Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong <djwong@kernel.org> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" #include "scrub/scrub.h" #include "scrub/trace.h" #include <linux/shmem_fs.h> /* * Swappable Temporary Memory * ========================== * * Online checking sometimes needs to be able to stage a large amount of data * in memory. This information might not fit in the available memory and it * doesn't all need to be accessible at all times. In other words, we want an * indexed data buffer to store data that can be paged out. * * When CONFIG_TMPFS=y, shmemfs is enough of a filesystem to meet those * requirements. Therefore, the xfile mechanism uses an unlinked shmem file to * store our staging data. This file is not installed in the file descriptor * table so that user programs cannot access the data, which means that the * xfile must be freed with xfile_destroy. * * xfiles assume that the caller will handle all required concurrency * management; standard vfs locks (freezer and inode) are not taken. Reads * and writes are satisfied directly from the page cache. */ /* * xfiles must not be exposed to userspace and require upper layers to * coordinate access to the one handle returned by the constructor, so * establish a separate lock class for xfiles to avoid confusing lockdep. */ static struct lock_class_key xfile_i_mutex_key; /* * Create an xfile of the given size. The description will be used in the * trace output. */ int xfile_create( const char *description, loff_t isize, struct xfile **xfilep) { struct inode *inode; struct xfile *xf; int error; xf = kmalloc(sizeof(struct xfile), XCHK_GFP_FLAGS); if (!xf) return -ENOMEM; xf->file = shmem_kernel_file_setup(description, isize, VM_NORESERVE); if (IS_ERR(xf->file)) { error = PTR_ERR(xf->file); goto out_xfile; } inode = file_inode(xf->file); lockdep_set_class(&inode->i_rwsem, &xfile_i_mutex_key); /* * We don't want to bother with kmapping data during repair, so don't * allow highmem pages to back this mapping. */ mapping_set_gfp_mask(inode->i_mapping, GFP_KERNEL); trace_xfile_create(xf); *xfilep = xf; return 0; out_xfile: kfree(xf); return error; } /* Close the file and release all resources. */ void xfile_destroy( struct xfile *xf) { struct inode *inode = file_inode(xf->file); trace_xfile_destroy(xf); lockdep_set_class(&inode->i_rwsem, &inode->i_sb->s_type->i_mutex_key); fput(xf->file); kfree(xf); } /* * Load an object. Since we're treating this file as "memory", any error or * short IO is treated as a failure to allocate memory. */ int xfile_load( struct xfile *xf, void *buf, size_t count, loff_t pos) { struct inode *inode = file_inode(xf->file); unsigned int pflags; if (count > MAX_RW_COUNT) return -ENOMEM; if (inode->i_sb->s_maxbytes - pos < count) return -ENOMEM; trace_xfile_load(xf, pos, count); pflags = memalloc_nofs_save(); while (count > 0) { struct folio *folio; unsigned int len; unsigned int offset; if (shmem_get_folio(inode, pos >> PAGE_SHIFT, &folio, SGP_READ) < 0) break; if (!folio) { /* * No data stored at this offset, just zero the output * buffer until the next page boundary. */ len = min_t(ssize_t, count, PAGE_SIZE - offset_in_page(pos)); memset(buf, 0, len); } else { if (filemap_check_wb_err(inode->i_mapping, 0)) { folio_unlock(folio); folio_put(folio); break; } offset = offset_in_folio(folio, pos); len = min_t(ssize_t, count, folio_size(folio) - offset); memcpy(buf, folio_address(folio) + offset, len); folio_unlock(folio); folio_put(folio); } count -= len; pos += len; buf += len; } memalloc_nofs_restore(pflags); if (count) return -ENOMEM; return 0; } /* * Store an object. Since we're treating this file as "memory", any error or * short IO is treated as a failure to allocate memory. */ int xfile_store( struct xfile *xf, const void *buf, size_t count, loff_t pos) { struct inode *inode = file_inode(xf->file); unsigned int pflags; if (count > MAX_RW_COUNT) return -ENOMEM; if (inode->i_sb->s_maxbytes - pos < count) return -ENOMEM; trace_xfile_store(xf, pos, count); /* * Increase the file size first so that shmem_get_folio(..., SGP_CACHE), * actually allocates a folio instead of erroring out. */ if (pos + count > i_size_read(inode)) i_size_write(inode, pos + count); pflags = memalloc_nofs_save(); while (count > 0) { struct folio *folio; unsigned int len; unsigned int offset; if (shmem_get_folio(inode, pos >> PAGE_SHIFT, &folio, SGP_CACHE) < 0) break; if (filemap_check_wb_err(inode->i_mapping, 0)) { folio_unlock(folio); folio_put(folio); break; } offset = offset_in_folio(folio, pos); len = min_t(ssize_t, count, folio_size(folio) - offset); memcpy(folio_address(folio) + offset, buf, len); folio_mark_dirty(folio); folio_unlock(folio); folio_put(folio); count -= len; pos += len; buf += len; } memalloc_nofs_restore(pflags); if (count) return -ENOMEM; return 0; } /* Find the next written area in the xfile data for a given offset. */ loff_t xfile_seek_data( struct xfile *xf, loff_t pos) { loff_t ret; ret = vfs_llseek(xf->file, pos, SEEK_DATA); trace_xfile_seek_data(xf, pos, ret); return ret; } /* * Grab the (locked) folio for a memory object. The object cannot span a folio * boundary. Returns the locked folio if successful, NULL if there was no * folio or it didn't cover the range requested, or an ERR_PTR on failure. */ struct folio * xfile_get_folio( struct xfile *xf, loff_t pos, size_t len, unsigned int flags) { struct inode *inode = file_inode(xf->file); struct folio *folio = NULL; unsigned int pflags; int error; if (inode->i_sb->s_maxbytes - pos < len) return ERR_PTR(-ENOMEM); trace_xfile_get_folio(xf, pos, len); /* * Increase the file size first so that shmem_get_folio(..., SGP_CACHE), * actually allocates a folio instead of erroring out. */ if ((flags & XFILE_ALLOC) && pos + len > i_size_read(inode)) i_size_write(inode, pos + len); pflags = memalloc_nofs_save(); error = shmem_get_folio(inode, pos >> PAGE_SHIFT, &folio, (flags & XFILE_ALLOC) ? SGP_CACHE : SGP_READ); memalloc_nofs_restore(pflags); if (error) return ERR_PTR(error); if (!folio) return NULL; if (len > folio_size(folio) - offset_in_folio(folio, pos)) { folio_unlock(folio); folio_put(folio); return NULL; } if (filemap_check_wb_err(inode->i_mapping, 0)) { folio_unlock(folio); folio_put(folio); return ERR_PTR(-EIO); } /* * Mark the folio dirty so that it won't be reclaimed once we drop the * (potentially last) reference in xfile_put_folio. */ if (flags & XFILE_ALLOC) folio_set_dirty(folio); return folio; } /* * Release the (locked) folio for a memory object. */ void xfile_put_folio( struct xfile *xf, struct folio *folio) { trace_xfile_put_folio(xf, folio_pos(folio), folio_size(folio)); folio_unlock(folio); folio_put(folio); } |