Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2021-2023 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/scrub.h"
#include "scrub/trace.h"

/*
 * Large Arrays of Fixed-Size Records
 * ==================================
 *
 * This memory array uses an xfile (which itself is a shmem file) to store
 * large numbers of fixed-size records in memory that can be paged out.  This
 * puts less stress on the memory reclaim algorithms during an online repair
 * because we don't have to pin so much memory.  However, array access is less
 * direct than would be in a regular memory array.  Access to the array is
 * performed via indexed load and store methods, and an append method is
 * provided for convenience.  Array elements can be unset, which sets them to
 * all zeroes.  Unset entries are skipped during iteration, though direct loads
 * will return a zeroed buffer.  Callers are responsible for concurrency
 * control.
 */

/*
 * Pointer to scratch space.  Because we can't access the xfile data directly,
 * we allocate a small amount of memory on the end of the xfarray structure to
 * buffer array items when we need space to store values temporarily.
 */
static inline void *xfarray_scratch(struct xfarray *array)
{
	return (array + 1);
}

/* Compute array index given an xfile offset. */
static xfarray_idx_t
xfarray_idx(
	struct xfarray	*array,
	loff_t		pos)
{
	if (array->obj_size_log >= 0)
		return (xfarray_idx_t)pos >> array->obj_size_log;

	return div_u64((xfarray_idx_t)pos, array->obj_size);
}

/* Compute xfile offset of array element. */
static inline loff_t xfarray_pos(struct xfarray *array, xfarray_idx_t idx)
{
	if (array->obj_size_log >= 0)
		return idx << array->obj_size_log;

	return idx * array->obj_size;
}

/*
 * Initialize a big memory array.  Array records cannot be larger than a
 * page, and the array cannot span more bytes than the page cache supports.
 * If @required_capacity is nonzero, the maximum array size will be set to this
 * quantity and the array creation will fail if the underlying storage cannot
 * support that many records.
 */
int
xfarray_create(
	const char		*description,
	unsigned long long	required_capacity,
	size_t			obj_size,
	struct xfarray		**arrayp)
{
	struct xfarray		*array;
	struct xfile		*xfile;
	int			error;

	ASSERT(obj_size < PAGE_SIZE);

	error = xfile_create(description, 0, &xfile);
	if (error)
		return error;

	error = -ENOMEM;
	array = kzalloc(sizeof(struct xfarray) + obj_size, XCHK_GFP_FLAGS);
	if (!array)
		goto out_xfile;

	array->xfile = xfile;
	array->obj_size = obj_size;

	if (is_power_of_2(obj_size))
		array->obj_size_log = ilog2(obj_size);
	else
		array->obj_size_log = -1;

	array->max_nr = xfarray_idx(array, MAX_LFS_FILESIZE);
	trace_xfarray_create(array, required_capacity);

	if (required_capacity > 0) {
		if (array->max_nr < required_capacity) {
			error = -ENOMEM;
			goto out_xfarray;
		}
		array->max_nr = required_capacity;
	}

	*arrayp = array;
	return 0;

out_xfarray:
	kfree(array);
out_xfile:
	xfile_destroy(xfile);
	return error;
}

/* Destroy the array. */
void
xfarray_destroy(
	struct xfarray	*array)
{
	xfile_destroy(array->xfile);
	kfree(array);
}

/* Load an element from the array. */
int
xfarray_load(
	struct xfarray	*array,
	xfarray_idx_t	idx,
	void		*ptr)
{
	if (idx >= array->nr)
		return -ENODATA;

	return xfile_load(array->xfile, ptr, array->obj_size,
			xfarray_pos(array, idx));
}

/* Is this array element potentially unset? */
static inline bool
xfarray_is_unset(
	struct xfarray	*array,
	loff_t		pos)
{
	void		*temp = xfarray_scratch(array);
	int		error;

	if (array->unset_slots == 0)
		return false;

	error = xfile_load(array->xfile, temp, array->obj_size, pos);
	if (!error && xfarray_element_is_null(array, temp))
		return true;

	return false;
}

/*
 * Unset an array element.  If @idx is the last element in the array, the
 * array will be truncated.  Otherwise, the entry will be zeroed.
 */
int
xfarray_unset(
	struct xfarray	*array,
	xfarray_idx_t	idx)
{
	void		*temp = xfarray_scratch(array);
	loff_t		pos = xfarray_pos(array, idx);
	int		error;

	if (idx >= array->nr)
		return -ENODATA;

	if (idx == array->nr - 1) {
		array->nr--;
		return 0;
	}

	if (xfarray_is_unset(array, pos))
		return 0;

	memset(temp, 0, array->obj_size);
	error = xfile_store(array->xfile, temp, array->obj_size, pos);
	if (error)
		return error;

	array->unset_slots++;
	return 0;
}

/*
 * Store an element in the array.  The element must not be completely zeroed,
 * because those are considered unset sparse elements.
 */
int
xfarray_store(
	struct xfarray	*array,
	xfarray_idx_t	idx,
	const void	*ptr)
{
	int		ret;

	if (idx >= array->max_nr)
		return -EFBIG;

	ASSERT(!xfarray_element_is_null(array, ptr));

	ret = xfile_store(array->xfile, ptr, array->obj_size,
			xfarray_pos(array, idx));
	if (ret)
		return ret;

	array->nr = max(array->nr, idx + 1);
	return 0;
}

/* Is this array element NULL? */
bool
xfarray_element_is_null(
	struct xfarray	*array,
	const void	*ptr)
{
	return !memchr_inv(ptr, 0, array->obj_size);
}

/*
 * Store an element anywhere in the array that is unset.  If there are no
 * unset slots, append the element to the array.
 */
int
xfarray_store_anywhere(
	struct xfarray	*array,
	const void	*ptr)
{
	void		*temp = xfarray_scratch(array);
	loff_t		endpos = xfarray_pos(array, array->nr);
	loff_t		pos;
	int		error;

	/* Find an unset slot to put it in. */
	for (pos = 0;
	     pos < endpos && array->unset_slots > 0;
	     pos += array->obj_size) {
		error = xfile_load(array->xfile, temp, array->obj_size,
				pos);
		if (error || !xfarray_element_is_null(array, temp))
			continue;

		error = xfile_store(array->xfile, ptr, array->obj_size,
				pos);
		if (error)
			return error;

		array->unset_slots--;
		return 0;
	}

	/* No unset slots found; attach it on the end. */
	array->unset_slots = 0;
	return xfarray_append(array, ptr);
}

/* Return length of array. */
uint64_t
xfarray_length(
	struct xfarray	*array)
{
	return array->nr;
}

/*
 * Decide which array item we're going to read as part of an _iter_get.
 * @cur is the array index, and @pos is the file offset of that array index in
 * the backing xfile.  Returns ENODATA if we reach the end of the records.
 *
 * Reading from a hole in a sparse xfile causes page instantiation, so for
 * iterating a (possibly sparse) array we need to figure out if the cursor is
 * pointing at a totally uninitialized hole and move the cursor up if
 * necessary.
 */
static inline int
xfarray_find_data(
	struct xfarray	*array,
	xfarray_idx_t	*cur,
	loff_t		*pos)
{
	unsigned int	pgoff = offset_in_page(*pos);
	loff_t		end_pos = *pos + array->obj_size - 1;
	loff_t		new_pos;

	/*
	 * If the current array record is not adjacent to a page boundary, we
	 * are in the middle of the page.  We do not need to move the cursor.
	 */
	if (pgoff != 0 && pgoff + array->obj_size - 1 < PAGE_SIZE)
		return 0;

	/*
	 * Call SEEK_DATA on the last byte in the record we're about to read.
	 * If the record ends at (or crosses) the end of a page then we know
	 * that the first byte of the record is backed by pages and don't need
	 * to query it.  If instead the record begins at the start of the page
	 * then we know that querying the last byte is just as good as querying
	 * the first byte, since records cannot be larger than a page.
	 *
	 * If the call returns the same file offset, we know this record is
	 * backed by real pages.  We do not need to move the cursor.
	 */
	new_pos = xfile_seek_data(array->xfile, end_pos);
	if (new_pos == -ENXIO)
		return -ENODATA;
	if (new_pos < 0)
		return new_pos;
	if (new_pos == end_pos)
		return 0;

	/*
	 * Otherwise, SEEK_DATA told us how far up to move the file pointer to
	 * find more data.  Move the array index to the first record past the
	 * byte offset we were given.
	 */
	new_pos = roundup_64(new_pos, array->obj_size);
	*cur = xfarray_idx(array, new_pos);
	*pos = xfarray_pos(array, *cur);
	return 0;
}

/*
 * Starting at *idx, fetch the next non-null array entry and advance the index
 * to set up the next _load_next call.  Returns ENODATA if we reach the end of
 * the array.  Callers must set @*idx to XFARRAY_CURSOR_INIT before the first
 * call to this function.
 */
int
xfarray_load_next(
	struct xfarray	*array,
	xfarray_idx_t	*idx,
	void		*rec)
{
	xfarray_idx_t	cur = *idx;
	loff_t		pos = xfarray_pos(array, cur);
	int		error;

	do {
		if (cur >= array->nr)
			return -ENODATA;

		/*
		 * Ask the backing store for the location of next possible
		 * written record, then retrieve that record.
		 */
		error = xfarray_find_data(array, &cur, &pos);
		if (error)
			return error;
		error = xfarray_load(array, cur, rec);
		if (error)
			return error;

		cur++;
		pos += array->obj_size;
	} while (xfarray_element_is_null(array, rec));

	*idx = cur;
	return 0;
}

/* Sorting functions */

#ifdef DEBUG
# define xfarray_sort_bump_loads(si)	do { (si)->loads++; } while (0)
# define xfarray_sort_bump_stores(si)	do { (si)->stores++; } while (0)
# define xfarray_sort_bump_compares(si)	do { (si)->compares++; } while (0)
# define xfarray_sort_bump_heapsorts(si) do { (si)->heapsorts++; } while (0)
#else
# define xfarray_sort_bump_loads(si)
# define xfarray_sort_bump_stores(si)
# define xfarray_sort_bump_compares(si)
# define xfarray_sort_bump_heapsorts(si)
#endif /* DEBUG */

/* Load an array element for sorting. */
static inline int
xfarray_sort_load(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		idx,
	void			*ptr)
{
	xfarray_sort_bump_loads(si);
	return xfarray_load(si->array, idx, ptr);
}

/* Store an array element for sorting. */
static inline int
xfarray_sort_store(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		idx,
	void			*ptr)
{
	xfarray_sort_bump_stores(si);
	return xfarray_store(si->array, idx, ptr);
}

/* Compare an array element for sorting. */
static inline int
xfarray_sort_cmp(
	struct xfarray_sortinfo	*si,
	const void		*a,
	const void		*b)
{
	xfarray_sort_bump_compares(si);
	return si->cmp_fn(a, b);
}

/* Return a pointer to the low index stack for quicksort partitioning. */
static inline xfarray_idx_t *xfarray_sortinfo_lo(struct xfarray_sortinfo *si)
{
	return (xfarray_idx_t *)(si + 1);
}

/* Return a pointer to the high index stack for quicksort partitioning. */
static inline xfarray_idx_t *xfarray_sortinfo_hi(struct xfarray_sortinfo *si)
{
	return xfarray_sortinfo_lo(si) + si->max_stack_depth;
}

/* Size of each element in the quicksort pivot array. */
static inline size_t
xfarray_pivot_rec_sz(
	struct xfarray		*array)
{
	return round_up(array->obj_size, 8) + sizeof(xfarray_idx_t);
}

/* Allocate memory to handle the sort. */
static inline int
xfarray_sortinfo_alloc(
	struct xfarray		*array,
	xfarray_cmp_fn		cmp_fn,
	unsigned int		flags,
	struct xfarray_sortinfo	**infop)
{
	struct xfarray_sortinfo	*si;
	size_t			nr_bytes = sizeof(struct xfarray_sortinfo);
	size_t			pivot_rec_sz = xfarray_pivot_rec_sz(array);
	int			max_stack_depth;

	/*
	 * The median-of-nine pivot algorithm doesn't work if a subset has
	 * fewer than 9 items.  Make sure the in-memory sort will always take
	 * over for subsets where this wouldn't be the case.
	 */
	BUILD_BUG_ON(XFARRAY_QSORT_PIVOT_NR >= XFARRAY_ISORT_NR);

	/*
	 * Tail-call recursion during the partitioning phase means that
	 * quicksort will never recurse more than log2(nr) times.  We need one
	 * extra level of stack to hold the initial parameters.  In-memory
	 * sort will always take care of the last few levels of recursion for
	 * us, so we can reduce the stack depth by that much.
	 */
	max_stack_depth = ilog2(array->nr) + 1 - (XFARRAY_ISORT_SHIFT - 1);
	if (max_stack_depth < 1)
		max_stack_depth = 1;

	/* Each level of quicksort uses a lo and a hi index */
	nr_bytes += max_stack_depth * sizeof(xfarray_idx_t) * 2;

	/* Scratchpad for in-memory sort, or finding the pivot */
	nr_bytes += max_t(size_t,
			(XFARRAY_QSORT_PIVOT_NR + 1) * pivot_rec_sz,
			XFARRAY_ISORT_NR * array->obj_size);

	si = kvzalloc(nr_bytes, XCHK_GFP_FLAGS);
	if (!si)
		return -ENOMEM;

	si->array = array;
	si->cmp_fn = cmp_fn;
	si->flags = flags;
	si->max_stack_depth = max_stack_depth;
	si->max_stack_used = 1;

	xfarray_sortinfo_lo(si)[0] = 0;
	xfarray_sortinfo_hi(si)[0] = array->nr - 1;

	trace_xfarray_sort(si, nr_bytes);
	*infop = si;
	return 0;
}

/* Should this sort be terminated by a fatal signal? */
static inline bool
xfarray_sort_terminated(
	struct xfarray_sortinfo	*si,
	int			*error)
{
	/*
	 * If preemption is disabled, we need to yield to the scheduler every
	 * few seconds so that we don't run afoul of the soft lockup watchdog
	 * or RCU stall detector.
	 */
	cond_resched();

	if ((si->flags & XFARRAY_SORT_KILLABLE) &&
	    fatal_signal_pending(current)) {
		if (*error == 0)
			*error = -EINTR;
		return true;
	}
	return false;
}

/* Do we want an in-memory sort? */
static inline bool
xfarray_want_isort(
	struct xfarray_sortinfo *si,
	xfarray_idx_t		start,
	xfarray_idx_t		end)
{
	/*
	 * For array subsets that fit in the scratchpad, it's much faster to
	 * use the kernel's heapsort than quicksort's stack machine.
	 */
	return (end - start) < XFARRAY_ISORT_NR;
}

/* Return the scratch space within the sortinfo structure. */
static inline void *xfarray_sortinfo_isort_scratch(struct xfarray_sortinfo *si)
{
	return xfarray_sortinfo_hi(si) + si->max_stack_depth;
}

/*
 * Sort a small number of array records using scratchpad memory.  The records
 * need not be contiguous in the xfile's memory pages.
 */
STATIC int
xfarray_isort(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	void			*scratch = xfarray_sortinfo_isort_scratch(si);
	loff_t			lo_pos = xfarray_pos(si->array, lo);
	loff_t			len = xfarray_pos(si->array, hi - lo + 1);
	int			error;

	trace_xfarray_isort(si, lo, hi);

	xfarray_sort_bump_loads(si);
	error = xfile_load(si->array->xfile, scratch, len, lo_pos);
	if (error)
		return error;

	xfarray_sort_bump_heapsorts(si);
	sort(scratch, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);

	xfarray_sort_bump_stores(si);
	return xfile_store(si->array->xfile, scratch, len, lo_pos);
}

/*
 * Sort the records from lo to hi (inclusive) if they are all backed by the
 * same memory folio.  Returns 1 if it sorted, 0 if it did not, or a negative
 * errno.
 */
STATIC int
xfarray_foliosort(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	struct folio		*folio;
	void			*startp;
	loff_t			lo_pos = xfarray_pos(si->array, lo);
	uint64_t		len = xfarray_pos(si->array, hi - lo + 1);

	/* No single folio could back this many records. */
	if (len > XFILE_MAX_FOLIO_SIZE)
		return 0;

	xfarray_sort_bump_loads(si);
	folio = xfile_get_folio(si->array->xfile, lo_pos, len, XFILE_ALLOC);
	if (IS_ERR(folio))
		return PTR_ERR(folio);
	if (!folio)
		return 0;

	trace_xfarray_foliosort(si, lo, hi);

	xfarray_sort_bump_heapsorts(si);
	startp = folio_address(folio) + offset_in_folio(folio, lo_pos);
	sort(startp, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);

	xfarray_sort_bump_stores(si);
	xfile_put_folio(si->array->xfile, folio);
	return 1;
}

/* Return a pointer to the xfarray pivot record within the sortinfo struct. */
static inline void *xfarray_sortinfo_pivot(struct xfarray_sortinfo *si)
{
	return xfarray_sortinfo_hi(si) + si->max_stack_depth;
}

/* Return a pointer to the start of the pivot array. */
static inline void *
xfarray_sortinfo_pivot_array(
	struct xfarray_sortinfo	*si)
{
	return xfarray_sortinfo_pivot(si) + si->array->obj_size;
}

/* The xfarray record is stored at the start of each pivot array element. */
static inline void *
xfarray_pivot_array_rec(
	void			*pa,
	size_t			pa_recsz,
	unsigned int		pa_idx)
{
	return pa + (pa_recsz * pa_idx);
}

/* The xfarray index is stored at the end of each pivot array element. */
static inline xfarray_idx_t *
xfarray_pivot_array_idx(
	void			*pa,
	size_t			pa_recsz,
	unsigned int		pa_idx)
{
	return xfarray_pivot_array_rec(pa, pa_recsz, pa_idx + 1) -
			sizeof(xfarray_idx_t);
}

/*
 * Find a pivot value for quicksort partitioning, swap it with a[lo], and save
 * the cached pivot record for the next step.
 *
 * Load evenly-spaced records within the given range into memory, sort them,
 * and choose the pivot from the median record.  Using multiple points will
 * improve the quality of the pivot selection, and hopefully avoid the worst
 * quicksort behavior, since our array values are nearly always evenly sorted.
 */
STATIC int
xfarray_qsort_pivot(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	void			*pivot = xfarray_sortinfo_pivot(si);
	void			*parray = xfarray_sortinfo_pivot_array(si);
	void			*recp;
	xfarray_idx_t		*idxp;
	xfarray_idx_t		step = (hi - lo) / (XFARRAY_QSORT_PIVOT_NR - 1);
	size_t			pivot_rec_sz = xfarray_pivot_rec_sz(si->array);
	int			i, j;
	int			error;

	ASSERT(step > 0);

	/*
	 * Load the xfarray indexes of the records we intend to sample into the
	 * pivot array.
	 */
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, 0);
	*idxp = lo;
	for (i = 1; i < XFARRAY_QSORT_PIVOT_NR - 1; i++) {
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
		*idxp = lo + (i * step);
	}
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR - 1);
	*idxp = hi;

	/* Load the selected xfarray records into the pivot array. */
	for (i = 0; i < XFARRAY_QSORT_PIVOT_NR; i++) {
		xfarray_idx_t	idx;

		recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, i);
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);

		/* No unset records; load directly into the array. */
		if (likely(si->array->unset_slots == 0)) {
			error = xfarray_sort_load(si, *idxp, recp);
			if (error)
				return error;
			continue;
		}

		/*
		 * Load non-null records into the scratchpad without changing
		 * the xfarray_idx_t in the pivot array.
		 */
		idx = *idxp;
		xfarray_sort_bump_loads(si);
		error = xfarray_load_next(si->array, &idx, recp);
		if (error)
			return error;
	}

	xfarray_sort_bump_heapsorts(si);
	sort(parray, XFARRAY_QSORT_PIVOT_NR, pivot_rec_sz, si->cmp_fn, NULL);

	/*
	 * We sorted the pivot array records (which includes the xfarray
	 * indices) in xfarray record order.  The median element of the pivot
	 * array contains the xfarray record that we will use as the pivot.
	 * Copy that xfarray record to the designated space.
	 */
	recp = xfarray_pivot_array_rec(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR / 2);
	memcpy(pivot, recp, si->array->obj_size);

	/* If the pivot record we chose was already in a[lo] then we're done. */
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR / 2);
	if (*idxp == lo)
		return 0;

	/*
	 * Find the cached copy of a[lo] in the pivot array so that we can swap
	 * a[lo] and a[pivot].
	 */
	for (i = 0, j = -1; i < XFARRAY_QSORT_PIVOT_NR; i++) {
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
		if (*idxp == lo)
			j = i;
	}
	if (j < 0) {
		ASSERT(j >= 0);
		return -EFSCORRUPTED;
	}

	/* Swap a[lo] and a[pivot]. */
	error = xfarray_sort_store(si, lo, pivot);
	if (error)
		return error;

	recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, j);
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR / 2);
	return xfarray_sort_store(si, *idxp, recp);
}

/*
 * Set up the pointers for the next iteration.  We push onto the stack all of
 * the unsorted values between a[lo + 1] and a[end[i]], and we tweak the
 * current stack frame to point to the unsorted values between a[beg[i]] and
 * a[lo] so that those values will be sorted when we pop the stack.
 */
static inline int
xfarray_qsort_push(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		*si_lo,
	xfarray_idx_t		*si_hi,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	/* Check for stack overflows */
	if (si->stack_depth >= si->max_stack_depth - 1) {
		ASSERT(si->stack_depth < si->max_stack_depth - 1);
		return -EFSCORRUPTED;
	}

	si->max_stack_used = max_t(uint8_t, si->max_stack_used,
					    si->stack_depth + 2);

	si_lo[si->stack_depth + 1] = lo + 1;
	si_hi[si->stack_depth + 1] = si_hi[si->stack_depth];
	si_hi[si->stack_depth++] = lo - 1;

	/*
	 * Always start with the smaller of the two partitions to keep the
	 * amount of recursion in check.
	 */
	if (si_hi[si->stack_depth]     - si_lo[si->stack_depth] >
	    si_hi[si->stack_depth - 1] - si_lo[si->stack_depth - 1]) {
		swap(si_lo[si->stack_depth], si_lo[si->stack_depth - 1]);
		swap(si_hi[si->stack_depth], si_hi[si->stack_depth - 1]);
	}

	return 0;
}

static inline void
xfarray_sort_scan_done(
	struct xfarray_sortinfo	*si)
{
	if (si->folio)
		xfile_put_folio(si->array->xfile, si->folio);
	si->folio = NULL;
}

/*
 * Cache the folio backing the start of the given array element.  If the array
 * element is contained entirely within the folio, return a pointer to the
 * cached folio.  Otherwise, load the element into the scratchpad and return a
 * pointer to the scratchpad.
 */
static inline int
xfarray_sort_scan(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		idx,
	void			**ptrp)
{
	loff_t			idx_pos = xfarray_pos(si->array, idx);
	int			error = 0;

	if (xfarray_sort_terminated(si, &error))
		return error;

	trace_xfarray_sort_scan(si, idx);

	/* If the cached folio doesn't cover this index, release it. */
	if (si->folio &&
	    (idx < si->first_folio_idx || idx > si->last_folio_idx))
		xfarray_sort_scan_done(si);

	/* Grab the first folio that backs this array element. */
	if (!si->folio) {
		loff_t		next_pos;

		si->folio = xfile_get_folio(si->array->xfile, idx_pos,
				si->array->obj_size, XFILE_ALLOC);
		if (IS_ERR(si->folio))
			return PTR_ERR(si->folio);

		si->first_folio_idx = xfarray_idx(si->array,
				folio_pos(si->folio) + si->array->obj_size - 1);

		next_pos = folio_pos(si->folio) + folio_size(si->folio);
		si->last_folio_idx = xfarray_idx(si->array, next_pos - 1);
		if (xfarray_pos(si->array, si->last_folio_idx + 1) > next_pos)
			si->last_folio_idx--;

		trace_xfarray_sort_scan(si, idx);
	}

	/*
	 * If this folio still doesn't cover the desired element, it must cross
	 * a folio boundary.  Read into the scratchpad and we're done.
	 */
	if (idx < si->first_folio_idx || idx > si->last_folio_idx) {
		void		*temp = xfarray_scratch(si->array);

		error = xfile_load(si->array->xfile, temp, si->array->obj_size,
				idx_pos);
		if (error)
			return error;

		*ptrp = temp;
		return 0;
	}

	/* Otherwise return a pointer to the array element in the folio. */
	*ptrp = folio_address(si->folio) + offset_in_folio(si->folio, idx_pos);
	return 0;
}

/*
 * Sort the array elements via quicksort.  This implementation incorporates
 * four optimizations discussed in Sedgewick:
 *
 * 1. Use an explicit stack of array indices to store the next array partition
 *    to sort.  This helps us to avoid recursion in the call stack, which is
 *    particularly expensive in the kernel.
 *
 * 2. For arrays with records in arbitrary or user-controlled order, choose the
 *    pivot element using a median-of-nine decision tree.  This reduces the
 *    probability of selecting a bad pivot value which causes worst case
 *    behavior (i.e. partition sizes of 1).
 *
 * 3. The smaller of the two sub-partitions is pushed onto the stack to start
 *    the next level of recursion, and the larger sub-partition replaces the
 *    current stack frame.  This guarantees that we won't need more than
 *    log2(nr) stack space.
 *
 * 4. For small sets, load the records into the scratchpad and run heapsort on
 *    them because that is very fast.  In the author's experience, this yields
 *    a ~10% reduction in runtime.
 *
 *    If a small set is contained entirely within a single xfile memory page,
 *    map the page directly and run heap sort directly on the xfile page
 *    instead of using the load/store interface.  This halves the runtime.
 *
 * 5. This optimization is specific to the implementation.  When converging lo
 *    and hi after selecting a pivot, we will try to retain the xfile memory
 *    page between load calls, which reduces run time by 50%.
 */

/*
 * Due to the use of signed indices, we can only support up to 2^63 records.
 * Files can only grow to 2^63 bytes, so this is not much of a limitation.
 */
#define QSORT_MAX_RECS		(1ULL << 63)

int
xfarray_sort(
	struct xfarray		*array,
	xfarray_cmp_fn		cmp_fn,
	unsigned int		flags)
{
	struct xfarray_sortinfo	*si;
	xfarray_idx_t		*si_lo, *si_hi;
	void			*pivot;
	void			*scratch = xfarray_scratch(array);
	xfarray_idx_t		lo, hi;
	int			error = 0;

	if (array->nr < 2)
		return 0;
	if (array->nr >= QSORT_MAX_RECS)
		return -E2BIG;

	error = xfarray_sortinfo_alloc(array, cmp_fn, flags, &si);
	if (error)
		return error;
	si_lo = xfarray_sortinfo_lo(si);
	si_hi = xfarray_sortinfo_hi(si);
	pivot = xfarray_sortinfo_pivot(si);

	while (si->stack_depth >= 0) {
		int		ret;

		lo = si_lo[si->stack_depth];
		hi = si_hi[si->stack_depth];

		trace_xfarray_qsort(si, lo, hi);

		/* Nothing left in this partition to sort; pop stack. */
		if (lo >= hi) {
			si->stack_depth--;
			continue;
		}

		/*
		 * If directly mapping the folio and sorting can solve our
		 * problems, we're done.
		 */
		ret = xfarray_foliosort(si, lo, hi);
		if (ret < 0)
			goto out_free;
		if (ret == 1) {
			si->stack_depth--;
			continue;
		}

		/* If insertion sort can solve our problems, we're done. */
		if (xfarray_want_isort(si, lo, hi)) {
			error = xfarray_isort(si, lo, hi);
			if (error)
				goto out_free;
			si->stack_depth--;
			continue;
		}

		/* Pick a pivot, move it to a[lo] and stash it. */
		error = xfarray_qsort_pivot(si, lo, hi);
		if (error)
			goto out_free;

		/*
		 * Rearrange a[lo..hi] such that everything smaller than the
		 * pivot is on the left side of the range and everything larger
		 * than the pivot is on the right side of the range.
		 */
		while (lo < hi) {
			void	*p;

			/*
			 * Decrement hi until it finds an a[hi] less than the
			 * pivot value.
			 */
			error = xfarray_sort_scan(si, hi, &p);
			if (error)
				goto out_free;
			while (xfarray_sort_cmp(si, p, pivot) >= 0 && lo < hi) {
				hi--;
				error = xfarray_sort_scan(si, hi, &p);
				if (error)
					goto out_free;
			}
			if (p != scratch)
				memcpy(scratch, p, si->array->obj_size);
			xfarray_sort_scan_done(si);
			if (xfarray_sort_terminated(si, &error))
				goto out_free;

			/* Copy that item (a[hi]) to a[lo]. */
			if (lo < hi) {
				error = xfarray_sort_store(si, lo++, scratch);
				if (error)
					goto out_free;
			}

			/*
			 * Increment lo until it finds an a[lo] greater than
			 * the pivot value.
			 */
			error = xfarray_sort_scan(si, lo, &p);
			if (error)
				goto out_free;
			while (xfarray_sort_cmp(si, p, pivot) <= 0 && lo < hi) {
				lo++;
				error = xfarray_sort_scan(si, lo, &p);
				if (error)
					goto out_free;
			}
			if (p != scratch)
				memcpy(scratch, p, si->array->obj_size);
			xfarray_sort_scan_done(si);
			if (xfarray_sort_terminated(si, &error))
				goto out_free;

			/* Copy that item (a[lo]) to a[hi]. */
			if (lo < hi) {
				error = xfarray_sort_store(si, hi--, scratch);
				if (error)
					goto out_free;
			}

			if (xfarray_sort_terminated(si, &error))
				goto out_free;
		}

		/*
		 * Put our pivot value in the correct place at a[lo].  All
		 * values between a[beg[i]] and a[lo - 1] should be less than
		 * the pivot; and all values between a[lo + 1] and a[end[i]-1]
		 * should be greater than the pivot.
		 */
		error = xfarray_sort_store(si, lo, pivot);
		if (error)
			goto out_free;

		/* Set up the stack frame to process the two partitions. */
		error = xfarray_qsort_push(si, si_lo, si_hi, lo, hi);
		if (error)
			goto out_free;

		if (xfarray_sort_terminated(si, &error))
			goto out_free;
	}

out_free:
	trace_xfarray_sort_stats(si, error);
	kvfree(si);
	return error;
}