Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | // SPDX-License-Identifier: GPL-2.0 #include "fs.h" #include "messages.h" #include "discard.h" #include "super.h" #ifdef CONFIG_PRINTK #define STATE_STRING_PREFACE " state " #define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT + 1) /* * Characters to print to indicate error conditions or uncommon filesystem state. * RO is not an error. */ static const char fs_state_chars[] = { [BTRFS_FS_STATE_REMOUNTING] = 'M', [BTRFS_FS_STATE_RO] = 0, [BTRFS_FS_STATE_TRANS_ABORTED] = 'A', [BTRFS_FS_STATE_DEV_REPLACING] = 'R', [BTRFS_FS_STATE_DUMMY_FS_INFO] = 0, [BTRFS_FS_STATE_NO_CSUMS] = 'C', [BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L', }; static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf) { unsigned int bit; bool states_printed = false; unsigned long fs_state = READ_ONCE(info->fs_state); char *curr = buf; memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE)); curr += sizeof(STATE_STRING_PREFACE) - 1; if (BTRFS_FS_ERROR(info)) { *curr++ = 'E'; states_printed = true; } for_each_set_bit(bit, &fs_state, sizeof(fs_state)) { WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT); if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) { *curr++ = fs_state_chars[bit]; states_printed = true; } } /* If no states were printed, reset the buffer */ if (!states_printed) curr = buf; *curr++ = 0; } #endif /* * Generally the error codes correspond to their respective errors, but there * are a few special cases. * * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for * instance will return EUCLEAN if any of the blocks are corrupted in * a way that is problematic. We want to reserve EUCLEAN for these * sort of corruptions. * * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we * need to use EROFS for this case. We will have no idea of the * original failure, that will have been reported at the time we tripped * over the error. Each subsequent error that doesn't have any context * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. */ const char * __attribute_const__ btrfs_decode_error(int error) { char *errstr = "unknown"; switch (error) { case -ENOENT: /* -2 */ errstr = "No such entry"; break; case -EIO: /* -5 */ errstr = "IO failure"; break; case -ENOMEM: /* -12*/ errstr = "Out of memory"; break; case -EEXIST: /* -17 */ errstr = "Object already exists"; break; case -ENOSPC: /* -28 */ errstr = "No space left"; break; case -EROFS: /* -30 */ errstr = "Readonly filesystem"; break; case -EOPNOTSUPP: /* -95 */ errstr = "Operation not supported"; break; case -EUCLEAN: /* -117 */ errstr = "Filesystem corrupted"; break; case -EDQUOT: /* -122 */ errstr = "Quota exceeded"; break; } return errstr; } /* * Decodes expected errors from the caller and invokes the appropriate error * response. */ __cold void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int error, const char *fmt, ...) { struct super_block *sb = fs_info->sb; #ifdef CONFIG_PRINTK char statestr[STATE_STRING_BUF_LEN]; const char *errstr; #endif #ifdef CONFIG_PRINTK_INDEX printk_index_subsys_emit( "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", KERN_CRIT, fmt); #endif /* * Special case: if the error is EROFS, and we're already under * SB_RDONLY, then it is safe here. */ if (error == -EROFS && sb_rdonly(sb)) return; #ifdef CONFIG_PRINTK errstr = btrfs_decode_error(error); btrfs_state_to_string(fs_info, statestr); if (fmt) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n", sb->s_id, statestr, function, line, error, errstr, &vaf); va_end(args); } else { pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n", sb->s_id, statestr, function, line, error, errstr); } #endif /* * Today we only save the error info to memory. Long term we'll also * send it down to the disk. */ WRITE_ONCE(fs_info->fs_error, error); /* Don't go through full error handling during mount. */ if (!(sb->s_flags & SB_BORN)) return; if (sb_rdonly(sb)) return; btrfs_discard_stop(fs_info); /* Handle error by forcing the filesystem readonly. */ btrfs_set_sb_rdonly(sb); btrfs_info(fs_info, "forced readonly"); /* * Note that a running device replace operation is not canceled here * although there is no way to update the progress. It would add the * risk of a deadlock, therefore the canceling is omitted. The only * penalty is that some I/O remains active until the procedure * completes. The next time when the filesystem is mounted writable * again, the device replace operation continues. */ } #ifdef CONFIG_PRINTK static const char * const logtypes[] = { "emergency", "alert", "critical", "error", "warning", "notice", "info", "debug", }; /* * Use one ratelimit state per log level so that a flood of less important * messages doesn't cause more important ones to be dropped. */ static struct ratelimit_state printk_limits[] = { RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), }; void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) { char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; struct va_format vaf; va_list args; int kern_level; const char *type = logtypes[4]; struct ratelimit_state *ratelimit = &printk_limits[4]; #ifdef CONFIG_PRINTK_INDEX printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); #endif va_start(args, fmt); while ((kern_level = printk_get_level(fmt)) != 0) { size_t size = printk_skip_level(fmt) - fmt; if (kern_level >= '0' && kern_level <= '7') { memcpy(lvl, fmt, size); lvl[size] = '\0'; type = logtypes[kern_level - '0']; ratelimit = &printk_limits[kern_level - '0']; } fmt += size; } vaf.fmt = fmt; vaf.va = &args; if (__ratelimit(ratelimit)) { if (fs_info) { char statestr[STATE_STRING_BUF_LEN]; btrfs_state_to_string(fs_info, statestr); _printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type, fs_info->sb->s_id, statestr, &vaf); } else { _printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); } } va_end(args); } #endif #if BITS_PER_LONG == 32 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) { if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); btrfs_warn(fs_info, "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", BTRFS_32BIT_MAX_FILE_SIZE >> 40); btrfs_warn(fs_info, "please consider upgrading to 64bit kernel/hardware"); } } void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) { if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { btrfs_err(fs_info, "reached 32bit limit for logical addresses"); btrfs_err(fs_info, "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", BTRFS_32BIT_MAX_FILE_SIZE >> 40); btrfs_err(fs_info, "please consider upgrading to 64bit kernel/hardware"); } } #endif /* * Decode unexpected, fatal errors from the caller, issue an alert, and either * panic or BUGs, depending on mount options. */ __cold void __btrfs_panic(const struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int error, const char *fmt, ...) { char *s_id = "<unknown>"; const char *errstr; struct va_format vaf = { .fmt = fmt }; va_list args; if (fs_info) s_id = fs_info->sb->s_id; va_start(args, fmt); vaf.va = &args; errstr = btrfs_decode_error(error); if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", s_id, function, line, &vaf, error, errstr); btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", function, line, &vaf, error, errstr); va_end(args); /* Caller calls BUG() */ } |