0,
 616	HL_GOYA_IC_PLL,
 617	HL_GOYA_MC_PLL,
 618	HL_GOYA_MME_PLL,
 619	HL_GOYA_PCI_PLL,
 620	HL_GOYA_EMMC_PLL,
 621	HL_GOYA_TPC_PLL,
 622	HL_GOYA_PLL_MAX
 623};
 624
 625enum hl_gaudi_pll_index {
 626	HL_GAUDI_CPU_PLL = 0,
 627	HL_GAUDI_PCI_PLL,
 628	HL_GAUDI_SRAM_PLL,
 629	HL_GAUDI_HBM_PLL,
 630	HL_GAUDI_NIC_PLL,
 631	HL_GAUDI_DMA_PLL,
 632	HL_GAUDI_MESH_PLL,
 633	HL_GAUDI_MME_PLL,
 634	HL_GAUDI_TPC_PLL,
 635	HL_GAUDI_IF_PLL,
 636	HL_GAUDI_PLL_MAX
 637};
 638
 639enum hl_gaudi2_pll_index {
 640	HL_GAUDI2_CPU_PLL = 0,
 641	HL_GAUDI2_PCI_PLL,
 642	HL_GAUDI2_SRAM_PLL,
 643	HL_GAUDI2_HBM_PLL,
 644	HL_GAUDI2_NIC_PLL,
 645	HL_GAUDI2_DMA_PLL,
 646	HL_GAUDI2_MESH_PLL,
 647	HL_GAUDI2_MME_PLL,
 648	HL_GAUDI2_TPC_PLL,
 649	HL_GAUDI2_IF_PLL,
 650	HL_GAUDI2_VID_PLL,
 651	HL_GAUDI2_MSS_PLL,
 652	HL_GAUDI2_PLL_MAX
 653};
 654
 655/**
 656 * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
 657 *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
 658 *                              to the H/W but the kernel driver use it to parse the packet's
 659 *                              addresses and patch/validate them.
 660 * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
 661 * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
 662 * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
 663 * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
 664 * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
 665 * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
 666 * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
 667 * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
 668 * @HL_DMA_ENUM_MAX: number of values in enum
 669 */
 670enum hl_goya_dma_direction {
 671	HL_DMA_HOST_TO_DRAM,
 672	HL_DMA_HOST_TO_SRAM,
 673	HL_DMA_DRAM_TO_SRAM,
 674	HL_DMA_SRAM_TO_DRAM,
 675	HL_DMA_SRAM_TO_HOST,
 676	HL_DMA_DRAM_TO_HOST,
 677	HL_DMA_DRAM_TO_DRAM,
 678	HL_DMA_SRAM_TO_SRAM,
 679	HL_DMA_ENUM_MAX
 680};
 681
 682/**
 683 * enum hl_device_status - Device status information.
 684 * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
 685 * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
 686 * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
 687 * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
 688 * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
 689 *                                       progress.
 690 * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
 691 *                                                  triggered because the user released the device
 692 * @HL_DEVICE_STATUS_LAST: Last status.
 693 */
 694enum hl_device_status {
 695	HL_DEVICE_STATUS_OPERATIONAL,
 696	HL_DEVICE_STATUS_IN_RESET,
 697	HL_DEVICE_STATUS_MALFUNCTION,
 698	HL_DEVICE_STATUS_NEEDS_RESET,
 699	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
 700	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
 701	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
 702};
 703
 704enum hl_server_type {
 705	HL_SERVER_TYPE_UNKNOWN = 0,
 706	HL_SERVER_GAUDI_HLS1 = 1,
 707	HL_SERVER_GAUDI_HLS1H = 2,
 708	HL_SERVER_GAUDI_TYPE1 = 3,
 709	HL_SERVER_GAUDI_TYPE2 = 4,
 710	HL_SERVER_GAUDI2_HLS2 = 5,
 711	HL_SERVER_GAUDI2_TYPE1 = 7
 712};
 713
 714/*
 715 * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
 716 *
 717 * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
 718 * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
 719 * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
 720 * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
 721 * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
 722 * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
 723 * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
 724 * HL_NOTIFIER_EVENT_RAZWI              - Indicates razwi happened
 725 * HL_NOTIFIER_EVENT_PAGE_FAULT         - Indicates page fault happened
 726 * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR    - Indicates a HW error that requires SW abort and
 727 *                                        HW reset
 728 * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR    - Indicates a FW error that requires SW abort and
 729 *                                        HW reset
 730 */
 731#define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
 732#define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
 733#define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
 734#define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
 735#define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
 736#define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
 737#define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
 738#define HL_NOTIFIER_EVENT_RAZWI			(1ULL << 7)
 739#define HL_NOTIFIER_EVENT_PAGE_FAULT		(1ULL << 8)
 740#define HL_NOTIFIER_EVENT_CRITICL_HW_ERR	(1ULL << 9)
 741#define HL_NOTIFIER_EVENT_CRITICL_FW_ERR	(1ULL << 10)
 742
 743/* Opcode for management ioctl
 744 *
 745 * HW_IP_INFO            - Receive information about different IP blocks in the
 746 *                         device.
 747 * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
 748 *                         occurred since the last hard reset.
 749 * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
 750 *                         specific context. This is relevant only for devices
 751 *                         where the dram is managed by the kernel driver
 752 * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
 753 *                         internal engine.
 754 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
 755 *                         require an open context.
 756 * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
 757 *                               over the last period specified by the user.
 758 *                               The period can be between 100ms to 1s, in
 759 *                               resolution of 100ms. The return value is a
 760 *                               percentage of the utilization rate.
 761 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
 762 *                               event occurred since the driver was loaded.
 763 * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
 764 *                               of the device in MHz. The maximum clock rate is
 765 *                               configurable via sysfs parameter
 766 * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
 767 *                         operations performed on the device since the last
 768 *                         time the driver was loaded.
 769 * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
 770 *                         for synchronization.
 771 * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
 772 * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
 773 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
 774 * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
 775 * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
 776 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
 777 * HL_INFO_POWER         - Retrieve power information
 778 * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
 779 * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
 780 * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
 781 * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
 782 *                                  and CS timeout or razwi error occurred.
 783 * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
 784 * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
 785 *                            Timestamp of razwi.
 786 *                            The address which accessing it caused the razwi.
 787 *                            Razwi initiator.
 788 *                            Razwi cause, was it a page fault or MMU access error.
 789 *                            May return 0 even though no new data is available, in that case
 790 *                            timestamp will be 0.
 791 * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
 792 * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
 793 * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
 794 * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
 795 * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
 796 * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
 797 *                                  May return 0 even though no new data is available, in that case
 798 *                                  timestamp will be 0.
 799 * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
 800 * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
 801 *                            May return 0 even though no new data is available, in that case
 802 *                            timestamp will be 0.
 803 * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
 804 * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
 805 * HL_INFO_HW_ERR_EVENT   - Retrieve information on the reported HW error.
 806 *                          May return 0 even though no new data is available, in that case
 807 *                          timestamp will be 0.
 808 * HL_INFO_FW_ERR_EVENT   - Retrieve information on the reported FW error.
 809 *                          May return 0 even though no new data is available, in that case
 810 *                          timestamp will be 0.
 811 * HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error.
 812 */
 813#define HL_INFO_HW_IP_INFO			0
 814#define HL_INFO_HW_EVENTS			1
 815#define HL_INFO_DRAM_USAGE			2
 816#define HL_INFO_HW_IDLE				3
 817#define HL_INFO_DEVICE_STATUS			4
 818#define HL_INFO_DEVICE_UTILIZATION		6
 819#define HL_INFO_HW_EVENTS_AGGREGATE		7
 820#define HL_INFO_CLK_RATE			8
 821#define HL_INFO_RESET_COUNT			9
 822#define HL_INFO_TIME_SYNC			10
 823#define HL_INFO_CS_COUNTERS			11
 824#define HL_INFO_PCI_COUNTERS			12
 825#define HL_INFO_CLK_THROTTLE_REASON		13
 826#define HL_INFO_SYNC_MANAGER			14
 827#define HL_INFO_TOTAL_ENERGY			15
 828#define HL_INFO_PLL_FREQUENCY			16
 829#define HL_INFO_POWER				17
 830#define HL_INFO_OPEN_STATS			18
 831#define HL_INFO_DRAM_REPLACED_ROWS		21
 832#define HL_INFO_DRAM_PENDING_ROWS		22
 833#define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
 834#define HL_INFO_CS_TIMEOUT_EVENT		24
 835#define HL_INFO_RAZWI_EVENT			25
 836#define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
 837#define HL_INFO_SECURED_ATTESTATION		27
 838#define HL_INFO_REGISTER_EVENTFD		28
 839#define HL_INFO_UNREGISTER_EVENTFD		29
 840#define HL_INFO_GET_EVENTS			30
 841#define HL_INFO_UNDEFINED_OPCODE_EVENT		31
 842#define HL_INFO_ENGINE_STATUS			32
 843#define HL_INFO_PAGE_FAULT_EVENT		33
 844#define HL_INFO_USER_MAPPINGS			34
 845#define HL_INFO_FW_GENERIC_REQ			35
 846#define HL_INFO_HW_ERR_EVENT			36
 847#define HL_INFO_FW_ERR_EVENT			37
 848#define HL_INFO_USER_ENGINE_ERR_EVENT		38
 849#define HL_INFO_DEV_SIGNED			40
 850
 851#define HL_INFO_VERSION_MAX_LEN			128
 852#define HL_INFO_CARD_NAME_MAX_LEN		16
 853
 854/* Maximum buffer size for retrieving engines status */
 855#define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
 856
 857/**
 858 * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
 859 * @sram_base_address: The first SRAM physical base address that is free to be
 860 *                     used by the user.
 861 * @dram_base_address: The first DRAM virtual or physical base address that is
 862 *                     free to be used by the user.
 863 * @dram_size: The DRAM size that is available to the user.
 864 * @sram_size: The SRAM size that is available to the user.
 865 * @num_of_events: The number of events that can be received from the f/w. This
 866 *                 is needed so the user can what is the size of the h/w events
 867 *                 array he needs to pass to the kernel when he wants to fetch
 868 *                 the event counters.
 869 * @device_id: PCI device ID of the ASIC.
 870 * @module_id: Module ID of the ASIC for mezzanine cards in servers
 871 *             (From OCP spec).
 872 * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
 873 * @first_available_interrupt_id: The first available interrupt ID for the user
 874 *                                to be used when it works with user interrupts.
 875 *                                Relevant for Gaudi2 and later.
 876 * @server_type: Server type that the Gaudi ASIC is currently installed in.
 877 *               The value is according to enum hl_server_type
 878 * @cpld_version: CPLD version on the board.
 879 * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
 880 * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
 881 * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
 882 * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
 883 *                           in some ASICs.
 884 * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
 885 *                    for Goya/Gaudi only.
 886 * @dram_enabled: Whether the DRAM is enabled.
 887 * @security_enabled: Whether security is enabled on device.
 888 * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
 889 *                         configuration. Relevant for Gaudi2 and later.
 890 * @cpucp_version: The CPUCP f/w version.
 891 * @card_name: The card name as passed by the f/w.
 892 * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
 893 *                        Relevant for Gaudi2 and later.
 894 * @dram_page_size: The DRAM physical page size.
 895 * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
 896 *                     Relevant for Gaudi2 and later.
 897 * @number_of_user_interrupts: The number of interrupts that are available to the userspace
 898 *                             application to use. Relevant for Gaudi2 and later.
 899 * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
 900 * @revision_id: PCI revision ID of the ASIC.
 901 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
 902 * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
 903 *                        Relevant for Gaudi3 and later.
 904 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
 905 *                                  in order to raise events toward FW.
 906 * @reserved_dram_size: DRAM size reserved for driver and firmware.
 907 */
 908struct hl_info_hw_ip_info {
 909	__u64 sram_base_address;
 910	__u64 dram_base_address;
 911	__u64 dram_size;
 912	__u32 sram_size;
 913	__u32 num_of_events;
 914	__u32 device_id;
 915	__u32 module_id;
 916	__u32 decoder_enabled_mask;
 917	__u16 first_available_interrupt_id;
 918	__u16 server_type;
 919	__u32 cpld_version;
 920	__u32 psoc_pci_pll_nr;
 921	__u32 psoc_pci_pll_nf;
 922	__u32 psoc_pci_pll_od;
 923	__u32 psoc_pci_pll_div_factor;
 924	__u8 tpc_enabled_mask;
 925	__u8 dram_enabled;
 926	__u8 security_enabled;
 927	__u8 mme_master_slave_mode;
 928	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
 929	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
 930	__u64 tpc_enabled_mask_ext;
 931	__u64 dram_page_size;
 932	__u32 edma_enabled_mask;
 933	__u16 number_of_user_interrupts;
 934	__u8 reserved1;
 935	__u8 reserved2;
 936	__u64 reserved3;
 937	__u64 device_mem_alloc_default_page_size;
 938	__u64 reserved4;
 939	__u64 reserved5;
 940	__u32 reserved6;
 941	__u8 reserved7;
 942	__u8 revision_id;
 943	__u16 tpc_interrupt_id;
 944	__u32 rotator_enabled_mask;
 945	__u32 reserved9;
 946	__u64 engine_core_interrupt_reg_addr;
 947	__u64 reserved_dram_size;
 948};
 949
 950struct hl_info_dram_usage {
 951	__u64 dram_free_mem;
 952	__u64 ctx_dram_mem;
 953};
 954
 955#define HL_BUSY_ENGINES_MASK_EXT_SIZE	4
 956
 957struct hl_info_hw_idle {
 958	__u32 is_idle;
 959	/*
 960	 * Bitmask of busy engines.
 961	 * Bits definition is according to `enum <chip>_engine_id'.
 962	 */
 963	__u32 busy_engines_mask;
 964
 965	/*
 966	 * Extended Bitmask of busy engines.
 967	 * Bits definition is according to `enum <chip>_engine_id'.
 968	 */
 969	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
 970};
 971
 972struct hl_info_device_status {
 973	__u32 status;
 974	__u32 pad;
 975};
 976
 977struct hl_info_device_utilization {
 978	__u32 utilization;
 979	__u32 pad;
 980};
 981
 982struct hl_info_clk_rate {
 983	__u32 cur_clk_rate_mhz;
 984	__u32 max_clk_rate_mhz;
 985};
 986
 987struct hl_info_reset_count {
 988	__u32 hard_reset_cnt;
 989	__u32 soft_reset_cnt;
 990};
 991
 992struct hl_info_time_sync {
 993	__u64 device_time;
 994	__u64 host_time;
 995	__u64 tsc_time;
 996};
 997
 998/**
 999 * struct hl_info_pci_counters - pci counters
1000 * @rx_throughput: PCI rx throughput KBps
1001 * @tx_throughput: PCI tx throughput KBps
1002 * @replay_cnt: PCI replay counter
1003 */
1004struct hl_info_pci_counters {
1005	__u64 rx_throughput;
1006	__u64 tx_throughput;
1007	__u64 replay_cnt;
1008};
1009
1010enum hl_clk_throttling_type {
1011	HL_CLK_THROTTLE_TYPE_POWER,
1012	HL_CLK_THROTTLE_TYPE_THERMAL,
1013	HL_CLK_THROTTLE_TYPE_MAX
1014};
1015
1016/* clk_throttling_reason masks */
1017#define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
1018#define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1019
1020/**
1021 * struct hl_info_clk_throttle - clock throttling reason
1022 * @clk_throttling_reason: each bit represents a clk throttling reason
1023 * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1024 * @clk_throttling_duration_ns: the clock throttle time in nanosec
1025 */
1026struct hl_info_clk_throttle {
1027	__u32 clk_throttling_reason;
1028	__u32 pad;
1029	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1030	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1031};
1032
1033/**
1034 * struct hl_info_energy - device energy information
1035 * @total_energy_consumption: total device energy consumption
1036 */
1037struct hl_info_energy {
1038	__u64 total_energy_consumption;
1039};
1040
1041#define HL_PLL_NUM_OUTPUTS 4
1042
1043struct hl_pll_frequency_info {
1044	__u16 output[HL_PLL_NUM_OUTPUTS];
1045};
1046
1047/**
1048 * struct hl_open_stats_info - device open statistics information
1049 * @open_counter: ever growing counter, increased on each successful dev open
1050 * @last_open_period_ms: duration (ms) device was open last time
1051 * @is_compute_ctx_active: Whether there is an active compute context executing
1052 * @compute_ctx_in_release: true if the current compute context is being released
1053 */
1054struct hl_open_stats_info {
1055	__u64 open_counter;
1056	__u64 last_open_period_ms;
1057	__u8 is_compute_ctx_active;
1058	__u8 compute_ctx_in_release;
1059	__u8 pad[6];
1060};
1061
1062/**
1063 * struct hl_power_info - power information
1064 * @power: power consumption
1065 */
1066struct hl_power_info {
1067	__u64 power;
1068};
1069
1070/**
1071 * struct hl_info_sync_manager - sync manager information
1072 * @first_available_sync_object: first available sob
1073 * @first_available_monitor: first available monitor
1074 * @first_available_cq: first available cq
1075 */
1076struct hl_info_sync_manager {
1077	__u32 first_available_sync_object;
1078	__u32 first_available_monitor;
1079	__u32 first_available_cq;
1080	__u32 reserved;
1081};
1082
1083/**
1084 * struct hl_info_cs_counters - command submission counters
1085 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1086 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1087 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1088 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1089 * @total_queue_full_drop_cnt: total dropped due to queue full
1090 * @ctx_queue_full_drop_cnt: context dropped due to queue full
1091 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1092 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1093 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1094 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1095 * @total_validation_drop_cnt: total dropped due to validation error
1096 * @ctx_validation_drop_cnt: context dropped due to validation error
1097 */
1098struct hl_info_cs_counters {
1099	__u64 total_out_of_mem_drop_cnt;
1100	__u64 ctx_out_of_mem_drop_cnt;
1101	__u64 total_parsing_drop_cnt;
1102	__u64 ctx_parsing_drop_cnt;
1103	__u64 total_queue_full_drop_cnt;
1104	__u64 ctx_queue_full_drop_cnt;
1105	__u64 total_device_in_reset_drop_cnt;
1106	__u64 ctx_device_in_reset_drop_cnt;
1107	__u64 total_max_cs_in_flight_drop_cnt;
1108	__u64 ctx_max_cs_in_flight_drop_cnt;
1109	__u64 total_validation_drop_cnt;
1110	__u64 ctx_validation_drop_cnt;
1111};
1112
1113/**
1114 * struct hl_info_last_err_open_dev_time - last error boot information.
1115 * @timestamp: timestamp of last time the device was opened and error occurred.
1116 */
1117struct hl_info_last_err_open_dev_time {
1118	__s64 timestamp;
1119};
1120
1121/**
1122 * struct hl_info_cs_timeout_event - last CS timeout information.
1123 * @timestamp: timestamp when last CS timeout event occurred.
1124 * @seq: sequence number of last CS timeout event.
1125 */
1126struct hl_info_cs_timeout_event {
1127	__s64 timestamp;
1128	__u64 seq;
1129};
1130
1131#define HL_RAZWI_NA_ENG_ID U16_MAX
1132#define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1133#define HL_RAZWI_READ		BIT(0)
1134#define HL_RAZWI_WRITE		BIT(1)
1135#define HL_RAZWI_LBW		BIT(2)
1136#define HL_RAZWI_HBW		BIT(3)
1137#define HL_RAZWI_RR		BIT(4)
1138#define HL_RAZWI_ADDR_DEC	BIT(5)
1139
1140/**
1141 * struct hl_info_razwi_event - razwi information.
1142 * @timestamp: timestamp of razwi.
1143 * @addr: address which accessing it caused razwi.
1144 * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1145 *             have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1146 *             engines which caused the razwi, it will hold all of them.
1147 * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1148 *                           might be common for several engines and there is no way to get the
1149 *                           exact engine. In this way, engine_id array will be filled with all
1150 *                           possible engines caused this razwi. Also, there might be possibility
1151 *                           in gaudi, where we don't indication on specific engine, in that case
1152 *                           the value of this parameter will be zero.
1153 * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1154 *                                      HL_RAZWI_WRITE - razwi caused by write operation
1155 *                                      HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1156 *                                      HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1157 *                                      HL_RAZWI_RR - razwi caused by range register
1158 *                                      HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1159 *         Note: this data is not supported by all asics, in that case the relevant bits will not
1160 *               be set.
1161 */
1162struct hl_info_razwi_event {
1163	__s64 timestamp;
1164	__u64 addr;
1165	__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1166	__u16 num_of_possible_engines;
1167	__u8 flags;
1168	__u8 pad[5];
1169};
1170
1171#define MAX_QMAN_STREAMS_INFO		4
1172#define OPCODE_INFO_MAX_ADDR_SIZE	8
1173/**
1174 * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1175 * @timestamp: timestamp of the undefined opcode error
1176 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1177 *                   entries. In case all streams array entries are
1178 *                   filled with values, it means the execution was in Lower-CP.
1179 * @cq_addr: the address of the current handled command buffer
1180 * @cq_size: the size of the current handled command buffer
1181 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1182 *                       should be equal to 1 in case of undefined opcode
1183 *                       in Upper-CP (specific stream) and equal to 4 incase
1184 *                       of undefined opcode in Lower-CP.
1185 * @engine_id: engine-id that the error occurred on
1186 * @stream_id: the stream id the error occurred on. In case the stream equals to
1187 *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1188 */
1189struct hl_info_undefined_opcode_event {
1190	__s64 timestamp;
1191	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1192	__u64 cq_addr;
1193	__u32 cq_size;
1194	__u32 cb_addr_streams_len;
1195	__u32 engine_id;
1196	__u32 stream_id;
1197};
1198
1199/**
1200 * struct hl_info_hw_err_event - info about HW error
1201 * @timestamp: timestamp of error occurrence
1202 * @event_id: The async event ID (specific to each device type).
1203 * @pad: size padding for u64 granularity.
1204 */
1205struct hl_info_hw_err_event {
1206	__s64 timestamp;
1207	__u16 event_id;
1208	__u16 pad[3];
1209};
1210
1211/* FW error definition for event_type in struct hl_info_fw_err_event */
1212enum hl_info_fw_err_type {
1213	HL_INFO_FW_HEARTBEAT_ERR,
1214	HL_INFO_FW_REPORTED_ERR,
1215};
1216
1217/**
1218 * struct hl_info_fw_err_event - info about FW error
1219 * @timestamp: time-stamp of error occurrence
1220 * @err_type: The type of event as defined in hl_info_fw_err_type.
1221 * @event_id: The async event ID (specific to each device type, applicable only when event type is
1222 *             HL_INFO_FW_REPORTED_ERR).
1223 * @pad: size padding for u64 granularity.
1224 */
1225struct hl_info_fw_err_event {
1226	__s64 timestamp;
1227	__u16 err_type;
1228	__u16 event_id;
1229	__u32 pad;
1230};
1231
1232/**
1233 * struct hl_info_engine_err_event - engine error info
1234 * @timestamp: time-stamp of error occurrence
1235 * @engine_id: engine id who reported the error.
1236 * @error_count: Amount of errors reported.
1237 * @pad: size padding for u64 granularity.
1238 */
1239struct hl_info_engine_err_event {
1240	__s64 timestamp;
1241	__u16 engine_id;
1242	__u16 error_count;
1243	__u32 pad;
1244};
1245
1246/**
1247 * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1248 * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1249 *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1250 */
1251struct hl_info_dev_memalloc_page_sizes {
1252	__u64 page_order_bitmask;
1253};
1254
1255#define SEC_PCR_DATA_BUF_SZ	256
1256#define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1257#define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1258#define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1259#define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1260#define SEC_DEV_INFO_BUF_SZ	5120
1261
1262/*
1263 * struct hl_info_sec_attest - attestation report of the boot
1264 * @nonce: number only used once. random number provided by host. this also passed to the quote
1265 *         command as a qualifying data.
1266 * @pcr_quote_len: length of the attestation quote data (bytes)
1267 * @pub_data_len: length of the public data (bytes)
1268 * @certificate_len: length of the certificate (bytes)
1269 * @pcr_num_reg: number of PCR registers in the pcr_data array
1270 * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1271 * @quote_sig_len: length of the attestation report signature (bytes)
1272 * @pcr_data: raw values of the PCR registers
1273 * @pcr_quote: attestation report data structure
1274 * @quote_sig: signature structure of the attestation report
1275 * @public_data: public key for the signed attestation
1276 *		 (outPublic + name + qualifiedName)
1277 * @certificate: certificate for the attestation signing key
1278 */
1279struct hl_info_sec_attest {
1280	__u32 nonce;
1281	__u16 pcr_quote_len;
1282	__u16 pub_data_len;
1283	__u16 certificate_len;
1284	__u8 pcr_num_reg;
1285	__u8 pcr_reg_len;
1286	__u8 quote_sig_len;
1287	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1288	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1289	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1290	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1291	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1292	__u8 pad0[2];
1293};
1294
1295/*
1296 * struct hl_info_signed - device information signed by a secured device.
1297 * @nonce: number only used once. random number provided by host. this also passed to the quote
1298 *         command as a qualifying data.
1299 * @pub_data_len: length of the public data (bytes)
1300 * @certificate_len: length of the certificate (bytes)
1301 * @info_sig_len: length of the attestation signature (bytes)
1302 * @public_data: public key info signed info data (outPublic + name + qualifiedName)
1303 * @certificate: certificate for the signing key
1304 * @info_sig: signature of the info + nonce data.
1305 * @dev_info_len: length of device info (bytes)
1306 * @dev_info: device info as byte array.
1307 */
1308struct hl_info_signed {
1309	__u32 nonce;
1310	__u16 pub_data_len;
1311	__u16 certificate_len;
1312	__u8 info_sig_len;
1313	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1314	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1315	__u8 info_sig[SEC_SIGNATURE_BUF_SZ];
1316	__u16 dev_info_len;
1317	__u8 dev_info[SEC_DEV_INFO_BUF_SZ];
1318	__u8 pad[2];
1319};
1320
1321/**
1322 * struct hl_page_fault_info - page fault information.
1323 * @timestamp: timestamp of page fault.
1324 * @addr: address which accessing it caused page fault.
1325 * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1326 */
1327struct hl_page_fault_info {
1328	__s64 timestamp;
1329	__u64 addr;
1330	__u16 engine_id;
1331	__u8 pad[6];
1332};
1333
1334/**
1335 * struct hl_user_mapping - user mapping information.
1336 * @dev_va: device virtual address.
1337 * @size: virtual address mapping size.
1338 */
1339struct hl_user_mapping {
1340	__u64 dev_va;
1341	__u64 size;
1342};
1343
1344enum gaudi_dcores {
1345	HL_GAUDI_WS_DCORE,
1346	HL_GAUDI_WN_DCORE,
1347	HL_GAUDI_EN_DCORE,
1348	HL_GAUDI_ES_DCORE
1349};
1350
1351/**
1352 * struct hl_info_args - Main structure to retrieve device related information.
1353 * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1354 *                  mentioned in @op.
1355 * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1356 *               limits how many bytes the kernel can write. For hw_events array, the size should be
1357 *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1358 * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1359 * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1360 * @ctx_id: Context ID of the user. Currently not in use.
1361 * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1362 *             resolution. Currently not in use.
1363 * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1364 * @eventfd: event file descriptor for event notifications.
1365 * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1366 *                           driver. It is possible for the user to allocate buffer larger than
1367 *                           needed, hence updating this variable so user will know the exact amount
1368 *                           of bytes copied by the kernel to the buffer.
1369 * @sec_attest_nonce: Nonce number used for attestation report.
1370 * @array_size: Number of array members copied to user buffer.
1371 *              Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1372 * @fw_sub_opcode: generic requests sub opcodes.
1373 * @pad: Padding to 64 bit.
1374 */
1375struct hl_info_args {
1376	__u64 return_pointer;
1377	__u32 return_size;
1378	__u32 op;
1379
1380	union {
1381		__u32 dcore_id;
1382		__u32 ctx_id;
1383		__u32 period_ms;
1384		__u32 pll_index;
1385		__u32 eventfd;
1386		__u32 user_buffer_actual_size;
1387		__u32 sec_attest_nonce;
1388		__u32 array_size;
1389		__u32 fw_sub_opcode;
1390	};
1391
1392	__u32 pad;
1393};
1394
1395/* Opcode to create a new command buffer */
1396#define HL_CB_OP_CREATE		0
1397/* Opcode to destroy previously created command buffer */
1398#define HL_CB_OP_DESTROY	1
1399/* Opcode to retrieve information about a command buffer */
1400#define HL_CB_OP_INFO		2
1401
1402/* 2MB minus 32 bytes for 2xMSG_PROT */
1403#define HL_MAX_CB_SIZE		(0x200000 - 32)
1404
1405/* Indicates whether the command buffer should be mapped to the device's MMU */
1406#define HL_CB_FLAGS_MAP			0x1
1407
1408/* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1409#define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1410
1411struct hl_cb_in {
1412	/* Handle of CB or 0 if we want to create one */
1413	__u64 cb_handle;
1414	/* HL_CB_OP_* */
1415	__u32 op;
1416
1417	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1418	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1419	 */
1420	__u32 cb_size;
1421
1422	/* Context ID - Currently not in use */
1423	__u32 ctx_id;
1424	/* HL_CB_FLAGS_* */
1425	__u32 flags;
1426};
1427
1428struct hl_cb_out {
1429	union {
1430		/* Handle of CB */
1431		__u64 cb_handle;
1432
1433		union {
1434			/* Information about CB */
1435			struct {
1436				/* Usage count of CB */
1437				__u32 usage_cnt;
1438				__u32 pad;
1439			};
1440
1441			/* CB mapped address to device MMU */
1442			__u64 device_va;
1443		};
1444	};
1445};
1446
1447union hl_cb_args {
1448	struct hl_cb_in in;
1449	struct hl_cb_out out;
1450};
1451
1452/* HL_CS_CHUNK_FLAGS_ values
1453 *
1454 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1455 *      Indicates if the CB was allocated and mapped by userspace
1456 *      (relevant to Gaudi2 and later). User allocated CB is a command buffer,
1457 *      allocated by the user, via malloc (or similar). After allocating the
1458 *      CB, the user invokes - “memory ioctl” to map the user memory into a
1459 *      device virtual address. The user provides this address via the
1460 *      cb_handle field. The interface provides the ability to create a
1461 *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1462 *      increases the PCI-DMA queues throughput. This CB allocation method
1463 *      also reduces the use of Linux DMA-able memory pool. Which are limited
1464 *      and used by other Linux sub-systems.
1465 */
1466#define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1467
1468/*
1469 * This structure size must always be fixed to 64-bytes for backward
1470 * compatibility
1471 */
1472struct hl_cs_chunk {
1473	union {
1474		/* Goya/Gaudi:
1475		 * For external queue, this represents a Handle of CB on the
1476		 * Host.
1477		 * For internal queue in Goya, this represents an SRAM or
1478		 * a DRAM address of the internal CB. In Gaudi, this might also
1479		 * represent a mapped host address of the CB.
1480		 *
1481		 * Gaudi2 onwards:
1482		 * For H/W queue, this represents either a Handle of CB on the
1483		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1484		 *
1485		 * A mapped host address is in the device address space, after
1486		 * a host address was mapped by the device MMU.
1487		 */
1488		__u64 cb_handle;
1489
1490		/* Relevant only when HL_CS_FLAGS_WAIT or
1491		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1492		 * This holds address of array of u64 values that contain
1493		 * signal CS sequence numbers. The wait described by
1494		 * this job will listen on all those signals
1495		 * (wait event per signal)
1496		 */
1497		__u64 signal_seq_arr;
1498
1499		/*
1500		 * Relevant only when HL_CS_FLAGS_WAIT or
1501		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1502		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1503		 * This is the CS sequence which has the encapsulated signals.
1504		 */
1505		__u64 encaps_signal_seq;
1506	};
1507
1508	/* Index of queue to put the CB on */
1509	__u32 queue_index;
1510
1511	union {
1512		/*
1513		 * Size of command buffer with valid packets
1514		 * Can be smaller then actual CB size
1515		 */
1516		__u32 cb_size;
1517
1518		/* Relevant only when HL_CS_FLAGS_WAIT or
1519		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1520		 * Number of entries in signal_seq_arr
1521		 */
1522		__u32 num_signal_seq_arr;
1523
1524		/* Relevant only when HL_CS_FLAGS_WAIT or
1525		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1526		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1527		 * This set the signals range that the user want to wait for
1528		 * out of the whole reserved signals range.
1529		 * e.g if the signals range is 20, and user don't want
1530		 * to wait for signal 8, so he set this offset to 7, then
1531		 * he call the API again with 9 and so on till 20.
1532		 */
1533		__u32 encaps_signal_offset;
1534	};
1535
1536	/* HL_CS_CHUNK_FLAGS_* */
1537	__u32 cs_chunk_flags;
1538
1539	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1540	 * This holds the collective engine ID. The wait described by this job
1541	 * will sync with this engine and with all NICs before completion.
1542	 */
1543	__u32 collective_engine_id;
1544
1545	/* Align structure to 64 bytes */
1546	__u32 pad[10];
1547};
1548
1549/* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1550#define HL_CS_FLAGS_FORCE_RESTORE		0x1
1551#define HL_CS_FLAGS_SIGNAL			0x2
1552#define HL_CS_FLAGS_WAIT			0x4
1553#define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1554
1555#define HL_CS_FLAGS_TIMESTAMP			0x20
1556#define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1557#define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1558#define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1559#define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1560#define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1561
1562/*
1563 * The encapsulated signals CS is merged into the existing CS ioctls.
1564 * In order to use this feature need to follow the below procedure:
1565 * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1566 *    the output of this API will be the SOB offset from CFG_BASE.
1567 *    this address will be used to patch CB cmds to do the signaling for this
1568 *    SOB by incrementing it's value.
1569 *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1570 *    CS type, note that this might fail if out-of-sync happened to the SOB
1571 *    value, in case other signaling request to the same SOB occurred between
1572 *    reserve-unreserve calls.
1573 * 2. Use the staged CS to do the encapsulated signaling jobs.
1574 *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1575 *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1576 *    field. This offset allows app to wait on part of the reserved signals.
1577 * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1578 *    to wait for the encapsulated signals.
1579 */
1580#define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1581#define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1582#define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1583
1584/*
1585 * The engine cores CS is merged into the existing CS ioctls.
1586 * Use it to control the engine cores mode.
1587 */
1588#define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1589
1590/*
1591 * The flush HBW PCI writes is merged into the existing CS ioctls.
1592 * Used to flush all HBW PCI writes.
1593 * This is a blocking operation and for this reason the user shall not use
1594 * the return sequence number (which will be invalid anyway)
1595 */
1596#define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES	0x8000
1597
1598/*
1599 * The engines CS is merged into the existing CS ioctls.
1600 * Use it to control engines modes.
1601 */
1602#define HL_CS_FLAGS_ENGINES_COMMAND		0x10000
1603
1604#define HL_CS_STATUS_SUCCESS		0
1605
1606#define HL_MAX_JOBS_PER_CS		512
1607
1608/*
1609 * enum hl_engine_command - engine command
1610 *
1611 * @HL_ENGINE_CORE_HALT: engine core halt
1612 * @HL_ENGINE_CORE_RUN: engine core run
1613 * @HL_ENGINE_STALL: user engine/s stall
1614 * @HL_ENGINE_RESUME: user engine/s resume
1615 */
1616enum hl_engine_command {
1617	HL_ENGINE_CORE_HALT = 1,
1618	HL_ENGINE_CORE_RUN = 2,
1619	HL_ENGINE_STALL = 3,
1620	HL_ENGINE_RESUME = 4,
1621	HL_ENGINE_COMMAND_MAX
1622};
1623
1624struct hl_cs_in {
1625
1626	union {
1627		struct {
1628			/* this holds address of array of hl_cs_chunk for restore phase */
1629			__u64 chunks_restore;
1630
1631			/* holds address of array of hl_cs_chunk for execution phase */
1632			__u64 chunks_execute;
1633		};
1634
1635		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1636		struct {
1637			/* this holds address of array of uint32 for engine_cores */
1638			__u64 engine_cores;
1639
1640			/* number of engine cores in engine_cores array */
1641			__u32 num_engine_cores;
1642
1643			/* the core command to be sent towards engine cores */
1644			__u32 core_command;
1645		};
1646
1647		/* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1648		struct {
1649			/* this holds address of array of uint32 for engines */
1650			__u64 engines;
1651
1652			/* number of engines in engines array */
1653			__u32 num_engines;
1654
1655			/* the engine command to be sent towards engines */
1656			__u32 engine_command;
1657		};
1658	};
1659
1660	union {
1661		/*
1662		 * Sequence number of a staged submission CS
1663		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1664		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1665		 */
1666		__u64 seq;
1667
1668		/*
1669		 * Encapsulated signals handle id
1670		 * Valid for two flows:
1671		 * 1. CS with encapsulated signals:
1672		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1673		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1674		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1675		 * 2. unreserve signals:
1676		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1677		 */
1678		__u32 encaps_sig_handle_id;
1679
1680		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1681		struct {
1682			/* Encapsulated signals number */
1683			__u32 encaps_signals_count;
1684
1685			/* Encapsulated signals queue index (stream) */
1686			__u32 encaps_signals_q_idx;
1687		};
1688	};
1689
1690	/* Number of chunks in restore phase array. Maximum number is
1691	 * HL_MAX_JOBS_PER_CS
1692	 */
1693	__u32 num_chunks_restore;
1694
1695	/* Number of chunks in execution array. Maximum number is
1696	 * HL_MAX_JOBS_PER_CS
1697	 */
1698	__u32 num_chunks_execute;
1699
1700	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1701	 * is set
1702	 */
1703	__u32 timeout;
1704
1705	/* HL_CS_FLAGS_* */
1706	__u32 cs_flags;
1707
1708	/* Context ID - Currently not in use */
1709	__u32 ctx_id;
1710	__u8 pad[4];
1711};
1712
1713struct hl_cs_out {
1714	union {
1715		/*
1716		 * seq holds the sequence number of the CS to pass to wait
1717		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1718		 */
1719		__u64 seq;
1720
1721		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1722		struct {
1723			/* This is the reserved signal handle id */
1724			__u32 handle_id;
1725
1726			/* This is the signals count */
1727			__u32 count;
1728		};
1729	};
1730
1731	/* HL_CS_STATUS */
1732	__u32 status;
1733
1734	/*
1735	 * SOB base address offset
1736	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1737	 */
1738	__u32 sob_base_addr_offset;
1739
1740	/*
1741	 * Count of completed signals in SOB before current signal submission.
1742	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1743	 * or HL_CS_FLAGS_SIGNAL is set
1744	 */
1745	__u16 sob_count_before_submission;
1746	__u16 pad[3];
1747};
1748
1749union hl_cs_args {
1750	struct hl_cs_in in;
1751	struct hl_cs_out out;
1752};
1753
1754#define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1755#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1756#define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1757#define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1758#define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1759#define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1760#define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1761
1762#define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1763
1764struct hl_wait_cs_in {
1765	union {
1766		struct {
1767			/*
1768			 * In case of wait_cs holds the CS sequence number.
1769			 * In case of wait for multi CS hold a user pointer to
1770			 * an array of CS sequence numbers
1771			 */
1772			__u64 seq;
1773			/* Absolute timeout to wait for command submission
1774			 * in microseconds
1775			 */
1776			__u64 timeout_us;
1777		};
1778
1779		struct {
1780			union {
1781				/* User address for completion comparison.
1782				 * upon interrupt, driver will compare the value pointed
1783				 * by this address with the supplied target value.
1784				 * in order not to perform any comparison, set address
1785				 * to all 1s.
1786				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1787				 */
1788				__u64 addr;
1789
1790				/* cq_counters_handle to a kernel mapped cb which contains
1791				 * cq counters.
1792				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1793				 */
1794				__u64 cq_counters_handle;
1795			};
1796
1797			/* Target value for completion comparison */
1798			__u64 target;
1799		};
1800	};
1801
1802	/* Context ID - Currently not in use */
1803	__u32 ctx_id;
1804
1805	/* HL_WAIT_CS_FLAGS_*
1806	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1807	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1808	 *
1809	 * in order to wait for any CQ interrupt, set interrupt value to
1810	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1811	 *
1812	 * in order to wait for any decoder interrupt, set interrupt value to
1813	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1814	 */
1815	__u32 flags;
1816
1817	union {
1818		struct {
1819			/* Multi CS API info- valid entries in multi-CS array */
1820			__u8 seq_arr_len;
1821			__u8 pad[7];
1822		};
1823
1824		/* Absolute timeout to wait for an interrupt in microseconds.
1825		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1826		 */
1827		__u64 interrupt_timeout_us;
1828	};
1829
1830	/*
1831	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1832	 * upon interrupt, driver will compare the value pointed
1833	 * by this address (cq_counters_handle + cq_counters_offset)
1834	 * with the supplied target value.
1835	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1836	 */
1837	__u64 cq_counters_offset;
1838
1839	/*
1840	 * Timestamp_handle timestamps buffer handle.
1841	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1842	 */
1843	__u64 timestamp_handle;
1844
1845	/*
1846	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1847	 * upon interrupt, if the cq reached the target value then driver will write
1848	 * timestamp to this offset.
1849	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1850	 */
1851	__u64 timestamp_offset;
1852};
1853
1854#define HL_WAIT_CS_STATUS_COMPLETED	0
1855#define HL_WAIT_CS_STATUS_BUSY		1
1856#define HL_WAIT_CS_STATUS_TIMEDOUT	2
1857#define HL_WAIT_CS_STATUS_ABORTED	3
1858
1859#define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1860#define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1861
1862struct hl_wait_cs_out {
1863	/* HL_WAIT_CS_STATUS_* */
1864	__u32 status;
1865	/* HL_WAIT_CS_STATUS_FLAG* */
1866	__u32 flags;
1867	/*
1868	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1869	 * for wait_cs: timestamp of CS completion
1870	 * for wait_multi_cs: timestamp of FIRST CS completion
1871	 */
1872	__s64 timestamp_nsec;
1873	/* multi CS completion bitmap */
1874	__u32 cs_completion_map;
1875	__u32 pad;
1876};
1877
1878union hl_wait_cs_args {
1879	struct hl_wait_cs_in in;
1880	struct hl_wait_cs_out out;
1881};
1882
1883/* Opcode to allocate device memory */
1884#define HL_MEM_OP_ALLOC			0
1885
1886/* Opcode to free previously allocated device memory */
1887#define HL_MEM_OP_FREE			1
1888
1889/* Opcode to map host and device memory */
1890#define HL_MEM_OP_MAP			2
1891
1892/* Opcode to unmap previously mapped host and device memory */
1893#define HL_MEM_OP_UNMAP			3
1894
1895/* Opcode to map a hw block */
1896#define HL_MEM_OP_MAP_BLOCK		4
1897
1898/* Opcode to create DMA-BUF object for an existing device memory allocation
1899 * and to export an FD of that DMA-BUF back to the caller
1900 */
1901#define HL_MEM_OP_EXPORT_DMABUF_FD	5
1902
1903/* Opcode to create timestamps pool for user interrupts registration support
1904 * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1905 * will get handle to it for mmap, and another internal buffer used by the
1906 * driver for registration management
1907 * The memory will be freed when the user closes the file descriptor(ctx close)
1908 */
1909#define HL_MEM_OP_TS_ALLOC		6
1910
1911/* Memory flags */
1912#define HL_MEM_CONTIGUOUS	0x1
1913#define HL_MEM_SHARED		0x2
1914#define HL_MEM_USERPTR		0x4
1915#define HL_MEM_FORCE_HINT	0x8
1916#define HL_MEM_PREFETCH		0x40
1917
1918/**
1919 * structure hl_mem_in - structure that handle input args for memory IOCTL
1920 * @union arg: union of structures to be used based on the input operation
1921 * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1922 * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1923 *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1924 * @ctx_id: context ID - currently not in use.
1925 * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1926 */
1927struct hl_mem_in {
1928	union {
1929		/**
1930		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1931		 * @mem_size: memory size to allocate
1932		 * @page_size: page size to use on allocation. when the value is 0 the default page
1933		 *             size will be taken.
1934		 */
1935		struct {
1936			__u64 mem_size;
1937			__u64 page_size;
1938		} alloc;
1939
1940		/**
1941		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1942		 * @handle: handle returned from HL_MEM_OP_ALLOC
1943		 */
1944		struct {
1945			__u64 handle;
1946		} free;
1947
1948		/**
1949		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1950		 * @hint_addr: requested virtual address of mapped memory.
1951		 *             the driver will try to map the requested region to this hint
1952		 *             address, as long as the address is valid and not already mapped.
1953		 *             the user should check the returned address of the IOCTL to make
1954		 *             sure he got the hint address.
1955		 *             passing 0 here means that the driver will choose the address itself.
1956		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1957		 */
1958		struct {
1959			__u64 hint_addr;
1960			__u64 handle;
1961		} map_device;
1962
1963		/**
1964		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1965		 * @host_virt_addr: address of allocated host memory.
1966		 * @hint_addr: requested virtual address of mapped memory.
1967		 *             the driver will try to map the requested region to this hint
1968		 *             address, as long as the address is valid and not already mapped.
1969		 *             the user should check the returned address of the IOCTL to make
1970		 *             sure he got the hint address.
1971		 *             passing 0 here means that the driver will choose the address itself.
1972		 * @size: size of allocated host memory.
1973		 */
1974		struct {
1975			__u64 host_virt_addr;
1976			__u64 hint_addr;
1977			__u64 mem_size;
1978		} map_host;
1979
1980		/**
1981		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1982		 * @block_addr:HW block address to map, a handle and size will be returned
1983		 *             to the user and will be used to mmap the relevant block.
1984		 *             only addresses from configuration space are allowed.
1985		 */
1986		struct {
1987			__u64 block_addr;
1988		} map_block;
1989
1990		/**
1991		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1992		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1993		 */
1994		struct {
1995			__u64 device_virt_addr;
1996		} unmap;
1997
1998		/**
1999		 * structure for exporting DMABUF object (used with
2000		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
2001		 * @addr: for Gaudi1, the driver expects a physical address
2002		 *        inside the device's DRAM. this is because in Gaudi1
2003		 *        we don't have MMU that covers the device's DRAM.
2004		 *        for all other ASICs, the driver expects a device
2005		 *        virtual address that represents the start address of
2006		 *        a mapped DRAM memory area inside the device.
2007		 *        the address must be the same as was received from the
2008		 *        driver during a previous HL_MEM_OP_MAP operation.
2009		 * @mem_size: size of memory to export.
2010		 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
2011		 *          the driver expects an offset inside of the memory area
2012		 *          describe by addr. the offset represents the start
2013		 *          address of that the exported dma-buf object describes.
2014		 */
2015		struct {
2016			__u64 addr;
2017			__u64 mem_size;
2018			__u64 offset;
2019		} export_dmabuf_fd;
2020	};
2021
2022	__u32 op;
2023	__u32 flags;
2024	__u32 ctx_id;
2025	__u32 num_of_elements;
2026};
2027
2028struct hl_mem_out {
2029	union {
2030		/*
2031		 * Used for HL_MEM_OP_MAP as the virtual address that was
2032		 * assigned in the device VA space.
2033		 * A value of 0 means the requested operation failed.
2034		 */
2035		__u64 device_virt_addr;
2036
2037		/*
2038		 * Used in HL_MEM_OP_ALLOC
2039		 * This is the assigned handle for the allocated memory
2040		 */
2041		__u64 handle;
2042
2043		struct {
2044			/*
2045			 * Used in HL_MEM_OP_MAP_BLOCK.
2046			 * This is the assigned handle for the mapped block
2047			 */
2048			__u64 block_handle;
2049
2050			/*
2051			 * Used in HL_MEM_OP_MAP_BLOCK
2052			 * This is the size of the mapped block
2053			 */
2054			__u32 block_size;
2055
2056			__u32 pad;
2057		};
2058
2059		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2060		 * DMA-BUF object that was created to describe a memory
2061		 * allocation on the device's memory space. The FD should be
2062		 * passed to the importer driver
2063		 */
2064		__s32 fd;
2065	};
2066};
2067
2068union hl_mem_args {
2069	struct hl_mem_in in;
2070	struct hl_mem_out out;
2071};
2072
2073#define HL_DEBUG_MAX_AUX_VALUES		10
2074
2075struct hl_debug_params_etr {
2076	/* Address in memory to allocate buffer */
2077	__u64 buffer_address;
2078
2079	/* Size of buffer to allocate */
2080	__u64 buffer_size;
2081
2082	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2083	__u32 sink_mode;
2084	__u32 pad;
2085};
2086
2087struct hl_debug_params_etf {
2088	/* Address in memory to allocate buffer */
2089	__u64 buffer_address;
2090
2091	/* Size of buffer to allocate */
2092	__u64 buffer_size;
2093
2094	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2095	__u32 sink_mode;
2096	__u32 pad;
2097};
2098
2099struct hl_debug_params_stm {
2100	/* Two bit masks for HW event and Stimulus Port */
2101	__u64 he_mask;
2102	__u64 sp_mask;
2103
2104	/* Trace source ID */
2105	__u32 id;
2106
2107	/* Frequency for the timestamp register */
2108	__u32 frequency;
2109};
2110
2111struct hl_debug_params_bmon {
2112	/* Two address ranges that the user can request to filter */
2113	__u64 start_addr0;
2114	__u64 addr_mask0;
2115
2116	__u64 start_addr1;
2117	__u64 addr_mask1;
2118
2119	/* Capture window configuration */
2120	__u32 bw_win;
2121	__u32 win_capture;
2122
2123	/* Trace source ID */
2124	__u32 id;
2125
2126	/* Control register */
2127	__u32 control;
2128
2129	/* Two more address ranges that the user can request to filter */
2130	__u64 start_addr2;
2131	__u64 end_addr2;
2132
2133	__u64 start_addr3;
2134	__u64 end_addr3;
2135};
2136
2137struct hl_debug_params_spmu {
2138	/* Event types selection */
2139	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2140
2141	/* Number of event types selection */
2142	__u32 event_types_num;
2143
2144	/* TRC configuration register values */
2145	__u32 pmtrc_val;
2146	__u32 trc_ctrl_host_val;
2147	__u32 trc_en_host_val;
2148};
2149
2150/* Opcode for ETR component */
2151#define HL_DEBUG_OP_ETR		0
2152/* Opcode for ETF component */
2153#define HL_DEBUG_OP_ETF		1
2154/* Opcode for STM component */
2155#define HL_DEBUG_OP_STM		2
2156/* Opcode for FUNNEL component */
2157#define HL_DEBUG_OP_FUNNEL	3
2158/* Opcode for BMON component */
2159#define HL_DEBUG_OP_BMON	4
2160/* Opcode for SPMU component */
2161#define HL_DEBUG_OP_SPMU	5
2162/* Opcode for timestamp (deprecated) */
2163#define HL_DEBUG_OP_TIMESTAMP	6
2164/* Opcode for setting the device into or out of debug mode. The enable
2165 * variable should be 1 for enabling debug mode and 0 for disabling it
2166 */
2167#define HL_DEBUG_OP_SET_MODE	7
2168
2169struct hl_debug_args {
2170	/*
2171	 * Pointer to user input structure.
2172	 * This field is relevant to specific opcodes.
2173	 */
2174	__u64 input_ptr;
2175	/* Pointer to user output structure */
2176	__u64 output_ptr;
2177	/* Size of user input structure */
2178	__u32 input_size;
2179	/* Size of user output structure */
2180	__u32 output_size;
2181	/* HL_DEBUG_OP_* */
2182	__u32 op;
2183	/*
2184	 * Register index in the component, taken from the debug_regs_index enum
2185	 * in the various ASIC header files
2186	 */
2187	__u32 reg_idx;
2188	/* Enable/disable */
2189	__u32 enable;
2190	/* Context ID - Currently not in use */
2191	__u32 ctx_id;
2192};
2193
2194#define HL_IOCTL_INFO		0x00
2195#define HL_IOCTL_CB		0x01
2196#define HL_IOCTL_CS		0x02
2197#define HL_IOCTL_WAIT_CS	0x03
2198#define HL_IOCTL_MEMORY		0x04
2199#define HL_IOCTL_DEBUG		0x05
2200
2201/*
2202 * Various information operations such as:
2203 * - H/W IP information
2204 * - Current dram usage
2205 *
2206 * The user calls this IOCTL with an opcode that describes the required
2207 * information. The user should supply a pointer to a user-allocated memory
2208 * chunk, which will be filled by the driver with the requested information.
2209 *
2210 * The user supplies the maximum amount of size to copy into the user's memory,
2211 * in order to prevent data corruption in case of differences between the
2212 * definitions of structures in kernel and userspace, e.g. in case of old
2213 * userspace and new kernel driver
2214 */
2215#define DRM_IOCTL_HL_INFO	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args)
2216
2217/*
2218 * Command Buffer
2219 * - Request a Command Buffer
2220 * - Destroy a Command Buffer
2221 *
2222 * The command buffers are memory blocks that reside in DMA-able address
2223 * space and are physically contiguous so they can be accessed by the device
2224 * directly. They are allocated using the coherent DMA API.
2225 *
2226 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2227 * process needs to use that handle to mmap the buffer so it can access them.
2228 *
2229 * In some instances, the device must access the command buffer through the
2230 * device's MMU, and thus its memory should be mapped. In these cases, user can
2231 * indicate the driver that such a mapping is required.
2232 * The resulting device virtual address will be used internally by the driver,
2233 * and won't be returned to user.
2234 *
2235 */
2236#define DRM_IOCTL_HL_CB		DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args)
2237
2238/*
2239 * Command Submission
2240 *
2241 * To submit work to the device, the user need to call this IOCTL with a set
2242 * of JOBS. That set of JOBS constitutes a CS object.
2243 * Each JOB will be enqueued on a specific queue, according to the user's input.
2244 * There can be more then one JOB per queue.
2245 *
2246 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2247 * and a second set is for "execution" phase.
2248 * The JOBS on the "restore" phase are enqueued only after context-switch
2249 * (or if its the first CS for this context). The user can also order the
2250 * driver to run the "restore" phase explicitly
2251 *
2252 * Goya/Gaudi:
2253 * There are two types of queues - external and internal. External queues
2254 * are DMA queues which transfer data from/to the Host. All other queues are
2255 * internal. The driver will get completion notifications from the device only
2256 * on JOBS which are enqueued in the external queues.
2257 *
2258 * Gaudi2 onwards:
2259 * There is a single type of queue for all types of engines, either DMA engines
2260 * for transfers from/to the host or inside the device, or compute engines.
2261 * The driver will get completion notifications from the device for all queues.
2262 *
2263 * For jobs on external queues, the user needs to create command buffers
2264 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2265 * internal queues, the user needs to prepare a "command buffer" with packets
2266 * on either the device SRAM/DRAM or the host, and give the device address of
2267 * that buffer to the CS ioctl.
2268 * For jobs on H/W queues both options of command buffers are valid.
2269 *
2270 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2271 * means it returns immediately after ALL the JOBS were enqueued on their
2272 * relevant queues. Therefore, the user mustn't assume the CS has been completed
2273 * or has even started to execute.
2274 *
2275 * Upon successful enqueue, the IOCTL returns a sequence number which the user
2276 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2277 * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2278 * which can execute AFTER the external JOBS have finished, the driver might
2279 * report that the CS has finished executing BEFORE the internal JOBS have
2280 * actually finished executing.
2281 *
2282 * Even though the sequence number increments per CS, the user can NOT
2283 * automatically assume that if CS with sequence number N finished, then CS
2284 * with sequence number N-1 also finished. The user can make this assumption if
2285 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2286 * queues).
2287 */
2288#define DRM_IOCTL_HL_CS		DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args)
2289
2290/*
2291 * Wait for Command Submission
2292 *
2293 * The user can call this IOCTL with a handle it received from the CS IOCTL
2294 * to wait until the handle's CS has finished executing. The user will wait
2295 * inside the kernel until the CS has finished or until the user-requested
2296 * timeout has expired.
2297 *
2298 * If the timeout value is 0, the driver won't sleep at all. It will check
2299 * the status of the CS and return immediately
2300 *
2301 * The return value of the IOCTL is a standard Linux error code. The possible
2302 * values are:
2303 *
2304 * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2305 *             that the user process received
2306 * ETIMEDOUT - The CS has caused a timeout on the device
2307 * EIO       - The CS was aborted (usually because the device was reset)
2308 * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2309 *
2310 * The driver also returns a custom define in case the IOCTL call returned 0.
2311 * The define can be one of the following:
2312 *
2313 * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2314 * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2315 * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2316 *                                 (ETIMEDOUT)
2317 * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2318 *                                 device was reset (EIO)
2319 */
2320#define DRM_IOCTL_HL_WAIT_CS	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args)
2321
2322/*
2323 * Memory
2324 * - Map host memory to device MMU
2325 * - Unmap host memory from device MMU
2326 *
2327 * This IOCTL allows the user to map host memory to the device MMU
2328 *
2329 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2330 * to allocate the memory in user-space (malloc/new). The driver pins the
2331 * physical pages (up to the allowed limit by the OS), assigns a virtual
2332 * address in the device VA space and initializes the device MMU.
2333 *
2334 * There is an option for the user to specify the requested virtual address.
2335 *
2336 */
2337#define DRM_IOCTL_HL_MEMORY	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args)
2338
2339/*
2340 * Debug
2341 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2342 *
2343 * This IOCTL allows the user to get debug traces from the chip.
2344 *
2345 * Before the user can send configuration requests of the various
2346 * debug/profile engines, it needs to set the device into debug mode.
2347 * This is because the debug/profile infrastructure is shared component in the
2348 * device and we can't allow multiple users to access it at the same time.
2349 *
2350 * Once a user set the device into debug mode, the driver won't allow other
2351 * users to "work" with the device, i.e. open a FD. If there are multiple users
2352 * opened on the device, the driver won't allow any user to debug the device.
2353 *
2354 * For each configuration request, the user needs to provide the register index
2355 * and essential data such as buffer address and size.
2356 *
2357 * Once the user has finished using the debug/profile engines, he should
2358 * set the device into non-debug mode, i.e. disable debug mode.
2359 *
2360 * The driver can decide to "kick out" the user if he abuses this interface.
2361 *
2362 */
2363#define DRM_IOCTL_HL_DEBUG	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args)
2364
2365#define HL_COMMAND_START	(DRM_COMMAND_BASE + HL_IOCTL_INFO)
2366#define HL_COMMAND_END		(DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1)
2367
2368#endif /* HABANALABS_H_ */