Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2018-2024 Oracle. All Rights Reserved. * Author: Darrick J. Wong <djwong@kernel.org> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_buf_mem.h" #include "xfs_btree_mem.h" #include "xfs_bit.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_inode.h" #include "xfs_icache.h" #include "xfs_bmap.h" #include "xfs_bmap_btree.h" #include "xfs_refcount.h" #include "xfs_refcount_btree.h" #include "xfs_ag.h" #include "scrub/xfs_scrub.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/btree.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/bitmap.h" #include "scrub/agb_bitmap.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" #include "scrub/iscan.h" #include "scrub/newbt.h" #include "scrub/reap.h" /* * Reverse Mapping Btree Repair * ============================ * * This is the most involved of all the AG space btree rebuilds. Everywhere * else in XFS we lock inodes and then AG data structures, but generating the * list of rmap records requires that we be able to scan both block mapping * btrees of every inode in the filesystem to see if it owns any extents in * this AG. We can't tolerate any inode updates while we do this, so we * freeze the filesystem to lock everyone else out, and grant ourselves * special privileges to run transactions with regular background reclamation * turned off. * * We also have to be very careful not to allow inode reclaim to start a * transaction because all transactions (other than our own) will block. * Deferred inode inactivation helps us out there. * * I) Reverse mappings for all non-space metadata and file data are collected * according to the following algorithm: * * 1. For each fork of each inode: * 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary. * 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate * bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree * block. * 1.3. If the incore extent map is loaded but the fork is in btree format, * just visit the bmbt blocks to set the corresponding BMBIT areas. * 1.4. From the incore extent map, accumulate each bmap that falls into our * target AG. Remember, multiple bmap records can map to a single rmap * record, so we cannot simply emit rmap records 1:1. * 1.5. Emit rmap records for each extent in BMBIT and free it. * 2. Create bitmaps INOBIT and ICHUNKBIT. * 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT, * and set bits in INOBIT for each btree block. If the inobt has no records * at all, we must be careful to record its root in INOBIT. * 4. For each block in the finobt, set the corresponding INOBIT area. * 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them. * 6. Create bitmaps REFCBIT and COWBIT. * 7. For each CoW staging extent in the refcountbt, set the corresponding * areas in COWBIT. * 8. For each block in the refcountbt, set the corresponding REFCBIT area. * 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them. * A. Emit rmap for the AG headers. * B. Emit rmap for the log, if there is one. * * II) The rmapbt shape and space metadata rmaps are computed as follows: * * 1. Count the rmaps collected in the previous step. (= NR) * 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB) * 3. Reserve RMB blocks through the newbt using the allocator in normap mode. * 4. Create bitmap AGBIT. * 5. For each reservation in the newbt, set the corresponding areas in AGBIT. * 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT. * 7. Count the extents in AGBIT. (= AGNR) * 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB') * 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB', * and clear AGBIT. Go to step 5. * A. Emit rmaps for each extent in AGBIT. * * III) The rmapbt is constructed and set in place as follows: * * 1. Sort the rmap records. * 2. Bulk load the rmaps. * * IV) Reap the old btree blocks. * * 1. Create a bitmap OLDRMBIT. * 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT. * 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT. * 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are * the parts of the AG that the rmap didn't find during its scan of the * primary metadata and aren't known to be in the free space, which implies * that they were the old rmapbt blocks. * 5. Commit. * * We use the 'xrep_rmap' prefix for all the rmap functions. */ /* Context for collecting rmaps */ struct xrep_rmap { /* new rmapbt information */ struct xrep_newbt new_btree; /* lock for the xfbtree and xfile */ struct mutex lock; /* rmap records generated from primary metadata */ struct xfbtree rmap_btree; struct xfs_scrub *sc; /* in-memory btree cursor for the xfs_btree_bload iteration */ struct xfs_btree_cur *mcur; /* Hooks into rmap update code. */ struct xfs_rmap_hook rhook; /* inode scan cursor */ struct xchk_iscan iscan; /* Number of non-freespace records found. */ unsigned long long nr_records; /* bnobt/cntbt contribution to btreeblks */ xfs_agblock_t freesp_btblocks; /* old agf_rmap_blocks counter */ unsigned int old_rmapbt_fsbcount; }; /* Set us up to repair reverse mapping btrees. */ int xrep_setup_ag_rmapbt( struct xfs_scrub *sc) { struct xrep_rmap *rr; char *descr; int error; xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP); descr = xchk_xfile_ag_descr(sc, "reverse mapping records"); error = xrep_setup_xfbtree(sc, descr); kfree(descr); if (error) return error; rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS); if (!rr) return -ENOMEM; rr->sc = sc; sc->buf = rr; return 0; } /* Make sure there's nothing funny about this mapping. */ STATIC int xrep_rmap_check_mapping( struct xfs_scrub *sc, const struct xfs_rmap_irec *rec) { enum xbtree_recpacking outcome; int error; if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL) return -EFSCORRUPTED; /* Make sure this isn't free space. */ error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock, rec->rm_blockcount, &outcome); if (error) return error; if (outcome != XBTREE_RECPACKING_EMPTY) return -EFSCORRUPTED; return 0; } /* Store a reverse-mapping record. */ static inline int xrep_rmap_stash( struct xrep_rmap *rr, xfs_agblock_t startblock, xfs_extlen_t blockcount, uint64_t owner, uint64_t offset, unsigned int flags) { struct xfs_rmap_irec rmap = { .rm_startblock = startblock, .rm_blockcount = blockcount, .rm_owner = owner, .rm_offset = offset, .rm_flags = flags, }; struct xfs_scrub *sc = rr->sc; struct xfs_btree_cur *mcur; int error = 0; if (xchk_should_terminate(sc, &error)) return error; if (xchk_iscan_aborted(&rr->iscan)) return -EFSCORRUPTED; trace_xrep_rmap_found(sc->mp, sc->sa.pag->pag_agno, &rmap); mutex_lock(&rr->lock); mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree); error = xfs_rmap_map_raw(mcur, &rmap); xfs_btree_del_cursor(mcur, error); if (error) goto out_cancel; error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp); if (error) goto out_abort; mutex_unlock(&rr->lock); return 0; out_cancel: xfbtree_trans_cancel(&rr->rmap_btree, sc->tp); out_abort: xchk_iscan_abort(&rr->iscan); mutex_unlock(&rr->lock); return error; } struct xrep_rmap_stash_run { struct xrep_rmap *rr; uint64_t owner; unsigned int rmap_flags; }; static int xrep_rmap_stash_run( uint32_t start, uint32_t len, void *priv) { struct xrep_rmap_stash_run *rsr = priv; struct xrep_rmap *rr = rsr->rr; return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags); } /* * Emit rmaps for every extent of bits set in the bitmap. Caller must ensure * that the ranges are in units of FS blocks. */ STATIC int xrep_rmap_stash_bitmap( struct xrep_rmap *rr, struct xagb_bitmap *bitmap, const struct xfs_owner_info *oinfo) { struct xrep_rmap_stash_run rsr = { .rr = rr, .owner = oinfo->oi_owner, .rmap_flags = 0, }; if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) rsr.rmap_flags |= XFS_RMAP_ATTR_FORK; if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK; return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr); } /* Section (I): Finding all file and bmbt extents. */ /* Context for accumulating rmaps for an inode fork. */ struct xrep_rmap_ifork { /* * Accumulate rmap data here to turn multiple adjacent bmaps into a * single rmap. */ struct xfs_rmap_irec accum; /* Bitmap of bmbt blocks in this AG. */ struct xagb_bitmap bmbt_blocks; struct xrep_rmap *rr; /* Which inode fork? */ int whichfork; }; /* Stash an rmap that we accumulated while walking an inode fork. */ STATIC int xrep_rmap_stash_accumulated( struct xrep_rmap_ifork *rf) { if (rf->accum.rm_blockcount == 0) return 0; return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock, rf->accum.rm_blockcount, rf->accum.rm_owner, rf->accum.rm_offset, rf->accum.rm_flags); } /* Accumulate a bmbt record. */ STATIC int xrep_rmap_visit_bmbt( struct xfs_btree_cur *cur, struct xfs_bmbt_irec *rec, void *priv) { struct xrep_rmap_ifork *rf = priv; struct xfs_mount *mp = rf->rr->sc->mp; struct xfs_rmap_irec *accum = &rf->accum; xfs_agblock_t agbno; unsigned int rmap_flags = 0; int error; if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) != rf->rr->sc->sa.pag->pag_agno) return 0; agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock); if (rf->whichfork == XFS_ATTR_FORK) rmap_flags |= XFS_RMAP_ATTR_FORK; if (rec->br_state == XFS_EXT_UNWRITTEN) rmap_flags |= XFS_RMAP_UNWRITTEN; /* If this bmap is adjacent to the previous one, just add it. */ if (accum->rm_blockcount > 0 && rec->br_startoff == accum->rm_offset + accum->rm_blockcount && agbno == accum->rm_startblock + accum->rm_blockcount && rmap_flags == accum->rm_flags) { accum->rm_blockcount += rec->br_blockcount; return 0; } /* Otherwise stash the old rmap and start accumulating a new one. */ error = xrep_rmap_stash_accumulated(rf); if (error) return error; accum->rm_startblock = agbno; accum->rm_blockcount = rec->br_blockcount; accum->rm_offset = rec->br_startoff; accum->rm_flags = rmap_flags; return 0; } /* Add a btree block to the bitmap. */ STATIC int xrep_rmap_visit_iroot_btree_block( struct xfs_btree_cur *cur, int level, void *priv) { struct xrep_rmap_ifork *rf = priv; struct xfs_buf *bp; xfs_fsblock_t fsbno; xfs_agblock_t agbno; xfs_btree_get_block(cur, level, &bp); if (!bp) return 0; fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno) return 0; agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno); return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1); } /* * Iterate a metadata btree rooted in an inode to collect rmap records for * anything in this fork that matches the AG. */ STATIC int xrep_rmap_scan_iroot_btree( struct xrep_rmap_ifork *rf, struct xfs_btree_cur *cur) { struct xfs_owner_info oinfo; struct xrep_rmap *rr = rf->rr; int error; xagb_bitmap_init(&rf->bmbt_blocks); /* Record all the blocks in the btree itself. */ error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block, XFS_BTREE_VISIT_ALL, rf); if (error) goto out; /* Emit rmaps for the btree blocks. */ xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork); error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo); if (error) goto out; /* Stash any remaining accumulated rmaps. */ error = xrep_rmap_stash_accumulated(rf); out: xagb_bitmap_destroy(&rf->bmbt_blocks); return error; } static inline bool is_rt_data_fork( struct xfs_inode *ip, int whichfork) { return XFS_IS_REALTIME_INODE(ip) && whichfork == XFS_DATA_FORK; } /* * Iterate the block mapping btree to collect rmap records for anything in this * fork that matches the AG. Sets @mappings_done to true if we've scanned the * block mappings in this fork. */ STATIC int xrep_rmap_scan_bmbt( struct xrep_rmap_ifork *rf, struct xfs_inode *ip, bool *mappings_done) { struct xrep_rmap *rr = rf->rr; struct xfs_btree_cur *cur; struct xfs_ifork *ifp; int error; *mappings_done = false; ifp = xfs_ifork_ptr(ip, rf->whichfork); cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork); if (!xfs_ifork_is_realtime(ip, rf->whichfork) && xfs_need_iread_extents(ifp)) { /* * If the incore extent cache isn't loaded, scan the bmbt for * mapping records. This avoids loading the incore extent * tree, which will increase memory pressure at a time when * we're trying to run as quickly as we possibly can. Ignore * realtime extents. */ error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf); if (error) goto out_cur; *mappings_done = true; } /* Scan for the bmbt blocks, which always live on the data device. */ error = xrep_rmap_scan_iroot_btree(rf, cur); out_cur: xfs_btree_del_cursor(cur, error); return error; } /* * Iterate the in-core extent cache to collect rmap records for anything in * this fork that matches the AG. */ STATIC int xrep_rmap_scan_iext( struct xrep_rmap_ifork *rf, struct xfs_ifork *ifp) { struct xfs_bmbt_irec rec; struct xfs_iext_cursor icur; int error; for_each_xfs_iext(ifp, &icur, &rec) { if (isnullstartblock(rec.br_startblock)) continue; error = xrep_rmap_visit_bmbt(NULL, &rec, rf); if (error) return error; } return xrep_rmap_stash_accumulated(rf); } /* Find all the extents from a given AG in an inode fork. */ STATIC int xrep_rmap_scan_ifork( struct xrep_rmap *rr, struct xfs_inode *ip, int whichfork) { struct xrep_rmap_ifork rf = { .accum = { .rm_owner = ip->i_ino, }, .rr = rr, .whichfork = whichfork, }; struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); int error = 0; if (!ifp) return 0; if (ifp->if_format == XFS_DINODE_FMT_BTREE) { bool mappings_done; /* * Scan the bmap btree for data device mappings. This includes * the btree blocks themselves, even if this is a realtime * file. */ error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done); if (error || mappings_done) return error; } else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) { return 0; } /* Scan incore extent cache if this isn't a realtime file. */ if (xfs_ifork_is_realtime(ip, whichfork)) return 0; return xrep_rmap_scan_iext(&rf, ifp); } /* * Take ILOCK on a file that we want to scan. * * Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded * attr bmbt. Otherwise, take ILOCK_SHARED. */ static inline unsigned int xrep_rmap_scan_ilock( struct xfs_inode *ip) { uint lock_mode = XFS_ILOCK_SHARED; if (xfs_need_iread_extents(&ip->i_df)) { lock_mode = XFS_ILOCK_EXCL; goto lock; } if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) lock_mode = XFS_ILOCK_EXCL; lock: xfs_ilock(ip, lock_mode); return lock_mode; } /* Record reverse mappings for a file. */ STATIC int xrep_rmap_scan_inode( struct xrep_rmap *rr, struct xfs_inode *ip) { unsigned int lock_mode = 0; int error; /* * Directory updates (create/link/unlink/rename) drop the directory's * ILOCK before finishing any rmapbt updates associated with directory * shape changes. For this scan to coordinate correctly with the live * update hook, we must take the only lock (i_rwsem) that is held all * the way to dir op completion. This will get fixed by the parent * pointer patchset. */ if (S_ISDIR(VFS_I(ip)->i_mode)) { lock_mode = XFS_IOLOCK_SHARED; xfs_ilock(ip, lock_mode); } lock_mode |= xrep_rmap_scan_ilock(ip); /* Check the data fork. */ error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK); if (error) goto out_unlock; /* Check the attr fork. */ error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK); if (error) goto out_unlock; /* COW fork extents are "owned" by the refcount btree. */ xchk_iscan_mark_visited(&rr->iscan, ip); out_unlock: xfs_iunlock(ip, lock_mode); return error; } /* Section (I): Find all AG metadata extents except for free space metadata. */ struct xrep_rmap_inodes { struct xrep_rmap *rr; struct xagb_bitmap inobt_blocks; /* INOBIT */ struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */ }; /* Record inode btree rmaps. */ STATIC int xrep_rmap_walk_inobt( struct xfs_btree_cur *cur, const union xfs_btree_rec *rec, void *priv) { struct xfs_inobt_rec_incore irec; struct xrep_rmap_inodes *ri = priv; struct xfs_mount *mp = cur->bc_mp; xfs_agblock_t agbno; xfs_extlen_t aglen; xfs_agino_t agino; xfs_agino_t iperhole; unsigned int i; int error; /* Record the inobt blocks. */ error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur); if (error) return error; xfs_inobt_btrec_to_irec(mp, rec, &irec); if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL) return -EFSCORRUPTED; agino = irec.ir_startino; /* Record a non-sparse inode chunk. */ if (!xfs_inobt_issparse(irec.ir_holemask)) { agbno = XFS_AGINO_TO_AGBNO(mp, agino); aglen = max_t(xfs_extlen_t, 1, XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock); return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); } /* Iterate each chunk. */ iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock, XFS_INODES_PER_HOLEMASK_BIT); aglen = iperhole / mp->m_sb.sb_inopblock; for (i = 0, agino = irec.ir_startino; i < XFS_INOBT_HOLEMASK_BITS; i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) { /* Skip holes. */ if (irec.ir_holemask & (1 << i)) continue; /* Record the inode chunk otherwise. */ agbno = XFS_AGINO_TO_AGBNO(mp, agino); error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); if (error) return error; } return 0; } /* Collect rmaps for the blocks containing inode btrees and the inode chunks. */ STATIC int xrep_rmap_find_inode_rmaps( struct xrep_rmap *rr) { struct xrep_rmap_inodes ri = { .rr = rr, }; struct xfs_scrub *sc = rr->sc; int error; xagb_bitmap_init(&ri.inobt_blocks); xagb_bitmap_init(&ri.ichunk_blocks); /* * Iterate every record in the inobt so we can capture all the inode * chunks and the blocks in the inobt itself. */ error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri); if (error) goto out_bitmap; /* * Note that if there are zero records in the inobt then query_all does * nothing and we have to account the empty inobt root manually. */ if (xagb_bitmap_empty(&ri.ichunk_blocks)) { struct xfs_agi *agi = sc->sa.agi_bp->b_addr; error = xagb_bitmap_set(&ri.inobt_blocks, be32_to_cpu(agi->agi_root), 1); if (error) goto out_bitmap; } /* Scan the finobt too. */ if (xfs_has_finobt(sc->mp)) { error = xagb_bitmap_set_btblocks(&ri.inobt_blocks, sc->sa.fino_cur); if (error) goto out_bitmap; } /* Generate rmaps for everything. */ error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks, &XFS_RMAP_OINFO_INOBT); if (error) goto out_bitmap; error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks, &XFS_RMAP_OINFO_INODES); out_bitmap: xagb_bitmap_destroy(&ri.inobt_blocks); xagb_bitmap_destroy(&ri.ichunk_blocks); return error; } /* Record a CoW staging extent. */ STATIC int xrep_rmap_walk_cowblocks( struct xfs_btree_cur *cur, const struct xfs_refcount_irec *irec, void *priv) { struct xagb_bitmap *bitmap = priv; if (!xfs_refcount_check_domain(irec) || irec->rc_domain != XFS_REFC_DOMAIN_COW) return -EFSCORRUPTED; return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount); } /* * Collect rmaps for the blocks containing the refcount btree, and all CoW * staging extents. */ STATIC int xrep_rmap_find_refcount_rmaps( struct xrep_rmap *rr) { struct xagb_bitmap refcountbt_blocks; /* REFCBIT */ struct xagb_bitmap cow_blocks; /* COWBIT */ struct xfs_refcount_irec low = { .rc_startblock = 0, .rc_domain = XFS_REFC_DOMAIN_COW, }; struct xfs_refcount_irec high = { .rc_startblock = -1U, .rc_domain = XFS_REFC_DOMAIN_COW, }; struct xfs_scrub *sc = rr->sc; int error; if (!xfs_has_reflink(sc->mp)) return 0; xagb_bitmap_init(&refcountbt_blocks); xagb_bitmap_init(&cow_blocks); /* refcountbt */ error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur); if (error) goto out_bitmap; /* Collect rmaps for CoW staging extents. */ error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high, xrep_rmap_walk_cowblocks, &cow_blocks); if (error) goto out_bitmap; /* Generate rmaps for everything. */ error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW); if (error) goto out_bitmap; error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks, &XFS_RMAP_OINFO_REFC); out_bitmap: xagb_bitmap_destroy(&cow_blocks); xagb_bitmap_destroy(&refcountbt_blocks); return error; } /* Generate rmaps for the AG headers (AGI/AGF/AGFL) */ STATIC int xrep_rmap_find_agheader_rmaps( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; /* Create a record for the AG sb->agfl. */ return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp), XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1, XFS_RMAP_OWN_FS, 0, 0); } /* Generate rmaps for the log, if it's in this AG. */ STATIC int xrep_rmap_find_log_rmaps( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno)) return 0; return xrep_rmap_stash(rr, XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart), sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0); } /* Check and count all the records that we gathered. */ STATIC int xrep_rmap_check_record( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_rmap *rr = priv; int error; error = xrep_rmap_check_mapping(rr->sc, rec); if (error) return error; rr->nr_records++; return 0; } /* * Generate all the reverse-mappings for this AG, a list of the old rmapbt * blocks, and the new btreeblks count. Figure out if we have enough free * space to reconstruct the inode btrees. The caller must clean up the lists * if anything goes wrong. This implements section (I) above. */ STATIC int xrep_rmap_find_rmaps( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; struct xchk_ag *sa = &sc->sa; struct xfs_inode *ip; struct xfs_btree_cur *mcur; int error; /* Find all the per-AG metadata. */ xrep_ag_btcur_init(sc, &sc->sa); error = xrep_rmap_find_inode_rmaps(rr); if (error) goto end_agscan; error = xrep_rmap_find_refcount_rmaps(rr); if (error) goto end_agscan; error = xrep_rmap_find_agheader_rmaps(rr); if (error) goto end_agscan; error = xrep_rmap_find_log_rmaps(rr); end_agscan: xchk_ag_btcur_free(&sc->sa); if (error) return error; /* * Set up for a potentially lengthy filesystem scan by reducing our * transaction resource usage for the duration. Specifically: * * Unlock the AG header buffers and cancel the transaction to release * the log grant space while we scan the filesystem. * * Create a new empty transaction to eliminate the possibility of the * inode scan deadlocking on cyclical metadata. * * We pass the empty transaction to the file scanning function to avoid * repeatedly cycling empty transactions. This can be done even though * we take the IOLOCK to quiesce the file because empty transactions * do not take sb_internal. */ sa->agf_bp = NULL; sa->agi_bp = NULL; xchk_trans_cancel(sc); error = xchk_trans_alloc_empty(sc); if (error) return error; /* Iterate all AGs for inodes rmaps. */ while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) { error = xrep_rmap_scan_inode(rr, ip); xchk_irele(sc, ip); if (error) break; if (xchk_should_terminate(sc, &error)) break; } xchk_iscan_iter_finish(&rr->iscan); if (error) return error; /* * Switch out for a real transaction and lock the AG headers in * preparation for building a new tree. */ xchk_trans_cancel(sc); error = xchk_setup_fs(sc); if (error) return error; error = xchk_perag_drain_and_lock(sc); if (error) return error; /* * If a hook failed to update the in-memory btree, we lack the data to * continue the repair. */ if (xchk_iscan_aborted(&rr->iscan)) return -EFSCORRUPTED; /* * Now that we have everything locked again, we need to count the * number of rmap records stashed in the btree. This should reflect * all actively-owned space in the filesystem. At the same time, check * all our records before we start building a new btree, which requires * a bnobt cursor. */ mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); rr->nr_records = 0; error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr); xfs_btree_del_cursor(sc->sa.bno_cur, error); sc->sa.bno_cur = NULL; xfs_btree_del_cursor(mcur, error); return error; } /* Section (II): Reserving space for new rmapbt and setting free space bitmap */ struct xrep_rmap_agfl { struct xagb_bitmap *bitmap; xfs_agnumber_t agno; }; /* Add an AGFL block to the rmap list. */ STATIC int xrep_rmap_walk_agfl( struct xfs_mount *mp, xfs_agblock_t agbno, void *priv) { struct xrep_rmap_agfl *ra = priv; return xagb_bitmap_set(ra->bitmap, agbno, 1); } /* * Run one round of reserving space for the new rmapbt and recomputing the * number of blocks needed to store the previously observed rmapbt records and * the ones we'll create for the free space metadata. When we don't need more * blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to * true. */ STATIC int xrep_rmap_try_reserve( struct xrep_rmap *rr, struct xfs_btree_cur *rmap_cur, struct xagb_bitmap *freesp_blocks, uint64_t *blocks_reserved, bool *done) { struct xrep_rmap_agfl ra = { .bitmap = freesp_blocks, .agno = rr->sc->sa.pag->pag_agno, }; struct xfs_scrub *sc = rr->sc; struct xrep_newbt_resv *resv, *n; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_buf *agfl_bp; uint64_t nr_blocks; /* RMB */ uint64_t freesp_records; int error; /* * We're going to recompute new_btree.bload.nr_blocks at the end of * this function to reflect however many btree blocks we need to store * all the rmap records (including the ones that reflect the changes we * made to support the new rmapbt blocks), so we save the old value * here so we can decide if we've reserved enough blocks. */ nr_blocks = rr->new_btree.bload.nr_blocks; /* * Make sure we've reserved enough space for the new btree. This can * change the shape of the free space btrees, which can cause secondary * interactions with the rmap records because all three space btrees * have the same rmap owner. We'll account for all that below. */ error = xrep_newbt_alloc_blocks(&rr->new_btree, nr_blocks - *blocks_reserved); if (error) return error; *blocks_reserved = rr->new_btree.bload.nr_blocks; /* Clear everything in the bitmap. */ xagb_bitmap_destroy(freesp_blocks); /* Set all the bnobt blocks in the bitmap. */ sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur); xfs_btree_del_cursor(sc->sa.bno_cur, error); sc->sa.bno_cur = NULL; if (error) return error; /* Set all the cntbt blocks in the bitmap. */ sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur); xfs_btree_del_cursor(sc->sa.cnt_cur, error); sc->sa.cnt_cur = NULL; if (error) return error; /* Record our new btreeblks value. */ rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2; /* Set all the new rmapbt blocks in the bitmap. */ list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) { error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len); if (error) return error; } /* Set all the AGFL blocks in the bitmap. */ error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); if (error) return error; error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra); if (error) return error; /* Count the extents in the bitmap. */ freesp_records = xagb_bitmap_count_set_regions(freesp_blocks); /* Compute how many blocks we'll need for all the rmaps. */ error = xfs_btree_bload_compute_geometry(rmap_cur, &rr->new_btree.bload, rr->nr_records + freesp_records); if (error) return error; /* We're done when we don't need more blocks. */ *done = nr_blocks >= rr->new_btree.bload.nr_blocks; return 0; } /* * Iteratively reserve space for rmap btree while recording OWN_AG rmaps for * the free space metadata. This implements section (II) above. */ STATIC int xrep_rmap_reserve_space( struct xrep_rmap *rr, struct xfs_btree_cur *rmap_cur) { struct xagb_bitmap freesp_blocks; /* AGBIT */ uint64_t blocks_reserved = 0; bool done = false; int error; /* Compute how many blocks we'll need for the rmaps collected so far. */ error = xfs_btree_bload_compute_geometry(rmap_cur, &rr->new_btree.bload, rr->nr_records); if (error) return error; /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(rr->sc, &error)) return error; xagb_bitmap_init(&freesp_blocks); /* * Iteratively reserve space for the new rmapbt and recompute the * number of blocks needed to store the previously observed rmapbt * records and the ones we'll create for the free space metadata. * Finish when we don't need more blocks. */ do { error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks, &blocks_reserved, &done); if (error) goto out_bitmap; } while (!done); /* Emit rmaps for everything in the free space bitmap. */ xrep_ag_btcur_init(rr->sc, &rr->sc->sa); error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG); xchk_ag_btcur_free(&rr->sc->sa); out_bitmap: xagb_bitmap_destroy(&freesp_blocks); return error; } /* Section (III): Building the new rmap btree. */ /* Update the AGF counters. */ STATIC int xrep_rmap_reset_counters( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; xfs_agblock_t rmap_btblocks; /* * The AGF header contains extra information related to the reverse * mapping btree, so we must update those fields here. */ rmap_btblocks = rr->new_btree.afake.af_blocks - 1; agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks); xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS); /* * After we commit the new btree to disk, it is possible that the * process to reap the old btree blocks will race with the AIL trying * to checkpoint the old btree blocks into the filesystem. If the new * tree is shorter than the old one, the rmapbt write verifier will * fail and the AIL will shut down the filesystem. * * To avoid this, save the old incore btree height values as the alt * height values before re-initializing the perag info from the updated * AGF to capture all the new values. */ pag->pagf_repair_rmap_level = pag->pagf_rmap_level; /* Reinitialize with the values we just logged. */ return xrep_reinit_pagf(sc); } /* Retrieve rmapbt data for bulk load. */ STATIC int xrep_rmap_get_records( struct xfs_btree_cur *cur, unsigned int idx, struct xfs_btree_block *block, unsigned int nr_wanted, void *priv) { struct xrep_rmap *rr = priv; union xfs_btree_rec *block_rec; unsigned int loaded; int error; for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { int stat = 0; error = xfs_btree_increment(rr->mcur, 0, &stat); if (error) return error; if (!stat) return -EFSCORRUPTED; error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat); if (error) return error; if (!stat) return -EFSCORRUPTED; block_rec = xfs_btree_rec_addr(cur, idx, block); cur->bc_ops->init_rec_from_cur(cur, block_rec); } return loaded; } /* Feed one of the new btree blocks to the bulk loader. */ STATIC int xrep_rmap_claim_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, void *priv) { struct xrep_rmap *rr = priv; return xrep_newbt_claim_block(cur, &rr->new_btree, ptr); } /* Custom allocation function for new rmap btrees. */ STATIC int xrep_rmap_alloc_vextent( struct xfs_scrub *sc, struct xfs_alloc_arg *args, xfs_fsblock_t alloc_hint) { int error; /* * We don't want an rmap update on the allocation, since we iteratively * compute the OWN_AG records /after/ allocating blocks for the records * that we already know we need to store. Therefore, fix the freelist * with the NORMAP flag set so that we don't also try to create an rmap * for new AGFL blocks. */ error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP); if (error) return error; /* * If xrep_fix_freelist fixed the freelist by moving blocks from the * free space btrees or by removing blocks from the AGFL and queueing * an EFI to free the block, the transaction will be dirty. This * second case is of interest to us. * * Later on, we will need to compare gaps in the new recordset against * the block usage of all OWN_AG owners in order to free the old * btree's blocks, which means that we can't have EFIs for former AGFL * blocks attached to the repair transaction when we commit the new * btree. * * xrep_newbt_alloc_blocks guarantees this for us by calling * xrep_defer_finish to commit anything that fix_freelist may have * added to the transaction. */ return xfs_alloc_vextent_near_bno(args, alloc_hint); } /* Count the records in this btree. */ STATIC int xrep_rmap_count_records( struct xfs_btree_cur *cur, unsigned long long *nr) { int running = 1; int error; *nr = 0; error = xfs_btree_goto_left_edge(cur); if (error) return error; while (running && !(error = xfs_btree_increment(cur, 0, &running))) { if (running) (*nr)++; } return error; } /* * Use the collected rmap information to stage a new rmap btree. If this is * successful we'll return with the new btree root information logged to the * repair transaction but not yet committed. This implements section (III) * above. */ STATIC int xrep_rmap_build_new_tree( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_btree_cur *rmap_cur; xfs_fsblock_t fsbno; int error; /* * Preserve the old rmapbt block count so that we can adjust the * per-AG rmapbt reservation after we commit the new btree root and * want to dispose of the old btree blocks. */ rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks); /* * Prepare to construct the new btree by reserving disk space for the * new btree and setting up all the accounting information we'll need * to root the new btree while it's under construction and before we * attach it to the AG header. The new blocks are accounted to the * rmapbt per-AG reservation, which we will adjust further after * committing the new btree. */ fsbno = XFS_AGB_TO_FSB(sc->mp, pag->pag_agno, XFS_RMAP_BLOCK(sc->mp)); xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE, fsbno, XFS_AG_RESV_RMAPBT); rr->new_btree.bload.get_records = xrep_rmap_get_records; rr->new_btree.bload.claim_block = xrep_rmap_claim_block; rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent; rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag); xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake); /* * Initialize @rr->new_btree, reserve space for the new rmapbt, * and compute OWN_AG rmaps. */ error = xrep_rmap_reserve_space(rr, rmap_cur); if (error) goto err_cur; /* * Count the rmapbt records again, because the space reservation * for the rmapbt itself probably added more records to the btree. */ rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); error = xrep_rmap_count_records(rr->mcur, &rr->nr_records); if (error) goto err_mcur; /* * Due to btree slack factors, it's possible for a new btree to be one * level taller than the old btree. Update the incore btree height so * that we don't trip the verifiers when writing the new btree blocks * to disk. */ pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height; /* * Move the cursor to the left edge of the tree so that the first * increment in ->get_records positions us at the first record. */ error = xfs_btree_goto_left_edge(rr->mcur); if (error) goto err_level; /* Add all observed rmap records. */ error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr); if (error) goto err_level; /* * Install the new btree in the AG header. After this point the old * btree is no longer accessible and the new tree is live. */ xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp); xfs_btree_del_cursor(rmap_cur, 0); xfs_btree_del_cursor(rr->mcur, 0); rr->mcur = NULL; /* * Now that we've written the new btree to disk, we don't need to keep * updating the in-memory btree. Abort the scan to stop live updates. */ xchk_iscan_abort(&rr->iscan); /* * The newly committed rmap recordset includes mappings for the blocks * that we reserved to build the new btree. If there is excess space * reservation to be freed, the corresponding rmap records must also be * removed. */ rr->new_btree.oinfo = XFS_RMAP_OINFO_AG; /* Reset the AGF counters now that we've changed the btree shape. */ error = xrep_rmap_reset_counters(rr); if (error) goto err_newbt; /* Dispose of any unused blocks and the accounting information. */ error = xrep_newbt_commit(&rr->new_btree); if (error) return error; return xrep_roll_ag_trans(sc); err_level: pag->pagf_repair_rmap_level = 0; err_mcur: xfs_btree_del_cursor(rr->mcur, error); err_cur: xfs_btree_del_cursor(rmap_cur, error); err_newbt: xrep_newbt_cancel(&rr->new_btree); return error; } /* Section (IV): Reaping the old btree. */ struct xrep_rmap_find_gaps { struct xagb_bitmap rmap_gaps; xfs_agblock_t next_agbno; }; /* Subtract each free extent in the bnobt from the rmap gaps. */ STATIC int xrep_rmap_find_freesp( struct xfs_btree_cur *cur, const struct xfs_alloc_rec_incore *rec, void *priv) { struct xrep_rmap_find_gaps *rfg = priv; return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock, rec->ar_blockcount); } /* Record the free space we find, as part of cleaning out the btree. */ STATIC int xrep_rmap_find_gaps( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_rmap_find_gaps *rfg = priv; int error; if (rec->rm_startblock > rfg->next_agbno) { error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno, rec->rm_startblock - rfg->next_agbno); if (error) return error; } rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno, rec->rm_startblock + rec->rm_blockcount); return 0; } /* * Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make * a list of gaps in the rmap records and a list of the extents mentioned in * the bnobt. Any block that's in the new rmapbt gap list but not mentioned * in the bnobt is a block from the old rmapbt and can be removed. */ STATIC int xrep_rmap_remove_old_tree( struct xrep_rmap *rr) { struct xrep_rmap_find_gaps rfg = { .next_agbno = 0, }; struct xfs_scrub *sc = rr->sc; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_perag *pag = sc->sa.pag; struct xfs_btree_cur *mcur; xfs_agblock_t agend; int error; xagb_bitmap_init(&rfg.rmap_gaps); /* Compute free space from the new rmapbt. */ mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg); xfs_btree_del_cursor(mcur, error); if (error) goto out_bitmap; /* Insert a record for space between the last rmap and EOAG. */ agend = be32_to_cpu(agf->agf_length); if (rfg.next_agbno < agend) { error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno, agend - rfg.next_agbno); if (error) goto out_bitmap; } /* Compute free space from the existing bnobt. */ sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp, &rfg); xfs_btree_del_cursor(sc->sa.bno_cur, error); sc->sa.bno_cur = NULL; if (error) goto out_bitmap; /* * Free the "free" blocks that the new rmapbt knows about but the bnobt * doesn't--these are the old rmapbt blocks. Credit the old rmapbt * block usage count back to the per-AG rmapbt reservation (and not * fdblocks, since the rmap btree lives in free space) to keep the * reservation and free space accounting correct. */ error = xrep_reap_agblocks(sc, &rfg.rmap_gaps, &XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT); if (error) goto out_bitmap; /* * Now that we've zapped all the old rmapbt blocks we can turn off * the alternate height mechanism and reset the per-AG space * reservation. */ pag->pagf_repair_rmap_level = 0; sc->flags |= XREP_RESET_PERAG_RESV; out_bitmap: xagb_bitmap_destroy(&rfg.rmap_gaps); return error; } static inline bool xrep_rmapbt_want_live_update( struct xchk_iscan *iscan, const struct xfs_owner_info *oi) { if (xchk_iscan_aborted(iscan)) return false; /* * Before unlocking the AG header to perform the inode scan, we * recorded reverse mappings for all AG metadata except for the OWN_AG * metadata. IOWs, the in-memory btree knows about the AG headers, the * two inode btrees, the CoW staging extents, and the refcount btrees. * For these types of metadata, we need to record the live updates in * the in-memory rmap btree. * * However, we do not scan the free space btrees or the AGFL until we * have re-locked the AGF and are ready to reserve space for the new * rmap btree, so we do not want live updates for OWN_AG metadata. */ if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner)) return oi->oi_owner != XFS_RMAP_OWN_AG; /* Ignore updates to files that the scanner hasn't visited yet. */ return xchk_iscan_want_live_update(iscan, oi->oi_owner); } /* * Apply a rmapbt update from the regular filesystem into our shadow btree. * We're running from the thread that owns the AGF buffer and is generating * the update, so we must be careful about which parts of the struct xrep_rmap * that we change. */ static int xrep_rmapbt_live_update( struct notifier_block *nb, unsigned long action, void *data) { struct xfs_rmap_update_params *p = data; struct xrep_rmap *rr; struct xfs_mount *mp; struct xfs_btree_cur *mcur; struct xfs_trans *tp; void *txcookie; int error; rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb); mp = rr->sc->mp; if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo)) goto out_unlock; trace_xrep_rmap_live_update(mp, rr->sc->sa.pag->pag_agno, action, p); error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp); if (error) goto out_abort; mutex_lock(&rr->lock); mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree); error = __xfs_rmap_finish_intent(mcur, action, p->startblock, p->blockcount, &p->oinfo, p->unwritten); xfs_btree_del_cursor(mcur, error); if (error) goto out_cancel; error = xfbtree_trans_commit(&rr->rmap_btree, tp); if (error) goto out_cancel; xrep_trans_cancel_hook_dummy(&txcookie, tp); mutex_unlock(&rr->lock); return NOTIFY_DONE; out_cancel: xfbtree_trans_cancel(&rr->rmap_btree, tp); xrep_trans_cancel_hook_dummy(&txcookie, tp); out_abort: mutex_unlock(&rr->lock); xchk_iscan_abort(&rr->iscan); out_unlock: return NOTIFY_DONE; } /* Set up the filesystem scan components. */ STATIC int xrep_rmap_setup_scan( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; int error; mutex_init(&rr->lock); /* Set up in-memory rmap btree */ error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp, sc->sa.pag->pag_agno); if (error) goto out_mutex; /* Retry iget every tenth of a second for up to 30 seconds. */ xchk_iscan_start(sc, 30000, 100, &rr->iscan); /* * Hook into live rmap operations so that we can update our in-memory * btree to reflect live changes on the filesystem. Since we drop the * AGF buffer to scan all the inodes, we need this piece to avoid * installing a stale btree. */ ASSERT(sc->flags & XCHK_FSGATES_RMAP); xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update); error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook); if (error) goto out_iscan; return 0; out_iscan: xchk_iscan_teardown(&rr->iscan); xfbtree_destroy(&rr->rmap_btree); out_mutex: mutex_destroy(&rr->lock); return error; } /* Tear down scan components. */ STATIC void xrep_rmap_teardown( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; xchk_iscan_abort(&rr->iscan); xfs_rmap_hook_del(sc->sa.pag, &rr->rhook); xchk_iscan_teardown(&rr->iscan); xfbtree_destroy(&rr->rmap_btree); mutex_destroy(&rr->lock); } /* Repair the rmap btree for some AG. */ int xrep_rmapbt( struct xfs_scrub *sc) { struct xrep_rmap *rr = sc->buf; int error; error = xrep_rmap_setup_scan(rr); if (error) return error; /* * Collect rmaps for everything in this AG that isn't space metadata. * These rmaps won't change even as we try to allocate blocks. */ error = xrep_rmap_find_rmaps(rr); if (error) goto out_records; /* Rebuild the rmap information. */ error = xrep_rmap_build_new_tree(rr); if (error) goto out_records; /* Kill the old tree. */ error = xrep_rmap_remove_old_tree(rr); if (error) goto out_records; out_records: xrep_rmap_teardown(rr); return error; } |