Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2021-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong <djwong@kernel.org> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" #include "scrub/scrub.h" #include "scrub/trace.h" /* * Large Arrays of Fixed-Size Records * ================================== * * This memory array uses an xfile (which itself is a shmem file) to store * large numbers of fixed-size records in memory that can be paged out. This * puts less stress on the memory reclaim algorithms during an online repair * because we don't have to pin so much memory. However, array access is less * direct than would be in a regular memory array. Access to the array is * performed via indexed load and store methods, and an append method is * provided for convenience. Array elements can be unset, which sets them to * all zeroes. Unset entries are skipped during iteration, though direct loads * will return a zeroed buffer. Callers are responsible for concurrency * control. */ /* * Pointer to scratch space. Because we can't access the xfile data directly, * we allocate a small amount of memory on the end of the xfarray structure to * buffer array items when we need space to store values temporarily. */ static inline void *xfarray_scratch(struct xfarray *array) { return (array + 1); } /* Compute array index given an xfile offset. */ static xfarray_idx_t xfarray_idx( struct xfarray *array, loff_t pos) { if (array->obj_size_log >= 0) return (xfarray_idx_t)pos >> array->obj_size_log; return div_u64((xfarray_idx_t)pos, array->obj_size); } /* Compute xfile offset of array element. */ static inline loff_t xfarray_pos(struct xfarray *array, xfarray_idx_t idx) { if (array->obj_size_log >= 0) return idx << array->obj_size_log; return idx * array->obj_size; } /* * Initialize a big memory array. Array records cannot be larger than a * page, and the array cannot span more bytes than the page cache supports. * If @required_capacity is nonzero, the maximum array size will be set to this * quantity and the array creation will fail if the underlying storage cannot * support that many records. */ int xfarray_create( const char *description, unsigned long long required_capacity, size_t obj_size, struct xfarray **arrayp) { struct xfarray *array; struct xfile *xfile; int error; ASSERT(obj_size < PAGE_SIZE); error = xfile_create(description, 0, &xfile); if (error) return error; error = -ENOMEM; array = kzalloc(sizeof(struct xfarray) + obj_size, XCHK_GFP_FLAGS); if (!array) goto out_xfile; array->xfile = xfile; array->obj_size = obj_size; if (is_power_of_2(obj_size)) array->obj_size_log = ilog2(obj_size); else array->obj_size_log = -1; array->max_nr = xfarray_idx(array, MAX_LFS_FILESIZE); trace_xfarray_create(array, required_capacity); if (required_capacity > 0) { if (array->max_nr < required_capacity) { error = -ENOMEM; goto out_xfarray; } array->max_nr = required_capacity; } *arrayp = array; return 0; out_xfarray: kfree(array); out_xfile: xfile_destroy(xfile); return error; } /* Destroy the array. */ void xfarray_destroy( struct xfarray *array) { xfile_destroy(array->xfile); kfree(array); } /* Load an element from the array. */ int xfarray_load( struct xfarray *array, xfarray_idx_t idx, void *ptr) { if (idx >= array->nr) return -ENODATA; return xfile_load(array->xfile, ptr, array->obj_size, xfarray_pos(array, idx)); } /* Is this array element potentially unset? */ static inline bool xfarray_is_unset( struct xfarray *array, loff_t pos) { void *temp = xfarray_scratch(array); int error; if (array->unset_slots == 0) return false; error = xfile_load(array->xfile, temp, array->obj_size, pos); if (!error && xfarray_element_is_null(array, temp)) return true; return false; } /* * Unset an array element. If @idx is the last element in the array, the * array will be truncated. Otherwise, the entry will be zeroed. */ int xfarray_unset( struct xfarray *array, xfarray_idx_t idx) { void *temp = xfarray_scratch(array); loff_t pos = xfarray_pos(array, idx); int error; if (idx >= array->nr) return -ENODATA; if (idx == array->nr - 1) { array->nr--; return 0; } if (xfarray_is_unset(array, pos)) return 0; memset(temp, 0, array->obj_size); error = xfile_store(array->xfile, temp, array->obj_size, pos); if (error) return error; array->unset_slots++; return 0; } /* * Store an element in the array. The element must not be completely zeroed, * because those are considered unset sparse elements. */ int xfarray_store( struct xfarray *array, xfarray_idx_t idx, const void *ptr) { int ret; if (idx >= array->max_nr) return -EFBIG; ASSERT(!xfarray_element_is_null(array, ptr)); ret = xfile_store(array->xfile, ptr, array->obj_size, xfarray_pos(array, idx)); if (ret) return ret; array->nr = max(array->nr, idx + 1); return 0; } /* Is this array element NULL? */ bool xfarray_element_is_null( struct xfarray *array, const void *ptr) { return !memchr_inv(ptr, 0, array->obj_size); } /* * Store an element anywhere in the array that is unset. If there are no * unset slots, append the element to the array. */ int xfarray_store_anywhere( struct xfarray *array, const void *ptr) { void *temp = xfarray_scratch(array); loff_t endpos = xfarray_pos(array, array->nr); loff_t pos; int error; /* Find an unset slot to put it in. */ for (pos = 0; pos < endpos && array->unset_slots > 0; pos += array->obj_size) { error = xfile_load(array->xfile, temp, array->obj_size, pos); if (error || !xfarray_element_is_null(array, temp)) continue; error = xfile_store(array->xfile, ptr, array->obj_size, pos); if (error) return error; array->unset_slots--; return 0; } /* No unset slots found; attach it on the end. */ array->unset_slots = 0; return xfarray_append(array, ptr); } /* Return length of array. */ uint64_t xfarray_length( struct xfarray *array) { return array->nr; } /* * Decide which array item we're going to read as part of an _iter_get. * @cur is the array index, and @pos is the file offset of that array index in * the backing xfile. Returns ENODATA if we reach the end of the records. * * Reading from a hole in a sparse xfile causes page instantiation, so for * iterating a (possibly sparse) array we need to figure out if the cursor is * pointing at a totally uninitialized hole and move the cursor up if * necessary. */ static inline int xfarray_find_data( struct xfarray *array, xfarray_idx_t *cur, loff_t *pos) { unsigned int pgoff = offset_in_page(*pos); loff_t end_pos = *pos + array->obj_size - 1; loff_t new_pos; /* * If the current array record is not adjacent to a page boundary, we * are in the middle of the page. We do not need to move the cursor. */ if (pgoff != 0 && pgoff + array->obj_size - 1 < PAGE_SIZE) return 0; /* * Call SEEK_DATA on the last byte in the record we're about to read. * If the record ends at (or crosses) the end of a page then we know * that the first byte of the record is backed by pages and don't need * to query it. If instead the record begins at the start of the page * then we know that querying the last byte is just as good as querying * the first byte, since records cannot be larger than a page. * * If the call returns the same file offset, we know this record is * backed by real pages. We do not need to move the cursor. */ new_pos = xfile_seek_data(array->xfile, end_pos); if (new_pos == -ENXIO) return -ENODATA; if (new_pos < 0) return new_pos; if (new_pos == end_pos) return 0; /* * Otherwise, SEEK_DATA told us how far up to move the file pointer to * find more data. Move the array index to the first record past the * byte offset we were given. */ new_pos = roundup_64(new_pos, array->obj_size); *cur = xfarray_idx(array, new_pos); *pos = xfarray_pos(array, *cur); return 0; } /* * Starting at *idx, fetch the next non-null array entry and advance the index * to set up the next _load_next call. Returns ENODATA if we reach the end of * the array. Callers must set @*idx to XFARRAY_CURSOR_INIT before the first * call to this function. */ int xfarray_load_next( struct xfarray *array, xfarray_idx_t *idx, void *rec) { xfarray_idx_t cur = *idx; loff_t pos = xfarray_pos(array, cur); int error; do { if (cur >= array->nr) return -ENODATA; /* * Ask the backing store for the location of next possible * written record, then retrieve that record. */ error = xfarray_find_data(array, &cur, &pos); if (error) return error; error = xfarray_load(array, cur, rec); if (error) return error; cur++; pos += array->obj_size; } while (xfarray_element_is_null(array, rec)); *idx = cur; return 0; } /* Sorting functions */ #ifdef DEBUG # define xfarray_sort_bump_loads(si) do { (si)->loads++; } while (0) # define xfarray_sort_bump_stores(si) do { (si)->stores++; } while (0) # define xfarray_sort_bump_compares(si) do { (si)->compares++; } while (0) # define xfarray_sort_bump_heapsorts(si) do { (si)->heapsorts++; } while (0) #else # define xfarray_sort_bump_loads(si) # define xfarray_sort_bump_stores(si) # define xfarray_sort_bump_compares(si) # define xfarray_sort_bump_heapsorts(si) #endif /* DEBUG */ /* Load an array element for sorting. */ static inline int xfarray_sort_load( struct xfarray_sortinfo *si, xfarray_idx_t idx, void *ptr) { xfarray_sort_bump_loads(si); return xfarray_load(si->array, idx, ptr); } /* Store an array element for sorting. */ static inline int xfarray_sort_store( struct xfarray_sortinfo *si, xfarray_idx_t idx, void *ptr) { xfarray_sort_bump_stores(si); return xfarray_store(si->array, idx, ptr); } /* Compare an array element for sorting. */ static inline int xfarray_sort_cmp( struct xfarray_sortinfo *si, const void *a, const void *b) { xfarray_sort_bump_compares(si); return si->cmp_fn(a, b); } /* Return a pointer to the low index stack for quicksort partitioning. */ static inline xfarray_idx_t *xfarray_sortinfo_lo(struct xfarray_sortinfo *si) { return (xfarray_idx_t *)(si + 1); } /* Return a pointer to the high index stack for quicksort partitioning. */ static inline xfarray_idx_t *xfarray_sortinfo_hi(struct xfarray_sortinfo *si) { return xfarray_sortinfo_lo(si) + si->max_stack_depth; } /* Size of each element in the quicksort pivot array. */ static inline size_t xfarray_pivot_rec_sz( struct xfarray *array) { return round_up(array->obj_size, 8) + sizeof(xfarray_idx_t); } /* Allocate memory to handle the sort. */ static inline int xfarray_sortinfo_alloc( struct xfarray *array, xfarray_cmp_fn cmp_fn, unsigned int flags, struct xfarray_sortinfo **infop) { struct xfarray_sortinfo *si; size_t nr_bytes = sizeof(struct xfarray_sortinfo); size_t pivot_rec_sz = xfarray_pivot_rec_sz(array); int max_stack_depth; /* * The median-of-nine pivot algorithm doesn't work if a subset has * fewer than 9 items. Make sure the in-memory sort will always take * over for subsets where this wouldn't be the case. */ BUILD_BUG_ON(XFARRAY_QSORT_PIVOT_NR >= XFARRAY_ISORT_NR); /* * Tail-call recursion during the partitioning phase means that * quicksort will never recurse more than log2(nr) times. We need one * extra level of stack to hold the initial parameters. In-memory * sort will always take care of the last few levels of recursion for * us, so we can reduce the stack depth by that much. */ max_stack_depth = ilog2(array->nr) + 1 - (XFARRAY_ISORT_SHIFT - 1); if (max_stack_depth < 1) max_stack_depth = 1; /* Each level of quicksort uses a lo and a hi index */ nr_bytes += max_stack_depth * sizeof(xfarray_idx_t) * 2; /* Scratchpad for in-memory sort, or finding the pivot */ nr_bytes += max_t(size_t, (XFARRAY_QSORT_PIVOT_NR + 1) * pivot_rec_sz, XFARRAY_ISORT_NR * array->obj_size); si = kvzalloc(nr_bytes, XCHK_GFP_FLAGS); if (!si) return -ENOMEM; si->array = array; si->cmp_fn = cmp_fn; si->flags = flags; si->max_stack_depth = max_stack_depth; si->max_stack_used = 1; xfarray_sortinfo_lo(si)[0] = 0; xfarray_sortinfo_hi(si)[0] = array->nr - 1; trace_xfarray_sort(si, nr_bytes); *infop = si; return 0; } /* Should this sort be terminated by a fatal signal? */ static inline bool xfarray_sort_terminated( struct xfarray_sortinfo *si, int *error) { /* * If preemption is disabled, we need to yield to the scheduler every * few seconds so that we don't run afoul of the soft lockup watchdog * or RCU stall detector. */ cond_resched(); if ((si->flags & XFARRAY_SORT_KILLABLE) && fatal_signal_pending(current)) { if (*error == 0) *error = -EINTR; return true; } return false; } /* Do we want an in-memory sort? */ static inline bool xfarray_want_isort( struct xfarray_sortinfo *si, xfarray_idx_t start, xfarray_idx_t end) { /* * For array subsets that fit in the scratchpad, it's much faster to * use the kernel's heapsort than quicksort's stack machine. */ return (end - start) < XFARRAY_ISORT_NR; } /* Return the scratch space within the sortinfo structure. */ static inline void *xfarray_sortinfo_isort_scratch(struct xfarray_sortinfo *si) { return xfarray_sortinfo_hi(si) + si->max_stack_depth; } /* * Sort a small number of array records using scratchpad memory. The records * need not be contiguous in the xfile's memory pages. */ STATIC int xfarray_isort( struct xfarray_sortinfo *si, xfarray_idx_t lo, xfarray_idx_t hi) { void *scratch = xfarray_sortinfo_isort_scratch(si); loff_t lo_pos = xfarray_pos(si->array, lo); loff_t len = xfarray_pos(si->array, hi - lo + 1); int error; trace_xfarray_isort(si, lo, hi); xfarray_sort_bump_loads(si); error = xfile_load(si->array->xfile, scratch, len, lo_pos); if (error) return error; xfarray_sort_bump_heapsorts(si); sort(scratch, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL); xfarray_sort_bump_stores(si); return xfile_store(si->array->xfile, scratch, len, lo_pos); } /* * Sort the records from lo to hi (inclusive) if they are all backed by the * same memory folio. Returns 1 if it sorted, 0 if it did not, or a negative * errno. */ STATIC int xfarray_foliosort( struct xfarray_sortinfo *si, xfarray_idx_t lo, xfarray_idx_t hi) { struct folio *folio; void *startp; loff_t lo_pos = xfarray_pos(si->array, lo); uint64_t len = xfarray_pos(si->array, hi - lo + 1); /* No single folio could back this many records. */ if (len > XFILE_MAX_FOLIO_SIZE) return 0; xfarray_sort_bump_loads(si); folio = xfile_get_folio(si->array->xfile, lo_pos, len, XFILE_ALLOC); if (IS_ERR(folio)) return PTR_ERR(folio); if (!folio) return 0; trace_xfarray_foliosort(si, lo, hi); xfarray_sort_bump_heapsorts(si); startp = folio_address(folio) + offset_in_folio(folio, lo_pos); sort(startp, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL); xfarray_sort_bump_stores(si); xfile_put_folio(si->array->xfile, folio); return 1; } /* Return a pointer to the xfarray pivot record within the sortinfo struct. */ static inline void *xfarray_sortinfo_pivot(struct xfarray_sortinfo *si) { return xfarray_sortinfo_hi(si) + si->max_stack_depth; } /* Return a pointer to the start of the pivot array. */ static inline void * xfarray_sortinfo_pivot_array( struct xfarray_sortinfo *si) { return xfarray_sortinfo_pivot(si) + si->array->obj_size; } /* The xfarray record is stored at the start of each pivot array element. */ static inline void * xfarray_pivot_array_rec( void *pa, size_t pa_recsz, unsigned int pa_idx) { return pa + (pa_recsz * pa_idx); } /* The xfarray index is stored at the end of each pivot array element. */ static inline xfarray_idx_t * xfarray_pivot_array_idx( void *pa, size_t pa_recsz, unsigned int pa_idx) { return xfarray_pivot_array_rec(pa, pa_recsz, pa_idx + 1) - sizeof(xfarray_idx_t); } /* * Find a pivot value for quicksort partitioning, swap it with a[lo], and save * the cached pivot record for the next step. * * Load evenly-spaced records within the given range into memory, sort them, * and choose the pivot from the median record. Using multiple points will * improve the quality of the pivot selection, and hopefully avoid the worst * quicksort behavior, since our array values are nearly always evenly sorted. */ STATIC int xfarray_qsort_pivot( struct xfarray_sortinfo *si, xfarray_idx_t lo, xfarray_idx_t hi) { void *pivot = xfarray_sortinfo_pivot(si); void *parray = xfarray_sortinfo_pivot_array(si); void *recp; xfarray_idx_t *idxp; xfarray_idx_t step = (hi - lo) / (XFARRAY_QSORT_PIVOT_NR - 1); size_t pivot_rec_sz = xfarray_pivot_rec_sz(si->array); int i, j; int error; ASSERT(step > 0); /* * Load the xfarray indexes of the records we intend to sample into the * pivot array. */ idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, 0); *idxp = lo; for (i = 1; i < XFARRAY_QSORT_PIVOT_NR - 1; i++) { idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i); *idxp = lo + (i * step); } idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, XFARRAY_QSORT_PIVOT_NR - 1); *idxp = hi; /* Load the selected xfarray records into the pivot array. */ for (i = 0; i < XFARRAY_QSORT_PIVOT_NR; i++) { xfarray_idx_t idx; recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, i); idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i); /* No unset records; load directly into the array. */ if (likely(si->array->unset_slots == 0)) { error = xfarray_sort_load(si, *idxp, recp); if (error) return error; continue; } /* * Load non-null records into the scratchpad without changing * the xfarray_idx_t in the pivot array. */ idx = *idxp; xfarray_sort_bump_loads(si); error = xfarray_load_next(si->array, &idx, recp); if (error) return error; } xfarray_sort_bump_heapsorts(si); sort(parray, XFARRAY_QSORT_PIVOT_NR, pivot_rec_sz, si->cmp_fn, NULL); /* * We sorted the pivot array records (which includes the xfarray * indices) in xfarray record order. The median element of the pivot * array contains the xfarray record that we will use as the pivot. * Copy that xfarray record to the designated space. */ recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, XFARRAY_QSORT_PIVOT_NR / 2); memcpy(pivot, recp, si->array->obj_size); /* If the pivot record we chose was already in a[lo] then we're done. */ idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, XFARRAY_QSORT_PIVOT_NR / 2); if (*idxp == lo) return 0; /* * Find the cached copy of a[lo] in the pivot array so that we can swap * a[lo] and a[pivot]. */ for (i = 0, j = -1; i < XFARRAY_QSORT_PIVOT_NR; i++) { idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i); if (*idxp == lo) j = i; } if (j < 0) { ASSERT(j >= 0); return -EFSCORRUPTED; } /* Swap a[lo] and a[pivot]. */ error = xfarray_sort_store(si, lo, pivot); if (error) return error; recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, j); idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, XFARRAY_QSORT_PIVOT_NR / 2); return xfarray_sort_store(si, *idxp, recp); } /* * Set up the pointers for the next iteration. We push onto the stack all of * the unsorted values between a[lo + 1] and a[end[i]], and we tweak the * current stack frame to point to the unsorted values between a[beg[i]] and * a[lo] so that those values will be sorted when we pop the stack. */ static inline int xfarray_qsort_push( struct xfarray_sortinfo *si, xfarray_idx_t *si_lo, xfarray_idx_t *si_hi, xfarray_idx_t lo, xfarray_idx_t hi) { /* Check for stack overflows */ if (si->stack_depth >= si->max_stack_depth - 1) { ASSERT(si->stack_depth < si->max_stack_depth - 1); return -EFSCORRUPTED; } si->max_stack_used = max_t(uint8_t, si->max_stack_used, si->stack_depth + 2); si_lo[si->stack_depth + 1] = lo + 1; si_hi[si->stack_depth + 1] = si_hi[si->stack_depth]; si_hi[si->stack_depth++] = lo - 1; /* * Always start with the smaller of the two partitions to keep the * amount of recursion in check. */ if (si_hi[si->stack_depth] - si_lo[si->stack_depth] > si_hi[si->stack_depth - 1] - si_lo[si->stack_depth - 1]) { swap(si_lo[si->stack_depth], si_lo[si->stack_depth - 1]); swap(si_hi[si->stack_depth], si_hi[si->stack_depth - 1]); } return 0; } static inline void xfarray_sort_scan_done( struct xfarray_sortinfo *si) { if (si->folio) xfile_put_folio(si->array->xfile, si->folio); si->folio = NULL; } /* * Cache the folio backing the start of the given array element. If the array * element is contained entirely within the folio, return a pointer to the * cached folio. Otherwise, load the element into the scratchpad and return a * pointer to the scratchpad. */ static inline int xfarray_sort_scan( struct xfarray_sortinfo *si, xfarray_idx_t idx, void **ptrp) { loff_t idx_pos = xfarray_pos(si->array, idx); int error = 0; if (xfarray_sort_terminated(si, &error)) return error; trace_xfarray_sort_scan(si, idx); /* If the cached folio doesn't cover this index, release it. */ if (si->folio && (idx < si->first_folio_idx || idx > si->last_folio_idx)) xfarray_sort_scan_done(si); /* Grab the first folio that backs this array element. */ if (!si->folio) { loff_t next_pos; si->folio = xfile_get_folio(si->array->xfile, idx_pos, si->array->obj_size, XFILE_ALLOC); if (IS_ERR(si->folio)) return PTR_ERR(si->folio); si->first_folio_idx = xfarray_idx(si->array, folio_pos(si->folio) + si->array->obj_size - 1); next_pos = folio_pos(si->folio) + folio_size(si->folio); si->last_folio_idx = xfarray_idx(si->array, next_pos - 1); if (xfarray_pos(si->array, si->last_folio_idx + 1) > next_pos) si->last_folio_idx--; trace_xfarray_sort_scan(si, idx); } /* * If this folio still doesn't cover the desired element, it must cross * a folio boundary. Read into the scratchpad and we're done. */ if (idx < si->first_folio_idx || idx > si->last_folio_idx) { void *temp = xfarray_scratch(si->array); error = xfile_load(si->array->xfile, temp, si->array->obj_size, idx_pos); if (error) return error; *ptrp = temp; return 0; } /* Otherwise return a pointer to the array element in the folio. */ *ptrp = folio_address(si->folio) + offset_in_folio(si->folio, idx_pos); return 0; } /* * Sort the array elements via quicksort. This implementation incorporates * four optimizations discussed in Sedgewick: * * 1. Use an explicit stack of array indices to store the next array partition * to sort. This helps us to avoid recursion in the call stack, which is * particularly expensive in the kernel. * * 2. For arrays with records in arbitrary or user-controlled order, choose the * pivot element using a median-of-nine decision tree. This reduces the * probability of selecting a bad pivot value which causes worst case * behavior (i.e. partition sizes of 1). * * 3. The smaller of the two sub-partitions is pushed onto the stack to start * the next level of recursion, and the larger sub-partition replaces the * current stack frame. This guarantees that we won't need more than * log2(nr) stack space. * * 4. For small sets, load the records into the scratchpad and run heapsort on * them because that is very fast. In the author's experience, this yields * a ~10% reduction in runtime. * * If a small set is contained entirely within a single xfile memory page, * map the page directly and run heap sort directly on the xfile page * instead of using the load/store interface. This halves the runtime. * * 5. This optimization is specific to the implementation. When converging lo * and hi after selecting a pivot, we will try to retain the xfile memory * page between load calls, which reduces run time by 50%. */ /* * Due to the use of signed indices, we can only support up to 2^63 records. * Files can only grow to 2^63 bytes, so this is not much of a limitation. */ #define QSORT_MAX_RECS (1ULL << 63) int xfarray_sort( struct xfarray *array, xfarray_cmp_fn cmp_fn, unsigned int flags) { struct xfarray_sortinfo *si; xfarray_idx_t *si_lo, *si_hi; void *pivot; void *scratch = xfarray_scratch(array); xfarray_idx_t lo, hi; int error = 0; if (array->nr < 2) return 0; if (array->nr >= QSORT_MAX_RECS) return -E2BIG; error = xfarray_sortinfo_alloc(array, cmp_fn, flags, &si); if (error) return error; si_lo = xfarray_sortinfo_lo(si); si_hi = xfarray_sortinfo_hi(si); pivot = xfarray_sortinfo_pivot(si); while (si->stack_depth >= 0) { int ret; lo = si_lo[si->stack_depth]; hi = si_hi[si->stack_depth]; trace_xfarray_qsort(si, lo, hi); /* Nothing left in this partition to sort; pop stack. */ if (lo >= hi) { si->stack_depth--; continue; } /* * If directly mapping the folio and sorting can solve our * problems, we're done. */ ret = xfarray_foliosort(si, lo, hi); if (ret < 0) goto out_free; if (ret == 1) { si->stack_depth--; continue; } /* If insertion sort can solve our problems, we're done. */ if (xfarray_want_isort(si, lo, hi)) { error = xfarray_isort(si, lo, hi); if (error) goto out_free; si->stack_depth--; continue; } /* Pick a pivot, move it to a[lo] and stash it. */ error = xfarray_qsort_pivot(si, lo, hi); if (error) goto out_free; /* * Rearrange a[lo..hi] such that everything smaller than the * pivot is on the left side of the range and everything larger * than the pivot is on the right side of the range. */ while (lo < hi) { void *p; /* * Decrement hi until it finds an a[hi] less than the * pivot value. */ error = xfarray_sort_scan(si, hi, &p); if (error) goto out_free; while (xfarray_sort_cmp(si, p, pivot) >= 0 && lo < hi) { hi--; error = xfarray_sort_scan(si, hi, &p); if (error) goto out_free; } if (p != scratch) memcpy(scratch, p, si->array->obj_size); xfarray_sort_scan_done(si); if (xfarray_sort_terminated(si, &error)) goto out_free; /* Copy that item (a[hi]) to a[lo]. */ if (lo < hi) { error = xfarray_sort_store(si, lo++, scratch); if (error) goto out_free; } /* * Increment lo until it finds an a[lo] greater than * the pivot value. */ error = xfarray_sort_scan(si, lo, &p); if (error) goto out_free; while (xfarray_sort_cmp(si, p, pivot) <= 0 && lo < hi) { lo++; error = xfarray_sort_scan(si, lo, &p); if (error) goto out_free; } if (p != scratch) memcpy(scratch, p, si->array->obj_size); xfarray_sort_scan_done(si); if (xfarray_sort_terminated(si, &error)) goto out_free; /* Copy that item (a[lo]) to a[hi]. */ if (lo < hi) { error = xfarray_sort_store(si, hi--, scratch); if (error) goto out_free; } if (xfarray_sort_terminated(si, &error)) goto out_free; } /* * Put our pivot value in the correct place at a[lo]. All * values between a[beg[i]] and a[lo - 1] should be less than * the pivot; and all values between a[lo + 1] and a[end[i]-1] * should be greater than the pivot. */ error = xfarray_sort_store(si, lo, pivot); if (error) goto out_free; /* Set up the stack frame to process the two partitions. */ error = xfarray_qsort_push(si, si_lo, si_hi, lo, hi); if (error) goto out_free; if (xfarray_sort_terminated(si, &error)) goto out_free; } out_free: trace_xfarray_sort_stats(si, error); kvfree(si); return error; } |