Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Asynchronous Compression operations * * Copyright (c) 2016, Intel Corporation * Authors: Weigang Li <weigang.li@intel.com> * Giovanni Cabiddu <giovanni.cabiddu@intel.com> */ #ifndef _CRYPTO_ACOMP_INT_H #define _CRYPTO_ACOMP_INT_H #include <crypto/acompress.h> #include <crypto/algapi.h> /** * struct acomp_alg - asynchronous compression algorithm * * @compress: Function performs a compress operation * @decompress: Function performs a de-compress operation * @dst_free: Frees destination buffer if allocated inside the algorithm * @init: Initialize the cryptographic transformation object. * This function is used to initialize the cryptographic * transformation object. This function is called only once at * the instantiation time, right after the transformation context * was allocated. In case the cryptographic hardware has some * special requirements which need to be handled by software, this * function shall check for the precise requirement of the * transformation and put any software fallbacks in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * * @reqsize: Context size for (de)compression requests * @stat: Statistics for compress algorithm * @base: Common crypto API algorithm data structure * @calg: Cmonn algorithm data structure shared with scomp */ struct acomp_alg { int (*compress)(struct acomp_req *req); int (*decompress)(struct acomp_req *req); void (*dst_free)(struct scatterlist *dst); int (*init)(struct crypto_acomp *tfm); void (*exit)(struct crypto_acomp *tfm); unsigned int reqsize; union { struct COMP_ALG_COMMON; struct comp_alg_common calg; }; }; /* * Transform internal helpers. */ static inline void *acomp_request_ctx(struct acomp_req *req) { return req->__ctx; } static inline void *acomp_tfm_ctx(struct crypto_acomp *tfm) { return tfm->base.__crt_ctx; } static inline void acomp_request_complete(struct acomp_req *req, int err) { crypto_request_complete(&req->base, err); } static inline struct acomp_req *__acomp_request_alloc(struct crypto_acomp *tfm) { struct acomp_req *req; req = kzalloc(sizeof(*req) + crypto_acomp_reqsize(tfm), GFP_KERNEL); if (likely(req)) acomp_request_set_tfm(req, tfm); return req; } static inline void __acomp_request_free(struct acomp_req *req) { kfree_sensitive(req); } /** * crypto_register_acomp() -- Register asynchronous compression algorithm * * Function registers an implementation of an asynchronous * compression algorithm * * @alg: algorithm definition * * Return: zero on success; error code in case of error */ int crypto_register_acomp(struct acomp_alg *alg); /** * crypto_unregister_acomp() -- Unregister asynchronous compression algorithm * * Function unregisters an implementation of an asynchronous * compression algorithm * * @alg: algorithm definition */ void crypto_unregister_acomp(struct acomp_alg *alg); int crypto_register_acomps(struct acomp_alg *algs, int count); void crypto_unregister_acomps(struct acomp_alg *algs, int count); #endif |