Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (c) 2018-2024 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_buf_mem.h"
#include "xfs_btree_mem.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/iscan.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"

/*
 * Reverse Mapping Btree Repair
 * ============================
 *
 * This is the most involved of all the AG space btree rebuilds.  Everywhere
 * else in XFS we lock inodes and then AG data structures, but generating the
 * list of rmap records requires that we be able to scan both block mapping
 * btrees of every inode in the filesystem to see if it owns any extents in
 * this AG.  We can't tolerate any inode updates while we do this, so we
 * freeze the filesystem to lock everyone else out, and grant ourselves
 * special privileges to run transactions with regular background reclamation
 * turned off.
 *
 * We also have to be very careful not to allow inode reclaim to start a
 * transaction because all transactions (other than our own) will block.
 * Deferred inode inactivation helps us out there.
 *
 * I) Reverse mappings for all non-space metadata and file data are collected
 * according to the following algorithm:
 *
 * 1. For each fork of each inode:
 * 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary.
 * 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate
 *      bmaps into rmap records (see 1.1.4).  Set bits in BMBIT for each btree
 *      block.
 * 1.3. If the incore extent map is loaded but the fork is in btree format,
 *      just visit the bmbt blocks to set the corresponding BMBIT areas.
 * 1.4. From the incore extent map, accumulate each bmap that falls into our
 *      target AG.  Remember, multiple bmap records can map to a single rmap
 *      record, so we cannot simply emit rmap records 1:1.
 * 1.5. Emit rmap records for each extent in BMBIT and free it.
 * 2. Create bitmaps INOBIT and ICHUNKBIT.
 * 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT,
 *    and set bits in INOBIT for each btree block.  If the inobt has no records
 *    at all, we must be careful to record its root in INOBIT.
 * 4. For each block in the finobt, set the corresponding INOBIT area.
 * 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them.
 * 6. Create bitmaps REFCBIT and COWBIT.
 * 7. For each CoW staging extent in the refcountbt, set the corresponding
 *    areas in COWBIT.
 * 8. For each block in the refcountbt, set the corresponding REFCBIT area.
 * 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them.
 * A. Emit rmap for the AG headers.
 * B. Emit rmap for the log, if there is one.
 *
 * II) The rmapbt shape and space metadata rmaps are computed as follows:
 *
 * 1. Count the rmaps collected in the previous step. (= NR)
 * 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB)
 * 3. Reserve RMB blocks through the newbt using the allocator in normap mode.
 * 4. Create bitmap AGBIT.
 * 5. For each reservation in the newbt, set the corresponding areas in AGBIT.
 * 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT.
 * 7. Count the extents in AGBIT. (= AGNR)
 * 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB')
 * 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB',
 *    and clear AGBIT.  Go to step 5.
 * A. Emit rmaps for each extent in AGBIT.
 *
 * III) The rmapbt is constructed and set in place as follows:
 *
 * 1. Sort the rmap records.
 * 2. Bulk load the rmaps.
 *
 * IV) Reap the old btree blocks.
 *
 * 1. Create a bitmap OLDRMBIT.
 * 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT.
 * 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT.
 * 4. Reap the extents corresponding to the set areas in OLDRMBIT.  These are
 *    the parts of the AG that the rmap didn't find during its scan of the
 *    primary metadata and aren't known to be in the free space, which implies
 *    that they were the old rmapbt blocks.
 * 5. Commit.
 *
 * We use the 'xrep_rmap' prefix for all the rmap functions.
 */

/* Context for collecting rmaps */
struct xrep_rmap {
	/* new rmapbt information */
	struct xrep_newbt	new_btree;

	/* lock for the xfbtree and xfile */
	struct mutex		lock;

	/* rmap records generated from primary metadata */
	struct xfbtree		rmap_btree;

	struct xfs_scrub	*sc;

	/* in-memory btree cursor for the xfs_btree_bload iteration */
	struct xfs_btree_cur	*mcur;

	/* Hooks into rmap update code. */
	struct xfs_rmap_hook	rhook;

	/* inode scan cursor */
	struct xchk_iscan	iscan;

	/* Number of non-freespace records found. */
	unsigned long long	nr_records;

	/* bnobt/cntbt contribution to btreeblks */
	xfs_agblock_t		freesp_btblocks;

	/* old agf_rmap_blocks counter */
	unsigned int		old_rmapbt_fsbcount;
};

/* Set us up to repair reverse mapping btrees. */
int
xrep_setup_ag_rmapbt(
	struct xfs_scrub	*sc)
{
	struct xrep_rmap	*rr;
	char			*descr;
	int			error;

	xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP);

	descr = xchk_xfile_ag_descr(sc, "reverse mapping records");
	error = xrep_setup_xfbtree(sc, descr);
	kfree(descr);
	if (error)
		return error;

	rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS);
	if (!rr)
		return -ENOMEM;

	rr->sc = sc;
	sc->buf = rr;
	return 0;
}

/* Make sure there's nothing funny about this mapping. */
STATIC int
xrep_rmap_check_mapping(
	struct xfs_scrub	*sc,
	const struct xfs_rmap_irec *rec)
{
	enum xbtree_recpacking	outcome;
	int			error;

	if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL)
		return -EFSCORRUPTED;

	/* Make sure this isn't free space. */
	error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
			rec->rm_blockcount, &outcome);
	if (error)
		return error;
	if (outcome != XBTREE_RECPACKING_EMPTY)
		return -EFSCORRUPTED;

	return 0;
}

/* Store a reverse-mapping record. */
static inline int
xrep_rmap_stash(
	struct xrep_rmap	*rr,
	xfs_agblock_t		startblock,
	xfs_extlen_t		blockcount,
	uint64_t		owner,
	uint64_t		offset,
	unsigned int		flags)
{
	struct xfs_rmap_irec	rmap = {
		.rm_startblock	= startblock,
		.rm_blockcount	= blockcount,
		.rm_owner	= owner,
		.rm_offset	= offset,
		.rm_flags	= flags,
	};
	struct xfs_scrub	*sc = rr->sc;
	struct xfs_btree_cur	*mcur;
	int			error = 0;

	if (xchk_should_terminate(sc, &error))
		return error;

	if (xchk_iscan_aborted(&rr->iscan))
		return -EFSCORRUPTED;

	trace_xrep_rmap_found(sc->mp, sc->sa.pag->pag_agno, &rmap);

	mutex_lock(&rr->lock);
	mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree);
	error = xfs_rmap_map_raw(mcur, &rmap);
	xfs_btree_del_cursor(mcur, error);
	if (error)
		goto out_cancel;

	error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp);
	if (error)
		goto out_abort;

	mutex_unlock(&rr->lock);
	return 0;

out_cancel:
	xfbtree_trans_cancel(&rr->rmap_btree, sc->tp);
out_abort:
	xchk_iscan_abort(&rr->iscan);
	mutex_unlock(&rr->lock);
	return error;
}

struct xrep_rmap_stash_run {
	struct xrep_rmap	*rr;
	uint64_t		owner;
	unsigned int		rmap_flags;
};

static int
xrep_rmap_stash_run(
	uint32_t			start,
	uint32_t			len,
	void				*priv)
{
	struct xrep_rmap_stash_run	*rsr = priv;
	struct xrep_rmap		*rr = rsr->rr;

	return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags);
}

/*
 * Emit rmaps for every extent of bits set in the bitmap.  Caller must ensure
 * that the ranges are in units of FS blocks.
 */
STATIC int
xrep_rmap_stash_bitmap(
	struct xrep_rmap		*rr,
	struct xagb_bitmap		*bitmap,
	const struct xfs_owner_info	*oinfo)
{
	struct xrep_rmap_stash_run	rsr = {
		.rr			= rr,
		.owner			= oinfo->oi_owner,
		.rmap_flags		= 0,
	};

	if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
		rsr.rmap_flags |= XFS_RMAP_ATTR_FORK;
	if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
		rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK;

	return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr);
}

/* Section (I): Finding all file and bmbt extents. */

/* Context for accumulating rmaps for an inode fork. */
struct xrep_rmap_ifork {
	/*
	 * Accumulate rmap data here to turn multiple adjacent bmaps into a
	 * single rmap.
	 */
	struct xfs_rmap_irec	accum;

	/* Bitmap of bmbt blocks in this AG. */
	struct xagb_bitmap	bmbt_blocks;

	struct xrep_rmap	*rr;

	/* Which inode fork? */
	int			whichfork;
};

/* Stash an rmap that we accumulated while walking an inode fork. */
STATIC int
xrep_rmap_stash_accumulated(
	struct xrep_rmap_ifork	*rf)
{
	if (rf->accum.rm_blockcount == 0)
		return 0;

	return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock,
			rf->accum.rm_blockcount, rf->accum.rm_owner,
			rf->accum.rm_offset, rf->accum.rm_flags);
}

/* Accumulate a bmbt record. */
STATIC int
xrep_rmap_visit_bmbt(
	struct xfs_btree_cur	*cur,
	struct xfs_bmbt_irec	*rec,
	void			*priv)
{
	struct xrep_rmap_ifork	*rf = priv;
	struct xfs_mount	*mp = rf->rr->sc->mp;
	struct xfs_rmap_irec	*accum = &rf->accum;
	xfs_agblock_t		agbno;
	unsigned int		rmap_flags = 0;
	int			error;

	if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) !=
			rf->rr->sc->sa.pag->pag_agno)
		return 0;

	agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock);
	if (rf->whichfork == XFS_ATTR_FORK)
		rmap_flags |= XFS_RMAP_ATTR_FORK;
	if (rec->br_state == XFS_EXT_UNWRITTEN)
		rmap_flags |= XFS_RMAP_UNWRITTEN;

	/* If this bmap is adjacent to the previous one, just add it. */
	if (accum->rm_blockcount > 0 &&
	    rec->br_startoff == accum->rm_offset + accum->rm_blockcount &&
	    agbno == accum->rm_startblock + accum->rm_blockcount &&
	    rmap_flags == accum->rm_flags) {
		accum->rm_blockcount += rec->br_blockcount;
		return 0;
	}

	/* Otherwise stash the old rmap and start accumulating a new one. */
	error = xrep_rmap_stash_accumulated(rf);
	if (error)
		return error;

	accum->rm_startblock = agbno;
	accum->rm_blockcount = rec->br_blockcount;
	accum->rm_offset = rec->br_startoff;
	accum->rm_flags = rmap_flags;
	return 0;
}

/* Add a btree block to the bitmap. */
STATIC int
xrep_rmap_visit_iroot_btree_block(
	struct xfs_btree_cur	*cur,
	int			level,
	void			*priv)
{
	struct xrep_rmap_ifork	*rf = priv;
	struct xfs_buf		*bp;
	xfs_fsblock_t		fsbno;
	xfs_agblock_t		agbno;

	xfs_btree_get_block(cur, level, &bp);
	if (!bp)
		return 0;

	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
	if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno)
		return 0;

	agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
	return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1);
}

/*
 * Iterate a metadata btree rooted in an inode to collect rmap records for
 * anything in this fork that matches the AG.
 */
STATIC int
xrep_rmap_scan_iroot_btree(
	struct xrep_rmap_ifork	*rf,
	struct xfs_btree_cur	*cur)
{
	struct xfs_owner_info	oinfo;
	struct xrep_rmap	*rr = rf->rr;
	int			error;

	xagb_bitmap_init(&rf->bmbt_blocks);

	/* Record all the blocks in the btree itself. */
	error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block,
			XFS_BTREE_VISIT_ALL, rf);
	if (error)
		goto out;

	/* Emit rmaps for the btree blocks. */
	xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork);
	error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo);
	if (error)
		goto out;

	/* Stash any remaining accumulated rmaps. */
	error = xrep_rmap_stash_accumulated(rf);
out:
	xagb_bitmap_destroy(&rf->bmbt_blocks);
	return error;
}

static inline bool
is_rt_data_fork(
	struct xfs_inode	*ip,
	int			whichfork)
{
	return XFS_IS_REALTIME_INODE(ip) && whichfork == XFS_DATA_FORK;
}

/*
 * Iterate the block mapping btree to collect rmap records for anything in this
 * fork that matches the AG.  Sets @mappings_done to true if we've scanned the
 * block mappings in this fork.
 */
STATIC int
xrep_rmap_scan_bmbt(
	struct xrep_rmap_ifork	*rf,
	struct xfs_inode	*ip,
	bool			*mappings_done)
{
	struct xrep_rmap	*rr = rf->rr;
	struct xfs_btree_cur	*cur;
	struct xfs_ifork	*ifp;
	int			error;

	*mappings_done = false;
	ifp = xfs_ifork_ptr(ip, rf->whichfork);
	cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork);

	if (!xfs_ifork_is_realtime(ip, rf->whichfork) &&
	    xfs_need_iread_extents(ifp)) {
		/*
		 * If the incore extent cache isn't loaded, scan the bmbt for
		 * mapping records.  This avoids loading the incore extent
		 * tree, which will increase memory pressure at a time when
		 * we're trying to run as quickly as we possibly can.  Ignore
		 * realtime extents.
		 */
		error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf);
		if (error)
			goto out_cur;

		*mappings_done = true;
	}

	/* Scan for the bmbt blocks, which always live on the data device. */
	error = xrep_rmap_scan_iroot_btree(rf, cur);
out_cur:
	xfs_btree_del_cursor(cur, error);
	return error;
}

/*
 * Iterate the in-core extent cache to collect rmap records for anything in
 * this fork that matches the AG.
 */
STATIC int
xrep_rmap_scan_iext(
	struct xrep_rmap_ifork	*rf,
	struct xfs_ifork	*ifp)
{
	struct xfs_bmbt_irec	rec;
	struct xfs_iext_cursor	icur;
	int			error;

	for_each_xfs_iext(ifp, &icur, &rec) {
		if (isnullstartblock(rec.br_startblock))
			continue;
		error = xrep_rmap_visit_bmbt(NULL, &rec, rf);
		if (error)
			return error;
	}

	return xrep_rmap_stash_accumulated(rf);
}

/* Find all the extents from a given AG in an inode fork. */
STATIC int
xrep_rmap_scan_ifork(
	struct xrep_rmap	*rr,
	struct xfs_inode	*ip,
	int			whichfork)
{
	struct xrep_rmap_ifork	rf = {
		.accum		= { .rm_owner = ip->i_ino, },
		.rr		= rr,
		.whichfork	= whichfork,
	};
	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
	int			error = 0;

	if (!ifp)
		return 0;

	if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
		bool		mappings_done;

		/*
		 * Scan the bmap btree for data device mappings.  This includes
		 * the btree blocks themselves, even if this is a realtime
		 * file.
		 */
		error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done);
		if (error || mappings_done)
			return error;
	} else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) {
		return 0;
	}

	/* Scan incore extent cache if this isn't a realtime file. */
	if (xfs_ifork_is_realtime(ip, whichfork))
		return 0;

	return xrep_rmap_scan_iext(&rf, ifp);
}

/*
 * Take ILOCK on a file that we want to scan.
 *
 * Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded
 * attr bmbt.  Otherwise, take ILOCK_SHARED.
 */
static inline unsigned int
xrep_rmap_scan_ilock(
	struct xfs_inode	*ip)
{
	uint			lock_mode = XFS_ILOCK_SHARED;

	if (xfs_need_iread_extents(&ip->i_df)) {
		lock_mode = XFS_ILOCK_EXCL;
		goto lock;
	}

	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
		lock_mode = XFS_ILOCK_EXCL;

lock:
	xfs_ilock(ip, lock_mode);
	return lock_mode;
}

/* Record reverse mappings for a file. */
STATIC int
xrep_rmap_scan_inode(
	struct xrep_rmap	*rr,
	struct xfs_inode	*ip)
{
	unsigned int		lock_mode = 0;
	int			error;

	/*
	 * Directory updates (create/link/unlink/rename) drop the directory's
	 * ILOCK before finishing any rmapbt updates associated with directory
	 * shape changes.  For this scan to coordinate correctly with the live
	 * update hook, we must take the only lock (i_rwsem) that is held all
	 * the way to dir op completion.  This will get fixed by the parent
	 * pointer patchset.
	 */
	if (S_ISDIR(VFS_I(ip)->i_mode)) {
		lock_mode = XFS_IOLOCK_SHARED;
		xfs_ilock(ip, lock_mode);
	}
	lock_mode |= xrep_rmap_scan_ilock(ip);

	/* Check the data fork. */
	error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK);
	if (error)
		goto out_unlock;

	/* Check the attr fork. */
	error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK);
	if (error)
		goto out_unlock;

	/* COW fork extents are "owned" by the refcount btree. */

	xchk_iscan_mark_visited(&rr->iscan, ip);
out_unlock:
	xfs_iunlock(ip, lock_mode);
	return error;
}

/* Section (I): Find all AG metadata extents except for free space metadata. */

struct xrep_rmap_inodes {
	struct xrep_rmap	*rr;
	struct xagb_bitmap	inobt_blocks;	/* INOBIT */
	struct xagb_bitmap	ichunk_blocks;	/* ICHUNKBIT */
};

/* Record inode btree rmaps. */
STATIC int
xrep_rmap_walk_inobt(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_rec	*rec,
	void				*priv)
{
	struct xfs_inobt_rec_incore	irec;
	struct xrep_rmap_inodes		*ri = priv;
	struct xfs_mount		*mp = cur->bc_mp;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agino_t			agino;
	xfs_agino_t			iperhole;
	unsigned int			i;
	int				error;

	/* Record the inobt blocks. */
	error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur);
	if (error)
		return error;

	xfs_inobt_btrec_to_irec(mp, rec, &irec);
	if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL)
		return -EFSCORRUPTED;

	agino = irec.ir_startino;

	/* Record a non-sparse inode chunk. */
	if (!xfs_inobt_issparse(irec.ir_holemask)) {
		agbno = XFS_AGINO_TO_AGBNO(mp, agino);
		aglen = max_t(xfs_extlen_t, 1,
				XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock);

		return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
	}

	/* Iterate each chunk. */
	iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock,
			XFS_INODES_PER_HOLEMASK_BIT);
	aglen = iperhole / mp->m_sb.sb_inopblock;
	for (i = 0, agino = irec.ir_startino;
	     i < XFS_INOBT_HOLEMASK_BITS;
	     i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) {
		/* Skip holes. */
		if (irec.ir_holemask & (1 << i))
			continue;

		/* Record the inode chunk otherwise. */
		agbno = XFS_AGINO_TO_AGBNO(mp, agino);
		error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
		if (error)
			return error;
	}

	return 0;
}

/* Collect rmaps for the blocks containing inode btrees and the inode chunks. */
STATIC int
xrep_rmap_find_inode_rmaps(
	struct xrep_rmap	*rr)
{
	struct xrep_rmap_inodes	ri = {
		.rr		= rr,
	};
	struct xfs_scrub	*sc = rr->sc;
	int			error;

	xagb_bitmap_init(&ri.inobt_blocks);
	xagb_bitmap_init(&ri.ichunk_blocks);

	/*
	 * Iterate every record in the inobt so we can capture all the inode
	 * chunks and the blocks in the inobt itself.
	 */
	error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri);
	if (error)
		goto out_bitmap;

	/*
	 * Note that if there are zero records in the inobt then query_all does
	 * nothing and we have to account the empty inobt root manually.
	 */
	if (xagb_bitmap_empty(&ri.ichunk_blocks)) {
		struct xfs_agi	*agi = sc->sa.agi_bp->b_addr;

		error = xagb_bitmap_set(&ri.inobt_blocks,
				be32_to_cpu(agi->agi_root), 1);
		if (error)
			goto out_bitmap;
	}

	/* Scan the finobt too. */
	if (xfs_has_finobt(sc->mp)) {
		error = xagb_bitmap_set_btblocks(&ri.inobt_blocks,
				sc->sa.fino_cur);
		if (error)
			goto out_bitmap;
	}

	/* Generate rmaps for everything. */
	error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks,
			&XFS_RMAP_OINFO_INOBT);
	if (error)
		goto out_bitmap;
	error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks,
			&XFS_RMAP_OINFO_INODES);

out_bitmap:
	xagb_bitmap_destroy(&ri.inobt_blocks);
	xagb_bitmap_destroy(&ri.ichunk_blocks);
	return error;
}

/* Record a CoW staging extent. */
STATIC int
xrep_rmap_walk_cowblocks(
	struct xfs_btree_cur		*cur,
	const struct xfs_refcount_irec	*irec,
	void				*priv)
{
	struct xagb_bitmap		*bitmap = priv;

	if (!xfs_refcount_check_domain(irec) ||
	    irec->rc_domain != XFS_REFC_DOMAIN_COW)
		return -EFSCORRUPTED;

	return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount);
}

/*
 * Collect rmaps for the blocks containing the refcount btree, and all CoW
 * staging extents.
 */
STATIC int
xrep_rmap_find_refcount_rmaps(
	struct xrep_rmap	*rr)
{
	struct xagb_bitmap	refcountbt_blocks;	/* REFCBIT */
	struct xagb_bitmap	cow_blocks;		/* COWBIT */
	struct xfs_refcount_irec low = {
		.rc_startblock	= 0,
		.rc_domain	= XFS_REFC_DOMAIN_COW,
	};
	struct xfs_refcount_irec high = {
		.rc_startblock	= -1U,
		.rc_domain	= XFS_REFC_DOMAIN_COW,
	};
	struct xfs_scrub	*sc = rr->sc;
	int			error;

	if (!xfs_has_reflink(sc->mp))
		return 0;

	xagb_bitmap_init(&refcountbt_blocks);
	xagb_bitmap_init(&cow_blocks);

	/* refcountbt */
	error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur);
	if (error)
		goto out_bitmap;

	/* Collect rmaps for CoW staging extents. */
	error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high,
			xrep_rmap_walk_cowblocks, &cow_blocks);
	if (error)
		goto out_bitmap;

	/* Generate rmaps for everything. */
	error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW);
	if (error)
		goto out_bitmap;
	error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks,
			&XFS_RMAP_OINFO_REFC);

out_bitmap:
	xagb_bitmap_destroy(&cow_blocks);
	xagb_bitmap_destroy(&refcountbt_blocks);
	return error;
}

/* Generate rmaps for the AG headers (AGI/AGF/AGFL) */
STATIC int
xrep_rmap_find_agheader_rmaps(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;

	/* Create a record for the AG sb->agfl. */
	return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp),
			XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1,
			XFS_RMAP_OWN_FS, 0, 0);
}

/* Generate rmaps for the log, if it's in this AG. */
STATIC int
xrep_rmap_find_log_rmaps(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;

	if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno))
		return 0;

	return xrep_rmap_stash(rr,
			XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart),
			sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0);
}

/* Check and count all the records that we gathered. */
STATIC int
xrep_rmap_check_record(
	struct xfs_btree_cur		*cur,
	const struct xfs_rmap_irec	*rec,
	void				*priv)
{
	struct xrep_rmap		*rr = priv;
	int				error;

	error = xrep_rmap_check_mapping(rr->sc, rec);
	if (error)
		return error;

	rr->nr_records++;
	return 0;
}

/*
 * Generate all the reverse-mappings for this AG, a list of the old rmapbt
 * blocks, and the new btreeblks count.  Figure out if we have enough free
 * space to reconstruct the inode btrees.  The caller must clean up the lists
 * if anything goes wrong.  This implements section (I) above.
 */
STATIC int
xrep_rmap_find_rmaps(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;
	struct xchk_ag		*sa = &sc->sa;
	struct xfs_inode	*ip;
	struct xfs_btree_cur	*mcur;
	int			error;

	/* Find all the per-AG metadata. */
	xrep_ag_btcur_init(sc, &sc->sa);

	error = xrep_rmap_find_inode_rmaps(rr);
	if (error)
		goto end_agscan;

	error = xrep_rmap_find_refcount_rmaps(rr);
	if (error)
		goto end_agscan;

	error = xrep_rmap_find_agheader_rmaps(rr);
	if (error)
		goto end_agscan;

	error = xrep_rmap_find_log_rmaps(rr);
end_agscan:
	xchk_ag_btcur_free(&sc->sa);
	if (error)
		return error;

	/*
	 * Set up for a potentially lengthy filesystem scan by reducing our
	 * transaction resource usage for the duration.  Specifically:
	 *
	 * Unlock the AG header buffers and cancel the transaction to release
	 * the log grant space while we scan the filesystem.
	 *
	 * Create a new empty transaction to eliminate the possibility of the
	 * inode scan deadlocking on cyclical metadata.
	 *
	 * We pass the empty transaction to the file scanning function to avoid
	 * repeatedly cycling empty transactions.  This can be done even though
	 * we take the IOLOCK to quiesce the file because empty transactions
	 * do not take sb_internal.
	 */
	sa->agf_bp = NULL;
	sa->agi_bp = NULL;
	xchk_trans_cancel(sc);
	error = xchk_trans_alloc_empty(sc);
	if (error)
		return error;

	/* Iterate all AGs for inodes rmaps. */
	while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) {
		error = xrep_rmap_scan_inode(rr, ip);
		xchk_irele(sc, ip);
		if (error)
			break;

		if (xchk_should_terminate(sc, &error))
			break;
	}
	xchk_iscan_iter_finish(&rr->iscan);
	if (error)
		return error;

	/*
	 * Switch out for a real transaction and lock the AG headers in
	 * preparation for building a new tree.
	 */
	xchk_trans_cancel(sc);
	error = xchk_setup_fs(sc);
	if (error)
		return error;
	error = xchk_perag_drain_and_lock(sc);
	if (error)
		return error;

	/*
	 * If a hook failed to update the in-memory btree, we lack the data to
	 * continue the repair.
	 */
	if (xchk_iscan_aborted(&rr->iscan))
		return -EFSCORRUPTED;

	/*
	 * Now that we have everything locked again, we need to count the
	 * number of rmap records stashed in the btree.  This should reflect
	 * all actively-owned space in the filesystem.  At the same time, check
	 * all our records before we start building a new btree, which requires
	 * a bnobt cursor.
	 */
	mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
	sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
			sc->sa.pag);

	rr->nr_records = 0;
	error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr);

	xfs_btree_del_cursor(sc->sa.bno_cur, error);
	sc->sa.bno_cur = NULL;
	xfs_btree_del_cursor(mcur, error);

	return error;
}

/* Section (II): Reserving space for new rmapbt and setting free space bitmap */

struct xrep_rmap_agfl {
	struct xagb_bitmap	*bitmap;
	xfs_agnumber_t		agno;
};

/* Add an AGFL block to the rmap list. */
STATIC int
xrep_rmap_walk_agfl(
	struct xfs_mount	*mp,
	xfs_agblock_t		agbno,
	void			*priv)
{
	struct xrep_rmap_agfl	*ra = priv;

	return xagb_bitmap_set(ra->bitmap, agbno, 1);
}

/*
 * Run one round of reserving space for the new rmapbt and recomputing the
 * number of blocks needed to store the previously observed rmapbt records and
 * the ones we'll create for the free space metadata.  When we don't need more
 * blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to
 * true.
 */
STATIC int
xrep_rmap_try_reserve(
	struct xrep_rmap	*rr,
	struct xfs_btree_cur	*rmap_cur,
	struct xagb_bitmap	*freesp_blocks,
	uint64_t		*blocks_reserved,
	bool			*done)
{
	struct xrep_rmap_agfl	ra = {
		.bitmap		= freesp_blocks,
		.agno		= rr->sc->sa.pag->pag_agno,
	};
	struct xfs_scrub	*sc = rr->sc;
	struct xrep_newbt_resv	*resv, *n;
	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
	struct xfs_buf		*agfl_bp;
	uint64_t		nr_blocks;	/* RMB */
	uint64_t		freesp_records;
	int			error;

	/*
	 * We're going to recompute new_btree.bload.nr_blocks at the end of
	 * this function to reflect however many btree blocks we need to store
	 * all the rmap records (including the ones that reflect the changes we
	 * made to support the new rmapbt blocks), so we save the old value
	 * here so we can decide if we've reserved enough blocks.
	 */
	nr_blocks = rr->new_btree.bload.nr_blocks;

	/*
	 * Make sure we've reserved enough space for the new btree.  This can
	 * change the shape of the free space btrees, which can cause secondary
	 * interactions with the rmap records because all three space btrees
	 * have the same rmap owner.  We'll account for all that below.
	 */
	error = xrep_newbt_alloc_blocks(&rr->new_btree,
			nr_blocks - *blocks_reserved);
	if (error)
		return error;

	*blocks_reserved = rr->new_btree.bload.nr_blocks;

	/* Clear everything in the bitmap. */
	xagb_bitmap_destroy(freesp_blocks);

	/* Set all the bnobt blocks in the bitmap. */
	sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
			sc->sa.pag);
	error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur);
	xfs_btree_del_cursor(sc->sa.bno_cur, error);
	sc->sa.bno_cur = NULL;
	if (error)
		return error;

	/* Set all the cntbt blocks in the bitmap. */
	sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
			sc->sa.pag);
	error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur);
	xfs_btree_del_cursor(sc->sa.cnt_cur, error);
	sc->sa.cnt_cur = NULL;
	if (error)
		return error;

	/* Record our new btreeblks value. */
	rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2;

	/* Set all the new rmapbt blocks in the bitmap. */
	list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) {
		error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len);
		if (error)
			return error;
	}

	/* Set all the AGFL blocks in the bitmap. */
	error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
	if (error)
		return error;

	error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra);
	if (error)
		return error;

	/* Count the extents in the bitmap. */
	freesp_records = xagb_bitmap_count_set_regions(freesp_blocks);

	/* Compute how many blocks we'll need for all the rmaps. */
	error = xfs_btree_bload_compute_geometry(rmap_cur,
			&rr->new_btree.bload, rr->nr_records + freesp_records);
	if (error)
		return error;

	/* We're done when we don't need more blocks. */
	*done = nr_blocks >= rr->new_btree.bload.nr_blocks;
	return 0;
}

/*
 * Iteratively reserve space for rmap btree while recording OWN_AG rmaps for
 * the free space metadata.  This implements section (II) above.
 */
STATIC int
xrep_rmap_reserve_space(
	struct xrep_rmap	*rr,
	struct xfs_btree_cur	*rmap_cur)
{
	struct xagb_bitmap	freesp_blocks;	/* AGBIT */
	uint64_t		blocks_reserved = 0;
	bool			done = false;
	int			error;

	/* Compute how many blocks we'll need for the rmaps collected so far. */
	error = xfs_btree_bload_compute_geometry(rmap_cur,
			&rr->new_btree.bload, rr->nr_records);
	if (error)
		return error;

	/* Last chance to abort before we start committing fixes. */
	if (xchk_should_terminate(rr->sc, &error))
		return error;

	xagb_bitmap_init(&freesp_blocks);

	/*
	 * Iteratively reserve space for the new rmapbt and recompute the
	 * number of blocks needed to store the previously observed rmapbt
	 * records and the ones we'll create for the free space metadata.
	 * Finish when we don't need more blocks.
	 */
	do {
		error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks,
				&blocks_reserved, &done);
		if (error)
			goto out_bitmap;
	} while (!done);

	/* Emit rmaps for everything in the free space bitmap. */
	xrep_ag_btcur_init(rr->sc, &rr->sc->sa);
	error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG);
	xchk_ag_btcur_free(&rr->sc->sa);

out_bitmap:
	xagb_bitmap_destroy(&freesp_blocks);
	return error;
}

/* Section (III): Building the new rmap btree. */

/* Update the AGF counters. */
STATIC int
xrep_rmap_reset_counters(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;
	struct xfs_perag	*pag = sc->sa.pag;
	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
	xfs_agblock_t		rmap_btblocks;

	/*
	 * The AGF header contains extra information related to the reverse
	 * mapping btree, so we must update those fields here.
	 */
	rmap_btblocks = rr->new_btree.afake.af_blocks - 1;
	agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks);
	xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS);

	/*
	 * After we commit the new btree to disk, it is possible that the
	 * process to reap the old btree blocks will race with the AIL trying
	 * to checkpoint the old btree blocks into the filesystem.  If the new
	 * tree is shorter than the old one, the rmapbt write verifier will
	 * fail and the AIL will shut down the filesystem.
	 *
	 * To avoid this, save the old incore btree height values as the alt
	 * height values before re-initializing the perag info from the updated
	 * AGF to capture all the new values.
	 */
	pag->pagf_repair_rmap_level = pag->pagf_rmap_level;

	/* Reinitialize with the values we just logged. */
	return xrep_reinit_pagf(sc);
}

/* Retrieve rmapbt data for bulk load. */
STATIC int
xrep_rmap_get_records(
	struct xfs_btree_cur	*cur,
	unsigned int		idx,
	struct xfs_btree_block	*block,
	unsigned int		nr_wanted,
	void			*priv)
{
	struct xrep_rmap	*rr = priv;
	union xfs_btree_rec	*block_rec;
	unsigned int		loaded;
	int			error;

	for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
		int		stat = 0;

		error = xfs_btree_increment(rr->mcur, 0, &stat);
		if (error)
			return error;
		if (!stat)
			return -EFSCORRUPTED;

		error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat);
		if (error)
			return error;
		if (!stat)
			return -EFSCORRUPTED;

		block_rec = xfs_btree_rec_addr(cur, idx, block);
		cur->bc_ops->init_rec_from_cur(cur, block_rec);
	}

	return loaded;
}

/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_rmap_claim_block(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr,
	void			*priv)
{
	struct xrep_rmap        *rr = priv;

	return xrep_newbt_claim_block(cur, &rr->new_btree, ptr);
}

/* Custom allocation function for new rmap btrees. */
STATIC int
xrep_rmap_alloc_vextent(
	struct xfs_scrub	*sc,
	struct xfs_alloc_arg	*args,
	xfs_fsblock_t		alloc_hint)
{
	int			error;

	/*
	 * We don't want an rmap update on the allocation, since we iteratively
	 * compute the OWN_AG records /after/ allocating blocks for the records
	 * that we already know we need to store.  Therefore, fix the freelist
	 * with the NORMAP flag set so that we don't also try to create an rmap
	 * for new AGFL blocks.
	 */
	error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP);
	if (error)
		return error;

	/*
	 * If xrep_fix_freelist fixed the freelist by moving blocks from the
	 * free space btrees or by removing blocks from the AGFL and queueing
	 * an EFI to free the block, the transaction will be dirty.  This
	 * second case is of interest to us.
	 *
	 * Later on, we will need to compare gaps in the new recordset against
	 * the block usage of all OWN_AG owners in order to free the old
	 * btree's blocks, which means that we can't have EFIs for former AGFL
	 * blocks attached to the repair transaction when we commit the new
	 * btree.
	 *
	 * xrep_newbt_alloc_blocks guarantees this for us by calling
	 * xrep_defer_finish to commit anything that fix_freelist may have
	 * added to the transaction.
	 */
	return xfs_alloc_vextent_near_bno(args, alloc_hint);
}


/* Count the records in this btree. */
STATIC int
xrep_rmap_count_records(
	struct xfs_btree_cur	*cur,
	unsigned long long	*nr)
{
	int			running = 1;
	int			error;

	*nr = 0;

	error = xfs_btree_goto_left_edge(cur);
	if (error)
		return error;

	while (running && !(error = xfs_btree_increment(cur, 0, &running))) {
		if (running)
			(*nr)++;
	}

	return error;
}
/*
 * Use the collected rmap information to stage a new rmap btree.  If this is
 * successful we'll return with the new btree root information logged to the
 * repair transaction but not yet committed.  This implements section (III)
 * above.
 */
STATIC int
xrep_rmap_build_new_tree(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;
	struct xfs_perag	*pag = sc->sa.pag;
	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
	struct xfs_btree_cur	*rmap_cur;
	xfs_fsblock_t		fsbno;
	int			error;

	/*
	 * Preserve the old rmapbt block count so that we can adjust the
	 * per-AG rmapbt reservation after we commit the new btree root and
	 * want to dispose of the old btree blocks.
	 */
	rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks);

	/*
	 * Prepare to construct the new btree by reserving disk space for the
	 * new btree and setting up all the accounting information we'll need
	 * to root the new btree while it's under construction and before we
	 * attach it to the AG header.  The new blocks are accounted to the
	 * rmapbt per-AG reservation, which we will adjust further after
	 * committing the new btree.
	 */
	fsbno = XFS_AGB_TO_FSB(sc->mp, pag->pag_agno, XFS_RMAP_BLOCK(sc->mp));
	xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE,
			fsbno, XFS_AG_RESV_RMAPBT);
	rr->new_btree.bload.get_records = xrep_rmap_get_records;
	rr->new_btree.bload.claim_block = xrep_rmap_claim_block;
	rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent;
	rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag);
	xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake);

	/*
	 * Initialize @rr->new_btree, reserve space for the new rmapbt,
	 * and compute OWN_AG rmaps.
	 */
	error = xrep_rmap_reserve_space(rr, rmap_cur);
	if (error)
		goto err_cur;

	/*
	 * Count the rmapbt records again, because the space reservation
	 * for the rmapbt itself probably added more records to the btree.
	 */
	rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL,
			&rr->rmap_btree);

	error = xrep_rmap_count_records(rr->mcur, &rr->nr_records);
	if (error)
		goto err_mcur;

	/*
	 * Due to btree slack factors, it's possible for a new btree to be one
	 * level taller than the old btree.  Update the incore btree height so
	 * that we don't trip the verifiers when writing the new btree blocks
	 * to disk.
	 */
	pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height;

	/*
	 * Move the cursor to the left edge of the tree so that the first
	 * increment in ->get_records positions us at the first record.
	 */
	error = xfs_btree_goto_left_edge(rr->mcur);
	if (error)
		goto err_level;

	/* Add all observed rmap records. */
	error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr);
	if (error)
		goto err_level;

	/*
	 * Install the new btree in the AG header.  After this point the old
	 * btree is no longer accessible and the new tree is live.
	 */
	xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp);
	xfs_btree_del_cursor(rmap_cur, 0);
	xfs_btree_del_cursor(rr->mcur, 0);
	rr->mcur = NULL;

	/*
	 * Now that we've written the new btree to disk, we don't need to keep
	 * updating the in-memory btree.  Abort the scan to stop live updates.
	 */
	xchk_iscan_abort(&rr->iscan);

	/*
	 * The newly committed rmap recordset includes mappings for the blocks
	 * that we reserved to build the new btree.  If there is excess space
	 * reservation to be freed, the corresponding rmap records must also be
	 * removed.
	 */
	rr->new_btree.oinfo = XFS_RMAP_OINFO_AG;

	/* Reset the AGF counters now that we've changed the btree shape. */
	error = xrep_rmap_reset_counters(rr);
	if (error)
		goto err_newbt;

	/* Dispose of any unused blocks and the accounting information. */
	error = xrep_newbt_commit(&rr->new_btree);
	if (error)
		return error;

	return xrep_roll_ag_trans(sc);

err_level:
	pag->pagf_repair_rmap_level = 0;
err_mcur:
	xfs_btree_del_cursor(rr->mcur, error);
err_cur:
	xfs_btree_del_cursor(rmap_cur, error);
err_newbt:
	xrep_newbt_cancel(&rr->new_btree);
	return error;
}

/* Section (IV): Reaping the old btree. */

struct xrep_rmap_find_gaps {
	struct xagb_bitmap	rmap_gaps;
	xfs_agblock_t		next_agbno;
};

/* Subtract each free extent in the bnobt from the rmap gaps. */
STATIC int
xrep_rmap_find_freesp(
	struct xfs_btree_cur		*cur,
	const struct xfs_alloc_rec_incore *rec,
	void				*priv)
{
	struct xrep_rmap_find_gaps	*rfg = priv;

	return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock,
			rec->ar_blockcount);
}

/* Record the free space we find, as part of cleaning out the btree. */
STATIC int
xrep_rmap_find_gaps(
	struct xfs_btree_cur		*cur,
	const struct xfs_rmap_irec	*rec,
	void				*priv)
{
	struct xrep_rmap_find_gaps	*rfg = priv;
	int				error;

	if (rec->rm_startblock > rfg->next_agbno) {
		error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno,
				rec->rm_startblock - rfg->next_agbno);
		if (error)
			return error;
	}

	rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno,
				rec->rm_startblock + rec->rm_blockcount);
	return 0;
}

/*
 * Reap the old rmapbt blocks.  Now that the rmapbt is fully rebuilt, we make
 * a list of gaps in the rmap records and a list of the extents mentioned in
 * the bnobt.  Any block that's in the new rmapbt gap list but not mentioned
 * in the bnobt is a block from the old rmapbt and can be removed.
 */
STATIC int
xrep_rmap_remove_old_tree(
	struct xrep_rmap	*rr)
{
	struct xrep_rmap_find_gaps rfg = {
		.next_agbno	= 0,
	};
	struct xfs_scrub	*sc = rr->sc;
	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
	struct xfs_perag	*pag = sc->sa.pag;
	struct xfs_btree_cur	*mcur;
	xfs_agblock_t		agend;
	int			error;

	xagb_bitmap_init(&rfg.rmap_gaps);

	/* Compute free space from the new rmapbt. */
	mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);

	error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg);
	xfs_btree_del_cursor(mcur, error);
	if (error)
		goto out_bitmap;

	/* Insert a record for space between the last rmap and EOAG. */
	agend = be32_to_cpu(agf->agf_length);
	if (rfg.next_agbno < agend) {
		error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno,
				agend - rfg.next_agbno);
		if (error)
			goto out_bitmap;
	}

	/* Compute free space from the existing bnobt. */
	sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
			sc->sa.pag);
	error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp,
			&rfg);
	xfs_btree_del_cursor(sc->sa.bno_cur, error);
	sc->sa.bno_cur = NULL;
	if (error)
		goto out_bitmap;

	/*
	 * Free the "free" blocks that the new rmapbt knows about but the bnobt
	 * doesn't--these are the old rmapbt blocks.  Credit the old rmapbt
	 * block usage count back to the per-AG rmapbt reservation (and not
	 * fdblocks, since the rmap btree lives in free space) to keep the
	 * reservation and free space accounting correct.
	 */
	error = xrep_reap_agblocks(sc, &rfg.rmap_gaps,
			&XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT);
	if (error)
		goto out_bitmap;

	/*
	 * Now that we've zapped all the old rmapbt blocks we can turn off
	 * the alternate height mechanism and reset the per-AG space
	 * reservation.
	 */
	pag->pagf_repair_rmap_level = 0;
	sc->flags |= XREP_RESET_PERAG_RESV;
out_bitmap:
	xagb_bitmap_destroy(&rfg.rmap_gaps);
	return error;
}

static inline bool
xrep_rmapbt_want_live_update(
	struct xchk_iscan		*iscan,
	const struct xfs_owner_info	*oi)
{
	if (xchk_iscan_aborted(iscan))
		return false;

	/*
	 * Before unlocking the AG header to perform the inode scan, we
	 * recorded reverse mappings for all AG metadata except for the OWN_AG
	 * metadata.  IOWs, the in-memory btree knows about the AG headers, the
	 * two inode btrees, the CoW staging extents, and the refcount btrees.
	 * For these types of metadata, we need to record the live updates in
	 * the in-memory rmap btree.
	 *
	 * However, we do not scan the free space btrees or the AGFL until we
	 * have re-locked the AGF and are ready to reserve space for the new
	 * rmap btree, so we do not want live updates for OWN_AG metadata.
	 */
	if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner))
		return oi->oi_owner != XFS_RMAP_OWN_AG;

	/* Ignore updates to files that the scanner hasn't visited yet. */
	return xchk_iscan_want_live_update(iscan, oi->oi_owner);
}

/*
 * Apply a rmapbt update from the regular filesystem into our shadow btree.
 * We're running from the thread that owns the AGF buffer and is generating
 * the update, so we must be careful about which parts of the struct xrep_rmap
 * that we change.
 */
static int
xrep_rmapbt_live_update(
	struct notifier_block		*nb,
	unsigned long			action,
	void				*data)
{
	struct xfs_rmap_update_params	*p = data;
	struct xrep_rmap		*rr;
	struct xfs_mount		*mp;
	struct xfs_btree_cur		*mcur;
	struct xfs_trans		*tp;
	void				*txcookie;
	int				error;

	rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb);
	mp = rr->sc->mp;

	if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo))
		goto out_unlock;

	trace_xrep_rmap_live_update(mp, rr->sc->sa.pag->pag_agno, action, p);

	error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp);
	if (error)
		goto out_abort;

	mutex_lock(&rr->lock);
	mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree);
	error = __xfs_rmap_finish_intent(mcur, action, p->startblock,
			p->blockcount, &p->oinfo, p->unwritten);
	xfs_btree_del_cursor(mcur, error);
	if (error)
		goto out_cancel;

	error = xfbtree_trans_commit(&rr->rmap_btree, tp);
	if (error)
		goto out_cancel;

	xrep_trans_cancel_hook_dummy(&txcookie, tp);
	mutex_unlock(&rr->lock);
	return NOTIFY_DONE;

out_cancel:
	xfbtree_trans_cancel(&rr->rmap_btree, tp);
	xrep_trans_cancel_hook_dummy(&txcookie, tp);
out_abort:
	mutex_unlock(&rr->lock);
	xchk_iscan_abort(&rr->iscan);
out_unlock:
	return NOTIFY_DONE;
}

/* Set up the filesystem scan components. */
STATIC int
xrep_rmap_setup_scan(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;
	int			error;

	mutex_init(&rr->lock);

	/* Set up in-memory rmap btree */
	error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp,
			sc->sa.pag->pag_agno);
	if (error)
		goto out_mutex;

	/* Retry iget every tenth of a second for up to 30 seconds. */
	xchk_iscan_start(sc, 30000, 100, &rr->iscan);

	/*
	 * Hook into live rmap operations so that we can update our in-memory
	 * btree to reflect live changes on the filesystem.  Since we drop the
	 * AGF buffer to scan all the inodes, we need this piece to avoid
	 * installing a stale btree.
	 */
	ASSERT(sc->flags & XCHK_FSGATES_RMAP);
	xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update);
	error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook);
	if (error)
		goto out_iscan;
	return 0;

out_iscan:
	xchk_iscan_teardown(&rr->iscan);
	xfbtree_destroy(&rr->rmap_btree);
out_mutex:
	mutex_destroy(&rr->lock);
	return error;
}

/* Tear down scan components. */
STATIC void
xrep_rmap_teardown(
	struct xrep_rmap	*rr)
{
	struct xfs_scrub	*sc = rr->sc;

	xchk_iscan_abort(&rr->iscan);
	xfs_rmap_hook_del(sc->sa.pag, &rr->rhook);
	xchk_iscan_teardown(&rr->iscan);
	xfbtree_destroy(&rr->rmap_btree);
	mutex_destroy(&rr->lock);
}

/* Repair the rmap btree for some AG. */
int
xrep_rmapbt(
	struct xfs_scrub	*sc)
{
	struct xrep_rmap	*rr = sc->buf;
	int			error;

	error = xrep_rmap_setup_scan(rr);
	if (error)
		return error;

	/*
	 * Collect rmaps for everything in this AG that isn't space metadata.
	 * These rmaps won't change even as we try to allocate blocks.
	 */
	error = xrep_rmap_find_rmaps(rr);
	if (error)
		goto out_records;

	/* Rebuild the rmap information. */
	error = xrep_rmap_build_new_tree(rr);
	if (error)
		goto out_records;

	/* Kill the old tree. */
	error = xrep_rmap_remove_old_tree(rr);
	if (error)
		goto out_records;

out_records:
	xrep_rmap_teardown(rr);
	return error;
}