Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2023 Western Digital Corporation or its affiliates. */ #include <linux/btrfs_tree.h> #include "ctree.h" #include "fs.h" #include "accessors.h" #include "transaction.h" #include "disk-io.h" #include "raid-stripe-tree.h" #include "volumes.h" #include "print-tree.h" int btrfs_delete_raid_extent(struct btrfs_trans_handle *trans, u64 start, u64 length) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *stripe_root = fs_info->stripe_root; struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *leaf; u64 found_start; u64 found_end; u64 end = start + length; int slot; int ret; if (!stripe_root) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while (1) { key.objectid = start; key.type = BTRFS_RAID_STRIPE_KEY; key.offset = length; ret = btrfs_search_slot(trans, stripe_root, &key, path, -1, 1); if (ret < 0) break; if (ret > 0) { ret = 0; if (path->slots[0] == 0) break; path->slots[0]--; } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key, slot); found_start = key.objectid; found_end = found_start + key.offset; /* That stripe ends before we start, we're done. */ if (found_end <= start) break; trace_btrfs_raid_extent_delete(fs_info, start, end, found_start, found_end); ASSERT(found_start >= start && found_end <= end); ret = btrfs_del_item(trans, stripe_root, path); if (ret) break; btrfs_release_path(path); } btrfs_free_path(path); return ret; } static int btrfs_insert_one_raid_extent(struct btrfs_trans_handle *trans, struct btrfs_io_context *bioc) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_key stripe_key; struct btrfs_root *stripe_root = fs_info->stripe_root; const int num_stripes = btrfs_bg_type_to_factor(bioc->map_type); u8 encoding = btrfs_bg_flags_to_raid_index(bioc->map_type); struct btrfs_stripe_extent *stripe_extent; const size_t item_size = struct_size(stripe_extent, strides, num_stripes); int ret; stripe_extent = kzalloc(item_size, GFP_NOFS); if (!stripe_extent) { btrfs_abort_transaction(trans, -ENOMEM); btrfs_end_transaction(trans); return -ENOMEM; } trace_btrfs_insert_one_raid_extent(fs_info, bioc->logical, bioc->size, num_stripes); btrfs_set_stack_stripe_extent_encoding(stripe_extent, encoding); for (int i = 0; i < num_stripes; i++) { u64 devid = bioc->stripes[i].dev->devid; u64 physical = bioc->stripes[i].physical; u64 length = bioc->stripes[i].length; struct btrfs_raid_stride *raid_stride = &stripe_extent->strides[i]; if (length == 0) length = bioc->size; btrfs_set_stack_raid_stride_devid(raid_stride, devid); btrfs_set_stack_raid_stride_physical(raid_stride, physical); } stripe_key.objectid = bioc->logical; stripe_key.type = BTRFS_RAID_STRIPE_KEY; stripe_key.offset = bioc->size; ret = btrfs_insert_item(trans, stripe_root, &stripe_key, stripe_extent, item_size); if (ret) btrfs_abort_transaction(trans, ret); kfree(stripe_extent); return ret; } int btrfs_insert_raid_extent(struct btrfs_trans_handle *trans, struct btrfs_ordered_extent *ordered_extent) { struct btrfs_io_context *bioc; int ret; if (!btrfs_fs_incompat(trans->fs_info, RAID_STRIPE_TREE)) return 0; list_for_each_entry(bioc, &ordered_extent->bioc_list, rst_ordered_entry) { ret = btrfs_insert_one_raid_extent(trans, bioc); if (ret) return ret; } while (!list_empty(&ordered_extent->bioc_list)) { bioc = list_first_entry(&ordered_extent->bioc_list, typeof(*bioc), rst_ordered_entry); list_del(&bioc->rst_ordered_entry); btrfs_put_bioc(bioc); } return 0; } int btrfs_get_raid_extent_offset(struct btrfs_fs_info *fs_info, u64 logical, u64 *length, u64 map_type, u32 stripe_index, struct btrfs_io_stripe *stripe) { struct btrfs_root *stripe_root = fs_info->stripe_root; struct btrfs_stripe_extent *stripe_extent; struct btrfs_key stripe_key; struct btrfs_key found_key; struct btrfs_path *path; struct extent_buffer *leaf; const u64 end = logical + *length; int num_stripes; u8 encoding; u64 offset; u64 found_logical; u64 found_length; u64 found_end; int slot; int ret; stripe_key.objectid = logical; stripe_key.type = BTRFS_RAID_STRIPE_KEY; stripe_key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (stripe->is_scrub) { path->skip_locking = 1; path->search_commit_root = 1; } ret = btrfs_search_slot(NULL, stripe_root, &stripe_key, path, 0, 0); if (ret < 0) goto free_path; if (ret) { if (path->slots[0] != 0) path->slots[0]--; } while (1) { leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); found_logical = found_key.objectid; found_length = found_key.offset; found_end = found_logical + found_length; if (found_logical > end) { ret = -ENOENT; goto out; } if (in_range(logical, found_logical, found_length)) break; ret = btrfs_next_item(stripe_root, path); if (ret) goto out; } offset = logical - found_logical; /* * If we have a logically contiguous, but physically non-continuous * range, we need to split the bio. Record the length after which we * must split the bio. */ if (end > found_end) *length -= end - found_end; num_stripes = btrfs_num_raid_stripes(btrfs_item_size(leaf, slot)); stripe_extent = btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent); encoding = btrfs_stripe_extent_encoding(leaf, stripe_extent); if (encoding != btrfs_bg_flags_to_raid_index(map_type)) { ret = -EUCLEAN; btrfs_handle_fs_error(fs_info, ret, "on-disk stripe encoding %d doesn't match RAID index %d", encoding, btrfs_bg_flags_to_raid_index(map_type)); goto out; } for (int i = 0; i < num_stripes; i++) { struct btrfs_raid_stride *stride = &stripe_extent->strides[i]; u64 devid = btrfs_raid_stride_devid(leaf, stride); u64 physical = btrfs_raid_stride_physical(leaf, stride); if (devid != stripe->dev->devid) continue; if ((map_type & BTRFS_BLOCK_GROUP_DUP) && stripe_index != i) continue; stripe->physical = physical + offset; trace_btrfs_get_raid_extent_offset(fs_info, logical, *length, stripe->physical, devid); ret = 0; goto free_path; } /* If we're here, we haven't found the requested devid in the stripe. */ ret = -ENOENT; out: if (ret > 0) ret = -ENOENT; if (ret && ret != -EIO && !stripe->is_scrub) { if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) btrfs_print_tree(leaf, 1); btrfs_err(fs_info, "cannot find raid-stripe for logical [%llu, %llu] devid %llu, profile %s", logical, logical + *length, stripe->dev->devid, btrfs_bg_type_to_raid_name(map_type)); } free_path: btrfs_free_path(path); return ret; } |